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Additive kinematic formulas for convex
functions
Daniel Hug , Fabian Mussnig , and Jacopo Ulivelli
Abstract. We prove a functional version of the additive kinematic formula as an application
of the Hadwiger theorem on convex functions together with a Kubota-type formula for mixed
Monge–Ampère measures. As an application, we give a new explanation for the equivalence of the
representations of functional intrinsic volumes as singular Hessian valuations and as integrals with
respect to mixed Monge–Ampère measures. In addition, we obtain a new integral geometric formula
for mixed area measures of convex bodies, where integration on SO(n − 1) ×O(1) is considered.

1 Introduction and statement of results

For n ∈ N, we denote by Kn the set of convex bodies in R
n (i.e., the set of non-empty,

compact, convex subsets). Among the central objects in convex geometry are the
intrinsic volumes Vj ∶Kn → R, 0 ≤ j ≤ n, which are given as coefficients in the Steiner
formula

voln(K + rBn) =
n
∑
j=0

rn− jκn− jVj(K)

for r > 0 and K ∈Kn . Here, voln denotes the n-dimensional volume (i.e., the Lebesgue
measure on R

n), Bn is the Euclidean unit ball in R
n , and κi denotes the i-dimensional

volume of the unit ball in R
i . Furthermore, for λ, μ ≥ 0 and K , L ∈Kn , we write

λK + μL = {λx + μy ∶ x ∈ K , y ∈ L}
for the Minkowski sum of the bodies λK and μL. The expression 2Vn−1(K) gives the
usual surface area of K ∈Kn and if dim K ≤ j (i.e., if K is contained in a j-dimensional
affine subspace), then Vj(K) is the usual j-dimensional volume of K (we will thus use
Vj instead of vol j).

Alternative but equivalent definitions of the intrinsic volumes can be given, for
example, in terms of differential geometry (see [21, (4.25), (4.26)] or [14, Theorem 4.9])
and integral geometry (see [14, Remarks 5.1 and 5.5]). Another approach characterizes
the operators Vj by their unique properties, which we explain in the following. We call
a map Z∶Kn → R a valuation if

Z(K ∪ L) + Z(K ∩ L) = Z(K) + Z(L)
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2 D. Hug, F. Mussnig, and J. Ulivelli

for K , L ∈Kn such that also K ∪ L ∈Kn . The operator Z is said to be translation invari-
ant if Z(K + x) = Z(K) for K ∈Kn and x ∈ Rn , and it is rotation invariant if Z(ϑK) =
Z(K) for K ∈Kn and ϑ ∈ SO(n). Here, ϑK = {ϑx ∶ x ∈ K} and SO(n) denotes the
special orthogonal group (i.e., the group of orientation preserving rotations of Rn).
The result below is due to Hadwiger [11, Satz IV] and characterizes linear combinations
of intrinsic volumes. Here and in the following, continuity of operators defined on Kn

is understood with respect to the Hausdorff metric (see, for example, [21, Section 1.8]
for details).

Theorem 1.1 (Hadwiger’s Theorem) A map Z∶Kn → R is a continuous, translation
and rotation invariant valuation if and only if there exist c0 , . . . , cn ∈ R such that

Z(K) =
n
∑
j=0

c jVj(K)

for K ∈Kn .

Among its numerous applications, the strength of Theorem 1.1 is particularly
evident in integral geometry, where it provides almost effortless proofs of formulas
that involve integration of geometric quantities with respect to invariant measures.
See, for example, [13, 14, 15]. One such result is the following additive kinematic
formula for which we refer to [14, Theorem 5.13] (see [14, Corollary 5.2] for a more
general local version and [21, Theorem 4.4.6] for a different approach).

Theorem 1.2 (Additive kinematic formula) For 0 ≤ j ≤ n and K , L ∈Kn ,

∫
SO(n)

Vj(K + ϑL)dϑ =
j

∑
k=0

(2n− j
n− j )κn−kκn+k− j

(2n− j
n−k )κnκn− j

Vk(K)Vj−k(L),(1.1)

where dϑ denotes integration with respect to the Haar probability measure on SO(n).

The aim of this article is to establish a functional version of Theorem 1.2. For this,
we denote by Conv(Rn ;R) the set of convex functions v∶Rn → R. In [8], functional
analogs of the intrinsic volumes on Conv(Rn ;R) were introduced and characterized
in a Hadwiger-type theorem. For v ∈ Conv(Rn ;R) ∩ C2(Rn) and j ∈ {0, . . . , n}, these
functional intrinsic volumes are of the form

v ↦ ∫
Rn

ζ(∣x∣)[D2v(x)] j dx ,(1.2)

where ∣x∣ denotes the Euclidean norm of x ∈ Rn , dx denotes integration with respect
to Lebesgue measure on R

n , and ζ ∶ (0,∞) → R is continuous with bounded support
with a possible singularity at 0+ (see Section 5 for details). Here, D2v(x) denotes the
Hessian matrix of v at x ∈ Rn , and we write [A] j for the jth elementary symmetric
function of the eigenvalues of the symmetric matrix A ∈ Rn×n .

While (1.2) is easy to understand, it turns out that this representation of functional
intrinsic volumes as singular Hessian integrals is not well suited for an additive
kinematic formula. It was shown in [6, Theorem 2.5] that (1.2) can be rewritten as

v ↦ ∫
Rn

α(∣x∣)dMA(v[ j], hBn [n − j]; x),
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Additive kinematic formulas for convex functions 3

where α is a continuous function with compact support on [0,∞) that is
obtained from ζ via an integral transform (see Section 5). Here, we write hK(x) =
sup{⟨x , y⟩ ∶ y ∈ K}, x ∈ Rn , for the support function of K ∈Kn , where ⟨⋅ , ⋅⟩ denotes
the standard inner product on R

n , and we remark that hBn(x) = ∣x∣ for x ∈ Rn . More-
over, MA(w1 , . . . , wn ; ⋅) denotes the mixed Monge–Ampère measure of the functions
w1 , . . . , wn ∈ Conv(Rn ;R), and in the equation above, the function v is repeated
j times and hBn is repeated n − j times. Under additional C2 assumptions on its
arguments, the mixed Monge–Ampère measure is absolutely continuous with respect
to the Lebesgue measure and takes the form

dMA(w1 , . . . , wn ; x) = det(D2w1(x), . . . , D2wn(x))dx ,

where det∶ (Rn×n)n → R denotes the mixed discriminant. For a more precise defini-
tion of this measure, we refer to Section 2.

For our purposes, we will thus consider the (renormalized) functional intrinsic
volumes V∗j,α ∶Conv(Rn ;R) → R given by

V∗j,α(v) = (
n
j
) 1
κn− j

∫
Rn

α(∣x∣)dMA(v[ j], hBn [n − j]; x)(1.3)

for v ∈ Conv(Rn ;R), where 0 ≤ j ≤ n and α ∈ Cc([0,∞)). This particular choice of
normalization has the advantage that

V∗j,α(hK) = α(0)Vj(K)

for K ∈Kn (see, for example, [12, Lemma 4.6]). The Hadwiger theorem on the space
Conv(Rn ;R), which was first established in [8, Theorem 1.5], is the following result.
For the version stated below, see [6, Theorem 2.6]. See also [7, Theorem 1.1] and [17,
Theorem 1.2].

For the statement of the result, we recall some terminology. Continuity of a
functional Z∶Conv(Rn ;R) → R is understood with respect to epi-convergence, which
on Conv(Rn ;R) is equivalent to pointwise convergence. The operator Z is dually
epi-translation invariant if Z(v + f ) = Z(v) for v ∈ Conv(Rn ;R) and affine functions
f on R

n , and it is rotation invariant if Z(v ○ ϑ−1) = Z(v) for v ∈ Conv(Rn ;R) and
ϑ ∈ SO(n). Lastly, Z is a valuation if

Z(v ∧w) + Z(v ∨w) = Z(v) + Z(w)(1.4)

for v , w ∈ Conv(Rn ;R) such that also v ∧w ∈ Conv(Rn ;R), where v ∧w and v ∨w
denote the pointwise minimum and maximum of v and w, respectively.

Theorem 1.3 A functional Z∶Conv(Rn ;R) → R is a continuous, dually epi-translation
and rotation invariant valuation if and only if there exist functions α0 , . . . , αn ∈
Cc([0,∞)) such that

Z(v) =
n
∑
j=0

V∗j,α j
(v)

for v ∈ Conv(Rn ;R).
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4 D. Hug, F. Mussnig, and J. Ulivelli

We will use the functional Hadwiger theorem together with a Kubota-type formula
for (conjugate) mixed Monge–Ampère measures (see Lemma 2.4) to prove the follow-
ing functional counterpart of Theorem 1.2.

Theorem 1.4 If 0 ≤ j ≤ n and α∶ [0,∞) → [0,∞) is measurable, then

κn ∫
SO(n)

∫
Rn

α(∣y∣)dMA(v + (w ○ ϑ−1)[ j], hBn [n − j]; y)dϑ

=
j

∑
i=0
( j

i
)∫

Rn ∫Rn
α(max{∣x∣, ∣y∣})

dMA(w[ j − i], hBn [n − j + i]; y)dMA(v[i], hBn [n − i]; x)

(1.5)

for v , w ∈ Conv(Rn ;R).

Observe that the left side of (1.5) can be rewritten as a multiple of

∫
SO(n)

V∗j,α(v + (w ○ ϑ−1))dϑ ,

which resembles (1.1). However, in general, the right side of (1.5) is not a sum of
products of functional intrinsic volumes. A case in which this is possible is given by
Corollary 4.2 below. In Section 4, we also show how Theorem 1.2 can be retrieved from
Theorem 1.4 and treat further consequences, such as formulas for functional analogs
of mixed volumes (Corollary 4.3) or analytic versions of the Minkowski difference
(Corollary 4.4).

As a further application of Theorem 1.4, we establish a novel explanation of the
aforementioned equivalence between (1.3) and the singular Hessian integrals (1.2) in
Section 5.

Lastly, in Section 6, we study the implications of Theorem 1.4 for mixed area
measures of convex bodies. We write Sn−1(K , ⋅) for the surface area measure of K ∈Kn ,
which is a Borel measure on the unit sphere Sn−1. For a body K of dimension n and a
Borel set ω ⊆ S

n−1, the expression Sn−1(K , ω) gives the (n − 1)-dimensional Hausdorff
measure, denoted by Hn−1, of all boundary points x ∈ ∂K at which K has an outer unit
normal in ω (we refer to [21, Section 4.2] for a detailed description). The coefficients
S(K i1 , . . . , K in−1 , ⋅) in the polynomial expansion

Sn−1(λ1K1 + ⋅ ⋅ ⋅ + λm Km , ⋅) =
m
∑

i1 , . . . , in−1=1
λ i1 ⋅ ⋅ ⋅ λ in−1 S(K i1 , . . . , K in−1 , ⋅)

for m ∈ N, λ1 , . . . , λm ≥ 0, and K1 , . . . , Km ∈Kn , are the mixed area measures of
the bodies K i1 , . . . , K in−1 . For 0 ≤ j ≤ n − 1, we consider measures of the form
S(K[ j], Bn−1

H [n − 1 − j], ⋅), where the body K ∈Kn is repeated j times and the (n − 1)-
dimensional unit ball

Bn−1
H = Bn ∩ e⊥n = {(x1 , . . . , xn) ∈ Rn ∶ x2

1 + ⋅ ⋅ ⋅ + x2
n−1 ≤ 1, xn = 0}

is repeated (n − 1 − j) times. Here, en denotes the nth basis vector of the standard
orthonormal basis of Rn , and we write H = e⊥n . The authors studied these measures
and their connection with mixed Monge–Ampère measures and functional intrinsic
volumes in more detail in [12].
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For n ≥ 2, we identify SO(n − 1) as the group of rotations that fix en and O(1) as
the group that consists of the identity and diag(1, . . . , 1,−1). We use Theorem 1.4 to
prove the following result, where integration on SO(n − 1) ×O(1) is with respect to
the Haar probability measure. In addition, we write zn = ⟨z, en⟩, for z ∈ Sn−1.

Theorem 1.5 Let n ≥ 2. If 0 ≤ j ≤ n − 1 and β∶ [0, 1] → [0,∞) is measurable, then

∫
SO(n−1)×O(1)

∫
Sn−1

∣zn ∣β(∣zn ∣)dS((K + ηL)[ j], Bn−1
H [n − 1 − j], z)dη

= 1
2κn−1

j

∑
i=0
( j

i
)∫

Sn−1 ∫Sn−1
∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})

dS(L[ j − i], Bn−1
H [n − 1 − j + i], w)dS(K[i], Bn−1

H [n − 1 − i], z)

(1.6)

for K , L ∈Kn .

A rotational integral formula for mixed area measures which is equivalent to
Theorem 1.5 is provided in Corollary 6.2.

2 Preliminaries

Throughout this section, we state some results on convex functions. For general
references, we refer to[19, 20, 21].

For v ∈ Conv(Rn ;R), we write ∂v(x) for the subdifferential of v at x ∈ Rn , which
is the set

∂v(x) = {y ∈ Rn ∶ v(z) ≥ v(x) + ⟨y, z − x⟩ ∀z ∈ Rn}.

The function v is differentiable at x if and only if ∂v(x) contains only one element –
namely, the gradient ∇v(x).

The Monge–Ampère measure of v, which is a Radon measure on R
n , is defined as

MA(v; B) = Vn (⋃
b∈B

∂v(b))

for Borel sets B ⊆ R
n (see, for example, [10, Theorem 2.3]). The mixed Monge–Ampère

measure, which is associated to an n-tuple of elements of Conv(Rn ;R), is now given
by the relation

MA(λ1v1 + ⋅ ⋅ ⋅ + λmvm ; ⋅) =
m
∑

i1 , . . . , in=1
λ i1 ⋅ ⋅ ⋅ λ in MA(v i1 , . . . , v in ; ⋅),(2.1)

where m ∈ N, v1 , . . . , vm ∈ Conv(Rn ;R), and λ1 , . . . , λm ≥ 0. Equation (2.1) uniquely
determines the mixed Monge–Ampère measure if we additionally assume that it is
symmetric in its entries. See [23] and [6, Theorem 4.3].

For a convex function w∶Rn → (−∞,∞], we consider its convex conjugate or
Legendre–Fenchel transform

w∗(x) = sup{⟨x , y⟩ −w(y) ∶ y ∈ Rn}

for x ∈ Rn . For each v ∈ Conv(Rn ;R), the convex conjugate v∗ is a lower semicontin-
uous, convex function on R

n with values in (−∞,∞], which satisfies v(x̄) < ∞ for at
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6 D. Hug, F. Mussnig, and J. Ulivelli

least one x̄ ∈ Rn and which is super-coercive; that is,

lim
∣x ∣→∞

v∗(x)
∣x∣ = ∞.

We denote the set of all such functions by Convsc(Rn) and remark this duality can be
stated as u∗ ∈ Conv(Rn ;R) if and only if u ∈ Convsc(Rn).

While the space of convex bodies is naturally embedded into Conv(Rn ;R) by asso-
ciating with each body K ∈Kn its support function hK ∈ Conv(Rn ;R), the canonical
representative of K in Convsc(Rn) is given by its convex indicator function

IK(x) = h∗K(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ∈ K ,
∞ else.

(2.2)

We equip the space Convsc(Rn) with the topology associated with epi-
convergence, where a sequence of convex functions w j ∶Rn → (−∞,∞], j ∈ N, epi-
converges to w∶Rn → (−∞,∞] if for every x ∈ Rn ,
• w(x) ≤ lim inf j→∞w j(x j) for every sequence x j → x and
• w(x) = lim j→∞w j(x j) for some sequence x j → x.
By [20, Theorem 11.34], convex conjugation is a homeomorphism between
Conv(Rn ;R) and Convsc(Rn). Let us remark that while on Conv(Rn ;R) epi-
convergence coincides with pointwise convergence, this is not the case anymore on
Convsc(Rn). For an alternative description of epi-convergence on Convsc(Rn)which
uses Hausdorff convergence of level sets, we refer to [4, Lemma 5].

We need the following result, which is a consequence of [9, Lemma 3.3].

Lemma 2.1 The map

(ϑ , u) ↦ u ○ ϑ

is jointly continuous on SO(n) × Convsc(Rn).

For a convex function w∶Rn → (−∞,∞], we write

epi(w) = {(x , t) ∈ Rn ×R ∶ w(x) ≤ t}

for its epi-graph, which is a convex subset of Rn ×R. For the convex conjugate of the
pointwise sum of two functions v1 and v2 in Conv(Rn ;R), we have

epi(v1 + v2)∗ = epi(v∗1 ) + epi(v∗2 ).(2.3)

The corresponding operation on Convsc(Rn) is infimal convolution or epi-sum which
for u1 , u2 ∈ Convsc(Rn) is given by

(u1 ◻ u2)(x) = inf {u1(x − y) + u2(y) ∶ y ∈ Rn}

for x ∈ Rn . The set in (2.3) can now be written as epi(v∗1 ◻ v∗2 ). By the preceding
exposition, the following result, which can be found in [20, Theorem 7.46 (a)], is easy
to see.

Lemma 2.2 Let u j , v j ∈ Convsc(Rn) for j ∈ N. If u j epi-converges to u ∈ Convsc(Rn)
and v j epi-converges to v ∈ Convsc(Rn), then u j ◻ v j epi-converges to u ◻ v.
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Additive kinematic formulas for convex functions 7

Next, for the convex conjugate of the pointwise multiplication of v ∈ Conv(Rn ;R)
with λ > 0, we have

epi(λv)∗ = λ epi(v∗) = epi(λ v∗),

where (λ u)(x) = λu( x
λ ) denotes the epi-multiplication of u ∈ Convsc(Rn) with

λ > 0. This operation continuously extends to λ = 0 with 0 u = I{o}.
The conjugate Monge–Ampère measure of u ∈ Convsc(Rn) is defined by

MA∗(u; ⋅) = MA(u∗; ⋅),

or equivalently,

∫
Rn

β(y)dMA∗(u; y) = ∫
dom(u)

β(∇u(x))dx

for measurable β∶Rn → [0,∞). Here,

dom(u) = {x ∈ Rn ∶ u(x) < ∞}
is the domain of u, and it follows from Rademacher’s theorem that a convex function
is differentiable almost everywhere (w.r.t. the Lebesgue measure) on its domain.
Similarly, for u1 , . . . , un ∈ Convsc(Rn), the conjugate mixed Monge–Ampère measure
is given by

MA∗(u1 , . . . , un ; ⋅) = MA(u∗1 , . . . , u∗n ; ⋅)(2.4)

and satisfies

MA∗((λ1 u1) ◻ ⋅ ⋅ ⋅ ◻ (λm um); ⋅) =
m
∑

i1 , . . . , in=1
λ i1 ⋅ ⋅ ⋅ λ in MA∗(u i1 , . . . , u in ; ⋅)(2.5)

for m ∈ N, u1 , . . . , um ∈ Convsc(Rn), and λ1 , . . . , λm ≥ 0.
We use (2.2) and (2.4) to obtain the following equivalent formulation of [12, Lemma

4.6]. Here, we write V ∶ (Kn)n → R for the mixed volume, which is defined as the
unique symmetric map such that

Vn(λ1K1 + ⋅ ⋅ ⋅ + λm Km) =
m
∑

i1 , . . . , in=1
λ i1 ⋅ ⋅ ⋅ λ in V(K i1 , . . . , K in)

for m ∈ N, K1 , . . . , Km ∈Kn , and λ1 , . . . , λm ≥ 0. See [21, Theorem 5.1.7] for further
details on mixed volumes.

Lemma 2.3 If K1 , . . . , Kn ∈Kn , then

MA∗(IK1 , . . . , IKn ; B) = V(K1 , . . . , Kn)δo(B)
for Borel sets B ⊆ R

n , where δo is the Dirac measure at the origin. In particular,

(n
j
)MA∗(IK[ j], IBn [n − j]; B) = κn− jVj(K)δo(B)

for 0 ≤ j ≤ n.

The next result is a Kubota-type formula for conjugate mixed Monge–Ampère
measures and was established by the authors in [12, Theorem 5.1] (see [3] for a related
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8 D. Hug, F. Mussnig, and J. Ulivelli

result). Here, for 1 ≤ k ≤ n, we denote by G(n, k) the Grassmannian of k-dimensional
linear subspaces ofRn , and integration on this space is always understood with respect
to the Haar probability measure. For u ∈ Convsc(Rn) and E ∈ G(n, k), we write

projE u(xE) = miny∈E⊥ u(xE + y)

with xE ∈ E, for the projection function of u.

Lemma 2.4 If 1 ≤ k < n and φ∶Rn → [0,∞) is measurable, then

1
κn

∫
Rn

φ(y)dMA∗(u1 , . . . , uk , IBn [n − k]; y)

= 1
κk

∫
G(n ,k)

∫
E

φ(yE)dMA∗E(projE u1 , . . . , projE uk ; yE)dE

for u1 , . . . , uk ∈ Convsc(Rn).

For t ≥ 0, let ut ∈ Convsc(Rn) be defined by ut(x) = t∣x∣ + IBn(x) for x ∈ Rn . We
need the following result, which is a consequence of [6, Lemma 8.4] together with the
defining relation (2.4).

Lemma 2.5 If 1 ≤ j ≤ n and α ∈ Cc([0,∞)), then

∫
Rn

α(∣y∣)dMA∗(ut[ j], IBn [n − j]; y) = κn α(t)

for t ≥ 0.

Lastly, we need some results on valuations on Convsc(Rn), which are defined
analogously to (1.4). By [5, Proposition 3.5], a map Z∶Convsc(Rn) → R is a valuation
if and only if v ↦ Z∗(v) = Z(v∗) is a valuation on Conv(Rn ;R). We say that Z is epi-
translation invariant if Z∗ is dually epi-translation invariant or equivalently if Z(u ○
τ−1 + c) = Z(u) for u ∈ Convsc(Rn), translations τ onR

n , and c ∈ R. The operator Z is
epi-homogeneous of degree j ∈ N if Z(λ u) = λ j Z(u) for u ∈ Convsc(Rn) and λ ≥ 0.

The following result from [6, Proposition 5.3] provides some examples of valuations
on Convsc(Rn). We denote by Cc(Rn) the set of continuous real-valued functions
with compact support on R

n .

Lemma 2.6 Let φ ∈ Cc(Rn) and 0 ≤ j ≤ n. If u1 , . . . , un−1 ∈ Convsc(Rn), then

u ↦ ∫
Rn

φ(x)dMA∗(u1 , . . . , un− j , u[ j]; x)

defines a continuous, epi-translation invariant valuation on Convsc(Rn) that is epi-
homogeneous of degree j.

We say that a map Z on Convsc(Rn) is rotation invariant if Z(u ○ ϑ−1) = Z(u)
for u ∈ Convsc(Rn) and ϑ ∈ SO(n). The following Hadwiger-type result, provided in
[8, Theorem 1.3], is equivalent to Theorem 1.3 and shows that not many examples of
valuations remain under the additional assumption of rotation invariance. For the
version stated below, see [6, Theorem 1.7].
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Additive kinematic formulas for convex functions 9

Theorem 2.7 A functional Z∶Convsc(Rn) → R is a continuous, epi-translation and
rotation invariant valuation if and only if there exist functions α0 , . . . , αn ∈ Cc([0,∞))
such that

Z(u) =
n
∑
j=0
∫
Rn

α j(∣y∣)dMA∗(u[ j], IBn [n − j]; y)

for u ∈ Convsc(Rn).

Let us remark that Lemma 2.5 shows that the operator Z that appears in Theo-
rem 2.7 uniquely determines the densities α j .

3 Proof of Theorem 1.4

Throughout this section, we use the abbreviated notation

MA∗j(u; ⋅) = MA∗(u[ j], IBn [n − j]; ⋅) = MA(u∗[ j], hBn [n − j]; ⋅)

for 0 ≤ j ≤ n and u ∈ Convsc(Rn), which was introduced in [6].
To prove the next result, we follow the strategy of the proof of [9, Lemma 3.4].

Moreover, we use that (u ○ ϑ)∗ = u∗ ○ ϑ, for u ∈ Convsc(Rn) and ϑ ∈ SO(n), and
MA(v; ϑB) = MA(v ○ ϑ; B), for v ∈ Conv(Rn ;R), ϑ ∈ SO(n), and Borel sets B ⊆ R

n .

Lemma 3.1 For any 1 ≤ j ≤ n, fixed v̄ ∈ Convsc(Rn) and α ∈ Cc([0,∞)) the map

u ↦ ∫
SO(n)

∫
Rn

α(∣y∣)dMA∗j(u ◻ (v̄ ○ ϑ−1); y)dϑ(3.1)

is a continuous, epi-translation and rotation invariant valuation on Convsc(Rn).

Proof We start by showing that

(ϑ , u) ↦ ∫
Rn

α(∣y∣)dMA∗j(u ◻ (v̄ ○ ϑ−1); y)(3.2)

is jointly continuous on SO(n) ×Convsc(Rn). For this, observe that it follows from
the rotational symmetry of the integrand and the two basic facts mentioned before the
statement of the lemma that

∫
Rn

α(∣y∣)dMA∗j(u ◻ (v̄ ○ ϑ−1); y) = ∫
Rn

α(∣y∣)dMA∗j((u ◻ (v̄ ○ ϑ−1)) ○ ϑ; y)

= ∫
Rn

α(∣y∣)dMA∗j((u ○ ϑ) ◻ v̄; y)

for every u ∈ Convsc(Rn) and ϑ ∈ SO(n). Thus, by Lemma 2.2, Lemma 2.6, and
Lemma 2.1, the map given in (3.2) is jointly continuous on SO(n) ×Convsc(Rn).

Let u i ∈ Convsc(Rn), i ∈ N, be such that u i epi-converges to some ū ∈ Convsc(Rn),
which means that {u i ∶ i ∈ N} ∪ {ū} is sequentially compact. Together with the fact
that SO(n) is compact and the map given in (3.2) is jointly continuous, it follows that
the supremum

sup{∣∫
Rn

α(∣y∣)dMA∗j(u i ◻ (v̄ ○ ϑ−1); y)∣ ∶ i ∈ N, ϑ ∈ SO(n)}(3.3)
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is finite. Thus, we may apply the dominated convergence theorem to obtain

lim
i→∞∫SO(n)

∫
Rn

α(∣y∣)dMA∗j(u i ◻ (v̄ ○ ϑ−1); y)dϑ

= ∫
SO(n)

∫
Rn

α(∣y∣)dMA∗j(ū ◻ (v̄ ○ ϑ−1); y)dϑ ,

which shows that (3.1) is continuous.
Lastly, it follows from the properties of infimal convolution and the corresponding

properties provided in Lemma 2.6 that (3.1) defines an epi-translation and rotation
invariant valuation. ∎

Remark 3.2 An alternative argument showing that the supremum in (3.3) is finite
can be based on [12, Remark 5.2].

For the proof of the main result of this section, we need the elementary property

MA∗(IBn ; ⋅) = κn δo ,(3.4)

which is a special case of Lemma 2.3. The next result is the equivalent version of
Theorem 1.4 on Convsc(Rn).

Theorem 3.3 If 0 ≤ j ≤ n and α∶ [0,∞) → [0,∞) is measurable, then

κn ∫
SO(n)

∫
Rn

α(∣y∣)dMA∗j(u ◻ (v ○ ϑ−1); y)dϑ

=
j

∑
i=0
( j

i
)∫

Rn ∫Rn
α(max{∣x∣, ∣y∣})dMA∗j−i(v; y)dMA∗i(u; x)(3.5)

for u, v ∈ Convsc(Rn).

Proof For the proof, it is sufficient to consider a function α ∈ Cc([0,∞)). Indeed,
for given u, v ∈ Convsc(Rn), all occurring integrals in (3.5) are finite if α is continuous
with compact support. Thus, both sides of (3.5) define positive linear functionals
on Cc([0,∞)). By the Riesz representation theorem (see, for example, [2, Theorem
7.2.8]), there exist unique Borel measures μ1 , μ2 on [0,∞), (which are, in fact, Radon
measures, since they are finite on compact sets) such that

κn ∫
SO(n)

∫
Rn

α(∣y∣)dMA∗j(u ◻ (v ○ ϑ−1); y)dϑ = ∫
[0,∞)

α(z)dμ1(z)

for every α ∈ Cc([0,∞)), and, similarly, the right side of (3.5) can be written as
∫[0,∞) α dμ2. By (3.5) together with the uniqueness part of the Riesz representation
theorem, μ1 and μ2 must be equal, and therefore equality holds in (3.5) when
integrating an arbitrary nonnegative Borel measurable function.

If j = 0, the statement trivially follows from (3.4). Thus, we will assume 1 ≤ j ≤ n
throughout the following. For u, v ∈ Convsc(Rn), set

Z(u, v) = ∫
SO(n)

∫
Rn

α(∣y∣)dMA∗j(u ◻ (v ○ ϑ−1); y)dϑ .(3.6)

For fixed v̄ ∈ Convsc(Rn), it follows from Lemma 3.1 that u ↦ Z(u, v̄) is a con-
tinuous, epi-translation and rotation invariant valuation on Convsc(Rn). Thus, by
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Theorem 2.7, there exist functions α i ,v̄ ∈ Cc([0,∞)), 0 ≤ i ≤ n, such that

Z(u, v̄) =
n
∑
i=0
∫
Rn

α i ,v̄(∣y∣)dMA∗i(u; y)

for every u ∈ Convsc(Rn). In particular, if we choose u = λ ut , where ut = t∣ ⋅ ∣ + IBn ,
it follows from (3.4), Lemma 2.6, and Lemma 2.5 that

Z(λ ut , v̄) = κn (α0,v̄(0) +
n
∑
i=1

λ i α i ,v̄(t))(3.7)

for every t, λ ≥ 0. Since for every fixed ū ∈ Convsc(Rn) also the map v ↦ Z(ū, v) is
a continuous, epi-translation and rotation invariant valuation, it follows from (3.7)
together with homogeneity that for every fixed t̄ ≥ 0, each of the maps

v ↦ α0,v(0) and v ↦ α i ,v(t̄), 1 ≤ i ≤ n

is a continuous, epi-translation and rotation invariant valuation. Thus, by Theorem 2.7,
there exist functions α0,k ∈ Cc([0,∞)), α i ,k(t̄, ⋅) ∈ Cc([0,∞)), 1 ≤ i ≤ n, 0 ≤ k ≤ n,
such that

α0,v(0) =
n
∑
k=0

∫
Rn

α0,k(∣y∣)dMA∗k(v; y)

and

α i ,v(t̄) =
n
∑
k=0

∫
Rn

α i ,k(t̄, ∣y∣)dMA∗k(v; y)

for every v ∈ Convsc(Rn) and 1 ≤ i ≤ n. We thus have

Z(u, v) = κn α0,v(0) +
n
∑
i=1
∫
Rn

α i ,v(∣x∣)dMA∗i(u; x)

= κn
n
∑
k=0

∫
Rn

α0,k(∣y∣)dMA∗k(v; y)

+
n
∑
i=1

n
∑
k=0

∫
Rn ∫Rn

α i ,k(∣x∣, ∣y∣)dMA∗k(v; y)dMA∗i(u; x)

(3.8)

for every u, v ∈ Convsc(Rn).
It remains to determine the relation between α i ,k and α. In order to do this, we will

evaluate Z(u, v) at u = λ us and v = μ utwith λ, μ, s, t ≥ 0. Notice that

λ us(x) = s∣x∣ + IλBn(x) and (μ ut) ○ ϑ−1(x) = t∣x∣ + IμBn(x)

for ϑ ∈ SO(n) and x ∈ Rn . For 0 ≤ s ≤ t, we now have

((λ us) ◻ ((μ ut) ○ ϑ−1)) (x) = inf {s∣x − y∣ + t∣y∣ ∶ x − y ∈ λBn , y ∈ μBn}

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s∣x∣, ∣x∣ ≤ λ,
sλ + t(∣x∣ − λ), λ < ∣x∣ ≤ λ + μ,
+∞, λ + μ < ∣x∣.
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Hence,

projE ((λ us) ◻ ((μ ut) ○ ϑ−1)) (xE) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s∣xE ∣, ∣xE ∣ ≤ λ,
sλ + t(∣xE ∣ − λ), λ < ∣xE ∣ ≤ λ + μ,
+∞, λ + μ < ∣xE ∣,

for every ϑ ∈ SO(n) and E ∈ G(n, j). Thus, it follows from (3.6) and Lemma 2.4 (for
j = n the lemma holds trivially) that

Z(λ us , μ ut)

= ∫
Rn

α(∣y∣)dMA∗j((λ us) ◻ (μ ut); y)

= κn

κ j
∫

G(n , j)
∫

E
α(∣yE ∣)dMA∗E(projE ((λ us) ◻ (μ ut)); yE)dE

= κn

κ j
∫

G(n , j)
∫
(λ+μ)B j

E

α (∣∇projE ((λ us) ◻ (μ ut))(xE)∣) dxE dE(3.9)

= κn (λ jα(s) + ((λ + μ) j − λ j)α(t))

= κn
⎛
⎝

λ jα(s) +
j−1

∑
i=0
( j

i
)λ i μ j−i α(t)

⎞
⎠

for 0 ≤ s ≤ t. However, by (3.8), (3.4), and Lemma 2.5,

Z(λ us , μ ut)

= κ2
n (α0,0(0) +

n
∑
k=1

μk α0,k(t)) + κ2
n

n
∑
i=1

λ i (α i ,0(s, 0) +
n
∑
k=1

μk α i ,k(s, t)) .(3.10)

Since λ, μ ≥ 0 were arbitrary, we can compare coefficients of the last two equations to
obtain

κn α j,0(s, 0) = α(s), κn α0, j(t) = α(t), κn α i , j−i(s, t) = ( j
i
)α(t),

for 1 ≤ i ≤ j − 1 and α i ,k(s, t) = 0 if i + k ≠ j whenever 0 ≤ s ≤ t.
Proceeding for the case s ≥ t similarly as in the derivation of (3.9), we obtain

Z(λ us , μ ut) = κn
⎛
⎝

μ jα(t) +
j−1

∑
i=0
( j

i
)μ i λ j−i α(s)

⎞
⎠

.

A comparison with the coefficients available from (3.10) shows that

κn α j,0(s, 0) = α(s), κn α0, j(t) = α(t), κn α i , j−i(s, t) = ( j
i
)α(s),

for 1 ≤ i ≤ j − 1 and α i ,k(s, t) = 0 if i + k ≠ j, also for s ≥ t.
The claim now follows after considering (3.4). ∎
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4 Further formulas

For α ∈ Cc([0,∞)) and 0 ≤ j ≤ n, we define the jth functional intrinsic volume on
Convsc(Rn) with density α, denoted by V j,α , as

V j,α(u) = (n
j
) 1
κn− j

∫
Rn

α(∣y∣)dMA∗j(u; y)(4.1)

for u ∈ Convsc(Rn). Clearly, V∗j,α(v) = V j,α(v∗) for every v ∈ Conv(Rn ;R).
By (4.1), we have the following reformulation of Theorem 3.3.

Theorem 4.1 If 0 ≤ j ≤ n and α ∈ Cc([0,∞)), then

κnκn− j ∫
SO(n)

V j,α(u ◻ (v ○ ϑ−1))dϑ

= (n
j
)

j

∑
i=0
( j

i
)∫

Rn ∫Rn
α(max{∣x∣, ∣y∣})dMA∗j−i(v; y)dMA∗i(u; x)(4.2)

for u, v ∈ Convsc(Rn).

If in (4.2) we choose v to be the convex indicator function IL of a convex body
L ∈Kn , then a direct application of Lemma 2.3 gives a specialization of Theorem 4.1
reading as follows, where we write

[k
j
] = (k

j
) κk

κ jκk− j

for j, k ∈ N.

Corollary 4.2 If 0 ≤ j ≤ n and α ∈ Cc([0,∞)), then

∫
SO(n)

V j,α(u ◻ IϑL)dϑ =
j

∑
i=0
[n − i

j − i
][ n

j − i
]
−1

Vi ,α(u)Vj−i(L)

for u ∈ Convsc(Rn) and L ∈Kn .

Proof It follows from Lemma 2.3 that for u ∈ Convsc(Rn), L ∈Kn , and 0 ≤ j ≤ n, we
have

(n
j
)MA∗j(IL ; B) = κn− jVj(L)δ0(B)

for Borel sets B ⊆ R
n . Applying Theorem 4.1, we then infer

∫
SO(n)

V j,α(u ◻ IϑL)dϑ

=
(n

j)
κnκn− j

j

∑
i=0
( j

i
)∫

Rn ∫Rn
α(max{∣x∣, ∣y∣})dMA∗j−i(IL ; y)dMA∗i(u; x)

=
(n

j)
κnκn− j

j

∑
i=0

( j
i)κn−( j−i)

( n
j−i)

Vj−i(L)∫
Rn

α(∣x∣)dMA∗i(u; x)
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=
j

∑
i=0

(n
j)(

j
i)

( n
j−i)(

n
i)

κn−iκn−( j−i)

κnκn− j
Vi ,α(u)Vj−i(L)

=
j

∑
i=0
[n − i

j − i
][ n

j − i
]
−1

Vi ,α(u)Vj−i(L),

where we used that α(max{∣x∣, 0}) = α(∣x∣) for x ∈ Rn and

(n
j)(

j
i)

(n
i)

= (n − i
j − i

)

for 0 ≤ i ≤ j ≤ n. ∎
Note that if in the last result we furthermore also choose u to be the indicator

function of a convex body K ∈Kn , then we recover the additive kinematic formula
for convex bodies (1.1), which can be written as

∫
SO(n)

Vj(K + ϑL)dϑ =
j

∑
i=0
[n − i

j − i
][ n

j − i
]
−1

Vi(K)Vj−i(L).

Next, we consider mixed functionals. A corollary of (1.1) for the mixed volume
V ∶ (Kn)n → R states that if 0 ≤ j ≤ n, then

(n
j
)∫

SO(n)
V(K[ j], ϑL[n − j])dϑ = [n

j
]
−1

Vj(K)Vn− j(L)(4.3)

for every K , L ∈Kn . See, for example, formula (6.7) in [22].
For α ∈ Cc([0,∞)), we define the operator Vα on (Convsc(Rn))n as

Vα(u1 , . . . , un) = ∫
Rn

α(∣y∣)dMA∗(u1 , . . . , un ; y)

for u1 , . . . , un ∈ Convsc(Rn). Clearly, by the properties of the conjugate mixed
Monge–Ampère measure, the functional Vα is symmetric in its entries. Moreover,
in each of its arguments, it is continuous with respect to epi-convergence, epi-
homogeneous of degree 1, and epi-translation invariant. We remark that functionals
of this form were also treated in [1] and, from a valuation point of view, in [5, 16].

By Lemma 2.3, it is immediate to check that Vα generalizes the classical mixed
volumes; that is,

Vα(IK1 , . . . , IKn) = α(0)V(K1 , . . . , Kn)
for K1 , . . . , Kn ∈Kn . We have the following functional integral formula which includes
(4.3) in the special case where k = n, u = IK , and v = IL (see also [14, Lemma 5.8]).

Corollary 4.3 If 0 ≤ j ≤ k ≤ n and α ∈ Cc([0,∞)), then

∫
SO(n)

Vα (u1 , . . . , u j , v1 ○ ϑ−1 , . . . , vk− j ○ ϑ−1 , IBn [n − k])dϑ

= 1
κn

∫
Rn ∫Rn

α(max{∣x∣, ∣y∣})dMA∗j(u1 , . . . , u j ; x)dMA∗k− j(v1 , . . . , vk− j ; y)

for u1 , . . . , u j , v1 , . . . , vk− j ∈ Convsc(Rn).
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Proof Let u, v ∈ Convsc(Rn). For ε > 0, it follows from Theorem 4.1 and the prop-
erties of the measures MA∗n− j(v; ⋅) that

∫
SO(n)

Vk ,α(u ◻ ε (v ○ ϑ−1))dϑ

= 1
κnκn−k

(n
k
)

k
∑
i=0
(k

i
)εk−i ∫

Rn ∫Rn
α(max{∣x∣, ∣y∣})dMA∗k−i(v; y)dMA∗i(u; x)

for every u, v ∈ Convsc(Rn). However, by (2.5), we have

∫
SO(n)

Vk ,α(u ◻ ε (v ○ ϑ−1))dϑ

= 1
κn−k

(n
k
)∫

SO(n)
∫
Rn

α(∣x∣)dMA∗k(u ◻ ε (v ○ ϑ−1); x)dϑ

= 1
κn−k

(n
k
)

k
∑
i=0
(k

i
)εk−i ∫

SO(n)
∫
Rn

α(∣x∣)

dMA∗(u[i], v ○ ϑ−1[k − i], IBn [n − k]; x)dϑ

= 1
κn−k

(n
k
)

k
∑
i=0
(k

i
)εk−i ∫

SO(n)
Vα (u[i], v ○ ϑ−1[k − i], IBn [n − k])dϑ .

The result now follows after comparing coefficients together with multilinearity. ∎
As an application, Corollary 4.3 can be used to obtain generalizations of further

formulas. In particular, mimicking the so-called Minkowski difference (see, for exam-
ple, [22, Note 3 of Section 6.1]), we can introduce the operation of inf-deconvolution.
If for u, v ∈ Convsc(Rn), there exists w ∈ Convsc(Rn) such that

w ◻ v = u,

then we say that w is the inf-deconvolution of u and v, which we denote by

w = u ◇ v .

Equivalently, this means that u ◇ v exists if and only if the (pointwise) difference u∗ −
v∗ is an element of Conv(Rn ;R) and

(u ◇ v)∗ = u∗ − v∗ .

Moreover, we say that v rolls freely in u if for every ϑ ∈ SO(n), the expression u ◇
(v ○ ϑ−1) is well-defined. With this new terminology at hand, we obtain the following
consequence of Corollary 4.3.

Corollary 4.4 Let 0 ≤ k ≤ n, α ∈ Cc([0,∞)), and u, v ∈ Convsc(Rn). If v rolls freely
in u, then

∫
SO(n)

Vk ,α(u ◇ (v ○ ϑ−1))dϑ

=
(n

k)
κnκn−k

k
∑
j=0
(−1)k− j(k

j
)∫

Rn ∫Rn
α(max{∣x∣, ∣y∣})dMA∗k− j(v; y)dMA∗j(u; x).

(4.4)
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Proof Since Vα is linear with respect to inf-convolution in each of its arguments.
and presuming that u ◇ (v ○ ϑ−1) exists for every ϑ ∈ SO(n), we have

Vk ,α(u ◇ (v ○ ϑ−1))
= Vα (u ◇ (v ○ ϑ−1)[k], IBn [n − k])
= Vα (u ◇ (v ○ ϑ−1)[k − 1], u, IBn [n − k])

−Vα (u ◇ (v ○ ϑ−1)[n − 1], (v ○ ϑ−1), IBn [n − k])
⋮

=
k
∑
j=0
(−1)k− j(k

j
)Vα (u[ j], (v ○ ϑ−1)[k − j], IBn [n − k]),

which can be proved in detail by induction on k ∈ {0, . . . , n}. Integration over SO(n)
together with an application of Corollary 4.3 results in relation (4.4). ∎

5 Singular Hessian integrals

In this section, we demonstrate another application of the special case k = n
of Corollary 4.3. Let us first state its equivalent version on Conv(Rn ;R) (for
k = n), where we write MA j(v; ⋅) = MA(v[ j], hBn [n − j]; ⋅) for v ∈ Conv(Rn ;R) and
0 ≤ j ≤ n.

Corollary 5.1 If 0 ≤ j ≤ n and α ∈ Cc([0,∞)), then

∫
SO(n)

∫
Rn

α(∣x∣)dMA(v[ j], w ○ ϑ−1[n − j]; x)dϑ

= 1
κn

∫
Rn ∫Rn

α(max{∣x∣, ∣y∣})dMAn− j(w; y)dMA j(v; x)

for v , w ∈ Conv(Rn ;R).
As mentioned in Section 1, functional intrinsic volumes were previously defined in

terms of Hessian measures. For this, let

Dn
j = {ζ ∈ Cb((0,∞)) ∶ lim

s→0+
sn− jζ(s) = 0, ∃ lim

s→0+ ∫
∞

s
tn− j−1ζ(t)dt ∈ R}

for 0 ≤ j ≤ n − 1, where Cb((0,∞)) denotes the set of continuous function with
bounded support on (0,∞). In addition, set

Dn
n = {ζ ∈ Cb((0,∞)) ∶ ∃ lim

s→0+
ζ(s) ∈ R} ,

which we identify with Cc([0,∞)). In [8, Theorem 1.4] and later also in [9, 6, 17], it
was shown that for 0 ≤ j ≤ n and ζ ∈ Dn

j , the map

v ↦ ∫
Rn

ζ(∣x∣)[D2v(x)] j dx(5.1)

continuously extends from Conv(Rn ;R) ∩ C2
+(Rn) to Conv(Rn ;R). This extension

was used as the original definition for functional intrinsic volumes, meaning they can
be understood as singular Hessian integrals.
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In [6], an alternative proof of existence for the continuous extension of (5.1) was
found. The essential observation (see [6, Proposition 6.7]) is that

∫
Rn

ζ(∣x∣)dMA(v[ j], q[n − j]; x) = ∫
Rn

R
n− j ζ(∣x∣)dMA j(v; x)(5.2)

for 0 ≤ j ≤ n − 1, ζ ∈ Dn
j , and v ∈ C2(Rn), where

R
n− j ζ(s) = sn− jζ(s) + (n − j)∫

∞

s
tn− j−1ζ(t)dt

for s > 0 and where q(x) = ∣x∣2/2. If we consistently define R
0 ζ = ζ for ζ ∈ Dn

n , then
(5.2) remains true also for j = n. In addition, it was previously shown in [9, Lemma
3.8], that Rn− j is a bijection from Dn

j to Dn
n . Together with

(n
j
)dMA(v[ j], q[n − j]; x) = [D2v(x)] j dx(5.3)

for v ∈ Conv(Rn ;R) ∩ C2(Rn) and 0 ≤ j ≤ n, this then implies that (5.1) continuously
extends to Conv(Rn ;R) (for j = 0, we use the convention [D2v(x)]0 ≡ 1).

As we illustrate in the following, Corollary 5.1 gives a straightforward understand-
ing of (5.2). Indeed, if in Corollary 5.1 we choose w = q, then it follows from the
rotational symmetry of q that

∫
Rn

ζ(∣x∣)dMA(v[ j], q[n − j]; x) = ∫
Rn

β(∣x∣)dMA j(v; x)(5.4)

for every 0 ≤ j ≤ n, ζ ∈ Dn
n , and v ∈ Conv(Rn ;R), where

β(∣x∣) = 1
κn

∫
Rn

ζ(max{∣x∣, ∣y∣})dMAn− j(q; y)

for x ∈ Rn . If j = n, then MA0(q; ⋅) = κn δ0 (see [12, Lemma 4.6]) implies that β(∣x∣) =
ζ(∣x∣). If 0 ≤ j ≤ n − 1, then direct calculations (see also [6, Theorem 4.5 (d)]) show
that

dMAn− j(q; y) = n − j
n

1
∣y∣ j dy

on R
n/{o} and, by [12, Lemma 4.3], MAn− j(q;{o}) = V({o}[n − j], Bn[ j]) = 0.

Therefore,

β(∣x∣) = 1
κn

(ζ(∣x∣)∫
∣x ∣Bn

dMAn− j(q; y) + ∫
Rn/∣x ∣Bn

ζ(∣y∣)dMAn− j(q; y))

= 1
κn

(ζ(∣x∣)n − j
n

(nκn)∫
∣x ∣

0
rn−1− j dr + n − j

n
(nκn)∫

∞

∣x ∣
ζ(r)rn−1− j dr)

= ζ(∣x∣)∣x∣n− j + (n − j)∫
∞

∣x ∣
ζ(r)rn− j−1 dr

= R
n− j ζ(∣x∣)
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for x ∈ Rn . By using the properties of the transform R
n− j and of the measures

MA(v[ j], q[n − j]; ⋅) for v ∈ C2(Rn) (see, for example, [8, Lemma 3.1]), one can now
extend (5.4) from ζ ∈ Dn

n to ζ ∈ Dn
j .

We remark that using the same method as above, similar relations can be
obtained between integrals with respect to MA j(v; ⋅) and integrals with respect to
MA(v[ j], w[n − j]; ⋅), where w ∈ Conv(Rn ;R) is rotationally symmetric.

6 Formulas for convex bodies

For the proof of Theorem 1.5, we use a connection between conjugate mixed Monge–
Ampère measures and mixed area measures which was established in [18, Section 3]
and further expanded upon in [12, Section 4.2].

Let n ≥ 2 and let projH ∶Rn → H denote the orthogonal projection onto the hyper-
plane H = e⊥n , which we will identify with R

n−1. To each convex body K ∈Kn , we
assign the function

⌊K⌋(x) =
⎧⎪⎪⎨⎪⎪⎩

min{t ∈ R ∶ (x , t) ∈ K} if x ∈ projH K ,
∞ else.

This defines a lower semicontinuous, convex function on R
n−1 with compact domain,

and in particular, ⌊K⌋ is an element of Convsc(Rn−1). Furthermore, observe that

⌊K + L⌋ = ⌊K⌋ ◻ ⌊L⌋(6.1)

for K , L ∈Kn .
In the following, we denote by S

n−1
− = {z ∈ Sn−1∶ ⟨z, en⟩ < 0} the lower half-sphere

in R
n . The gnomonic projection gno∶Sn−1

− → R
n−1 is defined by

gno(z) = (z1 , . . . , zn−1)
∣zn ∣

for z = (z1 , . . . , zn) ∈ Sn−1
− , with inverse

gno−1(x) = (x ,−1)√
1 + ∣x∣2

for x ∈ Rn−1. By [18, Section 3.2] and [12, Remark 4.7], we have the following reformu-
lation of [12, Corollary 4.9].

Lemma 6.1 If φ∶Sn−1
− → [0,∞) is measurable, then

∫
Rn−1

φ (gno−1(y)) dMA∗(⌊K1⌋, . . . , ⌊Kn−1⌋; y)

= ∫
Sn
−

∣⟨z, en⟩∣φ(z)dS(K1 , . . . , Kn−1 , z)

for K1 , . . . , Kn−1 ∈Kn .
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Proof of Theorem 1.5 Let β∶ [0, 1] → [0,∞) be measurable and let β̃∶ [0, 1] → [0,∞)
be given by β̃(t) = tβ(t) for t ∈ [0, 1]. Since β̃(∣zn ∣) = 0 if zn = ⟨z, en⟩ = 0, we thus
obtain

∫
Sn−1

∣zn ∣β(∣zn ∣)dS((K + ϑL)[ j], Bn−1
H [n − 1 − j], z)

= ∫
S

n−1
−

β̃(∣zn ∣)dS((K + ϑL)[ j], Bn−1
H [n − 1 − j], z)(6.2)

+ ∫
S

n−1
+

β̃(∣zn ∣)dS((K + ϑL)[ j], Bn−1
H [n − 1 − j], z),(6.3)

for ϑ ∈ SO(n − 1), where Sn−1
+ = {z ∈ Sn−1∶ ⟨z, en⟩ > 0}.

Next, we want to obtain suitable representations for the integrals in (6.2) and (6.3)
so that we can apply Theorem 3.3. Notice that the integral in (6.3) can be rewritten as
an integral on S

n−1
− . Indeed, if we denote by K̄ and L̄ the reflections of K and L through

H, respectively, then (6.3) can be written as

∫
S

n−1
−

β̃(∣zn ∣)dS((K̄ + ϑL̄)[ j], Bn−1
H [n − 1 − j], z).

Here, we used that the considered reflection fixes Bn−1
H and elements of SO(n − 1).

Let u, v ∈ Convsc(Rn−1) be given by u = ⌊K⌋ and v = ⌊L⌋. Furthermore, let the
measurable function α∶ [0,∞) → [0,∞) be defined by the relation

α(t) = β ( 1√
1 + t2

) or equivalently β(s) = α (
√

1 − s2

s
)

for t ∈ [0,∞) and s ∈ (0, 1]. By (6.1) and Lemma 6.1, applied with φ(z) = β(∣⟨z, en⟩∣)
for z ∈ Sn−1

− , we now have

∫
S

n−1
−

β̃(∣zn ∣)dS((K + ϑL)[ j], Bn−1
H [n − 1 − j], z)

= ∫
Rn−1

α(∣y∣)dMA∗j(u ◻ (v ○ ϑ−1); y),

where we have used that v ○ ϑ−1 = ⌊ϑL⌋ and ⌊Bn−1
H ⌋ = IBn−1 . For ū = ⌊K̄⌋, v̄ = ⌊L̄⌋, we

obtain analogously

∫
S

n−1
+

β̃(∣zn ∣)dS((K + ϑL)[ j], Bn−1
H [n − 1 − j], z)

= ∫
S

n−1
−

β̃(∣zn ∣)dS((K̄ + ϑL̄)[ j], Bn−1
H [n − 1 − j], z)

= ∫
Rn−1

α(∣y∣)dMA∗j(ū ◻ (v̄ ○ ϑ−1); y).
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Hence, we get

∫
Sn−1

β̃(∣zn ∣)dS((K + ϑL)[ j], Bn−1
H [n − 1 − j], z)

(6.4)

= ∫
Rn−1

α(∣y∣)dMA∗j(u ◻ (v ○ ϑ−1); y) + ∫
Rn−1

α(∣y∣)dMA∗j(ū ◻ (v̄ ○ ϑ−1); y).

We now integrate (6.4) over SO(n − 1) with respect to the Haar probability measure.
Together with Theorem 3.3, applied with respect to the ambient space Rn−1, we infer

∫
SO(n−1)

∫
Sn−1

β̃(∣zn ∣)dS((K + ϑL)[ j], Bn−1
H [n − 1 − j], z)dϑ

= ∫
SO(n−1)

∫
Rn−1

α(∣y∣)dMA∗j(u ◻ (v ○ ϑ−1); y)dϑ

+ ∫
SO(n−1)

∫
Rn−1

α(∣y∣)dMA∗j(ū ◻ (v̄ ○ ϑ−1); y)dϑ

= 1
κn−1

j

∑
i=0
( j

i
)∫

Rn−1 ∫Rn−1
α(max{∣x∣, ∣y∣})dMA∗j−i(v; y)dMA∗i(u; x)

+ 1
κn−1

j

∑
i=0
( j

i
)∫

Rn−1 ∫Rn−1
α(max{∣x∣, ∣y∣})dMA∗j−i(v̄; y)dMA∗i(ū; x)(6.5)

= 1
κn−1

j

∑
i=0
( j

i
)∫

S
n−1
−

∫
S

n−1
−

∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})

dS(L[ j − i], Bn−1
H [n − 1 − j + i], w)dS(K[i], Bn−1

H [n − 1 − i], z)

+ 1
κn−1

j

∑
i=0
( j

i
)∫

S
n−1
−

∫
S

n−1
−

∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})

dS(L̄[ j − i], Bn−1
H [n − 1 − j + i], w)dS(K̄[i], Bn−1

H [n − 1 − i], z).

In the last step, we used Lemma 6.1 together with the fact that s ↦
√

1 − s2/s is
decreasing, and thus,

β(min{a, b}) = α (max{
√

1 − a2

a
,
√

1 − b2

b
})

for a, b ∈ (0, 1]. Observe that the last integral in (6.5) can be rewritten as

∫
S

n−1
−

∫
S

n−1
−

∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})

dS(L̄[ j − i], Bn−1
H [n − 1 − j + i], w)dS(K̄[i], Bn−1

H [n − 1 − i], z)

= ∫
S

n−1
+

∫
S

n−1
+

∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})

dS(L[ j − i], Bn−1
H [n − 1 − j + i], w)dS(K[i], Bn−1

H [n − 1 − i], z)

(6.6)
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for 0 ≤ i ≤ j. Similar to the above, we obtain

∫
SO(n−1)

∫
Sn−1

β̃(∣zn ∣)dS((K + ϑL̄)[ j], Bn−1
H [n − 1 − j], z)dϑ

= 1
κn−1

j

∑
i=0
( j

i
)∫

S
n−1
+

∫
S

n−1
−

∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})

dS(L[ j − i], Bn−1
H [n − 1 − j + i], w)dS(K[i], Bn−1

H [n − 1 − i], z)

+ 1
κn−1

j

∑
i=0
( j

i
)∫

S
n−1
−

∫
S

n−1
+

∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})

dS(L[ j − i], Bn−1
H [n − 1 − j + i], w)dS(K[i], Bn−1

H [n − 1 − i], z).

(6.7)

Thus, combining (6.5), (6.6), and (6.7), we obtain

∫
SO(n−1)×O(1)

∫
Sn−1

β̃(∣zn ∣)dS((K + ηL)[ j], Bn−1
H [n − 1 − j], z)dη

= 1
2 ∫SO(n−1)

∫
Sn−1

β̃(∣zn ∣)dS((K + ϑL)[ j], Bn−1
H [n − 1 − j], z)dϑ

+ 1
2 ∫SO(n−1)

∫
Sn−1

β̃(∣zn ∣)dS((K + ϑL̄)[ j], Bn−1
H [n − 1 − j], z)dϑ

= 1
2κn−1

j

∑
i=0
( j

i
)∫

Sn−1 ∫Sn−1
∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})

dS(L[ j − i], Bn−1
H [n − 1 − j + i], w)dS(K[i], Bn−1

H [n − 1 − i], z),

(6.8)

where we used that ∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣}) = 0 if z ∈ Sn−1 ∩ e⊥n or w ∈ Sn−1 ∩ e⊥n .
This concludes the proof. ∎

Arguing similarly as in the proof of Corollary 4.3, we obtain from Theorem 1.5 the
following equivalent version.
Corollary 6.2 Let n ≥ 2. If 0 ≤ i ≤ j ≤ n − 1 and β∶ [0, 1] → [0,∞) is measurable, then

∫
SO(n−1)×O(1)

∫
Sn−1

∣zn ∣β(∣zn ∣)dS(K1 , . . . , K i , ηL1 , . . . , ηL j−i), Bn−1
H [n − 1 − j], z)dη

= 1
2κn−1

∫
Sn−1 ∫Sn−1

∣wn ∣∣zn ∣β(min{∣wn ∣, ∣zn ∣})dS(K1 , . . . , K i , Bn−1
H [n − 1 − i], z)

dS(L1 , . . . , L j−i , Bn−1
H [n − 1 − j + i], w)

for K1 , . . . , K i , L1 , . . . , L j−i ∈Kn .
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