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SOME UTILITY THEOREMS ON INDUCTIVE LIMITS
OF PREORDERED TOPOLOGICAL SPACES

J.C. CANDEAL, E. INDURAIN AND G.B. MEHTA

We prove the existence of an order-preserving function on a class of preordered
topological spaces that are inductive limits of preordered spaces. Some applications
to economics are given.

1. INTRODUCTION

One of the main problems in utility theory is to find conditions which imply the
numerical representability of topological spaces on which a preorder, or partial order, is
defined. This study has reached a wide development in the literature: see, for instance,
the works of Eilenberg, Debreu, Fleischer and Jaffray on completely preordered topo-
logical spaces [9, 7, 10, 15], and the seminal book by Nachbin together with the papers
by Mehta and Herden [22, 20, 21, 11, 12], in the framework of preordered topological
spaces.

In general, the existence of a continuous representation is closely related to topo-
logical conditions that he "in the neighbourhood of separability" (see [4] and [5]).

Recently, some very general conditions for the existence of a continuous order
preserving function have been obtained by Herden [11, 12]. The work of Herden is
based on Nachbin's theory of normally preordered spaces.

The objective of this paper is to consider general families of preordered (or partially
ordered) spaces that admit a representation in a natural way. The idea of using a family
of preference relations on a space has been outlined by Aumann [3, p.241] and others.

In this paper we introduce another class of preordered spaces which admit a (utility)
representation, the class of topological spaces that are inductive limits of preordered
spaces. In particular, our main result proves the existence of a continuous representation
of a topological space that is a suitable inductive limit of compact order-separable
spaces. Then we apply this result to locally compact cr-compact preordered spaces and
completely preordered topological vector spaces. Also, we extend the result to a broader
class of spaces showing through an example that some elements in this class are neither
compact nor order-separable. We conclude by using the idea of an inductive limit to
make precise the notion of a local utility function and to prove an infinite-dimensional
version of the classical Arrow-Hahn theorem on utility functions.
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2. PRELIMINARIES

A preorder < on a topological space X is a reflexive transitive binary relation on
X. We shall denote x < y if and only if x ^ y and not y ^ x, and x ~ y when x $J y
and y ^ x.

The preorder ^ is said to be:

(i) complete or decisive if for two elements x,y £ X, either x ^ y or J / ^ I ,
(ii) an order if it is an antisymmetric binary relation,
(iii) a total order (or chain), if it is a complete (or decisive) order,
(iv) closed if its graph in the square X2 is a closed subset of the topological

space X2,
(v) continuous if the sets {a; € X; x ^ y} and {x £ X;y ^ x} axe closed for

every y 6 X,
(vi) representable if there exists an increasing and order-preserving map u: X —»

E., that is, x ^ y implies u(x) ^ u(y) and x < y implies u(x) < u(y).
The function u is called a utility function,

(vii) continuously representable if there exists a continuous utility function
which represents ^ . (K is endowed with the usual topology).

For T C X we denote by cl(T) the closure of T. The preorder ^ is said to be
spacious if x < y implies cl ({z 6 X; z < as}) C {z 6 X; z < y}.

A subset E C X is said to be decreasing if 6 £ 2£, a ^ 6 imply that a & E.
Similarly, one defines the concept of an increasing set. A topological space equipped
with a preorder is said to be normally preordered, if, for every two disjoint closed subsets
A, B C X, A being decreasing and B increasing, there exists two disjoint open subsets
A* and B* such that A* contains A and is decreasing, and B* contains B and is
increasing.

A preordered topological space (X, ^) is said to be order-separable if there exists
a countable subset Z (Z X such that if x,y £ X and x < y, then there exists a z € Z
such that x < z < y.

3. REPRESENTABILITY OF INDUCTIVE LIMITS OF COMPACT PREORDERED SPACES

In this section we obtain some existence results of utility functions on topological
preordered spaces which are inductive limits of compact order-separable preordered
spaces.

DEFINITION: A compact preordered space X is a compact space equipped with a
closed preorder.

LEMMA 1. Let X be a. compact preordered space. Then the quotient space X / ~
is a. compact ordered space in the sense of Nachbin (that is, a compact space endowed
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with a closed order).

PROOF: Xj ~ is a compact space since the projection map p : X —» X / ~ is
continuous. Moreover, it is plain that ^ induces an order ^ ' on X/ ~ in the natural
way. Let us show that ^ ' is closed. To this end, let ([aa] , [&a]) be a net, belonging to the
graph of the relation $$', and converging to ([o], [b]) £ ( X / ~ ) . Because [aa] ^ ' [ba],

it follows that aa ^ ba. So (aa, ba) belongs to the graph of the relation ^ . Now notice
that the graph of ^ is actually a compact subset of X2. Hence there exists a subnet
(ap, bp) converging to a point (x, y) in the graph of $J, that is, x ^ y. Thus x £ [a],
y £ [b] and therefore [a] ^ ' [b], that is, ^ ' is closed. U

Now, we combine some results due to Nachbin, Mehta, and Herden to obtain an

existence theorem for order-preserving functions defined on inductive limits of compact

preordered spaces.

First, we recall the definition of directed sets and inductive limits:

DEFINITION: A directed set (D, ^ ) is a preordered set with the following property:

For each 0,6 £ D there exists an element c 6 D such that a ^ c and b s$ c.

A subset E C D is said to be cofinal in D, if for every d £ D there exists e £ E

such that d ^ e.

Let D be a directed set and let {Xa; a € D} be a family of topological spaces,
indexed by D. For each pair of indices a , /3 satisfying a ^ j9 assume that there is
given a continuous map C,atp: Xa —• Xp, and that these satisfy the conditions: (i) £Qia

is the identity on Xa; (ii) if a $J /3 ^ 7 , then £ a ) 7 = (p^ o (,a,p-

Then this family {-X"a, C,a,p} of spaces and maps is called an inductive spectrum

over D, with spaces Xa and connecting maps (,a,p-

The image of an element xa £ Xa under any connecting map is termed a sucessor

of xa. Each inductive spectrum {Xa, (a,p} yields a limit space in the following way:
Let S = X){-^c.; « £ D} be the free union of the spaces, endowed with the final topology
relative to the inclusions ia '• Xa —> S. Two elements xa £ Xa, xp £ Xp in S are said
to be equivalent whenever they have a common sucessor in the spectrum. The quotient
space of S through this equivalence is called the inductive limit of the spectrum, and
denoted by lim_» Xa • On this space we shall consider the quotient topology.

A particular case appears if Xa C Xp whenever a ^ /?, and the connecting maps
are the inclusions. In that case, the inductive limit is said to be the inclusion inductive

limit, denoted lim^ Xa.

If we have a family of continuous maps {/a: Xa —yY;a£ D} from the elements
of an inductive spectrum {-Xa> Ca./s}, with values on a topological space Y, such that
they are compatible (/Q = fp o Ca,p) > then, by the universal property of inductive limits

[8, pp.421-422] there exists a continuous map / : lim_,.XQ —» Y such that f\x =
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Our first result is concerned with inclusion inductive limits:

THEOREM 2 . Let (D, ^ ) be a directed set containing a countable cofinal sub-

chain. Let (X, ^ ) be a preordered set such that X = lime Xa , where {Xa; a € D} is

a family of compact preordered spaces (with the induced preorder) such that Xa C Xp

whenever a $J /3, and eaci Xa being order-separable. Then ^ is continuously repre-

sentable.

PROOF: Let E = {an}n€N be a countable cofinal subchain of the directed set
(D, ^ ) . The inclusion inductive limit lim^ Xan relative to the cofinal subchain is
homeomorphic to the inductive limit lime Xa relative to the whole inductive spectrum
[8, Theorem 1.7 on p.424]. Let an,am £ E, an ^ am, (and then Xan C Xajn ). Since
(X a n , ^ |xO n) is a compact preordered set, the quotient topological space Xan/ ~ is
normally preordered [22, Chapter I, Section 3, Theorem 5]. This assures the existence
of a continuous utility function gan that represents X O n / ~ [21, Theorem 1]. Thus,
composing with the projection map, there exists a continuous utility function fan rep-
resenting ( ^a n ,< |X o J -

Now, making a slight modification of Theorem 4.2 in [13], it follows that the

utility function /O n admits a continuous utility extension fam to (Xam, ^\xarn) > (that

is: fan = fam\xan i a n d Am i s a utility representation of (XOm, <|xOm) )•

We can define a global family of maps {/On}n6N having the above property (that

is: fan = fam\Xan ^ ^a» C Xam ) . To get this family, we proceed as follows. Construct

fai . If ai ^ ai let /Oj be an extension of /O l to XOJ. If, on the contrary, 02 ^ a j , let

fa2 be the restriction of /O l to Xai . In general, suppose fak constructed and let us

define fak+1 • If ak ^ a*+i let fak+1 be an extension of fak to Xak+l . Otherwise, let

ah. £ {ai, . • •, ak} be such that 04+1 ̂  ah, ah being the smallest with that property,

and let fak+l be the restriction of /Ofc to Xak+1.

Once the family {fan }ngN has been constructed, the universal property of inductive

limits guarantees the existence of a continuous function / : limc Xan —> R such that

f\Xan — fan > ^OT every an G E. It is plain that / is a continuous utility function that

represents (X, ^ ) . U

The above result can be applied to locally compact a-compact preordered spaces
[8, p.240] whose preorder is order-separable on compact subsets. This is a wide class
of preordered spaces, which includes the most commonly used in General Equilibrium
Theory. (See [25] or [18]).

PROPOSITION 3 . Let (X, r ) be a locally compact a-compact Hausdorff space

equipped with a closed preorder ^ . Suppose that the preorder is order-separable on

compact subsets. Then there exists a continuous utility function on X.
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PROOF: In view of Theorem 2, it is enough to see that (X, T) is the inclusion
inductive limit of an increasing sequence of compact subsets. If X is compact, the
result is obvious. Otherwise, since X is c-compact, there exists an increasing family of
compact subsets (-Kn)n6N, Kn C -Kn+i such that X = |J {Kn). Let a;n G Kn+1 — Kn.

Now, because X is Hausdorff, there exists an open subset 0n such that Kn C 0n

and xn ^ On [24, Theorem II 2.5]. Moreover, there exists an open subset Un, with
compact closure ClUn such that Kn C Un C G\Un C On [24, Theorem II 2.7].
Consider now the increasing family of compact subsets (Cl?7n)n 6 N. We have that
X = \J(GlUn).

Thus, in order to show that X is the inclusion limit of that family, it is enough
to prove that the final topology on X coincides with r . A subset Y C X is open
in the final topology if, by definition, its intersections with the elements GlUn are
all open (in the relative topologies of Cl Un )• Therefore, it is plain that a T-open
subset Y is also open in the final topology. Conversely, if a subset Y is such that all
the intersections with the elements GlUn are relative-open, it follows that for every
n G N there exists a T-open subset Yn such that Yn l~l Cl Un = Y f~l Cl Un. Then
YnnC\UnCiUn = YnClUnnUn = YnUn, and YnUn is r-open. Thus Y = \J{YnUn)
is r-open. U

REMARKS.

(i) It is remarkable that no additional condition (as, for example, "spacious-
ness", see [23]) is imposed on the preorder ^ to guarantee its continuous
representability.

(ii) In particular, the preorder ^ may or may not be complete. This is im-
portant, because most of the results on the representability of preorders
that appear in the economics literature refer to complete preorders.

(iii) Proposition 3 generalises a result by Levin stated under the additional
assumptions of separability and metrisability of X. (See [16] and [17]).

The hypotheses of Theorem 2 and Proposition 3 demand the preorder to be order-
separable. In the next theorem we use inductive limits to get general results of repre-
sentability of broader classes of spaces than those stated in Theorem 2.

THEOREM 4 . Let (^n)ngN be a family of closed preorders on a topologicaj space
X. Let D = {an,m}n,m€ti be a set of indexes such that, for every n £ N, the family
{•^an.m }m£N *s lLn inductive spectrum satisfying:

(i) each Xanm is an order-separable compact preordered space with respect
to the preorder ^ n .

(ii) X — limc -Xan,m (n fixed, m G N).

Let ^ be a preorder on X such that:

https://doi.org/10.1017/S0004972700014660 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014660


240 J.C. Candeal, E. Indurain and G.B. Mehta [6]

x ^ y (in X) implies x <„ y (in Xanm)).
(b) given x,y G X, x < y, there exists anO|mo G D such that x < n o y.

Then (X, ^ ) is representable by a continuous utility function.

PROOF: It follows, from conditions (i) and (ii) and Theorem 2, that for every

n G N there exists a continuous function un: X —> R, such that un is a utility function

with respect to ^ n • Notice that hypotheses (ii) and (a) show that un is an increasing

function with respect to ^ .

We can also assume, without loss of generality, that un(x) G [0, 1]. Now consider

the function u(x) = X) u n ( * ) / 2 n .

It is easy to check, using condition (b), that u(x) is a continuous utility function
for < . D

We illustrate with an example the previous theorem.

EXAMPLE. Let X = (0, 1) , equipped with the product topology and the usual (coor-
dinatewise) preorder ^ .

For every m G N, set Xm — {x = (xlt x2, ..., xt, . . . ) G (0, 1) ; 1/m < xt ^

(m - l ) / m (i G N)} = [1/m, (m - l ) / m ] N .

On X we shall consider the following family of closed preorders {^n; n G N}. The

preorder $Jn is defined by:

x ^ n y if and only if xn < yn.

By Tychonoff's theorem, each Xm is compact.

Moreover, it is clear that each (Xm, ^ n ) is an order-separable compact preordered

space and X is the inclusion inductive limit of the family { ( ^ m ) ^n )} -

Plainly ^ | x m C ^ n , and clearly, the other hypotheses of the statement of Theorem

4 hold in this case.

This inductive limit is not compact. Neither it is order-separable (to convince

you, observe that the order-dense sets have the same cardinality as Q*1, which is not

countable).

Nevertheless, By Theorem 4, X is representable by a continuous utility function.

For instance, a possible representation could be the following:

x = (xu x2, ..., xi, ...) G X -» «(x) =
t€N

We conclude this section by giving an application of Theorem 2 in the context of infinite-
dimensional topological vector spaces.

https://doi.org/10.1017/S0004972700014660 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014660


[7] Some utility theorems 241

THEOREM 5 . Let E be a separable topological vector space and ^ a weak*-

continuous complete preorder on E'. Then there exists a utility function on E' which

is continuous with respect to the strong topology.

PROOF: First of all because ^ is a complete preorder, it follows that ^ is closed
(see [1, p.4]). Let V C E be a neighbourhood of the origin 0 and B(n) = {/ G
E'\ \f{x)\ ^ n, for every x G V} (n G N). By the Banach-Alaoglu theorem [26, p.202]
each B(n) is a weak*-compact subset of E' and, since E is separable, it is well-known
that B{n) endowed with the weak* topology is metrisable (see [26]). Therefore (see
[8, p.233]) B[n) is a weak*-separable topological space.

Now consider the preorder ^ restricted to B(n). It follows by a classical result
due to Eilenberg (see [9]) that B(n) is an order-separable topological preordered space.
Define B'(n) = {/ £ E'\ \f{x)\ < n, for every x G V}. Because each B'(n) is an open
set in the strong topology, it is follows that E' = l im c B'(n) (in the strong topology).
Thus, by Theorem 2, there is a strongly continuous utility function on E'. U

REMARK. By following the proof of Theorem 5 we could derive a weak*-continuous
utility function since, under the hypotheses of Theorem 5, E' is order-separable. Indeed,
the quotient space E' / ~ is an order-separable total order and it is well-known (see
[15]) that E' I ~ is representable by a utility function continuous in the order topology.
Finally it is enough to compose with the projection map p: E' —* E'/ ~ to get
the continuous utility function. Notice however, that E' ^ lime B(ri) in the weak*-
topology.

4. APPLICATIONS

In this section we present two notable applications to economics of the previous
concepts and results. The first one deals with the idea of "local behaviour" and "local
utility". The second one is an alternative proof and generalisation of the Arrow-Hahn
theorem on the existence of continuous utility functions. (See [2, pp.82-87].)

4.1 LOCAL UTILITY. Let ^ be a preference relation on a topological space (or differ-
entiable manifold) X and C a class of real-valued continuous (or differentiable) utility
functions on X. In certain situations, one is only interested in the local behaviour of the
functions in the class C. For example, let us suppose that a consumer is currently con-
suming a commodity bundle x £ X = K.n. Then the consumer may only be interested
in comparing the bundle x with small variations in x.

One reason for such behaviour is that "large changes" are feared and distrusted
because habitual behaviour is psychologically non-threatening.

Alternatively, if one is considering differentiable utility functions and is interested
in applying a theorem such as the implicit function theorem (to compute, for example,
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the slope of an indifference curve at a point), then only small variations are permissible.
Under these circumstances, it is natural to identify utility functions that agree on a
neighbourhood of the point x.

These ideas may be made formal and precise in the following way:

DEFINITION: Let X be a topological space. A presheaf F of sets on X is given
by the following conditions (see [27]):

(1) for each open set U C X, there exists a set F(U) called the set of sections

over U;

(2) for each pair of open sets V C U of X, there exists a restriction map

ipu
v:F{U)^> F(V) such that

(a) for all open U, <pu u — idu,

(b) whenever W C V C U are open sets of X, then ipu w = <pV w°

<fUv.

Now let [X, ^ ) be a preordered topological space. The presheaf C of real-

valued continuous utility functions on X is defined by declaring that C{U) is the

set of continuous utility functions U —> R for U open in X, and the restriction map

<pu v: C(U) -> C(V), V C U is given by the restriction of the function / £ C(U) to

the subset V. It is readily verified that this does define a presheaf on X.

Let now x be an arbitrary but fixed point in X and C the presheaf defined above.

Consider the set D of the open subsets of X such that x £ U. Define a relation ^ on

D by declaring U ^ V if and only if V C U. Then (D, ^) is a directed set.

Now associate with any open set U of X such that x 6 U the set C(U) of real-

valued continuous utility functions on U and define the connecting maps <pu,V, V C U,

to be the restrictions of the functions in C(U) to the subset V. Then clearly, we have

an inductive spectrum of spaces and connecting maps.

Now the inductive (or direct) limit of this spectrum is called the stalk Cx of the

presheaf C. The members of this stalk Cx are called germs (of sections of C).

Consider now the members of the stalk Cx. Two members sx and tx with sx £

C(U) and tx € C(V) of the stalk of this presheaf are equal if and only if they have

a common sucessor in the spectrum. Therefore, sx — tx if and only if there exists an

open set W C U C\ V such that the functions s and t agree on W.

Therefore, two functions in the stalk Cx are identified if they agree on some neigh-

bourhood of x. (See also [8, Example 3 on p.422]).

4.2 THE ARROW-HAHN THEOREM REVISITED. We now give the following important
application of the concept of an inductive spectrum of spaces. First, we need some
notation.

NOTATION: Let ^ be a preorder on a set X. We denote the upper section {y £

https://doi.org/10.1017/S0004972700014660 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014660


[9] Some utility theorems 243

X;x <y} of x by C{x).

DEFINITION: Let F be a subset of a normed linear space E. If for each x £ E
there is z £ F such that d(x, z) = d(x, F), where d(x, y) — \\x — y\\, then F is said
to be proziminal in E.

DEFINITION: Let ^ be a preorder on a subset X of a Banach space E. We say
that ^ is locally non-satiated if for each x £ X and each neighbourhood U of x there
is y £ U such that x < y.

We now prove the following theorem on the existence of a continuous utility function
on a subset of a Banach space E. This generalises the Arrow-Hahn theorem (see [2,
pp.82-87]) to an infinite dimensional space.

THEOREM 6 . Let E be a BanacA space with predual F and ^ a weai*-
continuous complete preorder on a weak*-closed convex subset X of E. Suppose that
^ is locally non-satiated with respect to the weak*-topology. Then there is a continuous
utility {unction on X.

PROOF: Choose a point XQ £ X. We prove first that there is a continuous utility
function on C(xo). Define a function U on C(xo) by U(x) = inf{||so — y\\; y £ C(x)}.
Since s$ is weak*-continuous, the set C{x) is weak*-closed. Now each weak*-clbsed
subset of a Banach space with a predual is proximinal [14, p.116]). Therefore, the
function U is well-defined. As in [2, pp.82—87], we may prove that U is a continuous
utility function. The assumption of local non-satiation of ^ with respect to the weak*-
topology is needed to prove the upper semicontinuity of U.

We claim next that if there is a point z £ X\ C(xo) then there exists a continuous
utility function V on C(z) such that V(x) = U(x) for every x € C(x0), that is V is
a continuous extension of U. To that end, observe first that U(XQ) = 0.

Now define a function H: C(z) -> R by H{x) = inf{| |z-y| | ; y £ C{x)}. By
arguing as above, we see that H is a continuous utility function. Observe that xo £ C(z)
since z £ X \ C(XQ). Therefore 2T(zo) = d for some real number d.

Next, notice that H maps the order-interval [z, XQ] into [0, d], where H(z) = 0
and H(XQ) — d. Since there exists a strictly increasing homeomorphism h mapping
[0, d] into [—1, 0] we may assume without loss of generality that H is a continuous
utility function on C{z) with values in [—1, a], with d < a, such that B maps the
order-interval [z, x0] into [—1, 0], H(z) — —1 and H(x0) = 0.

Now define a real-valued function V on C(z) by V{x) = ?7(z) if Xo ^ x and
V(x) = H(x) if z ^ x ^ x0 • Clearly, V is a utility function on C(z). It is continuous
by the Glueing Lemma [6, p.151]. Hence V is a continuous extension of U and the
claim is proved.

It should be noted that both U and V are "metric utility functions" in the sense
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that they are defined in terms of the canonical metric of E. Observe, however, that if
XQ < a then V(a) may not be equal to H[a).

If E has a ^-smallest element then we may let XQ be that ^-smallest element and
the theorem is proved.

So suppose that E has no ^-smallest element. Let 5(0, n) for n = 1, 2, . . . be
the closed ball about the origin of radius n.

Each B(0, n) is weak*-compact by the Banach-Alaogu theorem [26, p.202].
Therefore B(0, n) PI X is a weak*-compact subset of X for each positive integer

n. This implies that there is a ^-smallest element in B(0, n) for each n because ^
is weak*-continuous. Now let n\ be the least positive integer such that B(0, n-i) D X
is nonempty, and let x\ be the ^-smallest element of B(0, n i ) n X . It follows from
the hypothesis that X has no ^-smallest element that there exists a positive integer
j such that z £ B(0, rij) D X and z < X\ . Let n?. be the least such integer that is
greater than rai and let X2 be the ^-smallest element of B(0, n.2) (~l X.

By continuing this argument, we see that there exists a subsequence {xni) of (sn)
such that I?(0, n^) D X is not empty and B(0, ni) C B(0, n2) C

Let S = {ni, TI2, . . . } . Now for each ni 6 5 there exists by what has been proved
before a continuous function Uni defined on C(xni) . If n; < rtj the function J7nj. is a
continuous extension of the function Uni •

Therefore the family C(xni) C C{xni) C . . . is a nested family of spaces. Let
the connecting maps fnitnj , Tit < nj, he the inclusion maps. We therefore have an
inductive spectrum of spaces and connecting maps. Observe that X is the inductive
limit of these spaces.

By the universal property of inductive limits we may conclude as before that there
exists a continuous utility function U on the inductive limit X of the spaces C(xni)
such that the restriction of the function U to C(xn{) is just Un{. The function U is
the required utility function on X. U

REMARKS.

(1) Since R" has a predual and the Euclidean topology is the weak*-topology,
it follows that Theorem 6 proved above is a generalisation of the finite-
dimensional Arrow-Hahn theorem to infinite-dimensional spaces with pre-
duals.
In addition, observe that since the extension procedure used in Theorem
6 above is different from the Arrow-Hahn procedure we have also given a
new proof of this important theorem.

(2) An alternative extension procedure that may be used to prove the Arrow-
Hahn theorem is based on Nachbin's extension theorem (see [22] and
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[19])-
(3) It is an open question whether Theorem 6 proved can be extended to

Banach spaces which do not have preduals.

(4) Inductive limits lead to another striking application to economics, in the

construction of infinite models of General Competitive Equilibrium, in

particular in the setting of the Overlapping Generations Model. (See [1,

p.240 and following].)
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