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Factorization structures occur in toric differential and discrete geometry and can be
viewed in multiple ways, e.g., as objects determining substantial classes of explicit
toric Sasaki and Kähler geometries, as special coordinates on such or as an apex
generalization of cyclic polytopes featuring a generalized Gale’s evenness condition.
This article presents a comprehensive study of this new concept called factorization
structures. It establishes their structure theory and introduces their use in the
geometry of cones and polytopes. The article explains a construction of polytopes
and cones compatible with a given factorization structure and exemplifies it for the
product Segre–Veronese and Veronese factorization structures, where the latter case
includes cyclic polytopes. Further, it derives the generalized Gale’s evenness
condition for compatible cones, polytopes, and their duals and explicitly describes
faces of these. Factorization structures naturally provide generalized Vandermonde
identities, which relate normals of any compatible polytope, and which are used to
find examples of Delzant and rational Delzant polytopes compatible with the
Veronese factorization structure. The article offers a myriad of factorization structure
examples, which are later characterized to be precisely factorization structures with
decomposable curves, and raises the question if these encompass all factorization
structures, i.e., the existence of an indecomposable factorization curve.

Keywords: compatible cone; compatible polytope; cyclic polytope; factorization
curve; factorization structure; generalized Gale’s evenness condition;
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This paper offers an extensive exploration of a new concept called factorization
structures, provides an introduction to their applications in discrete geometry, and
serves as a foundational reference for future research in both discrete and differential
geometry based on factorization structures. The central theme revolves around
the interaction between the abstract notion of factorization structures, cones, and
polytopes. This paper may be viewed as a contribution to the field of discrete
geometry through this and original results described below.

Factorization structures have appeared in the literature in [4, 13, 28]. They were
first introduced as 2-dimensional factorization structures in the work of Apostolov,
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2 R. Púček

Figure 1. Cyclic polytope with five vertices on the curve t 7→ (t, t2, t3).

Calderbank, and Gauduchon [4], where they were used to classify extremal metrics
on toric 4-orbifolds with the second Betti number 2; 4-dimensional spaces with iso-
lated non-smooth points whose automorphism group contains 2-torus. This notable
achievement served as an inspiration for further research, culminating in a thesis
by the author [28], where their latent potential was recognized and systematically
studied within the context of toric Kähler and Sasaki geometry. Most recently,
motivated by results obtained in this article, the geometry of polytopes compatible
with the Veronese factorization structure was explored in [13].

To motivate factorization structures, we consider the familiar example of a
cyclic polytope: the convex hull of finitely many points on the momentum curve
t 7→ (t, t2, . . . , tm) (see figure 1). Cyclic polytopes are famous for their extremal
properties, which make them key examples in various theorems (see [21] for a his-
torical account). They are particularly notable in the upper bound theorem [27],
where they exemplify polytopes with maximal number of faces for a given number
of vertices, and they stand out as polytopes whose Ehrhart polynomial, counting
lattice points in theirs dilates, has positive coefficients [26]. They are a family of
polytopes with a simple and explicit construction, yet they exhibit a surprisingly
rich and complex combinatorial structure, a beautiful property that is not easily
found in other types of polytopes. Importantly, their value solely derives from nice
properties of the momentum curve, which, in fact, is the rational normal curve, a
very distinguished projective curve of algebraic geometry, in a suitable affine chart.
An organic extension of cyclic polytopes would be to consider the convex hull of
finitely many points lying on finitely many well-behaving projective curves in an
arbitrary affine chart in a space. Such a collection of projective curves is facilitated
by a factorization structure, and such a convex hull is called a polytope compatible
with the factorization structure.
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Factorization structures, cones, and polytopes 3

A factorization structure of dimension m is defined as a linear inclusion ϕ : h →
V1 ⊗ · · · ⊗ Vm of an (m+ 1)-dimensional vector space into the tensor product of m
2-dimensional vector spaces satisfying

dim (ϕ(h) ∩ V1 ⊗ · · · ⊗ Vj−1 ⊗ `⊗ Vj+1 ⊗ · · · ⊗ Vm) = 1 (0.1)

for a generic 1-dimensional subspace ` ⊂ Vj and any j. Consequently, because ϕ is
injective, when varying 1-dimensional spaces ` ⊂ Vj , i.e., points of the projective line
P(Vj), the ϕ-preimage of intersections (0.1) gives 1-dimensional subspaces in h, i.e.,
points of P(h), and thus for each index j, we obtain a projective curve P(Vj) → P(h),
called a factorization curve. An example of a factorization structure is the Veronese
factorization structure, defined as the canonical inclusion ϕ : SmW → W⊗m of
symmetric tensors on the 2-dimensional space W. All of its factorization curves
coincide and are the rational normal curve,

P(W ) → P(SmW ) (0.2)

` 7→ `⊗ · · · ⊗ `,

which, as mentioned previously, is, in a suitable affine chart, the momentum curve.
Factorization structures manifest in toric differential geometry and discrete geome-
try through polytopes and polyhedral cones and are surprisingly closely related to
canonical metrics in toric Kähler geometry and extremal structures in toric Sasaki
and CR geometries.

In the context of discrete geometry, the exceptional nature of cyclic polytopes
arises from the existence of a simple characterization of hyperplanes adjacent to
a cyclic polytope in terms of its vertices, called the Gale’s evenness condition
[19]. While significant, cyclic polytopes represent just a small segment of the vast
landscape of polytopes and cones that are compatible with factorization struc-
tures. Remarkably, the elements within this broader class strike a balance between
simplicity and complexity, mirroring the appealing characteristics of cyclic poly-
topes. Moreover, all these elements are equipped with a generalized Gale’s evenness
condition, which can be viewed as the very nature of factorization structures.
Factorization structures govern the geometry of compatible polytopes and cones,
providing an elegant and practical framework ideal for explicit computations. This
framework offers a clear perspective on their duals, inherently involves their projec-
tive transformations, and provides an explicit description of their faces. Moreover,
factorization structures offer a natural generalization of Vandermonde identities
[6], which are used to grasp the interplay of a polytope or a cone with a lattice.
Notably, the efficiency of factorization structures invites attempts at computations
that would otherwise be considered intricate or challenging.

In differential geometry, one of the main research directions is to seek canonical
geometric structures, often arising as extremal points of a (energy) functional, such
as the heavily studied extremal Kähler metrics [14, 15]. Finding non-trivial explicit
examples of these metrics is a challenging task, and several were provided ad hoc
using toric geometry [1–3, 5, 6, 24, 30–32]. Factorization structures offer a unifying
framework that not only encompasses all known explicit extremal toric Kähler
metrics but also provides new examples [28]. In addition, they determine extensive
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families of explicit toric Sasaki and Kähler geometries amenable to computations,
thereby facilitating the search for these explicit canonical geometric structures. The
transition between discrete and differential geometry is mediated by the momentum
map of a toric geometry whose image is a Delzant polytope.

The main contribution of this article is not a collection of isolated results but
rather the development of a cohesive and innovative theoretical framework. This
framework, centred on factorization structures, their techniques, and their broad
applicability, establishes a foundation for exploring new possibilities in both discrete
and differential geometry. Its significance lies in its unifying power, providing tools
that extend beyond ad hoc principles to systematically address complex problems.

In §3, we define cones and polytopes compatible with a given factorization struc-
ture using its canonically associated curves, whose properties, studied in §2, are
reflected and essential in constructing these. For example, we prove in theorem 3.1.5
that cones compatible with the Veronese factorization structure are cones over sim-
plicial polytopes and that associated compatible polytopes are simple. The theory
of quotient factorization structures from §2.5 allows us to elegantly and geometri-
cally describe subspaces where faces of compatible cones, polytopes, and of their
duals can lie (theorem 3.1.6). This, together with the generalized Gale’s condition
(proposition 3.2.2), culminates in a non-trivial and powerful result: explicit descrip-
tion of faces. We derive generalized Vandermonde identities (3.39) and (3.42) and
use them in §3.3 to find examples of rational Delzant polytopes.

Examples of factorization structures given in this paper are of the Segre–Veronese
type (definition 1.2.1). In particular, such a structure is determined by finitely many
constant tensors fulfilling non-trivial equations, and so finding them all explicitly
is a challenging task. Instead, we define a product of arbitrary factorization struc-
tures (definition 1.3.1) and use it to generate vast classes of explicit Segre–Veronese
factorization structures in §1. We use all the structure theory of factorization struc-
tures to characterize decomposable Segre–Veronese factorization structures, a class
where defining tensors are decomposable, as iterative products of Veronese fac-
torization structures in §2.7. This is the first step towards the classification of
factorization structures. Theorem 2.6.2 characterizes Segre–Veronese factorization
structures as exactly those factorization structures whose factorization curves are
decomposable. Such a curve can be viewed as an embedded rational normal curve
(theorem 2.4.5). The open question 1 asks about the existence of an indecomposable
factorization curve.

1. Factorization structures

In this article, V1, . . . , Vm,m ≥ 2, denote real/complex 2-dimensional vector spaces.
We define

V =
m⊗
r=1

Vr and V̂j =
m⊗
r=1
r 6=j

Vr, (1.1)

and denote their duals by V ∗ and V̂ ∗
j , respectively. For a fixed j ∈ {1, . . . ,m}

and any 1-dimensional subspace ` ⊂ Vj , we consider contractions ρj,v : V ∗ →
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V̂ ∗
j parametrized by any non-zero v ∈ ` and defined on decomposable tensors

via

v1 ⊗ · · · ⊗ vm 7→ 〈v, vj〉 v1 ⊗ · · · ⊗ vj−1 ⊗ vj+1 ⊗ · · · ⊗ vm, (1.2)

where 〈 , 〉 is the standard contraction on Vj ⊗V ∗
j . The kernel of such a contraction

is the annihilator of

Σj,` := V1 ⊗ · · · ⊗ Vj−1 ⊗ `⊗ Vj+1 ⊗ · · · ⊗ Vm (1.3)

in V ∗, which is be denoted by Σ0
j,`, and for a fixed ` does not depend on v.

The projective space P(W ) is viewed as the set of 1-dimensional subspaces in the
vector space W equipped with the Zariski topology. Often, we identify ` ∈ P(W )
with the corresponding 1-dimensional subspace of W and denote the span of a
non-zero vector w ∈ W by 〈w〉. We say a condition holds for a generic point or
generically if there exists an open non-empty subset U ⊂ P(W ) such that the
condition holds at each point of U.

Having the notation established we are ready to define the main object of study
in this article, a factorization structure.

Definition 1.0.1. Let m be a positive integer. An injective linear map ϕ : h → V ∗

of a real/complex (m+1)-dimensional vector space h into real/complex V ∗ is called
a factorization structure of dimension m if

dim
(
ϕ(h) ∩ Σ0

j,`

)
= 1 (1.4)

holds for every j ∈ {1, . . . ,m} and generic ` ∈ P(Vj). An isomorphism of
factorization structures is the commutative diagram

1 2

V ∗
1 ⊗ · · · ⊗ V ∗

m W ∗
1 ⊗ · · · ⊗ W ∗

m

ϕ1

Φ

ϕ2

(φ1⊗···⊗φm)σ

,

where Φ and φj : V ∗
σ(j) → W ∗

j are linear isomorphisms for all j ∈ {1, . . . ,m}, and
σ is a permutation of {1, . . . ,m} viewed as the braiding map V ∗

1 ⊗ · · · ⊗ V ∗
m →

V ∗
σ(1) ⊗ · · · ⊗ V ∗

σ(m).

Remark 1.0.2. Setting σ = id and φj = id, j = 1, . . . ,m, shows that any two
factorization structures with the same images are undistinguishable up to a choice
of Φ, which does not play a role in the defining condition (1.4). Thus, a factorization
structure ϕ can be identified with the subspace ϕ(h) ⊂ V ∗.

Remark 1.0.3. All results of this section hold for real and complex factorization
structures. Therefore, no distinction between these is made.
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1.1. Factorization structures of dimension 2

To begin the study of factorization structures, we note that there is only one isomor-
phism class in dimension 1 and focus on the full understanding of the first non-trivial
case, factorization structures of dimension 2. Although factorization structures were
previously defined in [4], inconsistencies between the definition, notion of isomor-
phism, and their classification in 2 dimensions, led to definition 1.0.1. The new
definition results in the same 2-dimensional classification as in [4]: up to isomor-
phism, it consists of two factorization structure, 2-dimensional Segre and Veronese
factorization structures.

To restate this classification in a simplified manner and full detail, we note

Lemma 1.1.1. An inclusion ϕ : h → V ∗
1 ⊗ V ∗

2 of a 3-dimensional vector space
into the tensor product of two 2-dimensional vector spaces is a 2-dimensional
factorization structure.

Proof. Clearly,

2 ≥ dim
(
ϕ(h) ∩ `0 ⊗ V ∗

2

)
= dim

(
ϕ(h) ∩ Σ0

1,`

)
≥ 1 (1.5)

holds for any ` ∈ P(V1), and similarly for intersections ϕ(h) ∩ Σ0
2,` with ` ∈ P(V2).

Note that if (1.5) were 2-dimensional in two distinct points `, ¯̀∈ P(V1), then two
2-dimensional subspaces `0 ⊗ V ∗

2 and ¯̀0 ⊗ V ∗
2 , whose intersection is trivial, would

lie in the 3-dimensional space ϕ(h). Therefore, the intersection ϕ(h) ∩ Σ0
1,` is 2-

dimensional at most at one point, hence is generically 1-dimensional, i.e., ϕ is a
factorization structure. �

We found that 2-dimensional factorization structures are merely linear inclu-
sions ϕ : h → V ∗

1 ⊗ V ∗
2 , which we now classify up to isomorphism of factorization

structures via the annihilator ϕ(h)0 ≤ V1 ⊗ V2.
If ϕ(h)0 is decomposable in V1 ⊗V2, i.e., ϕ(h)

0 = γ1 ⊗ γ2 for some 1-dimensional
subspaces γj ⊂ Vj , then the corresponding factorization structure, called Segre, is
of the form

ϕ(h) = V ∗
1 ⊗ γ02 + γ01 ⊗ V ∗

2 ↪→ V ∗
1 ⊗ V ∗

2 , (1.6)

where γ0j ⊂ V ∗
j is the annihilator of γj (see remark 1.0.2). One easily observes that

if ϕ̃ is another inclusion so that ϕ̃(h)0 is decomposable, then ϕ and ϕ̃ are isomorphic
as factorization structures.

Suppose now that ϕ(h)0 is indecomposable. Then, any non-zero χ ∈ ϕ(h)0,
viewed as a map χ : V ∗

1 → V2, is invertible, since in a basis it is represented
by a 2-by-2 matrix with non-zero determinant due to the indecomposability. The
composition of isomorphisms id ⊗ χ−1 : V1 ⊗ V2 → V1 ⊗ V ∗

1 , which maps χ to the
identity automorphism of V ∗

1 , and ω ⊗ id : V1 ⊗ V ∗
1 → V ∗

1 ⊗ V ∗
1 , where ω is a fixed

area form on V 1, maps χ on an element of
∧2

V ∗
1 . Therefore, 〈χ〉 is mapped onto∧2

V ∗
1 under the isomorphism ω ⊗ χ−1 yielding the commutative diagram
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0 0

0 〈χ〉 ∧2 V ∗
1 0

0 V1 ⊗ V2 V ∗
1 ⊗ V ∗

1 0

0 ∗ S2V ∗
1 0

0 0

ω⊗χ−1|〈χ〉

ϕT

ω⊗χ−1
. (1.7)

Taking in account remark 1.0.2 and dualizing (1.7) shows that the Veronese
factorization structure

S2V1 ↪→ V1 ⊗ V1 (1.8)

is isomorphic in the sense of factorization structures to ϕ : h → V ∗
1 ⊗ V ∗

2 .
We note that Segre and Veronese factorization structures are not isomorphic

which can be seen from the decomposability of ϕ(h)0 in respective cases. This
classifies 2-dimensional factorization structures.

1.2. Segre–Veronese factorization structure

We describe a large class of factorization structures, called Segre–Veronese, which
generalize Segre and Veronese factorization structures discussed in §1.1.

For i ∈ {1, . . . ,m} we say that the term ai in a1 ⊗ · · · ⊗ am is in the ith slot. If
a partition of m is given, m = d1 + · · ·+ dk, dj ≥ 1, slots group into k groups with
the j th group containing dj slots, j ∈ {1, . . . , k}. Slots belonging to the j th group
are referred to as grouped j-slots. In fact, positions in such a tensor product can be
labelled by pairs (j, r), where j ∈ {1, . . . , k} and r ∈ {1, . . . , dj}. For a partition of
m as above and a fixed j ∈ {1, . . . , k}, we define the operator

insj : (W
∗
j )

⊗dj ⊗
k⊗

i=1
i6=j

(W ∗
i )

⊗di →
k⊗

i=1

(W ∗
i )

⊗di

which acts on decomposable tensors by

(
w1

j ⊗ · · · ⊗ w
dj

j

)
⊗

k⊗
i=1
i6=j

(
w1

i ⊗ · · · ⊗ wdi
i

)
7→

k⊗
i=1

(
w1

i ⊗ · · · ⊗ wdi
i

)
,

where Wj, j = 1, . . . , k, are vector spaces. Partitions m = d1 + · · · + dp and m =
e1+· · ·+eq are considered to be the same if {d1, . . . , dp} = {e1, . . . , eq}, and distinct
if they are not the same.
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8 R. Púček

Definition 1.2.1. For d1, . . . , dk a partition of an integer m ≥ 2 and Wr, r =
1, . . . , k, 2-dimensional vector spaces, let Γj ⊂

⊗k
r=1,r 6=j(W

∗
r )

⊗dr , j ∈ {1, . . . , k},
be 1-dimensional subspaces such that

k∑
j=1

insj
(
SdjW ∗

j ⊗ Γj

)
(1.9)

has dimension m+1, where SdjW ∗
j ⊂ (W ∗

j )
⊗dj is viewed as the subspace of

symmetric tensors. Define vector spaces V1, . . . , Vm by

Vd1+···+dj−1+1 = Vd1+···+dj−1+2 = · · · = Vd1+···+dj−1+dj
=Wj , j = 1, . . . , k,

(1.10)

where d0 is defined to be zero. The standard Segre–Veronese factorization structure
ϕ : h → V ∗ is defined to be such that h is the (m + 1)-dimensional space (1.9),
V ∗ = ⊗m

j=1V
∗
j , where Vj is defined by (1.10), and ϕ is the canonical inclusion of h

to V ∗, i.e., it is

k∑
j=1

insj
(
SdjW ∗

j ⊗ Γj

)
↪→

k⊗
j=1

(W ∗
j )

⊗dj . (1.11)

Factorization structures corresponding to trivial partitions,

m∑
j=1

insj
(
W ∗

j ⊗ Γj

)
↪→

m⊗
j=1

W ∗
j (1.12)

for m = 1 + · · ·+ 1, and

SmW ∗ ↪→ (W ∗)⊗m (1.13)

for m=m, are respectively called Segre and Veronese. An element of the isomor-
phism class of a standard Segre–Veronese factorization structure is referred to as a
Segre–Veronese factorization structure.

We frequently refer to the 1-dimensional spaces Γj as defining tensors of the
standard Segre–Veronese factorization structure, since one does need them to define
a given Segre–Veronese factorization structure, and since each Γj is a linear span
of a tensor.

Remark 1.2.2. Note that Segre and Veronese factorization structures recover (1.6)
and (1.8) when m =2.

To verify that (1.11) defines a factorization structure, we observe that for i ∈
{1, . . . , k} and generic ` ∈ P(Wi), we have

ϕ(h) ∩ Σ0
d1+···+di−1+q,` = insi

(
(`0)⊗di ⊗ Γi

)
, (1.14)

where ϕ(h) is (1.9), q ∈ {1, . . . , di} and d0 is defined to be 0. Note that there are at
most finitely many ` ∈ P(Vi) for which the dimension of the intersection in (1.14)
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Factorization structures, cones, and polytopes 9

could be strictly larger than one, and, loosely speaking, this occurs when defining
tensors Γj , j ≠ i, decompose at the ith slot.

Determining in general which choices of Γj , j = 1, . . . , k, give rise to a factoriza-
tion structure, i.e., make (1.9) an (m+1)-dimensional vector space, is a challenging
task. Instead, in the following, we exemplify particular choices which effortlessly
guarantee the correct dimension.

Example 1.2.3. We examine the standard Segre–Veronese factorization structure
for k =2. To this end, let m = d1 + d2 be a partition, and Γ1 ⊂ (W ∗

2 )
⊗d2 and

Γ2 ⊂ (W ∗
1 )

⊗d1 be 1-dimensional subspaces. Observe that the dimension of the
image of

Sd1W ∗
1 ⊗ Γ1 + Γ2 ⊗ Sd2W ∗

2 ↪→ (W ∗
1 )

⊗d1 ⊗ (W ∗
2 )

⊗d2 (1.15)

ism +1 if and only if Γ1 ⊂ Sd2W ∗
2 and Γ2 ⊂ Sd1W ∗

1 , which completely characterizes
choices of Γ1 and Γ2 leading to a factorization structure.

Example 1.2.4. For a partition m = d1 + · · · + dk and 1-dimensional subspaces
ar ⊂W ∗

r , r = 1, . . . , k, we define the product Segre–Veronese factorization structure
as the standard Segre–Veronese factorization structure such that

Γj =
k⊗

r=1
r 6=j

(ar)⊗dr , j = 1, . . . , k. (1.16)

These data ensure that any two summands of (1.9) intersect in
⊗k

r=1(a
r)⊗dr ,

which implies that the dimension of (1.9) is m +1. Therefore, the product
Segre–Veronese factorization structure is indeed a factorization structure. The prod-
uct Segre–Veronese factorization structure with partition m = 1 + · · ·+ 1 is called
the product Segre factorization structure.

Example 1.2.5. Motivated by the example above, a natural step is to find when
decomposable Γj determine a factorization structure, i.e., give rise to the cor-
rect dimension of (1.9). The decomposable Segre–Veronese factorization structure
is defined as the standard Segre–Veronese factorization structure such that Γj

are decomposable, i.e., Γj =
⊗k

r=1
r 6=j

⊗dr

p=1 a
r,p
j for some 1-dimensional subspaces

ar,pj ⊂ W ∗
r , j = 1, . . . , k. In corollary 2.6.4, we show that if such decomposable Γj ,
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j = 1, . . . , k, determine a factorization structure, then it must be that ar,1j = · · · =
ar,dr

j =: arj , and hence

Γj =
k⊗

r=1
r 6=j

(arj)
⊗dr (1.17)

necessarily. However, it is still not plain to see which choices of arj lead to a
factorization structure. We characterize these in §2.7.

Remark 1.2.6. Observe that the isomorphism class of a fixed stan-
dard Segre–Veronese factorization structure may contain multiple standard
Segre–Veronese factorization structures; e.g., apply an isomorphism which per-
mutes grouped slots. In the decomposable case (1.17), any choice of gr ∈ GL(W ∗

r ),
r = 1, . . . , k, yields an isomorphic standard Segre–Veronese factorization structure
via the operator (g1)

⊗d1 ⊗ · · · ⊗ (gk)
⊗dk .

1.3. Products and decomposable elements

In general, a complete description of 1-dimensional spaces Γj determining a
Segre–Veronese factorization structure is a complex task. However, we leverage the
concept of a product of factorization structures to generate extensive families of
hands-on examples. Specifically, we show that products of two factorization struc-
tures are parametrized by the points in the image of the Segre embedding of these
two structures. As it turns out in §2.7, iterated products of Veronese factoriza-
tion structures completely characterize decomposable Segre–Veronese factorization
structures. We finish this subsection by presenting an example of a Segre–Veronese
factorization structure whose all defining tensors are indecomposable.

Definition 1.3.1. Let χ : g →W ∗
1 ⊗· · ·⊗W ∗

n and ϕ : h → V ∗
1 ⊗· · ·⊗V ∗

m be two fac-
torization structures and T ⊂ χ(g) and S ⊂ ϕ(h) any two 1-dimensional subspaces.
We define the product of ϕ and χ to be the (n + m)-dimensional factorization
structure given by the canonical inclusion

ϕ(h)⊗ T + S ⊗ χ(g) ↪→ V ∗
1 ⊗ · · · ⊗ V ∗

m ⊗W ∗
1 ⊗ · · · ⊗W ∗

n . (1.18)

Examples of product include the 2-dimensional Segre factorization structure
viewed as a product of two 1-dimensional factorization structures, Segre–Veronese
factorization structure with k =2 from example 1.2.3 viewed as a product of two
Veronese factorization structures, and the product Segre–Veronese (1.16) from
example 1.2.4. In fact, the latter is a product in multiple ways as we can see in the
following

Example 1.3.2. Let I := {1, . . . , k0} ⊂ {1, . . . , k}, 1 ≤ k0 < k, and let Ic be the
complement of I. We can rewrite the product Segre–Veronese factorization structure
from example 1.2.4 as
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j∈I

insj

(
SdjW ∗

j ⊗
⊗
r∈I
r 6=j

(ar)⊗dr

))
⊗
⊗
r∈Ic

(ar)⊗dr+

+
⊗
r∈I

(ar)⊗dr ⊗

(∑
j∈Ic

insj

(
SdjW ∗

j ⊗
⊗
r∈Ic

r 6=j

(ar)⊗dr

))

↪→
⊗
j∈I

(W ∗
j )

⊗dj ⊗
⊗
j∈Ic

(W ∗
j )

⊗dj ,

(1.19)

rendering it as the product of the (product Segre–Veronese) factorization structure

∑
j∈I

insj

(
SdjW ∗

j ⊗
⊗
r∈I
r 6=j

(ar)⊗dr

)
↪→
⊗
j∈I

(W ∗
j )

⊗dj (1.20)

and the (product Segre–Veronese) factorization structure

∑
j∈Ic

insj

(
SdjW ∗

j ⊗
⊗
r∈Ic

r 6=j

(ar)⊗dr

)
↪→
⊗
j∈I

(W ∗
j )

⊗dj (1.21)

with T =
⊗

r∈Ic(ar)⊗dr and S =
⊗

r∈I(a
r)⊗dr . Clearly, such a product exists for

any non-trivial I ⊂ {1, . . . , k}.

Now we illustrate how products can be used to construct new examples of
factorization structures. We fix the Segre–Veronese factorization structure (1.15)
corresponding to the partition d1+ d2 from example 1.2.3 and the Veronese factor-
ization structure Sd3W ∗

3 ↪→ (W ∗
3 )

⊗d3 . To form a product of these two factorization
structures, we choose 1-dimensional spaces Γ ⊂ Sd3W ∗

3 and Γ3 lying in the image
of (1.15), and with respect to these choices, we obtain the product

Sd1W ∗
1 ⊗ Γ1 ⊗ Γ + Γ2 ⊗ Sd2W ∗

2 ⊗ Γ + Γ3 ⊗ Sd3W ∗
3 ↪→

3⊗
j=1

(W ∗
j )

⊗dj , (1.22)

which is a factorization structure of the dimension d1 + d2 + d3 and belongs again
to the class of a Segre–Veronese factorization structures. We could continue further
and make a product of the factorization structure (1.22) with another Veronese
factorization structure Sd4W ∗

4 ↪→ (W ∗
4 )

⊗d4 , or form a product of two factoriza-
tion structures of type (1.15) to obtain a Segre–Veronese factorization structure
corresponding to a partition of length 4, i.e., k =4. And so on.

One could speculate that factorization structures, or at least Segre factoriza-
tion structures, can be built up via products from atomic pieces. Notably, defining
tensors of a product of Segre–Veronese factorization structures always decompose
across slots belonging to original factors: in (1.18), defining tensors are the ones of ϕ
tensored-from-right with T and the ones of χ tensored-from-left with S. The follow-
ing example demonstrates that the building blocks of (Segre–Veronese) factorization
structures need not be simple.
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Example 1.3.3. We conclude this section with an example of 3-dimensional Segre
factorization structure whose all defining tensors are indecomposable. Observe that
only in dimension 3, the annihilator h0 ↪→ V of a factorization structure h ↪→ V ∗

has the right dimension for being a factorization structure. The Veronese S3W ∗ ↪→
(W ∗)⊗3 has the annihilator

W ⊗
2∧
W + ins2

(
W ⊗

2∧
W

)
+

2∧
W ⊗W ↪→W ⊗W ⊗W, (1.23)

a factorization structure with indecomposable defining tensors.

For the later use, we study particular elements in a product of factorization
structures.

Lemma 1.3.4. Let ϕ(h) ⊗ T + S ⊗ χ(g) ↪→ V ∗
1 ⊗ · · · ⊗ V ∗

m ⊗W ∗
1 ⊗ · · · ⊗W ∗

n be a
product of factorization structures. Then

I ⊗K ⊂ ϕ(h)⊗ T + S ⊗ χ(g) (1.24)

for some 1-dimensional subspaces I ⊂ V ∗
1 ⊗ · · · ⊗ V ∗

m and K ⊂ W ∗
1 ⊗ · · · ⊗W ∗

n if
and only if [

I = Sand K ⊂ χ(g)

]
or

[
K = Tand I ⊂ ϕ(h)

]
(1.25)

Proof. The ‘if’ part is obvious. To prove the ‘only if’ part of the statement, let
s ∈ S, t ∈ T, ι ∈ I, κ ∈ K be non-zero vectors. Since any element of the product
factorization structure can be written as τ1 ⊗ t + s ⊗ τ2 for some τ1 ∈ ϕ(h) and
τ2 ∈ χ(g), we need to solve

τ1 ⊗ t+ s⊗ τ2 = ι⊗ κ (1.26)

for τ1 and τ2. We suppose T ≠K and S ≠ I as the complementary situation easily
gives the claim. We proceed by assuming that τ1 and τ2 solve (1.26) and analyse
τ1 in this equation. Note that if τ1 = 0, then the equation reduces to the case we
excluded. Now we consider two cases; τ1 is either in the span of S and I, or it is not.
In the former case, we can write τ1 = as+bι for some scalars a, b, which transforms
(1.26) into

s⊗ (at+ τ2) = ι⊗ (κ− bt), (1.27)

and is true if only if I =S and K ⊂ χ(g), hence contradicting our assumptions.
In the latter case 〈τ1〉, S and I are linearly independent directions. By completing
τ1, s, and ι into a basis of V ∗

1 ⊗· · ·⊗V ∗
m and contracting (1.26) with the dual vector

of τ1, we find that t =0, which is a contradiction. Thus, a solution exists if and
only if (1.25) holds. �
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1.4. Motivation for definition of factorization structures rooted in
discrete geometry

The definition of 2-dimensional factorization structures was sought in the search
for compactifications of ambitoric geometries [4, 5] by formalizing the workings
of hyperplane sections of the 2-dimensional Segre embedding. To provide both a
presentation and motivation for this definition from a perspective rooted in discrete
geometry, we turn our attention to cyclic polytopes. These were introduced by Gale
[19] and are now a standard part of discrete geometry and combinatorics [21, 33],
however, their presentation could benefit from more context. In the rest of this
subsection, we merely outline the theory of cyclic polytopes from the viewpoint
assumed later in this article. For a detailed account and further motivation for
studying applications of factorization structures in discrete geometry, see [13].

The momentum curve, t 7→ (t, t2, . . . , tm), is the rational normal curve, i.e., the
Veronese embedding

P(W ) → P(SmW ∗) (1.28)

` 7→ `0 ⊗ · · · ⊗ `0,

in a suitable affine chart, where W is a 2-dimensional vector space, SmW ∗ is the
(m + 1)-dimensional space of symmetric tensors on the dual of W, and `0 ⊂ W ∗

denotes the annihilator of the 1-dimensional space `. The annihilators were chosen
merely for convenience and consistency with the literature. A choice of finitely
many points on the momentum curve determines a cyclic polytope, as well as
equally many points on the rational normal curve. As any m of them are linearly
independent, say parametrized by `1, . . . , `m, they determine a hyperplane H. Its
annihilator can be read from the contraction〈

`1 ⊗ · · · ⊗ `m, `
0 ⊗ · · · ⊗ `0

〉
, (1.29)

which is zero, and thus well-defined, if and only if ` ∈ {`1, . . . , `m}, where `0 ⊗
· · · ⊗ `0 ⊂ SmW ∗ is viewed as an element of (W ∗)⊗m. Indeed, denoting the canon-
ical inclusion of SmW ∗ into (W ∗)⊗m by ϕ, here called the Veronese factorization
structure, the annihilator of H is the 1-dimensional space ϕt`1 ⊗ · · · ⊗ `m.

Expressing the contraction (1.29) in coordinates, i.e., using the affine chart on
SmW ∗ in which the rational normal curve is the momentum curve and a suitable
chart on its dual, we obtain a polynomial expression

〈(t1,−1)⊗ · · · ⊗ (tm,−1), (1, t)⊗ · · · ⊗ (1, t)〉 =
m∏
j=1

(tj − t). (1.30)

The proof of Gale’s evenness condition, determining whether H defines a facet of
the cyclic polytope, follows directly from (1.30) and its geometric interpretation as
the contraction of a normal vector of H with a point on the momentum curve. A
detailed proof would require introducing notation, which we omit for brevity. This
geometric approach complements standard treatments (e.g., [19, 21, 33]), which
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primarily rely on algebraic arguments involving the expanded form of
∏
(tj − t).

By collecting derivatives of (1.30), one recovers the Vandermonde identities [6].
A detailed explanation of a generalized Gale condition and the derivation of

these identities can be found in §3. The above analysis not only sheds light on
the geometric characteristics of cyclic polytope theory but also encourages further
investigation.

Dually, the annihilator of `0 ⊗ · · · ⊗ `0 ⊂ SmW ∗ contains the ϕt -image of∑m
j=1 Σj,`,

Σj,` :=W⊗(j−1) ⊗ `⊗W⊗(m−j),

or, equally, the ϕt -image of any Σj,`, j = 1, . . . ,m, since ϕt projects onto sym-
metric tensors, where W⊗0 is interpreted as an empty product. The ambiguity in j
occurs here because the Veronese factorization structure is the simplest and most
symmetric structure, and its interpretation is carried out by factorization curves.
To see if ϕtΣj,` is a hyperplane, one computes the dimension of the intersection of
Σj,` with kerϕt = (ϕSmW ∗)0, or finds the dimension of its annihilator(

ϕtΣj,`

)0
= ϕ−1

(
ϕ(SmW ∗) ∩ (Σj,`)

0
)
, (1.31)

both leading to the same condition

dim
(
ϕ(SmW ∗) ∩ (Σj,`)

0
)
= 1, (1.32)

which is fulfilled for any ` ∈ P(W ). In particular, facets of the (simple) polytope
dual to the cyclic polytope lie on hyperplanes ϕtΣj,`, where ` parametrize directions
determined by vertices of the cyclic polytope. Furthermore, theorem 3.1.6 shows
that its faces lie on subspaces of the form ϕt (Σi1,`1 ∩ · · · ∩ Σir,`r ) for some r ≤ m.

To summarize, we found that since (1.32) holds, ϕtΣj,` is a hyperplane as well as
the annihilator of `0⊗· · ·⊗`0. Because ϕt(Σ1,`1)∩· · ·∩ϕt(Σm,`m) = ϕt(`1⊗· · ·⊗`m),
which can be verified in this case directly, the annihilator of the hyperplane given
by `0j ⊗ · · · ⊗ `0j , j = 1, . . . ,m, is ϕt`1 ⊗ · · · ⊗ `m. When particular affine charts are
used, the Gale evenness condition follows and we obtain the framework of cyclic
polytopes.

From this viewpoint, a generalization of the theory becomes apparent: a general
inclusion satisfying an analogue of (1.32) and general affine charts can be used to
extend the cyclic polytope framework. Remarkably, even alternative affine charts
within the Veronese factorization structure yield many unexpected polytope classes
beyond cyclic polytopes, as explored in [13]. This insight provides a contextual
explanation of cyclic polytopes and their theory.

Wishing to preserve the clarity of computations above and maximize their use,
we arrived at the definition of a factorization structure: a linear inclusion ϕ of
an (m + 1)-dimensional vector space into the tensor product of m 2-dimensional
vector spaces such that the obvious analogue of (1.32) holds for any j and generic
`. The genericity-requirement means that ϕtΣj,` is a hyperplane only for generic `.
This definition and the presentation provided apply to vector spaces over complex
numbers as well. In complex case, the momentum curve can be realified, resulting
in the Carathéodory curve [16], whose polytopes are known to be cyclic [21, 33].
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Note that when `1, . . . , `m ∈ P(W ) vary while remaining pairwise distinct, the
corresponding m 1-parametric families of hyperplanes ϕtΣj,`j , j = 1 . . . ,m, provide
coordinates on a Zariski-open subset of P(SmW ), since their respective annihilators
(`0j )

⊗m, j = 1, . . . ,m, remain linearly independent. These coordinates are called
separable. Thus, a point in this open subset of P(SmW ) is determined by a point in
the m-product P(W )× · · · × P(W ), showing that a projective space factors into a
product of projective lines, at least locally. Hence the name factorization structures.

1.5. Factorization structures in differential geometry

Most of this section is unpublished, with references provided where applicable. It
gives a brief look at factorization structures in differential geometry, thereby offering
another reason to study them, and outlines applications of results from this article
in studying Kähler metrics.

As mentioned above, 2-dimensional factorization structures were originally
explored in ambitoric compactifications [4, 5], where were used to achieve a classi-
fication of extremal Kähler structures on compact toric 4-orbifolds with the second
Betti number two. As a result, many geometries and their classifications were unified
under the framework of ambitoric geometry (see introduction in [5]). Importantly,
the shape of ambitoric structures shows that factorization structures are not merely
auxiliary computational tools but play an intrinsic role, they determine the Kähler
structure.

Appendix C of [4] shows that regular ambitoric geometries can be viewed as
quotients of a 5-dimensional manifold of Sasaki type by Sasaki–Reeb vector fields.
Building on this idea, Apostolov and Calderbank [2] extend the approach by study-
ing weighted extremality of quotients of Sasaki-type manifolds in general dimension.
Additionally, it finds two explicit families of separable geometries, which describe
in terms of CR twists: twists of orthotoric geometry [3, 6, 7, 9, 10] and twists of a
Kähler product of toric Riemann surfaces. In real dimension 4, as [8] and [2] show,
these two families recover all ambitoric geometries.

The success of factorization structures in classifying extremal 4-orbifolds and
the elegance of identifying these as natural quotients of Sasaki-type geometries
motivated the author’s thesis [28], where the two aforementioned families of sepa-
rable geometries were recognized to be associated with Veronese and product Segre
factorization structures.

More generally, an m-dimensional factorization structure ϕ : h → V ∗
1 ⊗· · ·⊗V ∗

m,
β ∈ h, and m functions A1, . . . , Am of one variable determine the toric separable
Kähler geometry

gβ = −
m∑
j=1

( 〈∂xjµβ , ψj([1 : xj ])〉
Aj(xj)

dx2j +
Aj(xj)

〈∂xjµβ , ψj([1 : xj ])〉
〈∂xjµβ , dt〉2

)

ωβ =
m∑
j=1

dxj ∧ 〈∂xjµβ , dt〉
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Jβdxj = − Aj(xj)

〈∂xj
µβ , ψj([1 : xj ])〉

〈∂xj
µβ , dt〉 Jβdt =

m∑
j=1

ψj([1 : xj ])mod β

Aj(xj)
dxj ,

(1.33)

where dt is a 1-form valued in h/〈β〉, ψj, j = 1, . . . ,m, are factorization curves (§2.1)
in appropriate affine charts, and µβ = ϕtx/〈x, ϕβ〉 with x = (1, x1)⊗· · ·⊗(1, xm) is
the momentum map valued in the affine chart given by β. In particular, each ∂xj

µβ

lies in the annihilator β0, ensuring that the pairing 〈∂xj
µβ , dt〉 is well-defined.

While it is now possible to explicitly write down the Kähler structure for the stan-
dard Segre–Veronese factorization structure (see definition 1.2.1), doing so would
require introducing additional notation related to grouped slots, which we omit for
brevity. A detailed exposition will appear in future work. However, we note that the
Kähler structure (1.33) is obtained as the quotient of a toric separable CR geometry
whose acting torus has the Lie algebra h, and which is equipped with special coor-
dinates x1, . . . , xm, called separable (see [2]), in which the CR structure depends on
functions of one variable. Specifically, it resembles Jβdt from (1.33) which depends
on functions ψj/Ajmod β, j = 1, . . . ,m, of one variable.

The advantages of separable Kähler and CR geometries are three-fold: a uni-
fied framework for many examples, each facet of the rational Delzant polytope or
polyhedron of a separable geometry is described by xj = const. for some j, and,
unknowns in partial differential equations involving these geometries depend on
functions of one variable.

Separable geometries associated with factorization structures provide a frame-
work for vast number of toric CR and Kähler geometries which are amenable to
uniform computations. Examples appearing in the literature are the aforemen-
tioned ambitoric geometries, twists of a Kähler product of toric Riemann surfaces,
and twists of orthotoric geometries, which together correspond to two simplest fac-
torization structures: Veronese and product Segre. The overflow of new separable
geometries arises from the vast number of factorization structures. A classification
of factorization structures would not only describe all local separable geometries in
a given dimension n, but, as in ambitoric case, could also facilitate the classification
of extremal structures on certain n-orbifolds.

The study of global behaviour of separable geometries includes compactifications,
which are related to rational Delzant polytopes, and general boundary behaviour
associated with polyhedra. In the compact case, the image of the momentum map
of a toric separable Kähler geometry is in particular a compatible polytope (def-
inition 3.1.1) with at most 2m facets, where m is the complex dimension of the
geometry. Any such carries separable coordinates xj, j = 1, . . . ,m, in which the
facets are described by xj = const. (see the last paragraph of §1.4 for separable
coordinates). This enables the derivation of simple necessary and sufficient con-
ditions for compactification, similar to those in [6]. A key step in compactifying
is fixing an underlying rational Delzant polytope compatible with a factorization
structure, constructed using Vandermonde identities (§3.3). As part of this broader
framework, understanding the effects of newly introduced operations on factor-
ization structures, namely the product (§1.3) and quotient (§2.5), on separable
geometries remain to be explored.
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Separable geometries provide a favourable setting where geometric PDEs are
likely to be solved explicitly. In particular, this applies to the problem of finding
Calabi’s extremal metrics, also famous for its connection with K-stability, which
is governed by the extremality equation, a PDE seeking metrics whose scalar cur-
vature is a Killing potential. While explicit solutions are rare and often obtained
through ad hoc methods, separable geometries offer a systematic framework for
recovering known solutions and discovering new ones.

The Segre–Veronese factorization structure underpins this framework. Solutions
of the extremality equation for associated separable geometries are rational func-
tions depending on tensors Γj , j = 1, . . . , k, determining the factorization structure
and on finitely many parameters, whose number relates to degrees of involved fac-
torization curves (see §2.3). A general strategy for solving the PDE is to verify, using
generalized Vandermonde identities (see remark 3.3.3), which solutions of compat-
ibility conditions satisfy the PDE. The shapes and decomposability of tensors Γj ,
j = 1, . . . , k (see lemma 1.3.4 and proposition 2.6.3) are crucial in obtaining use-
ful compatibility conditions, which necessitates the classification of Segre–Veronese
factorization structures. This article achieves a partial classification by character-
izing decomposable Segre–Veronese factorization structures (§2.7). Already for one
of the simplest of such structures, the product Segre–Veronese factorization struc-
ture associated with a partition, known extremal metrics [2] are recovered for the
two trivial partitions, and new solutions are obtained for any non-trivial partition.
Furthermore, analysis for decomposable Segre–Veronese factorization structures
corresponding to partitionsm = d1+· · ·+dk for small k indicates that the extremal-
ity equation for the associated geometries can be solved uniformly, as opposed to
case-by-case approach.

2. Structure theory

The first section offered an abundance of examples of factorization structures, all of
which were, notably, of Segre–Veronese type. In fact, Segre–Veronese factorization
structures are the only known examples of factorization structures. Naturally, one
can ask

(i) Is every factorization structure of Segre–Veronese type?
(ii) What is the classification of Segre–Veronese factorization structures?

These questions are the prime motivation for this section. To address them, we
develop an abstract theory of factorization structures, focusing on key aspects such
as factorization curves, quotients, and complexifications. All of these are essential
in proving main results.

One of the main results is the characterization of Segre–Veronese factorization
structures: a factorization structure is a Segre–Veronese factorization structure if
and only if all of its factorization curves are decomposable. Therefore, question (i)
can be formulated intrinsically as question 1, asking if every factorization curve is
decomposable.

Examples of the first section make it clear that classifying defining tensors of
Segre–Veronese factorization structures requires an intense effort. However, focusing
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on decomposable Segre–Veronese factorization structures, we achieve their charac-
terization in §2.7 as iterated products of Veronese factorization structures. This
result holds for a broader class of Segre–Veronese factorization structures than
decomposable ones, as explained in §2.7.

We note that results of this section have applications beyond the internal theory
of factorization structures. For example, theorem 3.1.6 is used to describe linear
spaces determining faces of compatible cones and polytopes, which is crucial for
understanding their geometric properties. For further applications, see §1.4 and
§1.5.

2.1. Factorization curves

The defining condition of factorization structures (1.4) invites us to consider
generically defined curves

P(Vj) 99K P(h)
` 7→ ϕ−1

(
ϕ(h) ∩ Σ0

j,`

)
(2.1)

for j = 1, . . . ,m.
For example, in the 2-dimensional Segre factorization structure V ∗

1 ⊗ Γ1 + Γ2 ⊗
V ∗
2 ↪→ V ∗

1 ⊗ V ∗
2 , we have two curves

P(V1)\{Γ2} → P(V ∗
1 ⊗ Γ1 + Γ2 ⊗ V ∗

2 )

` 7→ (V ∗
1 ⊗ Γ1 + Γ2 ⊗ V ∗

2 ) ∩ `0 ⊗ V ∗
2 = `0 ⊗ Γ1 (2.2)

and

P(V2)\{Γ1} → P(V ∗
1 ⊗ Γ1 + Γ2 ⊗ V ∗

2 )

` 7→ (V ∗
1 ⊗ Γ1 + Γ2 ⊗ V ∗

2 ) ∩ V ∗
1 ⊗ `0 = Γ2 ⊗ `0, (2.3)

both being (generically defined) lines in P2. Note that the points which are excluded
from domains of these lines are exactly those where the formula (2.1) does not
determine a point in a projective space. Similarly, for a general Segre factorization
structure, all of its curves in the above sense are generically defined lines.

In the case of Veronese factorization structure SmW ∗ ↪→ (W ∗)⊗m, its first curve
reads

P(W ) → P(SmW ∗)

` 7→ SmW ∗ ∩ `0 ⊗ (W ∗)⊗(m−1) = (`0)⊗m. (2.4)

This curve is defined globally, i.e., for all ` ∈ P(W ), and is known as the rational
normal curve. Because the domain of any other curve is again P(W ), and SmW ∗ ∩
Σ0

j,` = (`0)⊗m for any ` ∈ P(W ) and any j = 1, . . . ,m, all curves coincide.
For the standard Segre–Veronese factorization structure (1.11), these curves were

already found in (1.14), and, similarly to the example above, coincide in grouped
slots. More concretely, for each i = 1, . . . , k, we have di identical curves
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P(Wi) → P

 k∑
j=1

insj
(
SdjW ∗

j ⊗ Γj

)
` 7→ insi

(
(`0)⊗di ⊗ Γi

)
, (2.5)

whose locus of indeterminacy is at points ` ∈ P(Vj) for which dim
(
ϕ(h) ∩ Σ0

j,`

)
> 1.

The latter happens if a defining tensor Γj , j ≠ i, decomposes in grouped i -slots,
similarly as in 2-dimensional Segre factorization structure above.

Now we establish a way of extending these generically defined curves into
projective curves. The first step is

Proposition 2.1.1. Let ϕ : h → V ∗ be a real/complex factorization structure of
dimension m. The generically defined curve (2.1) is a regular map on an open and
non-empty subset W ⊂ P(Vj) of degree at most m, i.e., it is given by homogeneous
polynomials of the same degree (at most m) in homogeneous coordinates on P(Vj)
and P(h). More concretely, W is an open subset of the open set

U = {` ∈ P(Vj) | dim
(
ϕ(h) ∩ Σ0

j,`

)
= 1}.

Proof. We describe ϕ(h)∩Σ0
j,` as a solution of a linear system of 2m− 1 equations,

which depend homogeneously on `, with 2m variables. Then, we apply Cramer’s
rule to show the claim for ` 7→ ϕ(h) ∩ Σ0

j,`, and thus for (2.1).
Fix a basis of V ∗

j , j = 1, . . . ,m, and let ca1···am : V ∗ = V ∗
1 ⊗ · · · ⊗ V ∗

m → F,
aj ∈ {1, 2}, be the corresponding standard coordinates, where F denotes the field
R or C depending on the factorization structure being real or complex, respectively.
For ` ∈ U , the subspace Σ0

j,` in V ∗ is then described by 2m−1 independent linear
equations

xca1···aj−11aj+1···am + yca1···aj−12aj+1···am = 0, ai ∈ {1, 2} for i 6= j, (2.6)

where `0 = [−y : x]. Note, these can be viewed as equations of homogeneous
polynomials of degree one in x and y with coefficients c···’s. The (m+1)-dimensional
subspace ϕ(h) in V ∗ can be described via 2m−(m+1) independent linear equations,
call that system (E), which do not depend on `. Finally, the subspace ϕ(h) ∩ Σ0

j,`,
which is one dimensional for a fixed generic `, is the solution to the system of
2m−1 + 2m − (m + 1) linear equations, (2.6) and (E). Clearly, this system has
only 2m − 1 independent equations, and these can be chosen as the system (E)
together with another m independent linear equations from (2.6). The latter stay
independent on an open subset V ⊂ P(Vk) containing `. Thus, for ` ∈W := U ∩V ,
knowing the intersection ϕ(h)∩Σ0

j,` is equivalent to a system of 2m−1 independent
linear equations, m of which are homogeneous of degree one in ` and the others
do not depend on `. Using Cramer’s rule to solve this system (see [20]) shows that
ϕ(h) ∩ Σ0

j,` depends on ` in a homogeneous way and the degree of homogeneity is
at most m which, for example, is attained in the case when ϕ(h) = SmW ∗. �

Lemma 2.1.2. Let U be an open non-empty subset of P1. A regular map f : U → Pn

extends uniquely to a regular map on P1.
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Proof. In homogeneous coordinates, such map f is given by f([x : y]) = [f0([x :
y]) : · · · : fn([x : y])], where fj are homogeneous polynomials of the same degree.
The expression [f0([x : y]) : · · · : fn([x : y])] fails to define a point in Pn if and only
if all fj vanish at [x : y]. However, this means that all fj have a factor in common
which can be removed. Because any open non-empty set in P1 is P1 without finitely
many points, f extends this way to whole P1. �

Combining proposition 2.1.1 and lemma 2.1.2 allows us to define factorization
curves as extensions of (2.1).

Definition 2.1.3. Let ϕ : h → V ∗ be a real/complex factorization structure of
dimension m. For each j ∈ {1, . . . ,m}, we define factorization curve ψj : P(Vj) →
P(h) as the extension of the regular map generically given by ( 2.1).

We continue with examples of generically defined curves from above.

Example 2.1.4. Since extensions of the generically defined curves (2.1) are
unique, we conclude from (2.2) and (2.3) that the 2-dimensional Segre factorization
structure has two distinct factorization curves, being lines

ψ1 : P(V1) → P(V ∗
1 ⊗ Γ1 + Γ2 ⊗ V ∗

2 )

` 7→ `0 ⊗ Γ1 (2.7)

and

ψ2 : P(V2) → P(V ∗
1 ⊗ Γ1 + Γ2 ⊗ V ∗

2 )

` 7→ Γ2 ⊗ `0, (2.8)

intersecting at one point Γ2⊗Γ1. Note also that respective linear spans of images of
(2.7) and (2.8) are V ∗

1 ⊗Γ1 and Γ2⊗V ∗
2 (see figure 2). A generalm-dimensional Segre

factorization structure has m distinct factorization curves, all being lines. However,
their intersections can be arbitrarily complicated. For example, for 3-dimensional
Segre factorization structure from example 1.3.3, there is no intersection between
any two factorization curves/lines. On the other extreme, in the product Segre
factorization structure from example 1.2.4 corresponding to the partition m =
1 + · · · + 1, all factorization lines intersect at the unique point ⊗m

r=1a
r. One can

form iterative products of 1-dimensional factorization structures to obtain an m-
dimensional Segre factorization structure with decomposable defining tensors and
with prescribed intersections of factorization lines.

As already found in (2.4), all factorization curves in a Veronese factorization
structure coincide, ψ1 = · · · = ψm, being the rational normal curve of degree m.
Such a curve has two properties we frequently use: its linear span is exactly SmW ∗,
and any m +1 points on the curve are linearly independent [23].

Example 2.1.5. The Segre–Veronese factorization structure corresponding to the
partition m = d1+d2 from example 1.2.3, abbreviated here as ϕ : h → V ∗, has two
distinct factorization curves
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P(W1) → P
(
Sd1W ∗

1 ⊗ Γ1 + Γ2 ⊗ Sd2W ∗
2

)
` 7→ (`0)⊗d1 ⊗ Γ1 = ϕ(h) ∩ Σ0

1,` = · · · = ϕ(h) ∩ Σ0
d1,` (2.9)

and

P(W2) → P
(
Sd1W ∗

1 ⊗ Γ1 + Γ2 ⊗ Sd2W ∗
2

)
` 7→ Γ2 ⊗ (`0)⊗d2 = ϕ(h) ∩ Σ0

d1+1,` = · · · = ϕ(h) ∩ Σ0
m,`, (2.10)

which, respectively, have degrees d1 and d2. Their respective linear spans are
Sd1W ∗

1 ⊗ Γ2 and Γ1 ⊗ Sd2W ∗
2 , and both are rational normal curves within their

linear span. They intersect if and only if both Γ1 and Γ2 are decomposable, in which
case the intersection is the unique point Γ2 ⊗ Γ1.

Example 2.1.6. To illustrate how products of factorization structures influence
intersections of factorization curves, we discuss the Segre–Veronese factorization
structure (1.22), abbreviated here as ϕ : h → V ∗, whose distinct curves are

C1 : P(W1) → P(h)
` 7→ (`0)⊗d1 ⊗ Γ1 ⊗ Γ, (2.11)

and

C2 : P(W2) → P(h)
` 7→ Γ2 ⊗ (`0)⊗d2 ⊗ Γ, (2.12)

and

C3 : P(W3) → P(h)
` 7→ Γ3 ⊗ (`0)⊗d3 , (2.13)

with respective degrees d1, d2, and d3, and respective linear spans Sd1W ∗
1 ⊗Γ1⊗Γ,

Γ2 ⊗ Sd2W ∗
2 ⊗ Γ, and Γ3 ⊗ Sd3W ∗

3 . The following analysis of pairwise intersections
of C1, C2, and C3 clarifies how to choose defining tensors Γ1,Γ2, and Γ to obtain
prescribed intersection properties of the curves. Similarly to example 2.1.5, the
curves C1 and C2 intersect if and only if both Γ1 and Γ2 are decomposable, in
which case the intersection is the unique point Γ2 ⊗ Γ1 ⊗ Γ. Curves C1 and C3
intersect if and only if Γ is decomposable and Γ3 = A⊗ Γ1 for some decomposable
1-dimensional space A ⊂ Sd1W ∗

1 , in which case the intersection is the unique point
A⊗Γ1⊗Γ. Finally, curves C2 and C3 intersect if and only if Γ is decomposable and
Γ3 = Γ2 ⊗ B for some decomposable 1-dimensional space B ⊂ Sd2W ∗

2 , in which
case the intersection is the unique point Γ2 ⊗B ⊗ Γ.

Example 2.1.7. The standard Segre–Veronese factorization structure (1.11),
abbreviated here as ϕ : h → V ∗, has k distinct factorization curves,

Ci : P(Wi) → P(h)
` 7→ insi

(
(`0)⊗di ⊗ Γi

)
, i = 1, . . . , k, (2.14)
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which relate to factorization curves ψ1, . . . , ψm by Ci = ψd1+···+di−1+1 = · · · =
ψd1+···+di−1+di

, i = 1, . . . , k, where d0 is defined to be zero. The linear span of
Ci is insi

(
SdiW ∗

i ⊗ Γi

)
, i = 1, . . . , k, showing that the standard Segre–Veronese

factorization structure is the sum of linear spans of its factorization curves. Finally,
the degree of Ci is di, i = 1, . . . , k.

The following lemma plays an essential role in the study of factorization curves.

Lemma 2.1.8. Let ϕ : h → V ∗ be a complex factorization structure, and let ψi :
P(Vi) → P(h) and ψj : P(Vj) → P(h), i≠ j, be two factorization curves whose images
coincide in ∞-many points. Then Imψi = Imψj.

Proof. Let r ∈ {i, j}. Then, Imψr is a projective variety since the image of a
projective variety is closed (see [29]). Clearly, Imψi ∩ Imψj is closed in Imψr and
contains ∞-many points. Therefore, ψ−1

r (Imψi ∩ Imψj) is closed and contains ∞-
many points, thus equals to P(Vr). This is equivalent with Imψr = Imψi ∩ Imψj ,
and hence Imψi = Imψj . �

Its first application shows that complex factorization curves are injective (see
corollary 2.1.10).

Proposition 2.1.9. Let h be a complex factorization structure. Then ∀` ∈
P(Vj) ∃T ∈ V̂ ∗

j such that ϕ ◦ ψj(`) = `0 ⊗ T , where `0 is to be viewed at j-th
slot.

Proof. Suppose the defining polynomials of ψj are of degree d. Therefore, on an open

non-empty subset U ⊂ P(Vj), where ϕ◦ψj(`) = ϕ(h)∩Σ0
j,`, there exist T (`) ∈ P(V̂ ∗

j )

given by homogeneous polynomials of degree d − 1 such that ϕ ◦ ψj = `0 ⊗ T (`).
By lemma 2.1.2, the map ` 7→ T (`) uniquely extends to a regular map T : P(Vj) →
P(V̂ ∗

j ) and thus defines the curve C : P(Vj) → P(V ∗) by C(`) = `0 ⊗ T (`). Since C
and ϕ ◦ ψj agree on an open non-empty set, lemma 2.1.8 shows C = ϕ ◦ ψj . �

Corollary 2.1.10. Factorization curves in a complex factorization structure are
injective.

Proof. If ϕ ◦ ψk(`k) = ϕ ◦ ψk(˜̀k), i.e., `
0
k ⊗ T (`k) = ˜̀0

k ⊗ T (˜̀k), then `
0
k = ˜̀0

k, and

thus `k = ˜̀
k. �

2.2. Complexification

Let ϕC : h ⊗ C → V ∗ ⊗ C = V ∗
1 ⊗ C ⊗ · · · ⊗ V ∗

m ⊗ C be the complexification of a
real factorization structure ϕ : h → V ∗, and denote

(V ∗
1 ⊗R C)⊗C · · · ⊗C (V ∗

j−1 ⊗R C)⊗C L⊗C (V ∗
j+1 ⊗R C)⊗C · · · ⊗C (V ∗

m ⊗R C)

by CΣ0
j,L for any complex 1-dimensional subspace L ⊂ V ∗

j ⊗C. Such a complexifi-
cation is called a complexified factorization structure.

Proposition 2.2.1. A map ϕ : h → V ∗ is a real factorization structure if and only
if its complexification ϕC : h⊗ C → V ∗ ⊗ C is a complex factorization structure.
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Before we prove it, we remark on a general property which will be used multiple
times and also in the proof.

Remark 2.2.2. In general, for a real/complex factorization structure, the set

Ud := {` ∈ P(Vj) : dim
(
ϕ(h) ∩ Σ0

j,`

)
≥ d} (2.15)

is the preimage of

Ud = {Λ ∈ Gr(2m−1, V ∗) | dim (ϕ(h) ∩ Λ) ≥ d} (2.16)

under the regular map P(Vj) → Gr(2m−1, V ∗) defined by ` 7→ Σ0
j,`, and hence is

closed since (2.16) is a (closed) Schubert variety (see [18, 23, 28]).

Proof. On an open non-empty subset of P(Vj), we have

1 = dim (ϕ ◦ ψj(`)⊗ C) = dim
(
(ϕ(h) ∩ Σ0

j,`)⊗ C
)
= dim

(
ϕ(h)⊗ C ∩ CΣ0

j,`⊗C
)

= dim
(
ϕC(h⊗ C) ∩ CΣ0

j,`⊗C
)
. (2.17)

If we define

Qd = {L ∈ P(Vj ⊗ C) | dim
(
ϕC(h⊗ C) ∩ CΣ0

j,L

)
≥ d}, d = 1, 2, (2.18)

then (2.17) shows that for ϕ a real factorization structure, Q1 contains ∞-many
points. Since Q1 is closed, we have Q1 = P(Vj ⊗ C). Furthermore,

Q1\Q2 = {L ∈ P(Vj ⊗ C) | dim
(
ϕC(h⊗ C) ∩ CΣ0

j,L

)
= 1} (2.19)

is non-empty by (2.17), and open since Q2 is closed. Thus, ϕC is a complex
factorization structure.

On the other hand, for ϕC a complex factorization structure, Q1\Q2 is open and
non-empty, and thus intersects {`⊗ C ∈ P(Vj ⊗ C) | ` ∈ P(Vj)} in ∞-many points.
Equalities (2.17) at these intersection points show that the closed set

{` ∈ P(Vj) | dim
(
ϕ(h) ∩ Σ0

j,`k

)
≥ 1} (2.20)

is infinite and thus is the whole P(Vj). They also show that the open subset
where the dimension is 1 is non-empty, which shows that ϕ is a real factorization
structure. �

We remark on complexified factorization curves. Unravelling the definition of
complexification shows that complexifying the curve ψj : P(Vj) → P(h),

[x1 : x2] 7→ ψj([x
1 : x2]) =

[
f1([x

1 : x2]) : · · · : fm+1([x
1 : x2])

]
,

means to regard its defining polynomials fr as complex polynomials, i.e., the
complexified curve C : P(Vj ⊗ C) → P(h⊗ C) is

[z1 : z2] 7→
[
f1([z

1 : z2]) : · · · : fm+1([z
1 : z2])

]
.
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Using lemma 2.1.8 we conclude that C and the factorization curve ψC
j , given by

ϕC ◦ ψC
j (L) = ϕ(h)⊗ C ∩ CΣ0

j,L,

coincide, since by (2.17) they agree at ∞-many points.

2.3. Degree

Most claims of this subsection hold for projective curves in general, but we stay
focused on factorization curves as defined in definition 2.1.3. The tautological sec-
tion τ : P(h) → Oh(1) ⊗ h assigns to each class [z] ∈ P(h) the canonical inclusion
of the corresponding 1-dimensional vector space 〈z〉 into h viewed as an element of
〈z〉∗ ⊗ h, where Oh(1) is the the dual of the tautological line bundle. By pulling τ
back via a factorization curve ψj, we can view the curve as a section of OVj

(ej)⊗h,

OVj (ej) ⊗ O (1) ⊗

(Vj) ( ),
ψj

ψ∗
j τ τ (2.21)

where ej ∈ Z is determined via the isomorphism (ψj)
∗Oh(1) ∼= OVj

(ej), using the
classification of line bundles over projective spaces. On the other hand, choosing a
basis for h allows us to view the section ψ∗

j τ as dim h global sections of OVj
(ej).

Such sections are homogeneous polynomials of degree ej which together recover ψj.

Definition 2.3.1. Let h be a real/complex factorization structure. The degree
degψj of a factorization curve ψj is defined to be degψj = ej, where ej is such that
(ψj)

∗Oh(1) ∼= OVj
(ej).

One can consult examples 2.1.4-2.1.7 for examples of degrees. In these examples,
we used a notion of degree intuitively, which, as we now see, agrees with the one
from definition 2.3.1.

Remark 2.3.2. Since the complexified factorization curve ψC
j and the real factor-

ization curve ψj are given by the same polynomial expressions, their degrees agree,
i.e., degψC

j = degψj .

Remark 2.3.3. Over the complex numbers, the degree of a curve ψj is the same
as the number of points, counted with multiplicities, of the intersection of Im ψj

with a generic hyperplane. Moreover, since the condition for a hyperplane to be
tangent to the curve is closed, a generic hyperplane intersects Im ψj in exactly
degψj points, each with multiplicity one.

2.4. Decomposability

Definition 2.4.1. Two factorization curves ψi and ψj are equivalent, ψi ∼ ψj,
if they have the same image. A factorization curve ψj is called decomposable if its
equivalence class has cardinality degψj.
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We illustrate this definition on several examples. Clearly, factorization curves
of degree 1, i.e., factorization lines, are decomposable. Therefore, every factoriza-
tion curve of an m-dimensional Segre factorization structure is decomposable (see
example 2.1.4).

In (2.4) and example 2.1.4, we learnt that all m factorization curves of the
Veronese factorization structure SmW ∗ ↪→ (W ∗)⊗m coincide, and that its degree is
m. Therefore, each factorization curve ψ1, . . . , ψm is decomposable, being ψ1(`) =
· · · = ψm(`) = (`0)⊗m. Note that the values of this curve are genuine decomposable
tensors, which is precisely the motivation behind the definition of a decomposable
factorization curve.

More generally, one can observe directly in example 2.1.7 that factorization curves
of a standard Segre–Veronese factorization structure are decomposable. Note that
in this case, decomposability means that the variable part of such a curve, say
` 7→ insi

(
(`0)⊗di ⊗ Γi

)
, is a decomposable tensors, although Γi does not have to

be.
To characterize decomposability via decomposable tensors as above, we make use

of

Lemma 2.4.2. Let ϕ : h → V ∗ be a complex factorization structure. The following
are equivalent.

(i) Factorization curves ψi and ψj are equivalent.
(ii) There exists an invertible projective transformation Φji : P(Vi) → P(Vj)

such that ψi(`) = ψj(Φji(`)).

Proof. Clearly, (ii) implies (i). For the other implication, we show that factorization
curves are birational onto their images which makes ψ−1

j ◦ψi into a birational map
P(Vi) 99K P(Vj). This uniquely extends to a biregular map between projective lines
and thus must be an invertible projective transformation.

Let r ∈ {i, j}. A factorization curve ψr is in particular an injective regular map,
and hence a dominant rational map onto its image which is a projective variety.
Therefore, it induces an inclusion of function fields ψ∗

r : C(Im ψr) ↪→ C(P(Vr)).
Additionally, since the generic fibre of ψr is finite, being a singleton, ψ∗

r expresses
C(P(Vr)) as a finite degree extension of C(Im ψr), the degree being the size of
a generic fibre [23]. Thus, since C(P(Vr)) = C[x], ψ∗

r is an isomorphism, and its
inverse yields a dominant rational map Ψr : Im ψr 99K P(Vr), the rational inverse
to ψr.

Since ψi and ψj are equivalent, we have well-defined dominant rational map
Ψj◦ψi : P(Vi) 99K P(Vj) with the dominant rational inverse Ψi◦ψj . By lemma 2.1.2,
both extend to regular maps Φji and Φij , respectively. Furthermore, the construc-
tion implies that Φij ◦Φji agrees with the identity idP(Vi) on an open dense subset,
and by lemma 2.1.8 Φij ◦ Φji = idP(Vi). Similarly, Φji ◦ Φij = idP(Vj). Thus, Φij as
well as Φji are invertible regular maps, i.e., projective transformations. �

The following statement confirms our intuition behind decomposability of a curve
from the above examples.
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Theorem 2.4.3. Let ϕ : h → V ∗ be a complex factorization structure of dimen-
sion m. A factorization curve ψj is decomposable if and only if there exists
S ⊂ {1, . . . ,m} of cardinality degψj and a 1-dimensional subspace Γj ⊂

⊗m
r=1
r/∈S

V ∗
r

such that for each r ∈ S there exists invertible projective transformation gr ∈
Hom(P(V ∗

j ),P(V ∗
r )) such that for all ` ∈ P(Vj) the tensor ϕ ◦ ψj(`) has gr`

0 in the
rth slot, and Γj elsewhere. Clearly, j ∈ S and gj = idP(V ∗

j ).

Remark 2.4.4. If S consists of the first r0 indices, 1 ≤ r0 ≤ m, then we can write

ϕ ◦ ψj(`) =

(
r0⊗
r=1

gr`
0

)
⊗ Γj , (2.22)

whose linear span is ((⊗r0
r=1gr) · Sr0V ∗

j ) ⊗ Γj , where ⋅ represent the action of the
operator ⊗r0

r=1gr. The general case differs from (2.22) by permutation of slots.

Proof. The if part is obvious. For the other implication note that since ψj is
decomposable, it is ∼-equivalent with degψj curves indexed by S ⊂ {1, . . . ,m}.
Lemma 2.4.2 gives the existence of invertible projective transformations Gr, r ∈ S,
of projective lines satisfying ψj(`) = ψr(Gr(`)). Since (G

t
r)

−1`0 = (Gr`)
0 we define

gr = (Gt
r)

−1, where ·t is the transpose. Finally, proposition 2.1.9 shows that gr`
0

is at the rth slot of ϕ ◦ ψj(`) for each `, and gives the existence of Γj . Note, Γj

cannot depend on ` as it would contradict the degree. This proves the claim. �

Decomposability is preserved under complexification.

Theorem 2.4.5. A factorization curve in a real factorization structure is decom-
posable if and only if its complexification in the complexified factorization structure
is decomposable. Furthermore, the obvious real counterpart of the characterization
from theorem 2.4.3 holds for real decomposable curves, as well.

Proof. Let ψi and ψj be equivalent factorization curves in a real factorization struc-
ture. Using equalities in (2.17), we find that for any ` ∈ P(Vi), there exists `′ ∈ P(Vj)
such that

ψC
i (`⊗ C) = ψi(`)⊗ C = ψj(`

′)⊗ C = ψC
j (`

′ ⊗ C). (2.23)

Since factorization curves are injective, ψC
i and ψC

j coincide in ∞-many points,
and hence lemma 2.1.8 implies they are equivalent. Furthermore, since degree
is preserved in a complexification (see remark 2.3.2), we conclude that the
complexification of a decomposable curve is a decomposable curve.

Suppose now ψC
j is decomposable and of degree d. Using theorem 2.4.3, we find

ϕ ◦ ψj(`)⊗ C = ϕC ◦ ψC
j (`⊗ C) = g1`

0 ⊗ · · · ⊗ gd`
0 ⊗ 〈t〉 ⊗ C, (2.24)

up to a permutation of slots as in remark 2.4.4. The expression (2.24) clearly shows
that ψj is equivalent with d curves, and hence decomposable. �

Corollary 2.4.6. Let ψj be a decomposable factorization curve, and 1 ≤ r ≤
degψj + 1. Then, any r pairwise distinct points on ψj are linearly independent.
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Proof. Since ϕ ◦ ψj is of the form (2.22), it is, up to an isomorphism, a rational
normal curve within its span. Therefore, any r pairwise distinct points on ϕ ◦ ψj

are linearly independent, and since ϕ is injective, the same is true for ψj. �

2.5. Quotient factorization structure

To arrive at the main results of this section, we need to prove that a naturally
defined quotient of a factorization structure is itself a factorization structure.
Doing so requires working with seemingly weaker structures called weak factor-
ization structures. These are employed because proving that their quotients are
weak factorization structures is a more manageable task. Subsequently, through
an inductive argument, it is shown that weak factorization structures are, indeed,
genuine factorization structures, thereby establishing the well-behaved nature of
their quotients.

Let ϕ(h) ⊂ V ∗ be a factorization structure of dimension m, and v a non-zero

vector on a generic line λ ∈ P(Vi) such that dim
(
ϕ(h) ∩ Σ0

i,λ

)
= 1. The inclusion

of short exact sequences

0 ϕ−1(ϕ( ) ∩ Σ0
i,λ) i,λ 0

0 Σ0
i,λ V ∗ V̂ ∗

i 0

Pi,v

ϕ ϕi,v

ρi,v

(2.25)

defines the inclusion ϕi,v : hi,λ → V̂ ∗
i of the m-dimensional (quotient) vector space

hi,λ into the tensor product of m − 1 2-dimensional vector spaces, which will be
shown to be a factorization structure; the quotient of ϕ : h → V ∗ with respect to
the choice i ∈ {1, . . . ,m} and λ ∈ P(Vi).

Remark 2.5.1. We remark that for non-zero v, w ∈ λ, ϕi,v, and ϕi,w have the
same image. Thus, if they were factorization structures, as will be shown by the
end of this subsection, they would be isomorphic (see remark 1.0.2).

Clearly, the inclusion ϕi,v : hi,λ → V̂ ∗
i is a factorization structure if and only if

the intersections

ϕi,v(hi,v) ∩ V ∗
1 ⊗ · · · ⊗ V ∗

j−1 ⊗ `0 ⊗ V ∗
j+1 ⊗ · · · ⊗ V ∗

i−1 ⊗ V ∗
i+1 ⊗ · · · ⊗ V ∗

m =

ρi,v (ϕ(h)) ∩ ρi,vΣ0
j,`

(2.26)

are 1-dimensional for every j ∈ {1, . . . ,m}\{i} and generic ` ∈ P(Vj). As stated,
it is difficult to prove. To make it tractable we use the aforementioned new object,
weak factorization structure, defined by requiring the intersection in (1.4) to be at
least 1-dimensional instead of being exactly 1-dimensional.

Definition 2.5.2. A linear inclusion ϕ : h → V ∗ of an (m + 1)-dimensional
vector space h is called a weak factorization structure of dimension m if for every
j ∈ {1, . . . ,m} and generic ` ∈ P(Vj)
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dim
(
ϕ(h) ∩ Σ0

j,`

)
≥ 1 (2.27)

holds. Isomorphisms are defined in the same way as for factorization structures.

As the following claim proves, a weak factorization structure satisfies the defining
condition (2.27) not only for generic ` ∈ P(Vj), but in fact for all ` ∈ P(Vj).

Lemma 2.5.3. Let ϕ : h → V ∗ be a weak factorization structure. Then, for every
j ∈ {1, · · · ,m}, the condition (2.27) holds on the entire P(Vj), and the map

P(Vj) → Z, given by ` 7→ dim
(
ϕ(h) ∩ Σ0

j,`

)
, attains its minimal value on an open

non-empty subset of P(Vj).

Proof. For m =2, this was solved directly in §1.1. Suppose m ≥ 3. Let

Ud := {` ∈ P(Vj) : dim
(
ϕ(h) ∩ Σ0

j,`

)
≥ d} (2.28)

be the closed sets as in remark 2.2.2.
The set U 1 is open and non-empty by definition of weak factorization structure,

so U1 = P(Vk), and hence the condition (2.27) holds on the whole P(Vj) as claimed.
Let

Ud := Ud\Ud+1 = {` ∈ P(Vj) : |ϕ(h) ∩ Σ0
j,`| = d}. (2.29)

The set U1 = U1\U2 = P(Vj)\U2 is open as U 2 is closed. Thus, if there exists
` ∈ P(Vj) such that

dim
(
ϕ(h) ∩ Σ0

j,`

)
= 1, (2.30)

i.e., U1 6= ∅, then (2.30) holds generically in ` as claimed.
However, if the set U 1 is empty, then P(Vj) = U1 = U2. Now, similarly as before,

if the open set U 2 is non-empty, then dim
(
ϕ(h) ∩ Σ0

j,`

)
= 2 generically in `. Since

h is a weak factorization structure this process yields the claim before d exceeds
dim(h) = m+ 1. �

Now we are ready to investigative quotients of (weak) factorization structures.

Lemma 2.5.4. Let ϕ : h → V ∗ be a weak factorization structure of dimension m.
Then, for every i ∈ {1, . . . ,m} there exists an open non-empty Ai ⊂ P(Vi) such
that for all λ ∈ Ai, every non-zero v ∈ λ, and every j ∈ {1, . . . ,m}\{i}, there is
an open non-empty Uj ⊂ P(Vj) such that for all ` ∈ Uj:

dim
(
ρi,v

(
ϕ(h) ∩ Σ0

j,`

))
≥ 1. (2.31)

Proof. By contradiction. Suppose there is i ∈ {1, . . . ,m} such that for any open
Ai ⊂ P(Vi), there is λ ∈ Ai, 0 6= v ∈ λ and j ≠ i such that for any open Uj ⊂ P(Vj),
there exists ` with
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ϕ(h) ∩ Σ0
j,` ⊂ ker ρi,v = Σ0

i,λ. (2.32)

There are two observations to be made. Firstly, for such a fixed i, Ai, λ and j,
by suitably varying Uj we find an infinite set Sλ ⊂ P(Vj) such that any ` ∈ Sλ

satisfies (2.32). Secondly, replacing Ai with the open set Ai\{λ} gives an index
j0 6= i, λ̄ ∈ P(Vi) s.t. λ̄ 6= λ, and the corresponding infinite set Sλ̄ ⊂ P(Vj0).
Clearly, indices j and j 0 might be different, but the freedom in choosing an open
non-empty set not containing λ allows to find two infinite sets Sλ, Sλ̄ ⊂ P(Vj)
corresponding to distinct λ, λ̄ ∈ P(Vi) such that

ϕ(h) ∩ Σ0
j,` ⊂ Σ0

i,λ, ` ∈ Sλ, (2.33)

and

ϕ(h) ∩ Σ0
j,` ⊂ Σ0

i,λ̄, ` ∈ Sλ̄. (2.34)

Let j be as above and V ⊂ P(Vj) be the open non-empty set, where ` 7→
dim

(
ϕ(h) ∩ Σ0

j,`

)
attains its minimal value d (see lemma 2.5.3). Then the closed

set (see remark 2.2.2){
` ∈ V |ϕ(h) ∩ Σ0

j,` ⊂ Σ0
i,λ

}
=
{
` ∈ V | dim

(
ϕ(h) ∩ Σ0

j,` ∩ Σ0
i,λ

)
≥ d
}

(2.35)

contains the set Sλ, and thus equals to V. Clearly, the same argument works for λ̄.
Thus,

ϕ(h) ∩ Σ0
j,` ⊂ Σ0

i,λ and ϕ(h) ∩ Σ0
j,` ⊂ Σ0

i,λ̄ (2.36)

for ` ∈ V, i.e., ϕ(h)∩Σ0
j,` ⊂ Σ0

i,λ∩Σ0
i,λ̄

= 0 as λ 6= λ̄. Therefore dim
(
ϕ(h) ∩ Σ0

j,`

)
=

0 generically, which contradicts ϕ being a weak factorization structure. �

Corollary 2.5.5. Let ϕ : h → V ∗ be a factorization structure of dimension m.
Then, for every i ∈ {1, . . . ,m}, there exists an open non-empty Ai ⊂ P(Vi) such that
for all λ ∈ A and any j ∈ {1, . . . ,m}\{i}, there is an open non-empty Ūj ⊂ P(Vj)
such that for all ` ∈ Ūj

dim
(
ϕ(h) ∩ Σ0

j,` ∩ Σ0
i,λ

)
= 0. (2.37)

Proof. Rank-nullity theorem together with lemma 2.5.4 give an open non-empty
Uj ⊂ P(Vj) such that for ` ∈ Uj

dim
(
ϕ(h) ∩ Σ0

j,`

)
− dim

(
ϕ(h) ∩ Σ0

j,` ∩ Σ0
i,λ

)
= dim

(
ρi,v

(
ϕ(h) ∩ Σ0

j,`

))
≥ 1.

(2.38)

Intersecting Uj with the open non-empty set, where dim
(
ϕ(h) ∩ Σ0

j,`

)
= 1 gives

an open non-empty set Ūj , where the claim holds. �

We define the quotient of a weak factorization structure ϕ : h → V ∗ with respect
to i ∈ {1, . . . ,m} and v ∈ λ, λ ∈ P(Vj), by (2.25) to be the linear inclusion

ϕi,v : hi,λ → V̂ ∗
i .
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Proposition 2.5.6. Let ϕ : h → V ∗ be a weak factorization structure of dimension
m, i ∈ {1, . . . ,m}, Ai be as in lemma 2.5.4, and v a non-zero vector on λ ∈ Ai.
Then, the quotient ϕi,v of a weak factorization structure ϕ with respect to i and v
is a weak factorization structure.

Proof. We need to check if the intersection (2.26) are at least 1-dimensional gener-
ically in every slot. This follows by combining lemma 2.5.4 with the set-theoretical
inclusion

ρi,v
(
ϕ(h) ∩ Σ0

j,`

)
⊂ ρi,v (ϕ(h)) ∩ ρi,vΣ0

j,`. (2.39)

�

The following sufficient condition for a weak factorization structure to be a
factorization structure is used to prove the main theorem of this section.

Lemma 2.5.7. Let ϕ : h → V ∗ be a weak factorization structure of dimension
m ≥ 3. Suppose that for every i ∈ {1, . . . ,m}, there exists distinct λi1, λ

i
2 ∈ P(Vi)

and non-zero vi1 ∈ λi1, v
i
2 ∈ λi2 such that the quotient weak factorization structures

ϕi,vi
1
and ϕi,vi

2
are factorization structures. Then ϕ is a factorization structure.

Proof. To ease the notation we proceed with v = vi1. Using respectively that ϕi,v

is a factorization structure, the inclusion (2.39), and the rank-nullity theorem for
the contraction ρi,v, we find that for a generic ` ∈ P(Vj), j ≠ i,

1 = dim
(
ρi,v (ϕ(h)) ∩ ρi,vΣ0

j,`

)
≥ dim

(
ρi,v

(
ϕ(h) ∩ Σ0

j,`

))
= (2.40)

dim
(
ϕ(h) ∩ Σ0

j,`

)
− (2.41)

dim
(
ϕ(h) ∩ Σ0

j,` ∩ Σ0
i,λ

)
. (2.42)

Observe that if (2.42) were zero, then ϕ being a weak factorization structure implies
that (2.41) is 1, and thus proving that ϕ satisfies the defining equation of a factor-
ization structure for j ≠ i. To show that (2.42) is zero we consider contractions ρq,vq

1

and ρq,vq
2
for q ≠ j and q ≠ i. Now, as ϕq,vq

1
is a factorization structure, corollary 2.5.5

implies that the right hand side of

ρq,vq
1

(
ϕ(h) ∩ Σ0

j,` ∩ Σ0
i,λ

)
⊂ ρq,vq

1
ϕ(h) ∩ ρq,vq

1
Σ0

j,` ∩ ρq,vq
1
Σ0

i,λ (2.43)

is zero for appropriate generic choices of λ and ` as explained in corollary 2.5.5.
Thus, for these values of ` and λ,

ϕ(h) ∩ Σ0
j,` ∩ Σ0

i,λ ⊂ ker ρq,vq
1
= Σ0

q,λq
1
. (2.44)

Repeating this process with ϕq,vq
2
yields generic values of ` and λ for which

ϕ(h) ∩ Σ0
j,` ∩ Σ0

i,λ ⊂ Σ0
q,λq

1
∩ Σ0

q,λq
2
= 0 (2.45)

as required. We showed that for j ≠ i and j ≠ q, dim
(
ϕ(h) ∩ Σ0

j,`

)
= 1 generically

in `. To prove the rest one permutes the roles of i, j, and q. �
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Theorem 2.5.8. Every weak factorization structure is a factorization structure.

Proof. Induction on dimension m of a weak factorization structure. For m =2, the
classification of factorization structures of dimension 2 in §1.1 shows that any weak
factorization structure is a factorization structure (see lemma 1.1.1).

Suppose now that the claim holds for weak factorization structures of dimension
m ≥ 2 and let ϕ be a weak factorization structure of dimension m +1. Using
proposition 2.5.6 and the induction hypothesis, we find that for any i ∈ {1, . . . ,m},
λ ∈ Ai and v ∈ λ, the quotients ϕi,v of ϕ are factorization structures. Lemma 2.5.7
concludes that weak factorization structures of dimension m +1 are factorization
structures. �

Finally,

Theorem 2.5.9. Let ϕ : h → V ∗ be a factorization structure of dimension m.
Then, for every i ∈ {1, . . . ,m}, there exists an open non-empty Ai ⊂ P(Vi) such
that for every λ ∈ Ai and non-zero v ∈ λ, the quotient ϕi,v is a factorization
structure. Furthermore, Ai is as in lemma 2.5.4.

Proof. A factorization structure is in particular a weak factorization structure.
Proposition 2.5.6 shows that for every i ∈ {1, . . . ,m} there exists an open non-
empty Ai ⊂ P(Vi) such that for every λ ∈ Ai and non-zero v ∈ λ, the quotient ϕi,v

is a weak factorization structure. In turn, by theorem 2.5.8, ϕi,v is a factorization
structure, thus proving the claim. �

Remark 2.5.10. Note that the image ϕi,vhi,λ of the quotient factorization struc-
ture can be computed by (2.25) as the contraction ρi,vϕ(h). This fact will be used
is subsequent subsections freely.

Finally, we are ready to describe the behaviour of factorization curves and their
degrees in quotient spaces.

Let ψi,λ
j : P(Vj) → P(hi,λ) be a factorization curve in the quotient factorization

structure (2.25), thus generically given by

ϕi,v ◦ ψi,λ
j (`) = ϕi,v(hi,λ) ∩ ρi,vΣ0

j,`. (2.46)

Corollary 2.5.5 shows that ϕ(h) ∩ Σ0
j,` does not lie in ker ρi,v = Σ0

i,λ for generic
` ∈ P(Vj), hence

ρi,v
(
ϕ(h) ∩ Σ0

j,`

)
= ϕi,v(hi,λ) ∩ ρi,vΣ0

j,` (2.47)

holds generically. Combining (2.46) and (2.47), we generically find

ρj,v ◦ ϕ ◦ ψj(`) = ϕi,v ◦ ψi,λ
j (`), (2.48)

which, using the commutativity of (2.25) and taking the ϕi,v-preimage, results in
the generic equality

Pi,v ◦ ψj(`) = ψi,λ
j (`). (2.49)
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Lemma 2.1.8 implies that the unique extension of Pi,v ◦ψj , ensured by lemma 2.1.2,

and ψi,λ
j coincide. Additionally, the injectivity of factorization curves (corol-

lary 2.1.10) shows that the curve ψj intersects kerPi,v = ψi(λ) at most once. In
this case, we have

Pi,v ◦ ψj(`) = ψi,λ
j (`),where ` 6= λ, (2.50)

otherwise the equality holds everywhere. Finally, since ψj and ψi,λ
j are injective,

Pi,v restricted to Im ψj\{ψi(λ)} is bijective.

Theorem 2.5.11. Let ϕ be a complex factorization structure, i≠ j, and fix λ ∈
P(Vi). Then

degψi,λ
j =

degψj − 1, if ψi(λ) ∈ Imψj

degψj , otherwise.
(2.51)

Proof. Note that there is at most one point on Imψi,λ
j which does not lie in the

image of the restriction of Pi,v to Im ψj\{ψi(λ)}, depending on ψi(λ) being in

Imψj . To compute degψi,λ
j we consider a generic hyperplane H in P(hi,λ) which

does not intersect ψi,λ
j in this point, if such a point occurs, otherwise we consider any

generic hyperplane H. Since every hyperplane in P(hi,λ) corresponds to a hyperplane
in P(h) through ψi(λ), Bertini’s theorem [23] applied to Pi,v : Imψj → P(hi,λ) and
H shows that Imψj intersects (Pi,v)

−1(H) transversally, and therefore by Bézout’s
theorem they intersect in degψj points. By the choice of H, and because Pi,v

is bijective on Im ψj\{ψi(λ)}, the intersection points of H and ψi,λ
j bijectively

correspond to intersection points of (Pi,v)
−1(H) and ψj. Thus, degree remains the

same, unless ψi(λ) ∈ Imψj , in which case it drops by one. �

2.6. Decomposable curves and Segre–Veronese factorization structures

This subsection proves in theorem 2.6.2 one of the main results of this article: if
all factorization curves in a factorization structure ϕ are decomposable, then ϕ is a
Segre–Veronese factorization structure. Consequently, if every factorization curve
is decomposable, then all factorization structures are of Segre–Veronese type. We
therefore ask

Question 1. Are all factorization curves decomposable?

Remark 2.6.1. The obstacle in proving that every factorization curve is decom-
posable is the validity of the following implication: There exists a quotient of a given
factorization structure ϕ such that if two curves are not equivalent in ϕ, then their
corresponding quotient curves are not equivalent. If it were true, a simple argument,
by contracting the whole factorization structure into 2-dimensional Segre while
keeping track of degrees, would prove that curves are decomposable. Alternatively,
an inductive argument, similar to the one in the proof of theorem 2.6.2, would do
the job as well.
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Theorem 2.4.3, remark 2.4.4, and theorem 2.4.5 show that for a real/complex
factorization structure ϕ : h → V ∗ with all curves decomposable, ϕ(h) contains,
up to an isomorphism of factorization structures, the image of a Segre–Veronese
factorization structure as a subspace, whose preimage under ϕ is denoted here by
SV.

Theorem 2.6.2.

(i) Suppose that any factorization structure of dimension m− 1 with all curves
decomposable is of Segre–Veronese type. Then, any factorization structure
of dimension m with all curves decomposable is of Segre–Veronese type.

(ii) Any factorization structure with all curves decomposable is of
Segre–Veronese type. In particular, such a factorization structure is
the sum of spans of its factorization curves.

In the following proof, the set of 1-dimensional spaces corresponding to a
factorization curve is called a curve as well.

Proof.

(i) The goal is to show SV = h. Let hi,v be a quotient factorization structure as
in (2.25) which, by the assumption, it is of Segre–Veronese type, where v is
a non-zero vector on a generic λ ∈ P(Vi). Note that kerPi,v ⊂ SV, and that
if Pi,v

∣∣
SV : SV → hi,v were surjective, then the third and first isomorphism

theorems for vector spaces give the claim

h/SV =
h/ kerPi,v

SV/ kerPi,v
= hi,v/hi,v = 0. (2.52)

It remains to show Pi,v

∣∣
SV is surjective, or equivalently ρi,v

∣∣
ϕ(SV)

: ϕ(SV) →
ϕi,v(hi,v) is surjective, where ϕi,v(hi,v) is, up to an isomorphism, of the form
(1.9).

Note that (2.50) shows that ρi,v is an isomorphism from ϕ ◦ ψj(`) to

ϕi,v ◦ ψi,λ
j (`) for every j ∈ {1, . . . ,m}\{i} and every ` ∈ P(Vj) such that

ϕ ◦ ψj(`) 6= ϕ ◦ ψi(λ). Now, since ϕi,v(hi,v) is the span of its factorization
curves (1.14), which are rational normal curves within their spans, any point
in ϕi,v(hi,v) can be written as a linear combination of a basis lying on these
curves; there is a large freedom for such a choice of basis. We choose such
a basis P1, . . . , Pm so that none of these vectors lie on the lines where ρi,v
is not an isomorphism in the above sense. We lift this basis to vectors lying
on curves in SV via the corresponding restriction of ρi,v, resulting in m
linearly independent vectors, thus proving surjectivity. Additionally, the m-
dimensional space spanned by these is linearly independent from ϕ ◦ ψi(λ),
hence providing another proof that SV = h.

(ii) Induction with respect to the dimension of factorization structure. The base
case m =2 follows from the classification (§1.1). The rest follows from part
(i) of this theorem. See also example 2.1.7.

�
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In example 1.2.3, we observed that defining tensors Γ1 and Γ2 of a standard
Segre–Veronese factorization structure corresponding to a partition m = d1 + d2
are symmetric. This observation generalizes as follows.

Proposition 2.6.3. If {Γj}kj=1 define a standard Segre–Veronese factorization

structure with a partition m = d1 + · · ·+ dk, then Γj ⊂
⊗k

i=1
i6=j

SdiW ∗
i , j = 1, . . . , k.

Proof. Induction on k. The case k =1 is trivial and k =2 was solved in (1.15) above.
Suppose the claim holds for k ≥ 2, fix j ∈ {1, . . . , k+1} and set d0 = 0. The idea

is to form dj quotients iteratively in (d1 + · · ·+ dj−1 +1)-st slot in such a way that
theorem 2.5.9 is applicable, i.e., so that each quotient is a factorization structure.
This contracts grouped j -slots, leaving Γj behind as we will see. Note that after
the first quotient, the (d1 + · · ·+ dj−1 +2)-nd slot becomes (d1 + · · ·+ dj−1 +1)-st
slot, and so on. Clearly in each step, one can choose v and λ as in theorem 2.5.9
so that the corresponding quotient is a factorization structure. While a complete
tracking of indices, v ’s and λ’s is possible, it contributes no essential understanding
and significantly complicates the presentation, and will therefore be bypassed. We
denote the composition of all dj quotient maps by ρ (see remark 2.5.10) and apply
it on

ϕ(h) =
k+1∑
i=1

insi
(
SdiW ∗

i ⊗ Γi

)
(2.53)

which results in

Γj +
k+1∑
i=1
i 6=j

insi
(
SdiW ∗

i ⊗ ρΓi

)
. (2.54)

By theorem 2.6.2,

Γj ∈
k+1∑
i=1
i6=j

insi
(
SdiW ∗

i ⊗ ρΓi

)
(2.55)

which together with the induction hypothesis,

ρΓi ⊂
k+1⊗
b=1
b6=i,j

SdbW ∗
b , i ∈ {1, . . . , k + 1}\{j}, (2.56)

give the claim. �

Corollary 2.6.4. If a Segre–Veronese factorization structure of dimension m =
d1 + . . .+ dk is determined by 1-dimensional spaces

Γj =
k⊗

r=1
r 6=j

dr⊗
p=1

ar,pj , ar,pj ⊂W ∗
r , (2.57)
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then ar,1j = · · · = ar,dr

j =: arj , i.e.,

Γj =
k⊗

r=1
r 6=j

(arj)
⊗dr . (2.58)

The following lemma shows that d1, . . . , dk in the partition m = d1 + · · · + dk
corresponding to a Segre–Veronese factorization structure are invariants.

Lemma 2.6.5.

(i) Any two orderings of d1, . . . , dk in the partition of m give isomorphic stan-
dard Segre–Veronese factorization structures provided Γ1, . . . ,Γk are fixed.
Furthermore, the isomorphism is given by permuting grouped slots.

(ii) Standard Segre–Veronese factorization structures corresponding to distinct
partitions cannot be isomorphic for any choice of Γ1, . . . ,Γk.

Proof.

(i) These are isomorphic via the braiding map σ (see definition 1.0.1) which
permutes groups of slots corresponding to the partition.

(ii) Positive integers d1, . . . , dk determining a factorization structure can be
viewed as degrees of factorization curves (see example 2.1.7). The claim
is proved by observing that these are invariant under isomorphisms of
factorization structures.

�

Remark 2.6.6. This lemma ensures a well-defined assignment from isomorphism
classes of Segre–Veronese factorization structures onto finite subsets of positive
integers {d1, . . . , dk}. Observe that this map classifies product Segre–Veronese fac-
torization structures. In the following subsection, we use the map to describe the
classification of decomposable Segre–Veronese factorization structures.

2.7. Characterization of decomposable factorization structures

This subsection proves another important result of this article. It uses products of
factorization structures and the correspondence from remark 2.7.1 to characterize
decomposable Segre–Veronese factorization structures in theorem 2.7.7 as iterative
products of Veronese factorization structures. This structural result is the first
step towards the classification of Segre–Veronese factorization structures and, in
addition, it is allows to solve the extremality equation for associated separable
Kähler geometries uniformly, as outlined in §1.5.

Remark 2.7.1. We explain a correspondence between isomorphism classes of
decomposable Segre–Veronese factorization structures and pairs consisting of an
isomorphism class of a decomposable Segre factorization structure and a set of
positive integers.
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Starting with a decomposable Segre–Veronese factorization structure ϕ of
dimension m, we have a partition m = d1 + · · ·+ dk and 1-dimensional subspaces

Γj =
k⊗

r=1
r 6=j

(arj)
⊗dr . (2.59)

Then, for each r ∈ {1, . . . , k} we take, in grouped r -slots, dr − 1 (order and choice
independent) factorization structure quotients as in theorem 2.5.9 of ϕ to get a
decomposable Segre factorization structure of dimension k

k∑
j=1

insj

W ∗
j ⊗

k⊗
r=1
r 6=j

arj

 , (2.60)

while remembering the partition {d1, . . . , dk} (see also proof of proposition 2.6.3
and remark 2.5.10 for more details on quotients). The isomorphism class of (2.60)
together with {d1, . . . , dk} form the pair from the correspondence. Observe that
every factorization structure isomorphic with ϕ corresponds to the same pair. This
gives a well-defined assignment.

Conversely, starting with a decomposable Segre factorization structure, say
(2.60), we use the set {d1, . . . , dk} and the Veronese embedding W ∗

r → (W ∗
r )

⊗dr ,
v 7→ v⊗dj , in each slot r ∈ {1, . . . , k} to obtain an inclusion of vector spaces

k∑
j=1

insj
(
SdjW ∗

j ⊗ Γj

)
↪→

k⊗
j=1

SdjW ∗
j ↪→

k⊗
j=1

(W ∗
j )

⊗dj , (2.61)

where Γj are now as in (2.59). The image has dimension m +1 as can be seen by
taking consecutive factorization structure quotients, whose kernel is 1-dimensional,
as above. This determines an assignment on isomorphism classes which is inverse
to the one describe above.

Definition 2.7.2. A decomposable Segre factorization structure of dimension m,
m ≥ 2, admits a full-product in jth slot if it equals to

insj
(
q ⊗Q+ V ∗

j ⊗ Γj

)
, (2.62)

where Q is a decomposable Segre factorization structure of dimension m− 1 which
admits a full-product in rth slot for some r ∈ {1, . . . ,m}\{j}, V ∗

j is a 2-dimensional
vector space, and q ⊂ V ∗

j and Γj ⊂ Q are 1-dimensional subspaces. A (decomposable
Segre) factorization structure of dimension 1, being a 2-dimensional vector space,
admits a full-product by definition. We say that a decomposable Segre factorization
structure admits a full-product if it admits a full-product in jth slot for some j.

Remark 2.7.3. A decomposable Segre–Veronese factorization structure admitting
a full-product can be defined similarly by substituting V ∗

j in (2.62) by SdjW ∗
J .

However, we use the correspondence from remark 2.7.1 and say that a decomposable
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Segre–Veronese factorization structure admits a full-product if its corresponding
decomposable Segre factorization structure admits a full-product. Note that these
two ways of defining full-product are equivalent.

We remark that in definition 2.7.2 we use without loss of generality the
identification of a factorization structure with its image (see remark 1.0.2).

One can consult example 2.7.4 for an example of a full-product decomposable
Segre–Veronese.

Example 2.7.4. We illustrate how a decomposable Segre admitting a full-product
is built using inductive products of 1-dimensional factorization structures and
outline the shape of defining tensors.

A 2-dimensional (decomposable) Segre factorization structure is a product of two
1-dimensional factorization structures, and hence admits full-product in both slots.
Forming a product of this 2-dimensional Segre with a 1-dimensional factorization
structure yields

(V ∗
1 ⊗ γ2 + γ1 ⊗ V ∗

2 )⊗ γ + λ⊗ V ∗
3 , (2.63)

where λ ⊂ V ∗
1 ⊗ γ2 + γ1 ⊗ V ∗

2 is assumed to be decomposable, and hence by
lemma 1.3.4 either λ = a ⊗ γ2 or λ = γ1 ⊗ b for some 1-dimensional a ⊂ V ∗

1 or
b ⊂ V ∗

2 . We note that regardless of the choice of λ, (2.63) admits full-products in
at least two distinct slots; one being the 3rd slot and the other is the 1st or 2nd
depending on the choice of λ. Note, if λ = γ1 ⊗ γ2, then the full-product exists
in all slots which recovers the product Segre factorization structure. Forming yet
another product

((V ∗
1 ⊗ γ2 + γ1 ⊗ V ∗

2 )⊗ γ + λ⊗ V ∗
3 )⊗ δ + π ⊗ V ∗

4 (2.64)

to make the pattern more visible, we see that again for any admissible choices of
λ and π, (2.64) admits at least two and at most four full-products. Observe in
(2.64), that three summands belong into Σ0

4,δ0 . More importantly, for any choice, π

decomposes so that another three summands belong to Σ0
r,τ0 for some r ∈ {1, 2, 3}

and τ ∈ P(Vr).

In general, it is plain to see that m − 1 summands in a full-product (2.62) lie in
Σ0

j,q0 . The following lemma shows that there are another m − 1 summands with a
similar property. This helps us to establish the main claim of this subsection that
decomposable Segre–Veronese factorization structures are given by full-products.

Lemma 2.7.5. Let a decomposable Segre factorization structure of dimension m
admit a full-product in the jth slot. Then, there exist r≠ j, and λ ∈ P(Vr), such
that for all i 6= r :

insi(V
∗
i ⊗ 〈Γi〉) ⊂ Σ0

r,λ. (2.65)

Proof. Induction on the dimension of a factorization structure. The base case,
m =2, is obvious. Suppose the statement holds in dimension m − 1, m ≥ 3, and
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write a decomposable Segre factorization structure ϕ(h) of dimension m which
admits a full-product in the j th slot as

ϕ(h) = insj
(
q ⊗Q+ V ∗

j ⊗ Γj

)
, (2.66)

where Γj ⊂ Q, q ⊂ V ∗
j and Q is a decomposable Segre factorization struc-

ture of dimension m − 1, which admits a full-product in rth slots for some r ∈
{1, . . . ,m}\{j}. In particular,

Q = insr (λ⊗ P + V ∗
r ⊗ π) , (2.67)

for some decomposable π ⊂ P and λ ⊂ V ∗
r , where P is a decomposable Segre

factorization of dimension m − 2 which admits a full-product.
Since (2.66) is a decomposable factorization structure, in particular Γj is

decomposable, lemma 1.3.4 implies that either

Γj = insr (λ⊗ Λ) for some Λ ⊂ P, (2.68)

or

Γj = insr (Π⊗ π) for some Π ⊂ V ∗
r . (2.69)

In (2.68) case, it is clear that

insj
(
V ∗
j ⊗ Γj

)
= insj

(
V ∗
j ⊗ insr (λ⊗ Λ)

)
≤ ϕ(h) (2.70)

and another m − 2 summands sitting in

insj (q ⊗ insr (λ⊗ P )) ≤ ϕ(h) (2.71)

lie in Σ0
r,λ0 .

For (2.69) case, we use the induction hypothesis stating that insr (V
∗
r ⊗ π) ≤

Q and another m − 3 summands in insr (λ⊗ P ) ≤ Q lie in Σ0
i,µ for some i ∈

{1, . . . ,m− 1} and µ ∈ P(Vi). Clearly, this gives the claim. �

Lemma 2.7.6. Let every decomposable Segre factorization structure of dimension
m− 1 admits a full-product. Then every decomposable Segre factorization structure
of dimension m admits a full-product.

We note that the proof of this lemma uses less assumptions than required in the
statement. However, the stronger statement suffices for proving our end-result and
reveals a rigidity of decomposable Segre factorization structures as the proof is by
induction. A similar situation occurred in lemma 2.5.7 when proving that every
weak factorization structure is a factorization structure.

Proof. Note that if we would know that m − 1 summands in ϕ(h) lie in Σ0
j,q0 for

some j ∈ {1, . . . ,m}, then

ϕ(h) = insj
(
q ⊗Q+ V ∗

j ⊗ Γj

)
(2.72)

must be a product. Indeed, a factorization structure quotient of ϕ(h) in j th slot
gives an m-dimensional vector space, Q + Γj , and theorem 2.6.2 shows Γj ⊂ Q.
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Now we would use the induction hypothesis for Q, saying that (m−1)-dimensional
decomposable Segre factorization structures admit a full-product, which shows that
(2.72) admits a full-product. Thus we are left to prove that there exists an index j
and q ∈ P(V ∗

j ) such that m − 1 summands belong to Σ0
j,q0 .

Fix any j ∈ {1, . . . ,m}, and let Q̃ be the image of the quotient factorization
structure of ϕ(h) in j th slot with respect to some v and λ (see theorem 2.5.9
and remark 2.5.10). We have Γj ⊂ Q̃, and by assumptions Q̃ is full-product. In
particular

Q̃ = insr (λ⊗ P + V ∗
r ⊗ π) , (2.73)

and lemma 1.3.4 implies that Γj decomposes either as (2.68) or (2.69). We proceed
similarly to the lemma above. In the former case it is immediate that m − 1 sum-
mands in ϕ(h) lie in Σ0

r,λ0 , while for the latter case we apply lemma 2.7.5 to Q̃ and
conclude the proof. �

Finally, the following theorem completely characterizes decomposable
Segre–Veronese factorization structures.

Theorem 2.7.7. Every decomposable Segre–Veronese factorization structure
admits a full-product.

Proof. We use the correspondence from remark 2.7.1 and its compatibility with
full-products to reduce the statement to: Every decomposable Segre factorization
structure admits a full-product. We prove this claim by induction on dimension.
The base case holds trivially as any Segre factorization structure of dimension 2
is a full-product. For the induction hypothesis suppose that every decomposable
Segre factorization structure of dimension m − 1 admits a full-product, m ≥ 3.
Lemma 2.7.6 gives the claim. �

Remark 2.7.8. Observe that the number of ways in which a decomposable
Segre–Veronese factorization structure is a full-product is an invariant. Lemma 2.7.5
implies that there are always at least two ways. Factorization structures correspond-
ing to only two full-products are the most complicated ones. The other extreme,
when a full-product exists in each slot, corresponds to the product Segre–Veronese
factorization structure. Example 2.7.4 gives a recipe how to build decomposable
Segre(–Veronese) factorization structures with prescribed number of full-products.

Remark 2.7.9. We remark that ideas from this subsection can be directly adapted
to more general factorization structures, whose defining tensors are of the form

Γj =
k⊗

i=1
i6=j

γi, (2.74)

where γi ∈ SdiW ∗
i .
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3. Compatible cones and polytopes

This section studies convex polyhedral cones σ whose projectivized normals
n1, . . . , nr lie on factorization curves of a fixed factorization structure. These cones,
along with their duals and sections, are called compatible with the factorization
structure, and their construction is given in §3.1. The impact of factorization struc-
tures on polyhedral geometry is demonstrated in theorem 3.1.5, which proves that
polytopes compatible with the Veronese factorization structure are simple.

Facets and faces of σ lie on the annihilators n01, . . . , n
0
r and their intersections,

respectively. Remarkably, the compatibility ensures that these admit elegant and
explicit descriptions within the framework of factorization structures, as shown in
theorem 3.1.6—one of the main results of this section. Its proof relies on quotients
of factorization structures, a technically demanding achievement from §2.

Building on this, §3.2 constructs cones compatible with the product
Segre–Veronese factorization structure. Its important outcome is a generalization
of Gale’s evenness condition (theorem 3.2.3), which characterizes facet-defining
hyperplanes of such cones. Combined with theorem 3.1.6, this enables explicit
description of all facet-determining linear spaces. Moreover, we observe that the
generalized Gale’s evenness condition can be adapted for general compatible cones
and polytopes.

Finally, we reinterpret Vandermonde identities via the Veronese factorization
structure, providing a blueprint for extending such identities to arbitrary factor-
ization structures. These results yield explicit examples of Delzant and rational
Delzant compatible polytopes, paving the road for their construction in general.

After we recall basics of cones, we define compatible cones and polytopes, and
provide examples. Here, polytopes are always compact and convex.

A convex polyhedral cone σ in an (m+1)-dimensional vector space h∗ generated
by vectors v1, . . . , vr is the set of their non-negative linear combinations. For the
rest of this subsection we assume that none of vj is in the relative interior of the
cone. Geometrically, σ contains convex combinations, hence is piecewise linear, and
thus can equivalently be viewed as the intersection of closed half-spaces. Dually,
the latter correspond to rays in h and, in fact, these generate the dual cone

σ∨ = {v ∈ h | 〈α, v〉 ≥ 0, ∀α ∈ σ} (3.1)

of σ. Therefore, σ∨ is a convex polyhedral cone as well. One the other hand, the rays
determined by v1, . . . , vr ∈ h∗ give rise to closed half-spaces in h which intersect
in σ∨, and hence (σ∨)∨ = σ. Observe that an oriented hyperplane Hv ⊂ h∗ given
by v ∈ h is a supporting hyperplane of σ, i.e., 〈v, σ〉 ≥ 0, if and only if v ∈ σ∨.
Finally, every v ∈ σ∨ determines a face Hv ∩ σ of σ; 1-dimensional faces are called
extremal rays and codimension one faces are facets. For example, rays generated
by v1, . . . , vr are extremal rays of σ, and determine facets of σ∨. A hyperplane
supporting σ which gives rise to a facet is called facet-supporting hyperplane.

This work is exclusively concerned with cones whose affine hyperplane sections
are polytopes. As lemma 3.0.1 shows, such cones are pointed, i.e., contain no non-
trivial subspace. Note that if a cone σ ⊂ h∗ has strictly less than dim h facets, the
half-spaces defining σ intersect in a non-trivial subspace. Thus, a pointed cone has
at least as many facets as the ambient dimension is.
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Lemma 3.0.1. Let σ be a convex polyhedral cone in a vector space h∗. Then,

(i) σ is pointed if and only if dimσ∨ = dim h, where dimσ∨ is the dimension
of the smallest linear subspace of h containing σ∨.

(ii) σ is pointed if and only if it admits an affine hyperplane section given by
ε ∈ h, called an affine chart, such that the set σ ∩ {ε = 1} is a polytope. All
such affine charts are given by ε ∈ Int(σ∨).

Proof.

(i) If dimσ∨ < dim h, then σ∨ is contained in a proper subspace U of h, and
0 6= U0 ⊂ σ, i.e., σ is not pointed. On the other hand, if the largest linear
subspace σ ∩ {−σ} in σ is non-trivial, then supporting hyperplanes of σ lie
in the annihilator (σ ∩ {−σ})0, and hence dimσ∨ < dim h.

(ii) Let v1, . . . , vr be generators of σ. Note that ε from the interior of σ∨ supports
0 ∈ σ and has the generators of σ on its positive side. Hence the convex hull
of vj/〈vj , ε〉, j = 1, . . . , r, is the convex polytope σ ∩ {ε = 1}. For the other
implication, if σ∩{ε = 1} is a convex polytope, in particular a bounded set,
then the affine hyperplane ε=1 intersects every ray generated by v1, . . . , vr
transversally. Therefore, 〈ε, vj〉 > 0, j = 1, . . . , r, and hence σ cannot contain
a non-trivial linear subspace.

�

3.1. Compatibility in general

Definition 3.1.1. A full-dimensional and pointed convex polyhedral cone in h is
called compatible with a factorization structure ϕ : h → V ∗ if its projectivized
edges lie on factorization curves of ϕ. A convex polytope is called compatible with
a factorization structure ϕ if it is a section of a cone σ whose dual σ∨ is compatible
with ϕ.

To rephrase, a convex polytope is compatible with a factorization structure if
it is full-dimensional, and is a section a pointed convex polyhedral cone whose
projectivized normals lie on factorization curves.

We exemplify cones and polytopes compatible with 2-dimensional factorization
structures, originally found in [4]. To keep our cartoons uncomplicated we discuss
projectivized versions of these cones/polytopes, but the reader is strongly encour-
aged to work out 3-dimensional polyhedral geometry according to definition 3.1.1.
For more details see [13].

Example 3.1.2. Figure 2(b) displays the images of two factorization lines/curves
ψ1 and ψ2 in 2-dimensional projective space P(V ∗

1 ⊗Γ1+Γ2⊗V ∗
2 ), associated with

2-dimensional Segre factorization structure (example 2.1.4), together with their
intersection point Γ2 ⊗ Γ1 and a choice of points ai, bi ∈ Imψi, i = 1, 2.

Under the projective duality, figure 2(a) shows lines and points arrangement in
P((V ∗

1 ⊗ Γ1 + Γ2 ⊗ V ∗
2 )

∗): the line (Γ2 ⊗ Γ1)
0, dual to the point Γ2 ⊗ Γ1, with two
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(Γ2 ⊗ Γ1)0

(a1)0
(b1)0

(Im ψ1)0

(I
m

ψ
2
)0

(b2)0

(a2)0

(a) projectivised compatible polytope

Im ψ2

b2

a2

Im ψ1

a1

b1

Γ2 ⊗ Γ1

(b) Segre factorization structure

Figure 2. (a) Projectivized compatible polytope and (b) Segre factorization structure.

marked points (Imψ1)
0 and (Imψ2)

0, dual to the lines Imψ1 and Imψ2, and lines
(ai)

0, (bi)
0, dual to ai, bi, passing through the point (Imψi)

0, i = 1, 2.
The blue region is the projectivization of a 2-dimensional polytope, whose de-

projectivization is a polytope compatible with 2-dimensional Segre factorization
structure, since its projectivized normals ai, bi, i = 1, 2, lie on factorization curves.
The ambiguity in the definition of de-projectivization comes from the fact that
these are really meant to be 3-dimensional pictures of planes, lines and of a cone
section rather than their projectivizations.

If fact, every 2-dimensional polytope with 4 edges is compatible with a 2-
dimensional Segre factorization structure. Indeed, viewing the polytope as an affine
section of a cone σ, the dual cone σ∨ has four extremal rays lying on four 1-
dimensional spaces, which are the annihilators of the planes determining facets
of σ. These four 1-dimensional spaces determine two planes Π1 and Π2 in three
possible ways. In all three cases, Π1 + Π2 is the ambient 3-dimensional space,
and, after the projectivization, we obtain 2-dimensional projective space with two
(intersecting) lines. To complete the argument we need to find a linear isomorphism
Φ : Π1 + Π2 → V ∗

1 ⊗ Γ1 + Γ2 ⊗ V ∗
2 (see the definition of isomorphism in defini-

tion 1.0.1) sending the distinguished planes to the distinguished planes, which is
trivial. We found that projectivized normals of σ lie on factorization curves, there-
fore the polytope is compatible. Said differently, a Segre factorization structure can
be fit onto the vector space Π1 +Π2 so that the polytope is compatible with it.

Example 3.1.3. Figure 3(b) illustrates the quadric Imψ with four marked
points a1, . . . , a4 in the 2-dimensional projective space P(S2W ∗) associated to the
2-dimensional Veronese factorization structure. The quadric represents the factor-
ization curve ψ1 = ψ2 =: ψ, being the rational normal curve of degree 2, a quadric
and a conic too. Dually, figure 3(a) shows lines (a1)

0, . . . , (a4)
0 dual to points

a1, . . . , a4, which are tangent to the dual quadric (Imψ)∗. The orange region is the
projectivization of a 2-dimensional polytope which is compatible with 2-dimensional
Veronese factorization structure.
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(Im ψ)∗

(a2)0

(a3)0

(a1)0

(a4)0

(a) projectivised compatible polytope

Im ψ

a4

a3a2

a1

(b) Veronese factorization structure

Figure 3. (a) Projectivized compatible polytope and (b) Veronese factorization structure.

In fact, every 2-dimensional polytope with 4 edges is compatible with the
Veronese factorization structure. Indeed, proceeding as in example 3.1.2, we view
the polytope as a section of a cone σ, which, through the extremal rays of σ∨, gives
four lines in 3-dimensional vector space, and hence four points in P2. As any five
points in general position determine the rational normal curve of degree 2, there is
a 1-parametric family of such curves (conics) fitting these four points, and hence
for any member of this family, the cone σ has its projectivized normals on factor-
ization curves. Therefore, the polytope is compatible with a Veronese factorization
structure.

A strategy for constructing compatible cones and polytopes is to start with
finitely many points on factorization curves and de-projectivize them, which deter-
mines a cone σ∨ whose dual σ is a compatible cone by construction, provided it is
full-dimensional and pointed. To clarify how to do this rigorously we continue with
the following general observations, which, once restricted to our setting, provide a
construction of compatible cones and polytopes.

Note that a cone σ ⊂ h∗ with n facets determines n points in P(h) by projec-
tivizing extremal rays of σ∨. However, not every choice of an affine chart realizes
points in P(h) as generators of extremal rays of a cone. In general, we have the
following.

A finite collection of points p1, . . . , pn ∈ P(h) belongs to the domain of the affine
chart given by ε ∈ h∗ if and only if ε does not belong into the proper and closed
set ∪n

j=1(pj)
0, where (pj)

0 ⊂ h∗ is the annihilator of pj ⊂ h. The set ∪n
j=1(pj)

0

is a hyperplane arrangement in h∗ splitting it into a union of full-dimensional
convex polyhedral cones which, in general, do not have n facets. Observe that for
σ such a cone, bounded by (pi1)

0, . . . , (pir )
0, r ≤ n, all lines p1, . . . , pn contain rays

p+1 , . . . , p
+
n which belong to σ∨, since all functionals α ∈ σ evaluate non-negatively

on them, but the only extremal rays of σ∨ are p+i1 , . . . , p
+
ir
. By construction, the

projectivized normals of σ are pi1 , . . . , pir ∈ P(h).

Corollary 3.1.4. Let p1, . . . , pn ∈ P(h), n ≥ dim h. If there exist ε ∈ h∗ such
that the image of p1, . . . , pn in the affine chart ε generate extremal rays of a
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full-dimensional cone σ∨, then its dual cone σ is a full-dimensional and pointed
cone with n facets. The interior Int(σ∨) parametrizes affine hyperplane sections
intersecting σ in a convex polytope with n facets.

As we are also interested in compatible polytopes which are simple polytopes, we
recall relevant definitions and reflect them into associated cones. An m-dimensional
polytope is simple if exactly m facets are incident with each of its vertices, and
simplicial if its every facet is a simplex. Observe that an m-dimensional simple
polytope arises as a section of a full-dimensional and pointed cone σ whose extremal
rays are intersections of exactly m facets. Dually, each facet of σ∨ contains exactly
m extremal rays, and these are linearly independent. Equivalently, every compact
slice of σ∨ has simplices as faces, thus σ∨ is a cone over a simplicial polytope. Thus,
to determine if a cone is a cone over a simplicial polytope means to know how many
edges lie on facets.

Theorem 3.1.5. A cone compatible with the Veronese factorization structure is a
cone over a simplicial polytope.

Proof. Say that the n extremal rays of our cone lie on 1-dimensional spaces

ψ(ti), i = 1, . . . , n, (3.2)

where ψ = ψ1 = · · · = ψm denotes the factorization curve, and n ≥ m + 1 since
the cone is full-dimensional (see corollary 2.4.6). We need to show that a facet-
supporting hyperplane, which is generally defined by m extremal rays and which
in our case lie on 1-dimensional spaces (3.2), does not contain any other extremal
rays. This is clearly true since any hyperplane intersects the degree m curve ψ in
at most m points. Thus, it is a cone over a simplicial polytope. �

In the rest of this subsection we describe hyperplanes and higher codimension
spaces where facets and faces of a compatible cone and its dual lie. They have a
particularly nice form characterized as ϕt -images of intersections of spaces Σj,`, see
theorem 3.1.6 below.

We start with finding the hyperplane in h∗ corresponding to (a projectivized
normal) ψj(`) ∈ P(h). Note that since (see proposition 2.1.9)

ϕ ◦ ψj(`) ⊂ ϕ(h) ∩ Σ0
j,`, (3.3)

we have

0 = 〈Σj,`, ϕ ◦ ψj(`)〉 = 〈ϕtΣj,`, ψj(`)〉, (3.4)

and if v ∈ h annihilates ϕtΣj,` ⊂ h∗, then

0 = 〈ϕtΣj,`, v〉 = 〈Σj,`, ϕv〉, (3.5)

i.e., ϕ(v) ∈ ϕ(h) ∩ Σ0
j,`. Therefore, ϕ

tΣj,` ⊂ h∗ is a hyperplane with the annihi-

lator ψj(`) ⊂ h if and only if dim
(
ϕ(h) ∩ Σ0

j,`

)
= 1. In other words, ϕtΣj,` is a

hyperplane if and only if ψj(`) does not lie on any other curve. In general, we have
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Theorem 3.1.6. For r ∈ {1, . . . ,m} and pairwise distinct i1, . . . , ir ∈ {1, . . . ,m},
the space

ϕt (Σi1,`1 ∩ · · · ∩ Σir,`r ) (3.6)

is of codimension r for generic choices of `j ∈ P(Vij ), j = 1, . . . , r. Furthermore,
for `j, j = 1, . . . , r, such that (3.6) is of codimension r, if hyperplanes
ϕt(Σi1,`1), · · · , ϕt(Σir,`r ) are independent, then

ϕt (Σi1,`1 ∩ · · · ∩ Σir,`r ) = ϕt(Σi1,`1) ∩ · · · ∩ ϕt(Σir,`r ). (3.7)

In particular, as corollary 2.4.6 shows, such hyperplanes are always independent
in case of Veronese factorization structure and generically independent for product
Segre–Veronese factorization structure.

Proof. Set-theoretically, we always have that the space (3.6) lies in the intersection
of the hyperplanes. The independence of hyperplanes implies that they intersect in
a codimension r space. Thus, showing that (3.6) is of codimension r proves (3.7).
To this end, we prove that its annihilator,

ϕ
((
ϕt (Σi1,`1 ∩ · · · ∩ Σir,`r )

)0)
= ϕ(h) ∩

(
Σ0

i1,`1 + · · ·+Σ0
ir,`r

)
, (3.8)

is r -dimensional.
By combining

dim
(
ϕ(h) + Σ0

i1,`1 + · · ·+Σ0
ir,`r

)
= dim

(
ϕ(h) + Σ0

i2,`2 + · · ·+Σ0
ir,`r

)
+ dim

(
Σ0

i1,`1

)
− dim

((
ϕ(h) + Σ0

i2,`2 + · · ·+Σ0
ir,`r

)
∩ Σ0

i1,`1

)
, (3.9)

and (rank-nullity theorem)

dim
(
ρi1,`i1

(
ϕ(h) + Σ0

i2,`2 + · · ·+Σ0
ir,`r

))
=dim

(
ϕ(h) + Σ0

i2,`2 + · · ·+Σ0
ir,`r

)
− dim

((
ϕ(h) + Σ0

i2,`2 + · · ·+Σ0
ir,`r

)
∩ Σ0

i1,`1

)
, (3.10)

we arrive at

dim
(
ϕ(h) + Σ0

i1,`1 + · · ·+Σ0
ir,`r

)
= dim

(
Σ0

i1,`1

)
+ dim

(
ρi1,`i1

(
ϕ(h) + Σ0

i2,`2 + · · ·+Σ0
ir,`r

))
, (3.11)

where ρi1,`i1 represents the contraction ρi1,v for some/any v ∈ `i1 . Similar
abbreviations are used in the following. Repeating the above (r − 2)-times yields

dim
(
ϕ(h) + Σ0

i1,`1 + · · ·+Σ0
ir,`r

)
= dim

(
Σ0

i1,`1

)
+

r−2∑
j=1

dim
(
ρij ,`j ◦ · · · ◦ ρi1,`1Σ0

ij+1,`j+1

)
+ dim

(
ρir−1,`r−1 ◦ · · · ◦ ρi1,`1

(
ϕ(h) + Σ0

r,`r

))
, (3.12)
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which is valid for ϕ(h) = 0 too. Finally, inserting (3.12) with ϕ(h) = 0 and (3.12)
itself into

dim
(
ϕ(h) + Σ0

i1,`1 + · · ·+Σ0
ir,`r

)
=dim (ϕ(h)) + dim

(
Σ0

i1,`1 + · · ·+Σ0
ir,`r

)
− dim

(
ϕ(h) ∩

(
Σ0

i1,`1 + · · ·+Σ0
ir,`r

))
(3.13)

provides the final formula

dim
(
ρir−1,`r−1

◦ · · · ◦ ρi1,`1 (ϕ(h))
)

(3.14)

− dim
(
ρir−1,`r−1

◦ · · · ◦ ρi1,`1 (ϕ(h)) ∩ ρir−1,`r−1
◦ · · · ◦ ρi1,`1

(
Σ0

r,`r

))
= (3.15)

dim (ϕ(h))− dim
(
ϕ(h) ∩

(
Σ0

i1,`1 + · · ·+Σ0
ir,`r

))
. (3.16)

Now, we use theorem 2.5.9 to find an open non-empty Ai1 ⊂ P(Vi1) where the
quotient ϕi1,v of ϕ is a factorization structure for any non-zero v ∈ λ, λ ∈ Ai1 , then
to find an open non-empty Ai2 ⊂ P(Vi2) where the quotient (ϕi1,v)i2,w of ϕi1,v is a
factorization structure for any w ∈ µ, µ ∈ Ai2 , etc. Thus, for (`1, . . . , lr) ∈ Ai1 ×
· · ·×Air , i.e., generic `j ∈ P(Vij ), j = 1, . . . , r, we find that (3.14) is m+1−(r−1),
and (3.15) is 1. Thus,

dim
(
ϕ(h) ∩

(
Σ0

i1,`1 + · · ·+Σ0
ir,`r

))
= r (3.17)

as claimed. �

The above suggests

Corollary 3.1.7. Generically, ϕt`1 ⊗ · · · ⊗ `m ⊂ h∗ determines a hyperplane
through ψj(`j), j = 1, . . . ,m.

Proof. Theorem 3.1.6 shows that ϕt`1⊗· · ·⊗ `m is generically 1-dimensional. Since
ϕ ◦ ψj(`j) has `

0
j at the j -th slot, the computation〈

ϕt`1 ⊗ · · · ⊗ `m, ψj(`j)
〉
= 〈`1 ⊗ · · · ⊗ `m, ϕ ◦ ψj(`j)〉 = 0 (3.18)

gives the claim. �

Note that if a cone σ∨ has extremal rays lying on ψj(τji), then extremal rays of
σ lie on ϕt`1 ⊗ · · · ⊗ `m for some `r ∈ {τji}j,i.

3.2. Cones compatible with the product Segre–Veronese factorization
structure

This section demonstrates the construction of compatible cones through an exam-
ple of a cone compatible with the product Segre–Veronese factorization structure.
Furthermore, a condition for determining its facets is given which generalizes
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the Gale evenness condition from cyclic polytopes to this broader setting. More
details can be found in [13] where an extensive theory for the case of the Veronese
factorization structure was already developed.

Recall the m-dimensional product Segre–Veronese factorization structure

h :=
k∑

j=1

insj
(
SdjW ∗

j ⊗ Γj

) ϕ
↪−−−−→

k⊗
j=1

(W ∗
j )

⊗dj =: V ∗, (3.19)

where

Γj =
k⊗

r=1
r 6=j

(ar)⊗dr (3.20)

for some 1-dimensional subspaces ar ⊂ W ∗
r , r = 1, . . . , k, d1 + · · · + dk = m, and

⊗k
r=1(a

r)⊗dr is called the intersection point. Its distinct factorization curves are
given by

ϕ ◦ ψj(`) = insj
(
(`0)⊗dj ⊗ Γj

)
, (3.21)

j = 1, . . . , k (see examples 2.1.4-2.1.7 for more details).
Consider points on factorization curves of the product Segre–Veronese factoriza-

tion structure,

ψj(τji) ∈ P(h), i = 1, . . . , cj , j = 1, . . . , k, (3.22)

for some cj’s, where τ ji’s are pairwise distinct, τji ∈ P(Wj). We fix a chart, and
declare (3.22) in this chart as generators of the cone, which is therefore pointed.
Assuming that these generators generate extremal rays of the cone, a necessary and
sufficient condition for its full-dimensionality follows from corollary 2.4.6. The cone
is full-dimensional if and only if there exists j0 ∈ {1, . . . , k} such that cj0 > dj0 and
cj ≥ dj for j 6= j0. However, as noted above, not every affine chart realizes (3.22)
as generators of extremal rays. Regardless, the condition for determining facets is
applicable as shown below.

We express images of (3.22) in an affine chart chosen below. To do so we fix dual
bases of Wr and W ∗

r such that the first basis vector ar of W ∗
r lies on ar (see (3.19)

and (3.20) for notation). These provide coordinates tji for τ ji, tji = τji/〈τji, aj〉,
and a basis ε0, εji, i = 1, . . . , dj , j = 1, . . . , k, of h, uniquely characterized by

ϕε0 = ⊗k
r=1(a

r)⊗dr ,

ϕεji = insj

εji ⊗ k⊗
r=1
r 6=j

(ar)⊗dr

 , (3.23)

where ɛji together with (aj)⊗dj denote the standard basis for symmetric ten-
sors SdjW ∗

j . Indeed, ε0 together with εji, i = 1, . . . , dj , form a basis of

insj

(
SdjW ∗

j ⊗
⊗k

r=1
r 6=j

(ar)⊗dr

)
(see also examples 2.1.7 and 1.2.4).
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We define the affine chart ε ∈ h∗ by ε = ϕtε ∈ h∗, where

ε :=
k∑

j=1

insj

(
(0,−1)⊗dj ⊗ (1, 0)⊗(m−dj)

)
∈ V. (3.24)

The only point of any ψj, j = 1, . . . , k, which is not in this chart is the intersection
point. Note that this remains true if for any j ∈ {1, . . . , k}, the (1, 0)⊗(m−dj)-part

of (3.24) is replaced by a tensor from ⊗k
i=1
i6=j

(Wi)
⊗di which does not belong to the

annihilator of (1, 0)⊗(m−dj) ∈ ⊗k
i=1
i6=j

(W ∗
i )

⊗di .

In this chart and coordinates, ψj([1 : x]) can be found explicitly,

ϕ ◦ ψj([1 : x])

〈ϕ ◦ ψj([1 : x]), ε〉
= insj

(
(x,−1)⊗dj ⊗ (1, 0)⊗(m−dj)

)
(3.25)

and thus

ψj([1 : x])

〈ψj([1 : x]), ε〉
= xdj ε0 +

dj∑
i=1

(−1)ixdj−iεji. (3.26)

Evaluating (3.26) at x = tji, we obtain images of (3.22) in the chart ε, i.e., the
vectors generating the cone σ∨,

σ∨ = cone

((
t
dj

ji ,−t
dj−1
ji , . . . , (−1)dj−1tji, (−1)dj

) ∣∣∣∣ i = 1, . . . , ci, j = 1, . . . , k

)
.

(3.27)
To describe facet-supporting hyperplanes of σ∨, we note that each such is in

particular a hyperplane through m linearly independent extremal rays. First, we
classify hyperplanes through m linearly independent 1-dimensional spaces lying on
factorization curves, which allows us to see which collections of points from (3.22)
give rise to a hyperplane, and then we derive a condition for deciding which of these
are facet-supporting hyperplanes.

Proposition 3.2.1. Let S be a set of m linearly independent points lying on
factorization curves of the product Segre–Veronese factorization structure. Then,
one of the following two is satisfied.

(1) For each j = 1, . . . , k, the cardinality |S ∩ Imψj | is exactly dj. Then,
parametrizing the points as ψj([1 : xji]), i = 1, . . . , dj, j = 1, . . . , k, we
obtain normal vectors of the associated hyperplane,

c · ϕt
(
⊗k

j=1 ⊗
dj

i=1 (1, xji)
)
, (3.28)

c ∈ R\{0}. Additionally, the hyperplane does not contain the intersection
point.

(2) There exists i ∈ {1, . . . , k} such that |S ∩ Imψi| = di + 1. Then, there
is r ∈ {1, . . . , k}\{i} such that, when the intersection point is excluded,
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Imψr contains exactly dr − 1 of the points, say labelled as ψr([1 : xrq]),
q = 1, . . . , dr − 1. The associated hyperplane contains curves ψj, j≠ r, and
hence their span (3.30). Its normal vectors can be written as

c · ϕt

r−1⊗
j=1

dj⊗
i=1

(1, xji)⊗ (0, 1)⊗
dr−1⊗
q=1

(1, xrq)⊗
k⊗

j=r+1

dj⊗
i=1

(1, xji)

 (3.29)

c ∈ R\{0}, where xji, i = 1, . . . , dj, j≠ r, are any such that ψj([1 : xji]) are
distinct. In particular, any mutually distinct choices of these ψj([1 : xji])
give the same hyperplane.

Proof. Corollary 2.4.6 shows that there are at most dj+1 linearly independent direc-
tions on ψj, j = 1, . . . , k, and note that the shape of the product Segre–Veronese
factorization structure (3.19) associated to the partition m = d1 + · · · + dk is
such that its summands mutually intersect at a unique single direction (see also
example 2.1.7). Therefore, for a fixed distribution of m independent directions on
factorization curves, every ψj must contain at least dj−1 of these directions. Indeed,
since factorization curves ψj, j ≠ i, span together (m+1−di)-dimensional space, the
curve ψi cannot contain strictly less than di − 1 points. Now we cover all possible
cases: there exists a curve ψi carrying di +1 independent directions, each curve ψi

carries exactly di independent directions, and there exists a curve ψi carrying di−1
independent directions.

First, we start with di + 1 points on ψi for some i ∈ {1, . . . , k}, which leaves us
with choosing m − di − 1 independent directions on factorization curves ψj, j ≠ i,
each now retaining exactly dj dimensions. Then, the only way how to ensure m
independent directions is to fix an index r ≠ i and dr −1 independent directions on
ψr, and dj independent directions on ψj otherwise. Note that the latter distribution
of points defines the hyperplane containing

k∑
j=1
j 6=r

insj

SdjW ∗
j ⊗

k⊗
q=1
r 6=j

(1, 0)⊗dq

 (3.30)

and dr − 1 points on ψr as above. Observe that it is the same hyperplane as the
one given in (3.29).

Secondly, we consider dj points on the curve ψj for each j = 1, . . . , k, say ψj([1 :
xji]), i = 1, . . . , dj , j = 1, . . . , k, which provides m independent directions, and
theorem 3.1.6 and corollary 3.1.7 show that its normal is of the form (3.28). Note
that this case excludes the intersection point as one m independent directions.

Finally, it is easy to observe that having a curve ψj, with dj − 1 independent
directions forces existence of a curve ψi, i ≠ j with di + 1 independent directions,
which was solved in the first case. �

To proceed further, note that since a cone consists of positive combinations of its
generators, a hyperplane is a (facet-)supporting hyperplane if and only if it has all
the generators on its positive side. Using this we find facet-supporting hyperplanes
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of the cone σ∨ from (3.27) by separately considering the two types of hyperplanes

from proposition 3.2.1. Let {xji}
dj

i=1 ⊂ {tjr}
cj
r=1, j = 1, . . . , k, be such that the

corresponding hyperplane through ψj([1 : xji]) has the normal (3.28). We compute
its contraction with a general point on ψj/〈ψj , ε〉,

c

〈
ϕt ⊗k

j=1 ⊗
dj

i=1(1, xji),
ψj([1 : x])

〈ψj([1 : x]), ε〉

〉
=

c
〈
⊗k

j=1 ⊗
dj

i=1 (1, xji), insj

(
(x,−1)⊗dj ⊗ (1, 0)⊗(m−dj)

)〉
=

c

dj∏
i=1

〈(1, xji), (x,−1)〉 = c

dj∏
i=1

(x− xji) =

c

dj∑
i=0

(−1)ixdj−iσi(xj1, . . . , xjdj
).

(3.31)

The expression (3.31) is a polynomial pj in x which vanishes at {xji}
dj

i=1 ⊂ {tjr}
cj
r=1.

We conclude

Proposition 3.2.2. The value of the polynomial (3.31) on points tjr, r =
1, . . . , cj is zero or has the same sign if and only if any two elements of the set

{tjr}
cj
r=1\{xji}

dj

i=1 are separated by an even number of elements from {xji}
dj

i=1 in
the sequence tjr, r = 1, . . . , ci.

In the Veronese factorization structure case, hyperplanes (3.28) are the only class
of hyperplanes through m independent points (3.22), and proposition 3.2.2 recovers
the Gale’s evenness condition. However, to understand if the associated compatible
polytopes are cyclic requires further analysis (for details see [13]).

Collecting our previous results together yields a condition for facet-supporting
hyperplanes of σ∨.

Theorem 3.2.3. Let σ∨ be the cone compatible with the product Segre–Veronese
factorization structure ϕ generated by images of (3.22) in the affine chart ε = ϕtε,
ε as in (3.24), i.e., σ∨ is (3.27). Its m linearly independent generators determine
a facet-supporting hyperplane if and only if one of the following holds:

(1) The hyperplane does not contain the intersection point, and, when the m
independent generators are labelled as in proposition 3.2.1 (1), for each j =
1, . . . , k the value of polynomials pj from (3.31) is zero or has the constant
sign (constant also with respect to j) on tji, i = 1, . . . , dj.

(2) The hyperplane contains the intersection point, and, in the notation of
proposition 3.2.1 (2), the value of the polynomial

−δrj c
dr−1∏
q=1

〈(1, xrq), (x,−1)〉 = −δrj c
dr−1∑
i=0

(−1)ixdr−1−iσi(xr1, . . . , xrdr−1),

(3.32)
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is zero or has a constant sign on trq, q = 1, . . . , dr − 1, where δrj is the
Kronecker symbol.

Proof. Proposition 3.2.1 establishes that there are only two types of hyperplanes,
those containing the intersection point and those which do not contain it. The
contraction for hyperplanes of type (1) is computed in (3.31). Since a hyperplane
is facet-supporting if and only if the entire cone lies on its one side, the contraction
must have constant sign, or be zero on points inside the hyperplane. We are left
to compute contractions with hyperplanes of type (2). To this end, simply observe
that because any hyperplane from proposition 3.2.1 (2) annihilates curves ψj, j ≠ r,
the only non-trivial contraction is against points on ψr which reads (3.32). �

The above theorem can be formulated in the spirit of proposition 3.2.2, and
further worded in combinatorics, but this is beyond the scope of this article. For
more details in the case of the Veronese factorization structure, see [13].

Proposition 3.2.4. In the case of the Veronese factorization structure, rays gen-
erated by images of 1-dimensional spaces (3.22) in the chart ε (3.24) are extremal
rays of the corresponding cone.

Proof. Fix such a ray ρ. Proposition 3.2.2 implies the existence of a facet-supporting
hyperplane given by m independent direction, with ρ lying on one of them. Recall
from theorem 3.1.5 that the cone is a cone over a simplicial polytope, and thus no
more than m directions can lie on the hyperplane. Therefore, ρ cannot be written
as a non-negative combination of other rays, and hence is extremal. �

Remark 3.2.5. We wish to remark that computations (3.31) and (3.32) apply in
finding facet-supporting hyperplanes for cones/polytopes compatible with a general
factorization structure as well. For a general affine chart, a similar computation
works, however, the contraction (3.31) is a genuine rational function in this case.

Finally, as the discussion below corollary 3.1.4 and the corollary itself explain,
if we find an affine chart in which (3.22) generate a full-dimensional cone (over a
simplicial polytope), then compatible (simple) polytopes are parametrized by the
interior of this cone and realized as sections of its dual. Additionally, if images
of (3.22) in the affine chart generate extremal rays of this cone, then compatible
polytopes have c1 + · · ·+ ck facets.

Remark 3.2.6. Observe that choosing ε = (0, 1)⊗m in case of the Veronese fac-
torization structure, whose factorization curve is denoted here by ψ, results in
vectors

ψ([1 : x])

〈ψ([1 : x]), ε〉
(3.33)

with the coordinate expression ((−x)m, (−x)m−1, . . . ,−x, 1). Thus, cone generators
lie on the momentum curve, and their convex hull is by definition a cyclic polytope
[19].
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3.3. Compatible rational Delzant polytopes

In this subsection, we find compatible polytopes which are rational Delzant.

Definition 3.3.1. Let t be an m-dimensional real vector space. A rational Delzant
polytope in t∗ is a simple compact convex polytope

∆ = {x ∈ t∗ | Lj(x) ≥ 0, j = 1, . . . , n} (3.34)

with

Lj(x) = 〈uj , x〉+ λj (3.35)

for some λ1, . . . , λn ∈ R such that u1, . . . , un belong to a lattice Λ ⊂ t. It is called
integral or simply Delzant polytope if for each vertex v of ∆, the set {uj |Lj(v) =
0} is a basis of Λ. The set {Lj}nj=1 is understood as the minimal set of affine
functionals defining ∆.

Remark 3.3.2. (Rational) Delzant polytopes occur in the context of toric geom-
etry (see [11, 12, 17, 22, 25]). On one hand, the image of the momentum map of a
toric symplectic (orbifold) manifold is a (rational) Delzant polytope. On the other
hand, (generalized) Delzant construction produces such a toric geometry out of
any (rational) Delzant polytope. The condition on normals to form a lattice-basis
ensures smoothness of the resulting toric space.

The (inward-pointing) normals of a compatible polytope given as a section of a
cone σ by β ∈ σ∨, σ∨ having extremal rays generated by (3.22) in the chart ε (see
(3.24)), are

Cji
ψj([1 : tji])

〈ψj([1 : tji]), ε〉
mod β, (3.36)

where Cji are any positive constants. We wish to find such scales Cji or a chart β
for which the polytope is rational Delzant. To do so, we use Vandermonde identities
which follow from properties of factorization structures. In general we have

Remark 3.3.3. For a general factorization structure of dimension m +1 and pair-
wise distinct x1, . . . , xm+1 ∈ R we denote x = span

{
⊗m+1

r=1 (1, xr)
}

∈ P(V ) and
find

∂xi

ϕtx

〈ϕtx, β〉
∈ β0 ⊂ h∗. (3.37)

Differentiating the identity〈
ϕtx

〈ϕtx, β〉
,

ψj([1 : xj ])

〈ψj([1 : xj ]), ε〉

〉
= 0 (3.38)

shows 〈
∂xi

ϕtx

〈ϕtx, β〉
,

ψj([1 : xj ])

〈ψj([1 : xj ]), ε〉
mod β

〉
= 0 (3.39)

for i ≠ j.
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In particular, for Veronese factorization structure and β = (1, 0, . . . , 0) the
expression (3.39) yields

 ∂x1
σ1 · · · ∂x1

σm+1

...
. . .

...

∂xm+1
σ1 · · · ∂xm+1

σm+1


 −xm1 · · · −xmm

...
. . .

...

(−1)m+1 · · · (−1)m+1


= −diag{∆1, . . . ,∆m+1}, (3.40)

where σj = σj(x1, . . . , xm+1) is the j th elementary symmetric polynomial, σ0 = 1,

and ∆j =
∏m+1

r=1
r 6=j

(xj − xr). Since in the ring of m ×m matrices, a left inverse is also

a right inverse, (3.40) gives Vandermonde identities

m+1∑
r=1

(−1)j−1(xr)
m+1−j∂xr

σi
∆r

= δij , i, j = 1, . . . ,m+ 1, (3.41)

which for i =1 read

m+1∑
r=1

1

∆r


(xr)

m

−(xr)
m−1

...

(−1)m

 =


1

0
...

0

 . (3.42)

Note that for a general β and a general factorization structure we obtain generalized
Vandermonde identities.

Lemma 3.3.4. Let v1, . . . , vm be a basis of t and vm+1, . . . , vm+` ∈ t. Then, each
vj, j = m + 1, . . . ,m + `, can be expressed as a rational linear combination of the
basis if and only if {v1, . . . , vm+`} belong to a common full-rank lattice.

Proof. By assumptions, for any j = 1, . . . , ` we have

vm+j =
m∑
r=1

αr
j

βr
j

vr,

where αr
j , β

r
j ∈ Z and βr

j 6= 0. The lattice generated by

vr
lcm{βr

1 , . . . , β
r
` }
, r = 1, . . . ,m,

contains all v1, . . . , vm+` as claimed.
For the other part, we show that if β is an element of the common full-rank lattice,

e.g., β = vj for some j ∈ {1, . . . ,m+ `}, then it is a rational linear combination of
the basis v1, . . . , vm. To this end, we choose a lattice basis e1, . . . , em, and observe
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that expansions

β =
m∑
i=1

βiei, β
i ∈ Z, (3.43)

vj =
m∑
i=1

κijei, κ
i
j ∈ Z, j = 1, . . . ,m, (3.44)

combine with

β =
m∑
j=1

bjvj (3.45)

into the system

βi =
m∑
j=1

κijb
j , i = 1, . . . ,m, (3.46)

which, by Cramer’s rule, forces b1, . . . , bm+1 ∈ Q, as claimed. �

Example 3.3.5. We examine simplex compatible with the Veronese factorization
structure SmW ∗, whose factorization curve is denoted here by ψ. For real numbers
x1 < · · · < xm+1, let

ψ([1 : xr])

〈ψ([1 : xr]), ε〉
, r = 1, . . . ,m+ 1, (3.47)

generate extremal rays of the cone σ∨ over a simplicial polytope (see theo-
rem 3.1.5). Clearly, any β ∈ Int(σ∨) yields a compatible polytope which is a simplex.
Proposition 3.2.2 shows that m hyperplanes given by any m vectors out of

Cr
ψ([1 : xr])

〈ψ([1 : xr]), ε〉
mod β, r = 1, . . . ,m+ 1, (3.48)

intersect in a vertex, and that all vertices arise this way, where Cr are positive
constants.

To find if this simplex is rational Delzant, or Delzant, means to determine if all
normals belong to a common lattice, or if sets of normals corresponding to simplex’s
vertices span the same lattice, respectively. We start with two such sets of normals
(3.48), say indexed by {1, . . . ,m} and S := {1, . . . ,m + 1}\{m}, and find when
they belong to a common lattice. Lemma 3.3.4 shows that this happens if and only
if there exist α1, . . . , αm+1 ∈ Q such that

m+1∑
r=1

αrCr
ψ([1 : xr])

〈ψ([1 : xr]), ε〉
mod β = 0, (3.49)
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which is equivalent with

m+1∑
r=1

αrCr
ψ([1 : xr])

〈ψ([1 : xr]), ε〉
∈ 〈β〉, (3.50)

and thus 〈β〉 must have a rational point with respect ot the full-rank lattice Λ
generated by

Cr
ψ([1 : xr])

〈ψ([1 : xr]), ε〉
, r = 1, . . . ,m+ 1, (3.51)

in SmW ∗. Additionally, these two sets of normals generate the same lattice in
SmW ∗/〈β〉 if and only if αm, αm+1 ∈ {±1}. Since β belongs to the cone, it forces
αm = αm+1 = 1. Replacing the set S with any other set of hyperplanes corre-
sponding to a vertex results in the same condition of 〈β〉 having a Λ-rational point.
Therefore, the compatible simplex corresponding to β is rational Delzant if and only
if β is rational with respect to Λ, and an example of a common lattice is Λ/〈β〉.
Furthermore, the simplex is Delzant if and only if β has coordinates [1, . . . , 1] with
respect to (3.51) and, the corresponding lattice being Λ/〈β〉. Since Cr are arbitrary,
we can argue that Veronese-compatible simplex is always Delzant with respect to
the appropriate choice of the lattice.

We wish to reinterpret the Veronese identity (3.42) in terms of a Veronese-
compatible simplex. By fixing a new affine chart, the ϕt -image of

(1, x1)⊗ · · · ⊗ (1, xm) + (1, x1)⊗ · · · ⊗ (1, xm−1)⊗ (1, xm+1)+

· · ·+ (1, x2)⊗ · · · ⊗ (1, xm+1), (3.52)

we find that vectors (3.47) in this new chart are exactly summands of the identity
(3.42), where the sum (3.52) goes over each linearly ordered m-tuple from x1 <
· · · < xm+1. In the basis of SmW ∗ consisting of these vectors, the right hand side
of (3.42) has coordinate expression [1, . . . , 1], and thus, using the example above,
the corresponding simplex is Delzant.

Example 3.3.6. We finish this section with general polytopes compatible with the
Veronese factorization structure SmW ∗ in the chart ε. Let

ψ([1 : xr])

〈ψ([1 : xr]), ε〉
, r = 1, . . . ,m+ 1 + `, (3.53)

generate edges of σ∨, and let

Cr
ψ([1 : xr])

〈ψ([1 : xr]), ε〉
mod β, r = 1, . . . ,m+ 1 + `, (3.54)

be normals of the compatible polytope corresponding to β ∈ Int(σ∨), where Cr are
positive constants. By lemma 3.3.4, these belong to a common lattice if and only
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if for each j ∈ {m+ 1, . . . ,m+ `} there exist α1, . . . , αm, αj ∈ Q such that

m∑
r=1

αrCr
ψ([1 : xr])

〈ψ([1 : xr]), ε〉
mod β + αjCj

ψ([1 : xjr])

〈ψ([1 : xj ]), ε〉
mod β = 0. (3.55)

For each j, this means that 〈β〉 has a rational point with respect the lattice in
SmW ∗ spanned by

Cr
ψ([1 : xr])

〈ψ([1 : xr]), ε〉
, r = 1, . . . ,m (3.56)

and

Cj
ψ([1 : xj ])

〈ψ([1 : xj ]), ε〉
. (3.57)

Now, 〈β〉 has a rational point with respect to each of these ` lattices if and only
if it has a rational point with respect to any lattice containing all (3.57) for j =
1, . . . ,m+ 1+ `, as can be seen from lemma 3.3.4 and its proof. To construct such
a common lattice Λ we verify assumptions of lemma 3.3.4 by observing that for
xj ∈ Q, j = 1, . . . ,m + 1 + `, (3.42) provides the needed rational dependences.
Therefore, Λ-rational points of σ∨ yield rational Delzant compatible polytopes.
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