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A partial differential equation governing the evolution of the joint probability distribution
of multicomponent flow observations, drawn randomly from one or more control volumes,
is derived and applied to examples involving irreversible mixing. Unlike local probability
density methods, this work adopts an integral perspective by regarding a control volume
as a sample space with an associated probability distribution. A natural and general
definition for the boundary of such control volumes comes from the magnitude of the
gradient of the sample space distribution, which can accommodate Eulerian or Lagrangian
frames of reference as particular cases. The formulation exposes contributions made by
uncertain or stochastic boundary fluxes and internal cross-gradient mixing in the equation
governing the observables’ joint probability distribution. Advection and diffusion over a
control volume’s boundary result in source and drift terms, respectively, whereas internal
mixing, in general, corresponds to the sign-indefinite diffusion of probability density.
Several typical circumstances for which the corresponding diffusion coefficient is negative
semidefinite are identified and discussed in detail. The framework is a natural setting for
examining available potential energy, the incorporation of uncertainty into bulk models,
and establishing a link with the Feynman–Kac formula and Kolmogorov equations that are
used to analyse stochastic processes.

Key words: turbulent mixing, coupled diffusion and flow, general fluid mechanics

1. Introduction

1.1. Bulk models and uncertainty
Bulk, integral, lumped or coarse-grained models in fluid mechanics involve integrating
equations that govern the local (pointwise in space) evolution of a system over a control
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volume. Such models are useful for providing a macroscopic picture at scales that are
directly relevant to a given application. A prevalent example comes from the concept of
entrainment across the boundary of a control volume, which is typically defined to
demarcate the turbulent parts of a flow from a non-turbulent surrounding environment
(Ellison & Turner 1959; van Reeuwijk, Vassilicos & Craske 2021). However, over a
century of intensive research into fluid turbulence has shown that nature does not always
yield to coarse representations, demanding, in return, case-dependent closures and
probabilistic approaches.

Probabilistic approaches are particularly appropriate for bulk models because the
contents of control volumes is typically heterogeneous. A relevant example comes from
the field of building ventilation, where it is often assumed that the air in each room or
‘zone’ of a building is well mixed and, therefore, of uniform temperature. However, it
is now acknowledged, not least due to concerns raised during the COVID-19 pandemic,
that the secondary flows and temperature structures within rooms play an important role
in determining the fate of contaminants, energy demands and thermal comfort (see, for
example, Vouriot et al. 2023; Bhagat et al. 2024). An additional complication, which
renders the underlying challenge probabilistic, is that boundary and internal forcing
conditions are almost never known precisely and typically fluctuate stochastically in time
(see, for example, Andrian & Craske 2023). Rare events arising from the mentioned
considerations can have a significant effect in a wide range of natural and artificial
environments (Villermaux 2019). On this basis, the present work forsakes detailed
local deterministic information in physical space for a limited amount of probabilistic
information about a control volume; we focus on what is inside a control volume at the
expense of knowing precisely where it is occurring.

Although probabilistic approaches to turbulence are common (see, for example,
Monin & Yaglom 2013), the complete statistical (sometimes referred to as ‘functional’, due
to the fact that the sought-after probability distributions are characterised by functionals
of infinite dimensional spaces) formulation (Hopf 1952; Lewis & Kraichnan 1962) is
less common. The functional formulation has been explored, in a variety of guises,
by mathematicians, physicists and engineers in parallel and somewhat independently.
It is therefore appropriate to summarise the similarities and limitations of the various
perspectives before highlighting their connection with the concept of available potential
energy and stating the specific aims of the present work.

1.2. Background
In the full functional formulation of the Navier–Stokes equations (Hopf 1952; Lewis &
Kraichnan 1962; Lundgren 1967; McComb 1990; Monin & Yaglom 2013), one seeks
to understand the evolution of a flow’s probability distribution in phase space, which,
consisting of infinite dimensions, produces a problem that is typically intractable.
However, a happy consequence of ‘lifting’ the problem to an infinite-dimensional space is
that the functional formulation renders the problem linear. The resulting Frobenius–Perron
and Liouville operators, depending on whether time is regarded as discrete or continuous,
respectively, underpin statistical mechanics (Gaspard 1998; Lasota & Mackey 1998; Ruelle
2004).

An alternative perspective is afforded by observables of a flow, whose expected
evolution is determined by Koopman and Lie operators for discrete and continuous time,
respectively (Koopman 1931; Mezić 2005, 2013). Although the two (Frobenius–Perron
and Koopman) approaches are dual in certain settings, they typically rely on different
approximations (Brunton et al. 2022). Approximations of the Frobenius–Perron operator
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commonly involve the evolution of a large number of initial conditions for a relatively short
time using Ulam’s method (Li 1976), whereas approximations of the Koopman operator
involve evolution from a relatively small number of initial conditions over a long time
(Klus, Koltai & Schütte 2016).

Frobenius–Perron and Koopman operators naturally accommodate stochastic differen-
tial equations, the latter by considering expectations of observables (Lasota & Mackey
1998; Črnjarić-Žic et al. 2020). In this regard, the two perspectives described in the
previous paragraphs correspond to forward and backward Kolmogorov equations for
continuous Markov processes, respectively (Pavliotis 2014).

Independently, and particularly in an engineering context, probability density function
(p.d.f.) methods were developed towards the latter half of the twentieth century, primarily
in the fields of combustion (Pope 1981, 1985; Kollmann 1990; Pope 1994, 2000; Fox
2003) and those involving turbulent dispersion (Fischer et al. 1979; Hunt 1985). The
equations used in p.d.f. methods typically focus on conditional probability distributions
from single points in space and can therefore be regarded as a subset or projection of
the full functional formulations described previously. Therefore, in a prognostic capacity,
they contain expectations of gradients that require closure (see, for example, Minier &
Pozorski 1997; Pope 2000; Fox 2003). Diagnostically, however, they have been used
recently to study vorticity dynamics (Li, Qian & Zhou 2022) and to analyse Rayleigh–
Bénard convection (Lülff et al. 2011, 2015). Although well suited to the task, p.d.f. models
have not been used extensively to describe systems with external stochastic forcing. In this
regard, their link with the more formal derivations of forward and backward Kolmogorov
equations in stochastic processes, or with Frobenius–Perron/Koopman formalisms, is not
well established.

Although an attractive feature of p.d.f. methods is that advection and state-dependent
forcing terms, such as buoyancy, appear in closed form (Pope 2000), their potential as
either a diagnostic or prognostic tool for buoyancy-driven flows and stratified turbulence
has not been explored. This is surprising, because, as highlighted by Tseng & Ferziger
(2001), the bulk quantities that are routinely used to diagnose the energetics behind mixing
in such fields are expressed naturally as functionals of p.d.f.s. In particular, the reference
state that is used to define global available potential energy (Margules 1903; Lorenz 1955;
Winters et al. 1995; Tailleux 2013), which quantifies the maximum amount of potential
energy that can be released during a volume-preserving and adiabatic rearrangement of
fluid parcels, is a functional of the joint p.d.f. of buoyancy and geopotential height. While
such constructions are difficult to wrestle with in physical space, due to the global nature
of the rearrangement, their expression in terms of joint p.d.f.s is natural and therefore
convenient. There is consequently an opportunity for advances made in p.d.f. methods
to be applied to a broader class of problems and, conversely, for the knowledge about
the available energetics behind transport and mixing to inform closures. Establishing a
connection in this regard might provide a means of generating operational stochastic
models or, at least, an alternative means of interpreting existing low-dimensional stochastic
models of stratified turbulence (Kerstein 1999; Wunsch & Kerstein 2005).

The aim of the present work is to develop a general and extensible framework for
deriving evolution equations for the joint probability distribution of a set of spatially
heterogeneous and stochastic flow observables over arbitrary control volumes. To this end,
we generalise and shed new light on classical p.d.f. methods in the following ways.

(i) The present perspective is macroscopic (top down) in dealing with joint probability
distributions for the heterogeneous contents of distributed regions in space (such as
those discussed by Villermaux (2019)), rather than point observations. The concept
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is simple to implement, yet general in encompassing both Eulerian and Lagrangian
control volumes as particular cases. In this context, a prevalent role is played by
boundary fluxes of probability density into and out of zones, which, rather than
possessing a sharp boundary, can overlap to form a so-called mixture distribution
(Lindsay 1995) of a parent domain.

(ii) We make use of the classical derivation of the (weaker) forward Kolmogorov equation
from the (stronger) backward Kolmogorov equation from stochastic processes and the
Feynman–Kac formula (Pavliotis 2014). An advantage in proceeding from this dual
perspective is that one more readily obtains a versatile and complete framework, in
which the forward and backward equations both have distinct physical significance.
The dual perspective provides an alternative to using a ‘fine-grained’ microscopic
p.d.f., corresponding to a delta distribution (Pope 1985), to derive the forward
Kolmogorov equation. In doing so, we establish a closer connection with the field of
stochastic processes, in the hope that its methods can be applied to the development
of bulk stochastic models that faithfully account for the underlying fluid mechanics.

The core part of the framework described previously is presented in § 3, and is followed
by a discussion of drift and diffusion coefficients in §§ 4 and 5, respectively. The
decomposition of a parent domain into non-uniform overlapping conditional components
(see point (i)) is explained in § 6. Example applications are discussed in § 7, before
approaches to closure are summarised in § 8. First, we illustrate the basic ideas
behind viewing the contents of a control volume probabilistically, with relatively simple
introductory examples for one- and two-dimensional domains.

2. Introductory examples
This work addresses the following question: what is the probability that a given vector
of field variables Y , evaluated at a randomly selected point ω from a control volume Ω ,
parameterised by coordinates X , will have values lying in a given range?

Here, the term ‘randomly’ refers to a prescribed probability distribution fX for space,
which determines the probability of selecting or sampling a given region from the control
volume. An Eulerian point ω becomes an element of a sample space Ω � ω parametrised
by coordinate functions X . The field variables Y = ϕ(X) are quantities such as velocity,
temperature or scalar concentration. We are therefore interested in the distribution of Y
with respect to the given sampling distribution in space.

The answer to the question is given by the probability density fY (or, more generally,
distribution) associated with Y , which does not contain information about the precise
relationship between Y and X . Indeed, the probability density corresponds to an infinite
number of possible functions ϕ of X that produce the same distribution of Y . Informally,
the construction involves tipping the fields Y into a sack that does not store values of X ;
the probability density ‘weighs’ the various values of Y , without caring about from where
they came.

Figure 1 illustrates an example in one dimension for which the vector ‘Y ’ can
therefore be replaced with the scalar ‘Y ’. As explained more precisely in Appendix A,
the construction of fY involves determining the proportion of Ω taken up by a given
value of Y . Analytically, this involves considering intervals of Ω over which Y = ϕ(X) is
strictly monotone with respect to X and, therefore, invertible. Such intervals lie between
the stationary points of ϕ. Each point within the interval contributes a density that is
inversely proportional to the gradient of ϕ with respect to X at that point, because relatively
large gradients in ϕ account for a relatively small proportion of Ω .
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Figure 1. (b) Probability distribution fY of (a) the value of a function Y = ϕ(X) parametrised by the coordinate
X , which has an associated density fX . Stationary points of the function Y (highlighted by horizontal lines)
correspond to singularities in the distribution fY . To account for parts of Y that are constant (dashed), the
distribution contains a Dirac measure δ, weighted by the probability P(X ) associated with the selection of a
point in the domain over which Y is equal to the given constant.

Intervals X � X over which ϕ is invertible contribute to the density fY in proportion
to their probability P(X ) := ∫

X fX (x) dx , which gives the density the appearance of
consisting of folds and caustics (see also figure 2b). The overall contribution that a
given value of Y makes to the probability density therefore depends on the number of
occurrences of that value in Ω as well as its gradients. For example, the probability
density of Y = ϕ(X) = cos(πnX) for n ∈N

+ and uniformly distributed X ∈ [0, 1) is
fY (y) = π−1(1 − y2)−1/2 for y ∈ (−1, 1), and is therefore independent of n.

Points at which Y is stationary produce singularities in the distribution fY shown on the
right of figure 1. In exceptional cases, intervals of finite size over which Y = y is constant
are not described by a density function but rather a Dirac measure or distribution, weighted
by the proportion of the domain over which Y is constant, as indicated by the horizontal
dashed part of ϕ(X) and corresponding δ in figure 1 (see also chapter 1 of Chung (2001)).

We now consider a two-dimensional example using velocity and buoyancy fields from
Lorenz’s 1963 model for convection (Lorenz 1963) shown in figure 2(a) (details of the
model and calculations required to construct the corresponding distribution fY can be
found in Appendix B). In this example, X := (X1, X2)� ∈ [0, 2π/k) × [0, 1] are the
horizontal and vertical coordinates, k is a horizontal wavenumber, fX ≡ k/(2π) is a
uniform distribution, and Yt := (Y 1

t , Y 2
t )� = ϕt (X) ∈R

2 denotes the vertical velocity and
buoyancy, relative to the static state of linear conduction, at time t , respectively. Figure 2(b)
depicts the joint probability density fY (−, t) :R2 →R

+ corresponding to the fields
shown in figure 2(a), such that the probability of finding a value of Yt in any subset Y ⊂R

2

of the function’s codomain is

P{Yt ∈Y} =
∫
Y

fY ( y, t) d y, (2.1)

where y := (y1, y2)� denotes the argument to the probability density corresponding to
the capitalised random variable Yt . The density fY determines the expectation of any
observable g, which can also be computed as an integral over physical coordinates:

E[g(Yt )] =
∫
R2

g( y) fY ( y, t) d y =
∫
R2

g(ϕt (x)) fX (x) dx, (2.2)
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Figure 2. (a) Relative buoyancy (blue to red) and vertical velocity isolines (white and dashed for negative
velocity) at time t of the two-dimensional fields corresponding to a point on the Lorenz attractor described in
Appendix B (r = 28, s = 10, b := 4π2(k2 + π2)−1 = 8/3 for horizontal wave number k). The shaded/unshaded
rectangles correspond to regions over which the Jacobian ∂ϕt/∂ X is non-singular. (b) Joint probability
density (shaded colour) of vertical velocity (y1) and relative buoyancy (y2) corresponding to the field
shown in panel (a). The solid black line marks singularities in the density and the dashed black line
corresponds to the position of the singularities at t + 0.04. The light grey arrows are tangential to the
probability flux induced by the Lorenz equations (B3) that is responsible for the time evolution of the density.
https://www.cambridge.org/S0022112025106319/JFM-Notebooks/files/fig02/fig02.ipynb.

where, in general, the sample distribution fX accounts for the physical extent and
distributed weight assigned to the control volume, but is uniform for the example illustrated
in figure 2. Note that fY does not provide information about how Yt is correlated with X . In
particular, fY does not provide information about multipoint statistics or spatial gradients,
unless they are included in Yt .

To understand the p.d.f. shown in figure 2(b), it is helpful to consider the regions over
which ϕt is invertible. Such regions are highlighted as shaded/unshaded rectangles in
figure 2(a), in which the Jacobian ∂ϕt/∂ X is non-singular. The solid black lines, separating
the regions, denote points for which |∂ϕt/∂ X| = 0, which account for the singularities in
figure 2(b). In particular, |∂ϕt/∂ X| = 0 over the sets S1 := {X1 = π/k, X2 ∈ [0, 1]} and
S2 := {X1 = [0, 2π/k), X2 = 1/2 ± 1/4}. The set S1 corresponds to the solid black line
that looks like ‘∞’ in figure 2(b), while S2 corresponds to the nearly horizontal lines that
define its convex hull. As explained for the previous one-dimensional example, the folded
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appearance of fY shown in figure 2(b) is due to the fact that a given value of Yt contributes
to fY from more than one region in the domain.

As the fields shown in figure 2(a) evolve in time, the density is transported over the
phase space shown in figure 2(b). Since the density integrates to unity, it is useful to
regard probability, like mass, as a conserved quantity. From this perspective, the governing
equations for Yt over the entire control volume correspond to a two-dimensional velocity
field that produces a flux of density in phase space. The direction of the density flux for this
example is shown in figure 2(b) by grey lines. The density flux determines the subsequent
evolution of fY , whose singularities a short time after t are depicted with dashed lines in
figure 2(b). Understanding how the evolution of fY depends on the evolution of the field
variables Yt is the central topic of this article.

3. Governing equations
In this section, an evolution equation is derived for the joint probability density fY of
a multicomponent random variable Yt drawn from a domain according to the spatial
distribution fX . First, § 3.1 defines an infinitesimal generator, which gives the expected
time rate of change of an observable evaluated along the trajectories of a stochastic
differential equation. Here, the stochastic differential equation, defined in (3.1), is a generic
transport equation that can represent the Navier–Stokes or advection–diffusion equations
as special cases. Next, in § 3.2, the generator is decomposed to distinguish transport across
a bounding region defined by |∇ fX | and internal mixing over fX . Then, § 3.3 uses the
resulting operator to define a backward Kolmogorov equation, whose solution backwards
in time gives the expected value of an observable, conditioned on an earlier state. Finally,
the dual (forward Kolmogorov) equation describing the evolution of probability density is
obtained in § 3.4.

3.1. Local governing equations
For the purposes of emphasising a probabilistic perspective that focuses on control
volumes, we regard the spatial domain Ω as a sample space, X : Ω →R

d as coordinate
functions and Yt : Ω →R

n as random variables, as illustrated in figure 3. Let the Eulerian
evolution of Yt at a given point in the domain be determined by the stochastic differential
equation

dYt = (It − ∇ · Jt ) dt + σ dWt , (3.1)

where It ∈R
n represents internal sources/sinks, Jt ∈R

d×n is a matrix of fluxes, ∇ · Jt ∈
R

n is the divergence of the flux of each component of Yt and Wt ∈R
m is a vector of

independent Wiener processes. In general, the matrix coefficient σ could depend on both
X and Yt , such that σ (X, Yt ) ∈R

n×m determines m modes of forcing from Wt for each of
the n components of Yt .

In what follows, it should be remembered that with Ω regarded as a sample space, the
precise relationship Yt = ϕt (X) is not assumed to be known. In this context, the gradient
∇Yt should be regarded as an unknown random variable, rather than a known gradient of
ϕt (X). It is unknown in the sense that (3.1) does not provide ∇Yt with its own governing
equation. Noting that Jt typically depends on ∇Yt , the system (3.1) is therefore unclosed
because it consists of more unknowns than equations. If spatial derivatives were included
in Yt , their evolution equations would include higher derivatives and one would be faced
with the infinite hierarchy of equations that constitutes the closure problem of turbulence
(see McComb 1990, and § 8 for a discussion of closures in the context of the present work).
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c1

y2

y1

fY ( y, t)

Yt
1 = c1

(a)

Samples in

in

out

out

Yt = ϕt(X )

X2

J · ∇fX
(b)

J · ∇fX

X1

ω ∈ Ω

Figure 3. Sample space Ω as the domain of random variables corresponding to coordinates X and field
variables Yt = ϕt (X). (a) Two fields Y 1

t (dark blue isolines) and Y 2
t (red/pink filled isoregions) over the region

in space defined by the density fX . In panel (a), the arrows labelled ‘in’ and ‘out’ denote fluxes of Yt at a
fixed value of Y 1

t = c1 over a boundary region defined by ∇ fX (see § 3.2). (b) Section through the current
and future probability density fY with thick and dashed blue lines, respectively. As demonstrated in § 3 and
illustrated by the ‘in‘ and ‘out‘ arrows in panel (b), the boundary fluxes lead to drift in the equation governing
the joint distribution fY (for y1 = c1, the drift is in the positive y2 direction for those values of Y 2 for which
J · ∇ fX > 0 and in the negative y2 direction for those values of Y 2 for which J · ∇ fX < 0). At the same time,
fY is made narrower due to irreversible mixing, which homogenises the fields.

To determine the evolution of the probability distribution of Yt , consider the
infinitesimal generator L (Pavliotis 2014, § 2.3) acting on an observable g :Rn →R:

L g( y, s) := lim
t→s

E[g(Yt )|Ys = y] − g( y)
t − s

, (3.2)

where the conditional expectation accounts for the behaviour of all points within the
domain where Ys = y. In a deterministic context, without the expectation around g(Yt ),
(3.2) corresponds to the infinitesimal generator of the Koopman operator (Brunton et al.
2022).

Using Itô’s formula to determine the time rate of change of the observable g, the limit
in (3.2) can, noting that the time integral of the resulting Wiener process has an expected
value of zero, be expressed as (see § 3.4 and Lemma 3.2, Pavliotis 2014):

L g( y, s) =E

[(
I i
s − ∇ · J i

s

) ∂g(Ys)

∂Y i
s

∣∣∣∣Ys = y
]

+ 1
2
Σ

ij
s
∂2g( y)
∂yi∂y j

, (3.3)

where

Σ s :=E
[
σσ�|Ys = y

]
, (3.4)

and Einstein summation notation has been used over components of Ys .
We will follow standard arguments to construct backward and forward Kolmogorov

equations in terms of the generator L (see, e.g. Gardiner 1990; Pavliotis 2014). Along
the way, integration by parts will be applied to produce boundary and irreversible interior
mixing terms that will appear in the associated Kolmogorov equations as forcing and
anti-diffusion terms, respectively.
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0

−1

x2

−1 10
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x1
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x1
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x1

k = 1 k = 2 k = 4 k = 8 k = 16(a)

(b)

Figure 4. (a) the spatial sample distribution fX (x) := Nk/(1 + exp(kp(x))), where p(x) := x4
1 + x4

2 + x1x2 −
1 and Nk is a normalisation constant. (b) the bounding region of fX defined by the unnormalised density |∇ fX |
(red) and vector field ∇ fX (blue). As k → ∞, the distribution describes well-defined subsets of R2 with a sharp
boundary.

3.2. Transport and mixing
To understand the physics behind the evolution of the probability density of Yt with respect
to a prescribed spatial sample distribution fX , it is useful to decompose the transport terms
in (3.3) into those associated with internal irreversible mixing and transport across the
sample distribution’s ‘boundary’, which will now be defined.

If the sample distribution fX is uniform over a subset of Ω , the boundary associated
with fX is simply the boundary of the associated subset. However, more generally, fX
could be non-uniform and would therefore not correspond to a classical set with a sharp
bounding surface. As explained later and illustrated in figure 4, a natural definition of
the bounding region in this regard proves to be the unnormalised density |∇ fX |, which
defines a sharp surface as fX becomes proportional to an indicator function. The approach
therefore generalises the traditional notion of a bounding surface in a way that can be
expressed in terms of probability distributions. The manipulations described later are
relatively simple because of (rather than in spite of) the generality of this approach.

To establish a connection between expectations obtained via conditioning on X
compared with conditioning on Y , recall the elementary property

E[�] =E[E[�|Y ]] =E[E[�|X]] =
∫
Rd

E[�|X = x] fX(x) dx, (3.5)

which means that expectations can be computed from those conditioned on Y or those
conditioned on X . The latter are useful because they correspond to variables in physical
space to which it is possible to apply integration by parts to distinguish boundary fluxes
from interior mixing. In this regard, note that use of the product and chain rule implies

− (∇ · J)i ∂g(Y)

∂Y i
= −∇ ·

(
J i ∂g(Y)

∂Y i

)
+ J i · ∇Y j ∂2g(Y)

∂Y i∂Y j
. (3.6)

It will be assumed that fX(x) either has compact support on R
d or tends to zero

sufficiently fast as |x| → ∞. Then, making use of (3.5), (3.6) and applying integration
by parts to the first term on the right-hand side of (3.6) yields
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−E

[
(∇ · J)i ∂g(Y)

∂Y i

]
=

∫
Rd

E

[
J i ∂g(Y)

∂Y i

∣∣∣∣X = x
]

· ∇ fX(x) dx

+
∫
Rd

E

[
J i · ∇Y j ∂2g(Y)

∂Y i∂Y j

∣∣∣∣X = x
]

fX (x) dx, (3.7)

where the first and second term on the right-hand side correspond to boundary transport
and internal mixing, respectively. The first can be expressed in terms of the original density
by including the weight ∇ fX/ fX = ∇ log fX inside the expectation:∫

Rd

E[�|X = x] · ∇ fX(x) dx =
∫
Rd

E
[
� · ∇ log fX

∣∣X = x
]

fX(x) dx; (3.8)

hence, using (3.5),

−E

[
(∇ · J)i ∂g(Y)

∂Y i

∣∣∣∣Y
]

=E

[
J i ∂g(Y)

∂Y i
· ∇ log fX

∣∣Y
]

︸ ︷︷ ︸
boundary transport

+E

[
J i · ∇Y j ∂2g(Y)

∂Y i∂Y j

∣∣∣∣Y
]

︸ ︷︷ ︸
internal mixing

.

(3.9)
Physically, the factor ∇ log fX conditions the flux against the normal direction of the
boundary region. To see why, note that −∇ fX/|∇ fX | defines an outward unit vector
that is perpendicular to isosurfaces of fX and that |∇ fX | is the (unnormalised) density
associated with the bounding region. Therefore, introducing the normalisation factor N
and using Ẽ to denote the expectation of a random variable � over the boundary region:

Ẽ[�] := 1
N

∫
Rd

�|∇ fX | dx, (3.10)

the formula for conditional expectations under a change in measure, removing a factor of
N−1 from both sides, yields (see, for example Shreve 2004, § 5.2.1)

E
[
� · ∇log fX |Y] = Ẽ

[
� · ∇ fX

|∇ fX |
∣∣Y

]
E

[ |∇ fX |
fX

∣∣Y
]

. (3.11)

The first term on the right-hand side of (3.11) is the expected flux � into the region
defined by fX . The second term is the expected value of the normalised density ratio
N−1|∇ fX |/ fX multiplied by N and conditioned on Y . Now consider the probability that
Y ∈Y (where Y ⊆R

n is an arbitrary subset) over the boundary region using the indicator
function IY :

P̃{Y ∈Y} := Ẽ[IY ] =E

[
IY

|∇ fX |
N fX

]
=

∫
Y

E

[ |∇ fX |
fX

∣∣Y = y
]

fY ( y)
N︸ ︷︷ ︸

=: f̃Y ( y)

d y, (3.12)

which defines the probability density f̃Y of Y when X is sampled from the boundary
region and enables the final term in (3.11) to be expressed as N f̃Y / fY . The normalisation
constant N can be interpreted as the relative size of the boundary region. In particular,
as fX tends to the indicator function IX , selecting a subset X ⊆R

d , N tends to the ratio
of the surface area of X to its volume. If, for example, X is a unit interval of R, the
unnormalised distribution |∇ fX | would tend to a delta measure at either end of the interval
and the required normalisation constant N would, therefore, tend to 2.
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3.3. Backward Kolmogorov equation
For random variables � and Y , and a function g :Rn →R, the expected value of g(Y),
conditional on Y = y, is g( y). Therefore, E[�g(Y)|Y = y] =E[�|Y = y]g( y) and (3.3)
becomes

L g( y) = D i
1

∂g

∂yi
+ D ij

2
∂2g

∂yi∂y j
. (3.13)

Using the results from § 3.2, the so-called drift velocity is

D1 :=E
[
I s + J s · ∇ log fX

∣∣Ys = y
]

(3.14)

and the symmetric diffusion coefficient is

D2 := 1
2
E

[
J�

s ∇Ys + ∇Y�
s J s |Ys = y

]
+ 1

2
Σ . (3.15)

If u( y, s) :=E[g(Yt )|Ys = y], then

− ∂su( y, s) = L u( y, s) (3.16)

is solved backwards in time from the end condition u( y, t) = g( y), so that u( y, s) is the
expected value of g(Yt ) given Ys = y for s � t . The generator L therefore ‘pulls back’ the
observation g along the dynamics specified by (3.1).

A local (in space) diffusivity with what looks like the same form as (3.15) is found in
classical p.d.f. methods (Pope 1981). Here, however, the spatial conditioning is distributed
over an arbitrary control volume, as defined by the sample distribution fX (see item (i)
at the end of § 1), which leads to the boundary fluxes in (3.14) and has been derived
from the dual perspective of observables g (see item (ii) at the end of § 1). Consequently,
(3.15) readily accounts for distributed stochastic forcing through Σ . The following section
explains how D1 and D2 determine the evolution of probability density using duality.

3.4. Forward Kolmogorov equation
The ‘forward’ equation corresponding to (3.16) is derived by expressing the time rate
of change of the conditional expectation E[g(Yt )|Ys = y] in terms of a conditional
probability density fYt |Ys , as described by Pavliotis (2014, pp. 45–50). Here, we present
an abridged version to highlight the main idea without introducing new notation.

If the density fY ( y, t) is understood as being conditional on a specified density fY ( y, 0)

at t = 0, the expected value of g resulting from the initial density fY ( y, 0) satisfies

∂tE[g(Yt )] = ∂t

∫
Rn

g( y) fY ( y, t) d y =
∫
Rn

g( y)∂t fY ( y, t) d y. (3.17)

Alternatively, using L , integrating by parts and assuming that either fY or g decay
sufficiently fast as | y| → ∞,

∂tE[g(Yt )] =
∫
Rn

L g( y) fY ( y, t) d y =
∫
Rn

g( y)L † fY ( y, t) d y. (3.18)

Therefore, equating (3.17) and (3.18), and noting that they are valid for all suitable
observables g,

∂t fY ( y, t) = L † fY ( y, t), (3.19)
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where

L † fY ( y, t) := − ∂

∂yi
(D i

1 fY ( y, t)) + ∂2

∂yi∂y j
(D ij

2 fY ( y, t)). (3.20)

The forward equation evolves fY forwards in time from the initial density fY ( y, 0).

3.5. Physical interpretation
Sources I and boundary fluxes J · ∇ fX/|∇ fX | into/out of the control volume contribute
to positive/negative drift D1 in the evolution of the density fY . As discussed in § 3.2
beneath (3.12), the boundary fluxes are scaled to account for the relative size of the
boundary. Both processes contribute to drift because they determine a rate of gradual
change in Y , rather than an immediate addition or removal of fluid with a given value
of Y . An exception to this interpretation occurs when advection due to a velocity field is
included in J , which will be discussed in § 4.

Expectations of the cross-gradient mixing terms J�∇Y determine the diffusion
coefficient D2 in (3.15). The sign of D2 will be discussed in detail in § 5. In many practical
applications, and according to Fick’s law, each column of J points in the direction of each
column of −∇Y , making it reasonable to expect D2 to be negative semidefinite. This
property corresponds to the fact that down-gradient molecular transport homogenises Y ,
which leads to greater certainty in the value of Yt and lower entropy of the distribution fY .

The following sections (§§ 4 and 5) consider fluxes that comprise advection and
diffusion:

J = U ⊗ Y − ∇Yα, (3.21)

where U is a solenoidal velocity field (i.e. ∇ · U ≡ 0) and α ∈R
n×n is a (typically

diagonal) multicomponent diffusion matrix. More generally, α could also account for
anisotropic diffusion, which would make it a four-dimensional tensor.

4. Stirring due to advection
To understand the role that the advective component of the flux J in (3.21) plays it is useful
to revisit the identity (3.6) in § 3.2, recognising that if ∇ · U ≡ 0, the chain rule implies

− ∇ · (UY i )
∂g(Y)

∂Y i
= −∇ · (Ug). (4.1)

Consequently, by applying the steps described in § 3.2 to (4.1), the contributions that the
flux U ⊗ Y makes to the right-hand side of (3.20) through D1 and D2 can be replaced
with a single sink term −V fY :

∂t fY = (L † − V ) fY , (4.2)

where

V ( y, t) := −E
[
Ut · ∇ log fX

∣∣Yt = y
]
. (4.3)

Unlike the drift and diffusion terms in (3.20), V modifies fY by accounting for the
addition or removal of fluid, with a scalar field value of y, over the sample distribution’s
boundary. The inclusion of V is the subject of the Feynman–Kac formula, which is
discussed in Appendix C and provides an interpretation of V as modifying the expectation
with respect to which u( y, s) in (3.16) is defined. As expected, if U · ∇ fX ≡ 0, then the
boundary fluxes are zero and the velocity field serves to stir the various scalar fields
internally without affecting fY . The incorporation of time-dependent sample distributions
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fX , which produce further contributions to V , are discussed in Appendix C.1. In particular,
Appendix C.1 demonstrates that if fX is defined as a Lagrangian control distribution,
advected by the fluid, then V ≡ 0.

For fY to evolve as a probability density, the integral of V fY over R
n must vanish.

Although it looks as though the sink term on the right-hand side of (4.2) might violate this
requirement, it should be recalled, using (3.5), that∫

Rn

V fY ( y, t) d y =E
[
E

[
Ut · ∇ log fX

∣∣Yt = y
]] =E

[
E

[
Ut · ∇ log fX

∣∣X = x
]]

,

(4.4)
where, using integration by parts, the final expectation can be expressed as∫

Rd

E[Ut |X = x] · ∇ fX dx = −E[∇ · Ut ] = 0, (4.5)

which demonstrates that the integral of fY is invariant to the sources and sinks arising
from advection over the boundary region. A similar expression to (4.5) can be found from
Pope (2000, § 12.6.2, (12.217)) when fX is regarded as a particle position density.

5. Mixing due to diffusion
In this section, the focus will be on the effect that mixing has in the forward equation
for probability density (3.19). It is therefore convenient to start by neglecting Σ , which,
being positive semidefinite by construction, typically acts in (3.15) to oppose the effects
of mixing.

Neglecting Σ , using (3.21) and applying the result from § 4, the diffusion coefficient
(3.15) becomes

D2 := −1
2
E

[
α�∇Y�∇Y + ∇Y�∇Yα|Y = y

]
. (5.1)

If, in particular, a sampling distribution fX completely encompasses a scalar field, such
that the boundary fluxes in D1 are zero, then the forward equation for probability density
(4.2) for a single scalar Y with diffusivity α > 0 can by multiplied by y2 and integrated to
give the well-known evolution of variance (Zeldovich 1937):

1
2

d
dt
E

[
Y 2

t

] = −αE
[|∇Yt |2

]
, (5.2)

which illustrates that the diffusivity α reduces the variance of Yt due to the fact that D2 < 0.
Indeed, for many practical applications, it is reasonable to expect D2 to be

negative semidefinite, corresponding to the fact that down-gradient molecular transport
homogenises Y , which leads to greater certainty in the value of Y . For example, in physical
space, the eventual steady state of a scalar subjected to diffusion in an insulated domain
will be uniform, which corresponds to a Dirac measure in the probability distribution.

More generally, however, the properties of (5.1) are intriguing because they depend on
both the relative diffusivities α of the observed quantities Y and the a priori unknown
correlation between gradients ∇Y . It is therefore useful to understand when to expect
negative semidefinite D2 (which will be denoted D2 � 0 or, equivalently, −D2 � 0 when
it is convenient to refer to positive semidefinite matrices).

Begin by noting that outer products r ⊗ r for r ∈R
n are extreme rays and, therefore,

generators of the convex cone of positive semidefinite n × n matrices (Blekherman,
Parrilo & Thomas 2012). In particular, the matrix product ∇Y�∇Y � 0, because, noting
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(a) (b)
1

0

−1

r
α�r

∂�(α�r ⊗ r)∂ > 0 

∂

∂�(α�r ⊗ r)∂ < 0 

−4 −2

log(α)

0 2 4

θ

Figure 5. (a) Violation of positive semidefiniteness in the generator α�r ⊗ r of −D2 when the quantities Y
have different diffusivities α. (b) Relationship between the ratio of diffusivities α and the correlation coefficient
θ that ensures that D2 in (5.4) is negative semidefinite (white region).

that ∇Y ∈R
d×n , it can be represented as the sum of d outer products (one for gradients

with respect to each spatial dimension X1, X2, . . . , Xd ). Indeed, the expectation of such
products also produces positive semidefinite matrices, because ∂�

E[∇Y�∇Y |Y = y]∂ =
E[(∂�∇Y�)(∇Y∂)|Y = y]� 0 for all non-zero vectors ∂ ∈R

n is a sum of squares, which
implies that

E[∇Y�∇Y |Y = y] � 0. (5.3)

The (negative) diffusion coefficient −D2 in (3.15), however, is effectively generated by the
outer product of the vectors α�r and r . If the diffusivities of each observable quantity Y
are equal and non-negative, such that α can be replaced with a single scalar α ∈R�0, then
α�r and r point in the same direction and, following the above-mentioned arguments,
D2 is negative semidefinite (−D2 � 0). More generally, however, when α cannot be
replaced with a scalar, the outer product α�r ⊗ r creates the possibility of D2 being
sign indefinite, as illustrated by the shaded region of figure 5(a). The determining factor
in such cases is the correlation between the gradients of the various components of Y ,
since it is possible for the sum of sign indefinite matrices to be positive semidefinite.
Weaker correlation between the gradients provides stronger mitigation of the effects of
unequal diffusivities in α. For example, if α is any non-negative diagonal matrix and the
n columns of ∇Y are uncorrelated, such that EY [∇Y i · ∇Y j ] = 0 for i 
= j , then D2 � 0
is a negative semidefinite diagonal matrix. More generally, it is also worth noting that the
scalar diffusion coefficients associated with the marginal distributions of Y 1, Y 2, . . . , Y n

correspond to the diagonal elements of α.
A simple two-dimensional example illustrates the combined effects of correlation in the

gradients ∇Y and unequal diffusivities in α. Let α11 = 1, α22 = α and α12 = α21 = 0, and
assume, without loss of generality, that E[∇Y 1|Y = y] =E[∇Y 2|Y = y] = 1 to normalise
the problem. Define the correlation coefficient θ :=E[∇Y 1 · ∇Y 2|Y = y], such that

− D2 =
[

1 θ(1 + α)/2
θ(1 + α)/2 α

]
(5.4)

from (3.15). The (negative) symmetric diffusion coefficient −D2 in (5.4) is positive
semidefinite if its minimum eigenvalue

λ= (1 + α) − √
(1 + α)2 + θ2(1 + α)2 − 4α

2
(5.5)
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(a) (b)

θ1

θ3

θ2

θ1

θ3

θ2

Figure 6. Spectrahedra corresponding to the condition that −D2 � 0 for correlation coefficients θ1, θ2 and θ3,
and different relative diffusivities α2 and α3 in (5.7). (a) α2 = 1 and α3 = 10, and (b) α2 = 0.1 and α3 = 10.
The red regions correspond to D2 � 0, whilst the larger grey region corresponds to the feasibility requirement
(5.3) for the correlations. The range of all axes is [−1, 1].

is non-negative, which means that

|θ |� 2
√

α

1 + α
(5.6)

is the required relation between correlation and diffusivity that guarantees −D2 � 0 and is
illustrated in figure 5(b). If θ ∈ {−1, 1}, any difference in α from unity will lead to a sign
indefinite diffusion coefficient D2, as motivated in the text following (5.3) and figure 5(a).
However, for weaker correlations |θ | < 1, the ratio of the diffusivities α has to be either
large or small to produce a sign indefinite diffusion coefficient D2, as illustrated by the
grey regions in figure 5(b). For reference, the ratio of thermal diffusivity to salt diffusivity
in the oceans is approximately 100 and can be regarded as corresponding to α in the
previous example. Therefore, according to (5.6), in that case, |θ | would need to be less
than approximately 0.2 for D2 to be negative semidefinite.

When α is prescribed, it is useful to know the correlation coefficients θ ∈R
n(n−1)/2

that produce negative semidefinite diffusion coefficients D2. In such cases, the condition
that −D2 � 0 can be represented by spectrahedra, which are formally defined as the
intersection of the convex cone of positive semidefinite matrices (5.3) in R

n×n with an
affine subspace (Blekherman et al. 2012). In three dimensions, setting α11 = 1, α22 = α2
and α33 = α3,

− D2 =
⎡
⎣ 1 θ3(1 + α2)/2 θ2(1 + α3)/2

θ3(1 + α2)/2 α2 θ1(α2 + α3)/2
θ2(1 + α3)/2 θ1(α2 + α3)/2 α3

⎤
⎦ , (5.7)

where θ1, θ2 and θ3 are correlation coefficients. Spectrahedra corresponding to −D2 � 0
are shown in red in figure 6. The larger spectrahedron shown in grey corresponds to (5.3),
which constrains the possible values of θ . Values of θ that lie between the red and the grey
regions therefore correspond to permissible but sign indefinite diffusion coefficients D2.
In figure 6(a), α2 = 1 and α3 = 10, which leads to a narrower range of θ1 and θ2 values for
which −D2 � 0. In figure 6(b), α2 = 0.1 and α3 = 10, which narrows the range further and
increases the possibility that D2 is sign indefinite.
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1.0
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0.6

0.4

0.2

0

fX

0 0.2 0.4 0.6 0.8 1.0
x

Z = 1 2 3 4 5

Figure 7. A uniform mixture distribution fX ≡ 1 over the unit interval (blue line) obtained from the sum of
fX |Z (x |z)P{Z = z} according to (6.1) for Z ∈ {1, 2, 3, 4, 5}. In the regions where the distributions overlap, the
probability that X is associated with a given component (i.e. fZ |X ) is fX |Z (x |z)P{Z = z}.

For situations involving stochastic forcing, diagnosing the sign of D2 is complicated by
the presence of Σ � 0 in (3.15), which, in contrast to mixing, leads to greater uncertainty
in the state of the system.

6. Partitions and mixture distributions
The construction in § 3 gives an evolution equation for fY that is conditional on the
specification of the spatial probability density fX . It therefore generalises immediately
to collections of densities describing the distribution of random variables within different
zones of a domain. In statistics, such a decomposition is called a mixture distribution.
To paraphrase Lindsay (1995) giving a simple example, they would arise naturally
when sampling from a population consisting of several homogeneous subpopulations,
highlighting the potential of mixture distributions to decompose a heterogeneous flow into
(approximately) homogeneous sub flows.

Using the ‘latent’ random variable Z ∈Z to denote a given zone, defined by the
conditional density fX|Z , the original density can be recovered from Bayes’ theorem:

fX(x) =
∑
z∈Z

fX|Z (x|z)P{Z = z}, (6.1)

where P{Z = z} is the proportion of the original control volume attributed to zone z. An
illustration of (6.1) is shown in figure 7, consisting of a decomposition of the uniform
distribution over the interval X ∈ [0, 1].

The distribution fY , or any distribution of Y conditional on Z belonging to a subset of
Z, can be decomposed in a similar way:

fY ( y) =
∑
z∈Z

fY |Z ( y|z)P{Z = z}, (6.2)

where the distribution fY |Z associated with each zone satisfies the forward Kolmogorov
equation (3.19), provided that fX is replaced with fX|Z .

For periodic domains with a uniformly distributed mixture distribution fX (cf. figure 7),
boundary fluxes arising from J in D1 vanish because ∇ fX ≡ 0. Consequently, the
sum of boundary fluxes for each component fX|Z , representing exchange between the
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components, also vanishes:∑
z∈Z

E
[

J · ∇ log fX|Z |Y = y, Z = z
]

fY |ZP{Z = z} = 0. (6.3)

In this way, the decomposition of a mixture distribution generalises the classical partition
of a domain into non-overlapping control volumes with sharp boundaries to components
of fX that can overlap, which will be used in § 7.4 to analyse Rayleigh–Bénard convection.

7. Example applications
The following subsections each illustrate particular aspects of the results derived in § 3 by
providing simple example applications.

7.1. Advection and diffusion by the ABC flow
An Arnold–Beltrami–Childress (ABC) flow with coefficients equal to unity is the three-
dimensional divergence-free velocity field

U := (sin(X3) + cos(X2), sin(X1) + cos(X3), sin(X2) + cos(X1))�. (7.1)

It is an exact solution of the Euler equations in a periodic domain and is known to exhibit
chaotic streamlines (Dombre et al. 1986), which makes it an ideal candidate to study
mixing. Couched in the format of (3.1), the evolution of a passive scalar concentration
Yt due to the combined effects of advection by U and diffusion is

dYt

dt
= −U · ∇Yt + α�Yt , (7.2)

where α denotes the constant scalar diffusivity. The corresponding forward Kolmogorov
equation governing the evolution of fY (y, t) is given by (3.19):

∂ fY

∂t
= − ∂2

∂y2

(
αE[|∇Yt |2|Yt = y]︸ ︷︷ ︸

=:−D2

fY
)
. (7.3)

The coefficients V and D1 from § 3.3 are both zero because the periodic domain does
not have boundaries. Although (7.3) cannot be solved, as D2 is unknown, we can examine
estimates of D2 by solving (7.2) numerically. Space is treated using a Fourier pseudo-
spectral method and time using a Crank–Nicolson discretisation with a resolution of
643 modes and time step of �t = 5 × 10−3, respectively. Choosing an initial condition
consisting of a front separating two regions of different concentration Y0 = tanh(10X�1)

and setting α = 1/10, we numerically integrate with respect to t ∈ [0, 4]. Then, by
approximating the density fY (y, t) and E[|∇Yt |2|Yt = y] with a histogram, constructed
from a single snapshot of field data, we estimate the terms in (7.3).

A time evolution of a cross-section of the scalar field Yt alongside its corresponding
density fY (y, t) and the conditional expectation E[|∇Yt |2|Yt = y] are shown in figure 8.
At t = 0.5, the scalar field, consisting of two regions of approximately uniform
concentration separated by a relatively sharp interface, is represented in probability space
by spikes at y = ±1. As the concentration field is mixed irreversibly, the amplitude of these
spikes reduces and the density associated with values of y in the vicinity of zero increases.
Mixing subsequently homogenises the scalar field to the extent that no evidence of the
initial distribution remains by t = 2. As there is no injection of concentration to balance
the homogenising effects of diffusion, Yt will ultimately tend to a constant uniformly over
the domain and the density fY (y, t) in the limit t → ∞ would tend to a Dirac distribution.
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Figure 8. (a) Time evolution of a cross-section of the concentration field Yt and (b) its corresponding
probability density fY (y, t) (shaded) and (negative) diffusion coefficient αE[|∇Yt |2|Yt = y]. https://www.
cambridge.org/S0022112025106319/JFM-Notebooks/files/fig08/fig08.ipynb.

The expectation E[|∇Yt |2|Yt = y], which quantifies the rate of mixing and, therefore,
negative diffusion in (7.3) is maximised by y = 0. For t = 0.5 and t = 1.0, scalar
concentrations that are less probable are associated with the most mixing. This observation
is not surprising because, as discussed in the examples in § 2 and illustrated in figure 1,
large gradients are associated with small probability densities, unless they occur over
sufficiently many branches of the function’s inverse. In this regard, it should also be noted
that E[|∇Yt |2|Yt = y] is zero for the minimum (y = −1) and maximum (y = 1) values
of Yt , at which ∇Yt = 0. In the absence of diffusion at these values of y, the density
fY consequently maintains compact support (i.e. mixing interpolates and cannot produce
values that lie outside the range of values that were there in the first place).

7.2. Stochastic boundary conditions
To sustain a finite variance of a diffusive scalar field, it is necessary to apply a forcing.
Given that a wide variety of physical systems are sustained by a boundary forcing, often
characterised by substantial fluctuations and uncertainty, it is natural to consider how
these forces manifest in the evolution equation governing the system’s probability density.
A simple example of such a problem that is sufficient to highlight several of the terms
discussed in § 3 is the diffusion of heat through a one-dimensional rod of unit length
forced by Ornstein–Uhlenbeck processes (i.e. normally distributed thermal fluctuations)
at the boundary. When cast in the form of (3.1), for unit thermal diffusivity (α = 1), the
temperature Yt evolves according to

dYt

dt
= ∂2

X Yt for X ∈ [0, 1], (7.4)

where values of Yt for points on the boundary ∂Ω (corresponding to X ∈ {0, 1}) evolve
according to

dYt (ω) = −aYt (ω) dt + σ dWt (ω) for ω ∈ ∂Ω, (7.5)
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Figure 9. (a) Space–time plot of Yt for the one-dimensional diffusion (7.4) forced by an Ornstein–Ulhenbeck
process (7.5) with a = 5, σ = 1, and (b) joint density f̃Y,∂n Y conditioned on the boundaries. The positive
covariance of this plot reflects the tendency of heat to flow down gradients at the boundaries. https://www.
cambridge.org/S0022112025106319/JFM-Notebooks/files/fig09-10/fig09-10.ipynb.

where a, σ are real constants and Wt (ω) is a Wiener process. In the context of (3.1),
Jt = −∂X Yt is the (diffusive) scalar flux. Since we are interested in the entire domain, the
sampling distribution is fX ≡ 1 and ∂X log fX in the calculation of D1 should be regarded
as changing the distribution under which the expectation is calculated from fX to point
evaluation at the (two) boundaries (see discussion following (3.9) in § 3.2):

E[Jt∂X log fX |Yt ] fY = 2E[∂nYt |Yt ] f̃Y , (7.6)

where ∂nYt is the boundary normal derivative of Yt , f̃Y is the probability density of Yt ,
conditional on evaluation at a boundary, and the factor 2 accounts for there being two
boundaries separated by a distance of one unit.

Figure 9(a) shows a space–time plot of the system, for which the temperature at the
boundaries fluctuates on the integral time scale (1/a) of the Ornstein–Uhlenbeck processes
(7.5). The solution is obtained numerically using second-order finite differences in space
with 32 grid points and an Euler–Maruyama discretisation in time with a time step of
2.5 × 10−3. Towards the centre of the domain, the effects of diffusion reduce the amplitude
of the fluctuations.

Using (7.6), the forward Kolmogorov equation, which describes how the probability
density fY (y, t) evolves in time, is given by (3.20):

∂ fY

∂t
= − ∂

∂y

(
2E[∂nYt |Yt = y] f̃Y

fY︸ ︷︷ ︸
=:D1

fY

)
− ∂2

∂y2

(
E[|∂X Yt |2|Yt = y]︸ ︷︷ ︸

=:−D2

fY
)
, (7.7)

According to (7.5), Yt sampled at the boundary is an Ornstein–Uhlenbeck process and
therefore has a stationary density given by f̃Y (y) = √

a/(πσ 2) exp(−ay2/σ 2) (Gardiner
1990), which, using the approach described following (3.12), is used to express D1.

As there is no advection in (7.4), the coefficient V from § 4 is zero. However,
due to conduction and, in turn, boundary fluxes of heat, (7.7) has non-zero drift and
diffusion terms. Although (7.7) cannot be solved prognostically without a model for the
unknown coefficients, the coefficients can be approximated numerically by constructing
an ensemble satisfying (7.4) and (7.5).

Figure 10 shows the drift D1 and diffusion D2 coefficients, as well as the stationary
density fY (y) using time and ensemble averaging. An ensemble of 500 paths each
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Figure 10. (a,b,d) Drift coefficient D1, diffusion coefficient D2 and probability density fY (y), respectively,
of the forward Kolmogorov equation corresponding to a stationary state of the system (7.4) with a = 5, σ = 1.
(c) A numerical verification of the balance between boundary forcing and mixing. https://www.cambridge.org/
S0022112025106319/JFM-Notebooks/files/fig09-10/fig09-10.ipynb.

containing 1950 snapshots in time was constructed numerically by simulating (7.4), (7.5)
for t ∈ [0, 5] and discarding the initial 50 snapshots. In § 7.1, molecular diffusion acted
to homogenise the scalar field Yt in the ABC flow and drive its corresponding density
towards a Dirac measure. Were the value of Yt at the boundaries in this example to be
fixed at zero, the distribution would, due to the negative diffusion D2 (figure 10d), also
tend towards a Dirac measure at zero, irrespective of the precise initial conditions. Instead,
random forcing at the system’s boundary creates variance that balances the destruction of
variance described by D2. To illustrate how, figure 9(b) shows the conditional joint density
f̃Y,∂nYt of Yt and its boundary-normal gradient ∂nYt . The conditional density reveals the
expected positive correlation between Yt and ∂nYt , which means that heat flux into/out of
the domain is typically accompanied by positive/negative temperatures at the boundary.
Therefore, D1 ≶ 0 for y ≶ 0, as shown in figure 10(a), which implies that D1 corresponds
to divergent transport of probability density away from the origin.

Computing the balance of the terms in the right-hand side of (7.7), as shown in
figure 10(c), verifies (7.7). It is worth noting that while incorporating uncertainty into (7.4)
required a Monte Carlo approach to be employed in order to estimate fY (y), such boundary
conditions pose no particular additional difficulty in (7.7), which accommodates stochastic
forcing naturally.

7.3. Boussinesq equations
The following example demonstrates that coordinates, regarded here as functions X over
the sample space Ω , can be included in the state vector Yt . For instance, if one wishes
to understand probability distributions over horizontal slices of a domain, the vertical
coordinate can be included in Yt . More generally, other functions, such as geopotential
height, could be incorporated into Yt . The equations developed in § 3 are therefore very
general in being able to generate equations that are specific to a particular problem and
circumvent the need for case-specific derivations.
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In a Boussinesq context, the pointwise deterministic equations governing the behaviour
of the velocity field Ut and the buoyancy Bt are

dUt

dt
= Bt e3 − ∇Pt − Ut · ∇Ut + α1�Ut ,

∇ · Ut = 0,

dBt

dt
= −Ut · ∇Bt + α2�Bt , (7.8)

where e3 is the unit vector in the vertical direction. Since the vertical direction plays
a distinguished role in corresponding to the direction of gravity, let Yt := (Wt , Bt , Z)�,
where Wt := Ut · e3 is the vertical velocity (not to be confused with the vector of Wiener
processes Wt used in § 3) and Z = X3 is the (time independent) vertical coordinate.
Writing dZ/ dt = Wt − Ut · ∇Z = 0, and noting that α11 = α1, α22 = α2, α33 = 0 and
αij = 0 for i 
= j implies that V is given by (4.3),

D1 =
⎛
⎝b

0
w

⎞
⎠ −E

⎡
⎣∂Z Pt + α1∇Wt · ∇ log fX

α2∇Bt · ∇ log fX Yt = y
0

⎤
⎦ , (7.9)

and

D2 = −1
2
E

⎡
⎣ 2α1|∇Wt |2 (α1 + α2)∇Wt · ∇Bt α1∂Z Wt

(α1 + α2)∇Wt · ∇Bt 2α2|∇Bt |2 α2∂Z Bt Yt = y
α1∂Z Wt α2∂Z Bt 0

⎤
⎦ , (7.10)

where y := (w, b, z)�. In D1, b is responsible for drift in the w direction, because
buoyancy increases Wt and, in turn, w is responsible for drift in the z direction, because
vertical velocity increases Z . When interpreting the latter, it should be borne in mind
that for the closed domain in this example E[Wt |Z ] = 0, which, therefore, does not affect
the marginal distribution of Z (i.e. the domain does not change its shape over time). The
unknown conditionally averaged vertical pressure gradient also affects the evolution of the
joint density through D1, whose remaining terms account for boundary fluxes of Wt and
Bt , scaled by the relative size of the boundary.

While the drift D1 is responsible for moving and stretching the joint density, the
diffusion coefficient D2 accounts for the effects of irreversible mixing. As discussed in
§ 5, D2 is expected to be negative semidefinite (D2 � 0) in most applications, which means
that it typically represents anti-diffusion. In particular, if α1 = α2 = 1, then D2 � 0 can be
guaranteed. For other combinations of α1 and α2, D2 � 0 depends on the correlations
among ∇Wt , ∇Bt and ∇Z , as discussed in § 5. The gradients, ∇Wt and ∇Bt are a priori
unknown and therefore require closure (see § 8), which would involve postulating their
dependence on the joint density fY and/or the independent variables y := (w, b, z)�.

7.4. Rayleigh–Bénard convection with a stochastic boundary condition
This section describes an example of the domain partition discussed in § 6 applied to
Rayleigh–Bénard convection. Here, the zonal sample distributions are defined using the
diffusive vertical buoyancy flux and therefore separate the bulk central part of the flow
from the top and bottom boundary layers (see figure 11, which displays instantaneous
fields alongside weighted sample distributions fX|Z for each zone). To illustrate how
the partition yields useful information, we focus on the contributions to the equations
governing fY |Z from V and D1 arising from transport between the zones.
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Figure 11. (a) Snapshot of the vertical velocity Y 1
t = Wt (dashed/solid white contours for negative/positive

vertical velocity, respectively) and buoyancy field Y 2
t = Bt (red is positive; blue is negative) following a

negative fluctuation in the buoyancy at the bottom boundary. (b) Partition of the vertical domain into three
zones Z ∈ {z1, z2, z3} defined by fX|Z , where fX|Z (x|z2) (the central zone) is proportional to the horizontally
and time-averaged vertical buoyancy flux Wt Bt . In the boundary-layer zones above and below the bottom and
top boundary, fX|Z is proportional to the horizontally and time-averaged diffusive buoyancy flux −α2∂X3 Bt .
The constant of proportionality P{Z = z} for each zone is chosen to ensure that the sum of fX|ZP over the
zones is the uniform distribution (black line) (cf. (6.1) in § 6). https://www.cambridge.org/S0022112025106319/
JFM-Notebooks/files/fig11-12/fig11-12.ipynb.

The data for this example were obtained from direct numerical simulation of the
Boussinesq equations (7.8) on a two-dimensional and horizontally periodic domain of
unit height, as shown in figure 11(a). A spatially uniform buoyancy equal to −1/2
is imposed on the top boundary. On the bottom boundary, the imposed buoyancy is
spatially uniform but follows an Ornstein–Uhlenbeck process in time, as described in
§ 7.2. The Ornstein–Uhlenbeck process has a mean of 1/2, unit variance and a time
scale (corresponding to 1/a in § 7.2) of 2 units. The governing equations can therefore
be regarded as non-dimensionalised on the domain height and mean buoyancy difference
between the horizontal boundaries. In terms of these scales, the Rayleigh number is 107,
which corresponds to a (non-dimensionalised) viscosity and diffusivity of α1 = √

107 and
α2 = √

107, respectively, for a Prandtl number of unity.
The governing equations are approximated numerically using the pseudo-spectral

method provided by Dedalus (Burns et al. 2020). Fourier and Chebyshev bases are used for
the horizontal (X1) and vertical (X3) directions, with 512 and 128 grid points, respectively.
The grid points are spaced uniformly in the horizontal direction and non-uniformly in the
vertical direction, where they correspond to Gauss–Chebyshev quadrature nodes. A single
simulation is run for 4000 time units, where one time unit corresponds to a typical turnover
time. The probability densities discussed later and presented in figure 12 were constructed
from field data sampled at regular time intervals of 2 units following a discarded transitory
period of 100 time units.

Following §§ 3.4 and 6, the joint probability density for each zone evolves according
to ∂t fY |Z = (L † − V ) fY |Z , where L and V are specific to each zone. For example, the
source/sink term is

V (Yt |Z , t) := −E[Ut · ∇ log fX|Z |Yt , Z ] (7.11)

and the drift coefficient is

D1(Yt |Z , t) :=
(

b
0

)
−E

[
∂X3 Pt

0 Yt , Z

]
−E

[
α1∇Wt · ∇ log fX|Z
α2∇Bt · ∇ log fX|Z Yt , Z

]
︸ ︷︷ ︸

D
wall
1 +D

zone
1

, (7.12)
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where Dwall
1 and Dzone

1 distinguish between transport across the bottom and top boundaries
(X3 ∈ {0, 1}), which was discussed in the example in § 7.2, from transport between
zones, labelled Dzone

1 . In each of these expressions, it is important to appreciate that the
expectation is conditioned, and therefore particular, to a zone Z . Integration with respect
to w of the governing equation for fY |Z recovers an equation for fB|Z , the marginal
probability density for the buoyancy in each zone:

∂t fB|Z =
∫
R

(L † − V ) fY |Z dw = (L
† − V ) fB|Z

= −V fB|Z − ∂b((D
wall
1 + D

zone
1 ) fB|Z ) + ∂2

b (D2 fB|Z ) (7.13)

for which � denotes the projection of the operator � defined by the integral in (7.13).
Figure 11(a) displays a snapshot of the vertical velocity Y 1

t := Wt and the buoyancy
Y 2

t := Bt , which correspond to the fields displayed in the example derived from the Lorenz
equations presented in § 2, a short time after a negative fluctuation in the buoyancy of
the bottom boundary. Figure 11(b) displays the three sample distributions used to define
the control volume zones z1 (bottom boundary layer), z2 (bulk central region) and z3
(top boundary layer). For z1, fX|Z is proportional to the horizontally and time-averaged
diffusive buoyancy flux −α2∂X3E[Bt |X3] in the lower half of the domain and zero above.
Conversely, for z3, fX|Z is proportional to −α2∂X3E[Bt |X3] in the upper half of the
domain and zero below. In the central region (Z = z2), fX|Z is proportional to the mean
convective buoyancy flux E[W B|X3]. For a given zone z, the constant of proportionality
for each fX|Z can be expressed as the total (diffusive plus convective) volume-integrated
vertical buoyancy flux divided by P{Z = z}, which implies that P{Z = z} corresponds to
the fraction of the volume-integrated vertical buoyancy flux over a given zone, leading to
the partition of unity by fX|ZP{Z = z} illustrated in figure 11(b).

Figure 12 displays stationary joint and marginal distributions of Y t , along with
contributions to −V fY |Z and −∂ yDzone

1 fY |Z arising from transport between the control
volumes. The range of buoyancy in zone z1 (figure 12a) is larger than it is in zone z3
due to the stochastic boundary condition. Indeed, the marginal distribution fB|Z in zone
z3 is noticeably skewed; buoyancy in the top zone does not appear to fall below the
fixed value of −1/2 imposed on the top boundary, but reaches values up to 1/2 due to
exchange with the bulk zone below. The projected convective transport −V fB|Z and the
diffusive transport −∂b(D

zone
1 fB|Z ) for both boundary layer zones are the same order of

magnitude and exhibit similar behaviour. In zone z1, fluid with relatively large (b ≈ 0.5)
buoyancy is transported out of the zone, whereas fluid with buoyancy that is close to the
volume average (b ≈ 0) is transported into the zone. In this regard, it is interesting that
fluid with a buoyancy (b < −0.5), which must have been created in the vicinity of a large
negative fluctuation in the buoyancy imposed on the bottom boundary (see figure 11a), is
transported out of the zone. Similar remarks apply to zone z3, except that −V fB|Z , which
accounts for convective transport, tends to zero as b tends to the value −0.5 of buoyancy
imposed on the top boundary. In contrast, transport from zone z3 into zone z2 (the central
region) is negative and large in magnitude in the vicinity of the buoyancy b = −0.5 of the
top boundary.

Zones z1 and z3 interact with the central bulk zone z2, whose joint probability density for
vertical velocity Wt and buoyancy Bt is displayed in figure 12(b). The vector field depicted
with blue arrows represents the flux of probability density Dzone

1 fY |Z due to diffusion to
the boundary layers, whose divergence corresponds to a sink in the budget for fY |Z . For
this particular problem, the vector field resembles a saddle node, converging with respect
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Figure 12. (a), (b) and (c) Information relating to the joint density fY |Z conditioned on zone z1 (bottom
boundary layer), z2 (bulk central zone) and z3 (top boundary layer), respectively. Panel (b) displays the
joint density fY |Z (red contours) along with the flux D zone

1 fY |Z (blue arrows) and isoregions of −V fY |Z
corresponding to (−∞, −0.1] (light grey and labelled ↓, ↑) and [0.1, ∞) (dark grey and labelled ↑, ↓).
Panels (a) and (c) display the marginal distribution for buoyancy fB|Z (red bars) along with the source/sink
term −V fB|Z (light grey) and zonal flux term −∂b(D

zone
1 fB|Z ) (blue line) in (7.13). The horizontal lines

in panels (a) and (c) demarcate the range of the vertical axis in panel (b). https://www.cambridge.org/
S0022112025106319/JFM-Notebooks/files/fig11-12/fig11-12.ipynb.

to vertical velocity (w) and diverging with respect to buoyancy (b). This structure is due to
the fact that the boundary layers are sinks of velocity/momentum and sources of buoyancy.

The light and dark shaded regions in figure 12(b) correspond to negative (velocity
directed out of the control volume) and positive (velocity directed into the control volume)
contributions to ∂t fY |Z from −V fY |Z , respectively. Positively buoyant fluid tends to
be transported by positive vertical velocity from the bottom boundary layer (↑), while
negatively buoyant fluid tends to be transported by negative vertical velocity from the
top boundary layer (↓). Both of these processes correspond to positive forcing of fY |Z
(i.e. −V fY |Z > 0). The remaining negative regions identified in figure 12(b) typically
correspond to mixed fluid, with buoyancy close to zero, transported from the bulk into
the bottom or top boundary layer (denoted ↓ and ↑, respectively).

7.5. Available potential energy
Available potential energy is the part of potential energy of a body of fluid that is
theoretically ‘available’ for conversion into kinetic energy. The other part, known as
background potential energy, cannot be converted into kinetic energy and is associated
with a stable equilibrium (Lorenz 1955). For example, kinetic energy cannot typically be
extracted from a stably stratified environment (in which a fluid’s density decreases with
height) and therefore possesses zero available potential energy.

When divided by the volume of the domain, the potential energy of the fluid modelled in
§ 7.3 corresponds to the expectation of the product −Bt Z (see, for example Winters et al.
1995):
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−E [Bt Z ] = −
∫
Rn

bz fY ( y, t) d y, (7.14)

where fY ( y, t) is the joint density for the variables Yt := (Wt , Bt , Z)� from the example
in § 7.3 evaluated at y := (w, b, z)� and the minus sign accounts for relatively warm
parcels of fluid having greater potential energy when they are moved downwards. The
so-called ‘reference’ buoyancy profile b∗ :R→R in available potential energy theory is
a volume-preserving function of height that minimises potential energy (see e.g. Winters
et al. 1995). ‘Volume-preserving’ in this context means that the mapping b∗ does not
change the marginal distribution of buoyancy, which, in the present context, means that
E[g ◦ b∗(Z)] =E[g(Bt )] for any observable g.

The potential energy (7.14) is minimised by placing positively buoyant parcels at the top
of the domain and negatively buoyant parcels at the bottom of the domain. The required
mapping b∗ is monotonic and corresponds to

b∗ := F−1
B ◦ FZ , (7.15)

where FB and FZ are the marginal cumulative distribution functions for Bt and Z ,
respectively. In the field of optimal transport, b∗ minimises the expected squared distance
between two variables and has been known for a long time (Knott & Smith 1984;
McCann 1995). The reference state allows the available potential energy to be computed
as the difference between the actual potential energy and the (minimum) potential energy
associated with the reference state:

E
[
b∗(Z)Z

] −E [Bt Z ] =
∫
Rn

(b∗(z) − b)z fY ( y, t) d y � 0. (7.16)

As described by Craske (2021), available potential energy can be decomposed into
contributions from subvolumes of a domain. Each contribution consists of ‘inner’
and ‘outer’ parts, corresponding to the potential energy that can be released within
a subvolume and by combining the subvolume with its parent domain, respectively.
The approach generalises to subvolumes that are specified by the conditional sample
distributions fX|Z described in § 6. The resulting constructions formally resemble Bayes’
theorem due to their connection with probability theory.

A key related quantity in stratified turbulence is the horizontally averaged vertical
buoyancy flux E[Wt Bt |Z = z], which is responsible for the reversible conversion of
available potential energy to and from kinetic energy (see, for example, Caulfield 2020).
In the averaged Boussinesq equations, the horizontally averaged vertical buoyancy flux
requires closure, but from the perspective of the joint density for Wt and Bt , conditional
on Z , it is known exactly in terms of independent and dependent variables:

E[Wt Bt |Z = z] =
∫∫
R2

wb fBW |Z (b, w|z, t) dw db, ∀z : fZ (z) 
= 0, (7.17)

which suggests that the evolution equations for fY might be a useful perspective to adopt
for modelling stratified turbulence and making use of available energetics in a prognostic
capacity.
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8. Closure
As described in § 1, the primary aim of this work was to develop a framework for analysing
heterogeneous and stochastic flow observables over arbitrary control volumes using joint
probability distributions. Although the forward equation (4.2) can be used diagnostically
to analyse data, V , D1 and D2 involve unclosed terms that would need to be modelled for
(3.19) to be used prognostically. Modelling in this regard must account for the effects of
averaging over states that are not measurable in the variable Yt . As with any coarse-grained
representation, one’s aim is to forecast a marginal distribution fY that is a good approxima-
tion to the corresponding projection of the full (infinite dimensional) state of the system.

In the context of local p.d.f. methods (describing a single Eulerian or Lagrangian point),
a variety of models to address the closure problem are reviewed by Pope (2000) and
Fox (2003). Unlike their moment-based counterparts, for which closures are typically
sought for fluxes or correlations such as E[W B|X = x] from § 7.3, the modelling of
irreversible mixing by molecular diffusion (i.e. D2) becomes the central issue in local
probability density methods (Pope 2000).

If −D2 � 0 (as discussed in § 5), ‘diffusion’ in (3.20) is negative and results in greater
certainty as time increases regarding the observable Yt . A simple approach to modelling
this term is to replace it with a mean-restoring drift, for which the contribution to
D1 would be proportional to y −E[Y ], known as ‘interaction by exchange with the
mean’ (Villermaux & Devillon 1972; Dopazo & O’Brien 1974). The closure is exact
for a statistically homogeneous Gaussian field (Pope 2000). Unfortunately, it has the
undesirable effect in one dimension of preserving the shape of other distributions too,
which contradicts the expected relaxation towards a Gaussian distribution. This particular
issue is overcome by ‘mapping closures’ (Chen, Chen & Kraichnan 1989; Pope 1991;
Gao & O’Brien 1991), which evolve a map from statistically homogeneous Gaussian fields
to surrogate fields that have the same p.d.f. as Yt . Their assumption is that conditional
expectations of the derivatives of the surrogate fields are the same as those of Yt . Chen
et al. (1989) suggest that the mapping closure would benefit from the inclusion of spatial
derivatives in Yt , which would come at the expense of complicating the structure of the
various mapping dependencies between the fields (Pope 1991). Both closures discussed
in this paragraph result in a nonlinear forward equation for probability density (see, e.g.
Frank 2005), in view of their assumed dependence of D1 and D2 on fY .

Regarding the random variables Yt as particles in phase space, evolving according to
a stochastic equation to produce the distribution predicted by (4.2), provides an efficient
means of dealing with a large number of observables and affords a different perspective
for closure. In this vein, the closure described by Curl (1963) randomly selects and merges
pairs of particles (at a rate specified as the mixing time scale). In the context of models
for stratified turbulence, Kerstein (1999) and, recently, Petropoulos, de Bruyn Kops &
Caulfield (2025) also adopt a particle perspective, the latter accounting for competing
effects of turbulent fluctuations and buoyancy with a resetting process.

Heterogeneous flows are more challenging for closures and involve joint p.d.f.s over a
larger number of dimensions. In this regard, the flexibility of the framework described
in the present work should prove useful. It can accommodate arbitrary coordinates as
observables and allows one to decompose a domain into overlapping control volumes
that are themselves defined as probability densities. As illustrated in § 6, a coarse grained
approach to a heterogeneous flow might decompose a domain into constituent parts that
are approximately homogeneous and, therefore, more amenable to the closures discussed.
An outstanding challenge would then be modelling of the boundary fluxes between the
control volumes in D1 and/or V (see § 4 and the example in § 7.4), for which the concepts
relating to available potential energy discussed in § 7.5 might be instructive.
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Like the formulation presented here, the p.d.f.s of Villermaux (2019) describe the
heterogeneous distribution of concentration over a control volume. Therefore, the
simplified p.d.f. models characterising the evolution of lamellae discussed by Villermaux
(2019) effectively provide a closure to the forward equation. Conversely, such models could
be examined in the light of the forward equation (4.2) to establish a better understanding
of the diffusivity D2.

9. Conclusions
We have derived and explained an equation that governs the evolution of the joint
probability distribution fY of a set of stochastically forced multicomponent observables Y
drawn randomly from points in space that are distributed according to fX . Our use of the
distribution fX to describe space generalises the classical definition of a control volume
by relaxing the notion of set membership in accounting for the possibility of gradual
transitions between regions (cf. § 6 and figure 7). The generality of the approach clarifies
the role of boundary fluxes and accommodates a wide range of applications, including
those for which properties of a flow are used to define control volumes.

Fluxes of multicomponent scalars over the bounding region of the sample distribution
fX contribute to drift in probability space. The factor ∇ log fX that multiplies such
fluxes defines the normal direction of the bounding region, as well as its relative size,
in transforming the measure with respect to which conditional expectations are taken. In
contrast, irreversible mixing leads to diffusion in probability space. Although the sign
of the resulting diffusion coefficient is typically negative semidefinite, representing the
homogenising effect of irreversible mixing, circumstances for which the coefficient could
be sign indefinite were explored in § 5.

The approach can be applied to control volumes defined by any sample distribution,
shape, size and dimension, and readily accommodates an arbitrary number of flow
observables. As demonstrated in § 7.3, coordinates can be regarded as observables, which
means that the equations derived in § 3 can be applied without modification to slices
of a domain parametrised by a coordinate, or, for example, geopotential height. In this
regard, the work illustrates that the equations governing global constructions of available
and background potential energy (Winters et al. 1995) are specific examples of the more
general principles that determine the evolution of probability distributions.

In addition to unifying a wide range of possible applications, an advantage in
formulating the problem in terms of the density fX , rather than traditional sets, is that
∇ log fX implicitly accounts for the size and orientation of the bounding region without
requiring further factors or notation. The use of fX also proves useful in producing
relatively smooth boundary information from limited data from simulations, from which
evaluation of fluxes across an arbitrary surface is challenging and subject to large
uncertainty.

As explained in § 6, the sample distribution fX can be treated as a mixture distribution
that decomposes into a sum of conditional distributions fX|Z . Using the conditional
distributions to describe (sub)regions of a flow that are approximately homogeneous might
provide a viable means of generating bulk stochastic models for heterogeneous flows using
the closures discussed in § 8. A particularly attractive possibility in this regard would be the
use of time-dependent distributions defined by a flow observable (an example would be the
use of enstropy to discriminate between turbulent/non-turbulent regions of van Reeuwijk
et al. (2021)). For such cases, the effect that the time-dependence of fX would have on the
evolution of fY can be readily interpreted using the Feynman–Kac formula, as shown in
Appendix C.1.
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The present work is aimed at engineers and physicists who wish to diagnose or
model bulk transport and mixing processes from a probabilistic perspective. The resulting
equations are nevertheless of mathematical interest and perhaps worthy of study in their
own right. If the terms V , D1 and D2 requiring closure are, in general, regarded as a
function of the joint density fY , the resulting partial differential equation is a nonlinear
Fokker–Planck equation, reminiscent of mean field theory (Frank 2005; Barbu & Röckner
2024) and the associated McKean–Vlasov stochastic differential equation (McKean 1966).

Supplementary material. Computational Notebook files are available as supplementary material
at https://doi.org/10.1017/jfm.2025.10631 and online at https://www.cambridge.org/S0022112025106319/
JFM-Notebooks

Funding. This work was supported by the Engineering and Physical Sciences Research Council [grant
number EP/V033883/1] as part of the [D∗]stratify project.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The data that support the findings of this study are openly available in the JFM
notebooks at https://www.cambridge.org/S0022112025106319/JFM-Notebooks.

Appendix A. The transformation of probability density
A function ϕ :Rd →R

n that assigns to coordinates X ∈R
d the value of the dependent

variables Y ∈R
n , transforms a distribution over Rd into a distribution over Rn . We will

start by assuming that n = d and discuss what happens when n 
= d at the end of this
section.

The joint probability density fY :Rn →R (if it exists) must provide a consistent means
of computing the expectation of an observable g :Rn →R:

E[g] =
∫
Rn

g( y) fY ( y, t) d y =
∫
Rd

g ◦ ϕ(x) fX (x) dx. (A1)

Notice that if ϕ(x) is constant over subsets of Rd for which fX(x) 
= 0, then such a density
fY does not exist. In that case, fY d y would need to be replaced with the pushforward
measure ν( d y) (Chung 2001; Bogachev 2007) to account for individual values y that
occur over subsets of Rd of finite size (referred to as ‘atoms’ of ν (Chung 2001)). If, in
the cases where the density fY does exist, we pick g as the indicator function for the
sub-codomain Y( y) : { y′ ∈R

n : y′i � yi }, then

fY ( y) = ∂n

∂y1 . . . ∂yn

∫
ϕ−1(Y( y))

fX(x) dx, (A2)

where ϕ−1(Y( y)) := {X ∈R
d : ϕ(X) ∈Y( y)} is the preimage of Y , which accounts for the

possibility that several distinct values X might map onto the same value Y . If, however,
ϕ|X is the restriction of ϕ to a subdomain X ⊂R

d over which ϕ is invertible, then

fY |X ( y) = fX(ϕ|−1
X ( y))

∣∣∣∣∂ϕ|−1
X

∂ y

∣∣∣∣, (A3)

where fY |X is the probability density conditional on X ∈X . The density fY can be
calculated from (A3) using Bayes’ theorem to account for a set P �X of disjoint
subdomains:

fY ( y) =
∑
X∈P

fY |X ( y, t)P(X ). (A4)
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When n < d, the sample space is large in comparison with n and (d − n) auxiliary
variables, such as Xn+1, Xn+2, . . . , Xd need to be appended to Y to construct the Jacobian
in (A3). The joint distribution (A4) can then be integrated with respect to the auxiliary
variables to produce the (marginal) distribution that was originally sought. If d < n,
however, the sample space is relatively small. Auxiliary dimensions Xd+1, Xd+2, . . . , Xn ,
with regards to which Y is assumed constant, can be appended to X , which will produce
Dirac measures in the resulting distribution, as discussed in § 7. In general, fY in this
case will be ‘sparse’ in the sense that the (possibly fractal) dimension associated with
the singular/non-zero parts of the distribution will be less than n. This idea can be made
precise by considering the information dimension of Y (Rényi 1959).

Appendix B. Lorenz (1963) model
Lorenz’s model for convection (Lorenz 1963) is a truncated solution of the Boussinesq
equations for which the vertical velocity Y 1

t and buoyancy field Y 2
t , relative to linear

conduction, on a horizontally periodic domain X := [0, 2π/k) × [0, 1] � X := (X1, X2),
are

Y 1
t = ϕ1

t (X1, X2) :=
√

2
π

(
k2 + π2

)
a1(t)cos(k X1)sin(π X2), (B1)

Y 2
t = ϕ2

t (X1, X2) :=
√

2
πr

a2(t)cos(k X1)sin(π X2) − 1
πr

a3(t)sin(2π X2), (B2)

where r is a renormalised Rayleigh number. The amplitudes a := (a1, a2, a3)
� evolve in

time according to

da1

dt
= s(a2 − a1),

da2

dt
= ra1 − a2 − a1a3,

da3

dt
= a1a2 − ba3, (B3)

where b := 4π2(k2 + π2)−1 characterises the aspect ratio of the domain and s is the
Prandtl number. Following Appendix A, to construct the density fY (−, t) :Rn →R, it is
sufficient to consider half the horizontal domain (i.e. X1 ∈ [0, π/k)) and the subdomains
X1 := [0, π/k) × ((0, 1/4) ∪ (3/4, 1)) and X2 := [0, π/k) × (1/4, 3/4). Over X1 and X2,
the Jacobian ∂ϕt/∂ X is non-singular, which means that ϕt has a single-valued inverse when
its domain is restricted to X1 and X2, and can be found by manipulation of (B1)–(B2).

Appendix C. Feynman–Kac formula
As discussed in § 3, solutions of the backward Kolmogorov equation give the expected
value of g(Yt ) given that Ys = y, where s � t . A more general relationship comes from
considering the expectation of functionals that include integrals with respect to time,
which is the subject of the Feynman–Kac formula (Kac 1949).

In particular, the conditional expectation

u( y, s) =E

[
exp

(
−

∫ t

s
V (Y τ , τ ) dτ

)
g(Yt )

∣∣Ys = y
]

(C1)

satisfies (see, for example, Shreve 2004,Theorem 6.4.3)

− ∂su( y, s) = (L − V )u( y, s), (C2)

which, in comparison with (3.16), contains the additional decay rate V ( y, s). Following
the same steps as those leading to (3.19), the forward equation corresponding to (C2) is
∂t fY = (L † − V ) fY , where it is seen that V ( y, t) affects neither the drift nor diffusion
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associated with Yt , but rather the relative weight or importance ascribed to different
trajectories in the calculation of E[g(Yt )|Ys = y]. As noted in § 4, if E[V (Yt , t)] = 0, then
fY remains a legitimate probability density in spite of the forcing term −V fY .

C.1. Time dependent sample distributions
In § 3, the spatial sampling distribution fX was treated as being independent of time.
However, in some circumstances, fX might depend on time, which would be the case if it
were defined in terms of the state observables Y , for example, such that fX :Rd ×R

n ×
R→R. To account for a possible time-dependence of fX , let

V (Y τ , τ ) := −E

[
d

dτ
log fX(X, Y τ , τ )|Y τ

]
+ . . . . (C3)

where ‘. . .’ is the contribution to V in (4.2) from advective transport across the boundary.
To understand the meaning of the first term on the right-hand side, we evaluate (C1):

u( y, s) =E

[
fX(X, Yt , t)

fX(X, Ys, s)
g(Yt )

∣∣Ys = y
]

= Ẽ
[
g(Yt )

∣∣Ys = y
]
, (C4)

where Ẽ denotes the expectation with respect to the sample distribution at time t . Equation
(C4) therefore states the relationship between the expectation E under fY ( y, s) and the
expectation Ẽ under fY ( y, t), which corresponds to the rule for transforming conditional
expectations under a change of measure (see, for example, Shreve 2004, Lemma 5.2.2).
Note, in particular, that if fX is a probability density, then (C3) implies that E[V (Yt , t)] =
0 and, therefore, that the fY ( y, t) obtained from ∂t fY = (L † − V ) fY and used to define
the expectation Ẽ in (C4) would also be a probability density.

If the sample distribution is advected with the flow, then its material derivative is zero,
such that ∂t fX = −U · ∇ fX and

V (Y τ , τ ) :=E
[
U · ∇ log fX |Y τ

] + . . . , (C5)

which exactly balances the contribution to V labelled ‘. . .’ from (4.2) due to advection
over the sample distribution’s boundary, resulting in V ≡ 0. More generally, if a sample
distribution is defined to evolve according to ∂t fX = −U X · ∇ fX , where U X is not
necessarily the same as the flow velocity, the resulting expression for V would be

V (Y τ , τ ) :=E
[
(U X − U) · ∇ log fX |Y τ

]
. (C6)

Equation (C6) highlights the generality of the framework in accommodating Eulerian
control volumes (U X = 0) and Lagrangian control volumes (U X = U) as particular cases.
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MEZIĆ, I. 2005 Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear

Dyn. 41, 309–325.
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