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POWER ROOTS OF POLYNOMIALS

JOHN BORIS MILLER

Sufficient conditions are given for the existence of an mth power root of one poly-
nomial modulo another, over the complexes or the reals. Examples show the .
non-necessity of the conditions. In particular cases there can exist infinitely many
square roots.

Let K[\] denote as usual the algebra of all polynomials in an indeterminate A over
a field K. If p(A) and /(A) belong to K[X), m G N and

WA))m = /(A),

we say that p(A) is a power root of / (A), more precisely an mth root.

It is not difficult to show that if this equation, with /(A) given in C(A], has any
solutions p(A) then it has precisely m solutions in C[A]. For suppose /(A) is monic
(that is, has leading coefficient 1); then one verifies by solving for the coefficients of
p(A) that there exists at most one solution p(A) which is monic; the general statement
can be deduced from this.

Of more interest and abundance than power roots of polynomials are power roots
of residue classes of polynomials. For any w(X) € K[X] let

1U.K- := K[X] mod to(A)

denote the residue-class algebra over K of K[X] modulo the principal ideal generated
by w(A); its elements will be written [/], [p], An mth root of [/] is any coset [p]
such that [p]m = [/]. Our principal result is:

THEOREM. In t ie complex residue-class algebra ilu.c where degree{w) ^ 1, a
sufficient condition for a class [/] to possess mth roots of all orders m 6 N is: that /(A)
does not vanish at any multiple zero of w(A). In the real residue-class algebra 11^,1,
sufficient conditions are: that w(X) is real with real roots, /(A) is a real polynomial,
/(A) does not vanish at any multiple zero of t»( A), and /(A) ^ 0 at every zero of w(X).

The proof of the theorem will be separated into the following two lemmas, whose
proofs use the existence of mth roots in algebras of matrices.
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LEMMA 1 . With K = C, let m,n e N, m ^ 2, and suppose that in C[A] :

(i) u>(A) is a polynomial of degree n;

(ii) /(A) is a polynomial such that f(b) ^ 0 for each multiple zero b of w(A).

Then there exist polynomials p(A) and g(A) in C[A] such that

(1) (p(^))"* = /(^) +«>(A)g(A).

PROOF: The case n = 1, «>(A) = A — 6 say, is disposed of by dividing /(A) by
A - b to get /(A) = - (A - b)q(X) + o say, o e C, and taking deg(p) = 0, p(A) = o1/"*.

Henceforth suppose that n ^ 2 and that deg(/) ^ 1. Let fri, 62, . . . , 6r be an
enumeration of the distinct zeros of tu(A), and let ifci, fcj, . . . , Jbr be their multiplicities,

r

so that ^2 kj = n and

(2) w(A) = (A - 4i)*l(A - bi)1"1... (A - fc,)*1"

(without loss of generality we assume that tv(A) has leading coefficient 1). Let

(3) Mb) =

/b 1
&

6 1

bj

denote the usual k x k Jordan block matrix, and let W be the n x n block diagonal
matrix

(4) W = di

The elementary divisors of W over C are

(5) (A-6 1 )* 1 »(A-6 J )* J , . . . , (A-6 P ) k ' ,

and the minimal (annihilating) polynomial of W is our given polynomial w(A) in (2).

Using the other given polynomial /(A) we have

(6) f(W) = di

Here well-known calculations give

(7) f(M*)) = [/(*),m p
1! ' • • ' (Jb-1)! J)
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that is, /(/*(&)) is the k x k upper triangular matrix with constant diagonals having
for its top row the tuple shown in (7).

The matrix f(W) in (6) has at least one matrix mth root, that is, a solution Y
in VJln(C) (the algebra of all n x n matrices over C) of the equation

(8) Ym = f{W),

namely

(9) y
where for each j ,

Clearly, if an Xj exists for each j , then (8) follows easily from (6), (9) and (lOj).

The existence of Xj is shown by its construction. See Gantmacher [1, pp.231—234]
for the construction of square roots of matrices. For completeness we give a construction
here, but prefer to rely upon the general functional calculus in the complex Banach
algebra 9Jtn(C) with any algebra matrix norm (see [2, Theorem 5.2.5, pp.168-169]),
since this method makes clear a commutativity property needed presently.

Assume first that f(bj) ^ 0. Let p be any ray from the origin in the complex
plane, not passing through any nonzero values among the numbers bj, f(bj) for j =
1, 2, . . . , r. Let F(/i) denote a small positively oriented circle about fi not intersecting
p. Let h denote any holomorphic branch function of the root relation A1/"1 on the
plane cut along p from 0 to oo. Fix j ; we shall suppress the suffix j temporarily. The
matrix

(11) X := - L / h(\)(XI - f(Jh(b)))-ld\
2ff* yr(/(5))

is well defined, and if l(X) := Xm then [2, Theorem 5.3.2, p.171]

(12) Xm = l(X) = I o h(f(Mb))) = f(Jk(b)).

Thus for each j the matrix Xj = X in (11) gives a solution of (lOj).

Suppose instead that f(bj) = 0; by (ii) kj = 1, so (lOj) in this case becomes
XJ1 = O in 9Jti(C) and we therefore take Xj =0. (If Jfc > 1 then Jh(0) has no mth
root, so we exclude this possibility.)

Definition (11) shows that X belongs to the second commutant of f(Jk{b)), that
is, it commutes with every matrix which commutes with f(Jk{b)). Therefore

(13) Xj~Jk.{bj) for each;
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and hence Y ^ W (the symbol ^ means 'commutes with').

Now the elementary divisors (5) of W are pairwise coprime, since the bj 's are
distinct. This implies (see Gantmacher [1, p.222]) that the first commutant of W
coincides with the set of all matrices which are expressible as a polynomial in W over
K. Therefore Y is expressible as a polynomial in W over C.

If for two matrices A and B{^ O) in Wln(K), B is expressible as a polynomial
in A over K, say B = p(A), then there exists a unique such representing polynomial
p(A) of least degree, call it PB,A(X). For by using the Euclidean algorithm in K[X] we
can show, first, that for any representing polynomial p(A) of least degree, its degree is
less than the degree of the minimal (annihilating) polynomial of A; and secondly, that
if p(A) = OLQX' + . . . and q(X) = PQX' + . . . are two distinct representing polynomials
of least degree then, if ao ^ fio» the polynomial (/3o — «o)~ (A>p(A) — <*op(A)) is a
representing polynomial of lower degree, which is impossible, while if ao = fto, then
p(X) — q(X) is an annihilating polynomial for A, which is also impossible.

Thus in particular there exists a minima] representing polynomial py,w(A),

(14) Y = PYMW).

But then (pY,w(W))m ~ f(W) = Ym - f(W) = O, so (py,W(A))m - /(A) is an
annihilating polynomial for W and hence is a multiple of w(A): there exists q(X) £ K[X]
such that

(15) (pr,W(A)r-/(A) = «,(A),(A).

This completes the proof of the lemma when deg(/) > 1. When /(A) is a constant c
say, we solve (8) by taking Y = c1/"*/ and then argue as before. 0

LEMMA 2 . With K = R, let m,n,w,f be as in Lemma 1 and suppose in addi-
tion to (i) and (ii) that

(iii) all zeros of w(X) are real, so that w(A) € R[A]; and
(iv) /(A) G R[A], and /(&) ^ 0 at every zero b of w(X).

Then there exist polynomials p(X) and q(X) in R[A] such that (1) holds.

PROOF: Under these conditions W is a real matrix and its elementary divisors
over R are again (5). The matrices f(Jk(b)) in (7) are real, so f{W) in (6) is real. Let
p be a ray other than the positive real axis, and let h be the branch function which is
real and positive on the positive real axis. Then using (iv) it can be verified that the
righthand side of (11) is selfconjugate, so each Xj is real and Y in (9) is real. The rest
of the argument in the proof of Lemma 1 then applies, with K = R. u

The theorem follows immediately from the lemmas.
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COROLLARY 1 . If w(X) has only simple zeros then every [/] in ilw.c has mth
roots of all orders in that algebra.

COROLLARY 2 . Tie identity coset [1] has mth roots of all orders m, in ii^.c
and in ilu,,m> for every choice of polynomial w(A).

We remark that in Lemma 1 the polynomial p(A) satisfies the same conditions as
/(A); in Lemma 2, one of ±p(A) does so.

In each lemma the proof obtains the sought power root p(A) as the representing
polynomial of least degree of a particular matrix root of f(W), for a particular matrix
W constructed from w(X). The power root is far from being unique; see Examples 3
and 4 below.

The conditions in the theorem are sufficient, not necessary; this is shown in Exam-
ple 3. But the conditions may not be omitted from the theorem; see Examples 1 and
2.

For any case of [p]m = [/] there are unique polynomials Po(A) and /o(A) in these
cosets respectively with degrees less than n; necessarily po(A) = py,w(A). Writing
a := deg(po) we have

— s£ a< n if q(X) ^O, a < — if q(X) = 0
m m

In (15) if /(A) = /o(A) we have

deg(g) = am - n o r O .

EXAMPLES: For low values of m and n and given polynomials w(X) and /(A),
one may look for power roots by substituting unknown polynomials p(A) and q(X) in
equation (1), assuming minimal degrees, and attempting to solve the resulting nonlinear
equations in the coefficients.

1. Take w(X) = A*(A - 1), /(A) = A(A - 2), m = 2. Here /(A) has a zero at a
multiple zero of w(A). We find that no square root of [/] exists. Thus the condition
(ii) in Lemma 1 and the theorem cannot be omitted.

2. Take to(A) = A(A - 2), /(A) = A - 1, m = 2. Here all conditions of Lemma
2 are satisfied except that / (0) < 0 at a zero 0 of w(X). We find that there exists no
square root [p] in 11^,1.

3. Take w(X) = A(A - I ) 2 , /(A) = (A - I ) 2 , m = 2. Again (ii) fails, but in this
case equation (1) has infinitely many solutions with deg(p) < n = 3, namely those
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indicated in the table

p(A) g(A)

aA2-(a + l)A + l a 2 A-2a ,

o A 2 - ( a - l ) A - l a2A + 2a,

where a is arbitrary in C (or R ). The table includes all solutions. Distinct polynomials
p(A) determine distinct square roots [p] in itu,, so this [/] has infinitely many square
roots in ilw,c, indeed in ilto.s • The example also shows the non-necessity of condition
(ii).

4. Take w(\) = (A - o)(A - 6)(A - c), /(A) = A, m = 2.

Let Ti, T2, Tj denote the three elementary symmetric functions on the numbers

OV2
 ( J1/2

 ( c1/2
 f where a1/2 is chosen to be either one of the two complex square roots

of a, and likewise for b1?2 and c1/2. There are 8 square roots of /(A) modw(A),
namely all possible polynomials of the form

p(A) = (A2 + (r2 - r2)A - n r , ) ^ - nr , )" 1 ,
with

g ( A ) = ( A - r 1
J ) ( r s - r 1 r 2 ) - 1 ,

provided A := T3 — TJT2 does not vanish. Now A = 0 if and only if one of 41/2 + c1/2,
c i / 2 4. a i / 2

 j a i /» + Ji/2 vanishes; hence A ^ 0 if o, 6, c are distinct.

Suppose o ^ i = c ^ 0 . We can still ensure that A ^ 0 by choosing b1/2 = c1^2,
and so obtain a square root [p] of [/]. However, there are now only 4 distinct square
roots.

Suppose a ^ 6 = c = 0 , so that condition (ii) is violated. In this case A = 0 and
indeed there exists no square root of [/].

REFERENCES

[lj F.R. Gantmacher, Theory of matrices, Vol 1 (Chelsea, New York, 1960).
[2] E. Hille and R.S. Phillips, Functional analysis and semi-groups (Amer. Math. Soc. Coll.

Publ. 31, Providence, 1957).

Department of Mathematics
Monaah University
Clayton Vic 3168
Australia

https://doi.org/10.1017/S0004972700012363 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012363

