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0. Introduction

Let L be an odd degree extension field of the field K, charlC#2. Let U* denote the
natural extension map from W(K) to W(L) where W(K), resp. W(L) denotes the Witt
group of quadratic forms over K, resp. L. It is well-known that U* is injective
[4, p. 198]. In fact Springer [10] proved a stronger theorem, namely that if <j> is
anisotropic over K then it remains anisotropic on extension to L. Rosenberg and Ware
[8] proved that if L is a Galois extension then the image of U* is precisely the
subgroup of W(L) fixed by the Galois group of L over K, this Galois group having a
natural action on W{L). See [4, p. 214] and [3] for a quick proof. See also Dress [1]
who extended these results to equivariant forms. In this article we investigate the
corresponding map U* when we replace the field L by a central simple /C-algebra of
odd degree and indeed more generally by any finite dimensional K-algebra which
becomes odd-dimensional on factoring out by the radical. Our algebras are equipped
with an involution of the second kind, i.e. one which is non-trivial on the centre, and we
replace quadratic forms by hermitian forms with respect to the involution. We show
that V* is injective for all the algebras mentioned above and that a weaker version of
Springer's theorem holds for central simple algebras of odd degree provided we make a
suitable restriction on the nature of the involution. We show that the analogue of the
Rosenberg-Ware result is valid for hermitian forms over odd-dimensional Galois field
extensions but that for central simple algebras of odd degree a result as nice as the
Rosenberg-Ware one cannot hold. Indeed the group of all K-automorphisms of such an
algebra which commute with the involution fixes all of the Witt group. However the
map V* is not surjective in general even for division algebras of odd degree.

1. Basic definitions

Let K be a field of characteristic not two and ~ a non-trivial involution on K. Then
K = K0{yfd) for some deK0, Ko being the fixed field of the involution. Let A be a
central simple algebra with an involution of the second kind, i.e. one which restricts to ~
on K. We again use ~ to denote this involution. (Up to isomorphism A will be MnD, the
algebra of all nxn matrices with entries in a division algebra D over K. Since A and D
are equivalent in the Brauer group of K it follows from [9, Cor. 8.3, p. 306] that D also
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admits an involution of the second kind. Let * denote this involution on D. It does not
follow that the involution" on A restricts to " on D. However by the classification of
involutions [9, ch. 8, section 7] it follows that for XeMnD, X = S~iX'S for some
S e MnD with S = S'.

We write W(K, ~), resp W(A, ~), for the Witt group of non-singular hermitian forms
over (K,~), resp.(A,~), these being defined in the usual way, the forms over (A,~) being
defined on finitely generated /4-modules. W(K, ~) has a ring structure as the product of
two hermitian forms over (K,~) and may be defined via the tensor product of the
underlying spaces in the same fashion as for the product of quadratic forms. W(A, ~) is
an additive abelian group but also has a W(K, ~)-module structure in a natural way.
The map V* is easily seen to be a W(K, ~)-module homomorphism. (Given
ip:VxV-+K, U*\p:V ®KAxV ® KA-*A is induced by U*\p(x®a,y® P) = a\p(x,y)P).

2. Injectivity of U* and Springer's theorem

Lemma 1. The Witt class in W(K,~) of a non-singular hermitian form on an
odd-dimensional K-vector space cannot be a zero divisor in the ring W(K, ~).

Proof. This fact about zero-divisors is well known for quadratic forms [9, p. 54].
There is a natural imbedding [9, p. 348] S:W(K,~)-*W(K0) under which a form over
(K,~) with diagonalization <a1,a2,...,am> maps to the form over Ko of twice the
dimension and with diagonalization (aua2,...,am, —dau —da2,..., —dam). (Recall that
K = K0(y/d)). Note that this form is a product <1, —d}^a1,...,am) of forms over Ko.
The above map is not a ring homomorphism but is a W(K0)-module homomorphism.

Now if <a j , . . . , am> for m odd is a zero divisor in W(K,~) then
<a1,...,am><b1,...,fon> = 0 in W(K,~) for some form Q>u...,bny over (K,~). Passing
down to Ko we obtain a product <1, —dy(a1,...,am)(b1,...,bn)=0 in W(K0). Thus we
have that <a!,...,am> as a form over Ko is a zero divisor in W(K0) as
<1, —d}{bi,...,£>„> is non-zero in W(K0) for (J}u...,bn

s) non-zero in W(K,~). Since
W(K0) can have no odd-dimensional zero divisors the lemma is proven.

Lemma 2. The reduced trace map T:A-*K, A being a central simple K-algebra with
an involution of the second kind, induces a well-defined W(K,~)-module homomorphism

Proof. Recall that the reduced trace on A may be defined by tensoring on a splitting
field L so that A ®KL is isomorphic to a matrix ring MJ- for some m and then taking
the usual matrix trace in MmL. The value of T(a) for a e A lies in K and is independent
of the choice of splitting field L [9, pp. 296-7]. Provided that we can choose a splitting
field L which carries an involution extending that on K it follows that T(d) = T(a) for all
a e A since the involution on MmL is similar to conjugate transpose. Any hermitian form
4>:M x M-+A then leads to a form T<j):M x M-+K,(x,y)^ T(<p(x,y)). It is now straight-
forward to check that T induces a well-defined W(K)-modu\e homomorphism
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It remains to show that A has a splitting field L carrying an involution extending that
on K. Now (A, ") is isomorphic to (MmD, ~) where X = S~lX'S for XeMnD, S = S', and "
is an involution on D which extends that on K. Since any splitting field of D is a
splitting field of A it suffices to show the existence of a splitting field L of D carrying an
involution extending that on K. To do this choose a subfield E of D maximal with
respect to the property of being invariant under the involution ~. By taking x$K,
x = x we can certainly obtain proper extension fields of K invariant under "). Let CjyE
be the centralizer of E in D which is a division algebra and is involution-invariant since
E is. If CoE = E we take L = E. If not then, by induction on the degree, CDE has an
involution-invariant subfield M splitting CDE. This contradicts the maximality of E
since M contains E properly.

Theorem 1. The map U*:W(K, )-*W(A, ) is injective for any odd degree central
simple algebra with an involution of the second kind.

Proof. Let <f>:A xA-+K, 4>{x,y) = T{xy) be the trace form of (A,~) over (K,~). If \jt
represents an element of W(K,~) then the composite map (T*o U*)(ip) = 4>ilt where <j>\}i is
the product in the ring W(K,~). To see this choose a K-basis for A and write out the
matrix for (T* o [/*)((/>), \p being written in diagonal form.

If i/t is in the kernel of U* then (T*o [/*)(,/,) = 0 in W(K,~) (so that <^ = 0 in W{K,~).
But <t> is odd-dimensional and so, by Lemma 1, cannot be a zero divisor in W(K,~).
Thus î  = 0 in W(K,~) and U* is injective.

We can, in fact, obtain a more general theorem as follows:

Theorem 2. Let A be a finite-dimensional K-algebra with an involution ~ of the second
kind. If J denotes the Jacobson radical of A and A/J is odd-dimensional over K then the
map U*: W(K,~)-* W(A,~) is injective.

Proof. J is the intersection of all the maximal right ideals of A or equivalently the
intersection of all the maximal left ideals [2, p. 196]. Thus J is involution-invariant and
there is a well-defined involution on A/J which we again denote by ~.

Since A is finite-dimensional A is the inverse limit of A/J" so that A is complete in the
J-adic topology. We may thus apply the reduction principle of [9, Theorem 4.4, p. 253].
This gives an isomorphism W(A,~)-+W(A/J,~) and since the isomorphism is com-
patible with the extension maps U* it suffices to prove that U*: W(K,~)->W(A/J,~) is
injective.

Now A/J is isomorphic to a direct sum of simple algebras, i.e. A/J = Al © A2 ® ••• ©
Ar The involution ~ on A/J either preserves components or interchanges pairs of
isomorphic components. For the interchanging involution the corresponding Witt group
is trivial [9, p.245]. Thus W(A/J,~) is a direct sum Y?i=iw(Ai>~) f o r s o m e s = r- T h e

map U*: W(K,-)^W{A/J,-) thus amounts to
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i=i

for maps Uf: W(K,~)^W(Ait~), each At being a simple K-algebra with an involution of
the second kind. U* will be injective if at least one of the maps Uf is injective. Since
A/J is odd-dimensional at least one A{ is odd-dimensional. The centre of this A, is a
field L which either equals K or is an odd degree extension of K. The map Uf for this i
must be injective because of Theorem 1 and the fact that W(K,~)-*W(L,~) is injective
for an odd degree extension field L of K. This completes the proof.

We now try to obtain an analogue of Springer's theorem [10] that an anisotropic
quadratic form over K remains anisotropic over L where L is an odd degree extension
of K. His proof goes through equally well if hermitian forms over K and L are used
instead of quadratic forms. However his technique does not apply when we extend a
hermitian form over (K,~) to one over (A,~) where A is non-commutative. (A hermitian
form h.MxM^A is isotropid if h(x,x) = 0 for some x#0. Otherwise h is said to be
anisotropic.) We will obtain a weaker version of Springer's theorem in this situation.

First some terminology is needed. A form ip is said to be strongly anisotropic provided
mxip, the orthogonal sum of m copies of i//, is anisotropic for each positive integer m. If
\]/ fails to be strongly anisotropic it is said to be weakly isotropic. (This definition makes
sense for both quadratic and hermitian forms over fields or central simple algebras.)

An involution on a central simple algebra A is said to be congenial if A admits an
involution invariant maximal subfield L such that the extended involution on A ® KL
corresponds to conjugate transpose on MnL.

Theorem 3. Let A be a central simple K-algebra of odd degree and with an involution
of the second kind. Assume that this involution is congenial. Let \ji be a strongly
anisotropic hermitian form over (K,~). Then Uip is anisotropic as a form over (A,~).

Proof. Suppose Uip is isotropic over (A,~). For the involution-invariant maximal
subfield L the extended form Uij/ ® L over A®KL is isotropic. But A®KL is
isomorphic to MnL and the involution is congenial. Hence, by Morita theory [6], the
form U\j/ ® L corresponds to the form nxU^ over (L,~). Here U x\p denotes the
extension to L of the form ip. Since Morita theory preserves the property of being
anisotropic it follows that Utip is weakly isotropic as a form over (L,~). Hence \ji is
weakly isotropic over (K,~) since Springer's theorem holds for hermitian forms under
odd degree field extensions. This completes the proof.

Comment 1. Theorem 3 is not true unless we make an assumption of congeniality
for the involution even if we assume that A is a division algebra.

Example. The following is a well-known cyclic division algebra of degree three. The
base field K = Q(w) where w2 + w +2 = 0, Q being the rationals. We take w = 6 + Q2 + 6*
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where 6 is a primitive seventh root of unity. Now Q(w) lies inside the field of complex
numbers C and complex conjugation restricts to give an involution o n Q(w). (Note that
w = — 1 — w).

Let <x = 0 + 06, P = 62 + 0s, y = 03 + 04. Then L = K(<x) is a cubic extension of K with
Galois group {I,a,a2} where a.a = P, P" = y, y" = ct. Let D be the cyclic algebra (L/K,a,b)
where b = w/w. A typical element of D is an expression Xo + x^-t-XjU2 where u3 = b,
x,eL for i = 0,1,2 and MX = XI7U for xeL . Let ~ be the involution on D induced by
u = u~l. (The involution on K extends to L in a natural way.) This involution on D is
easily seen to be congenial.

Now let p = l + 3a and define a new involution * on D by x*=pxp~l for each xeD.
The form <1,1,1> over (K,~) is strongly anisotropic. However on extension to (D, *) the
form <1,1,1> becomes, by scaling, equivalent to the form <p,p,p> over (D,~). This latter
form is isotropic since p + upu + u2pu2=p+pa2 + p" = T(p) where T is the trace map from
L to K. It is easy to check that T(p)=0 since p = 1 + 3a. Thus U\J/ is isotropic as a form
over (£>, *).

Comment 2. One may ask whether the full Springer theorem is true for congenial
involutions, i.e. whether the word strongly can be removed in Theorem 2. This is
certainly not the case for central simple algebras in general since taking A = MnK with
conjugate transpose as involution any anisotropic form \p over (K,~) with nx.\ji
isotropic will give U\j/ isotropic. It seems unlikely that the full Springer theorem would
hold even for division algebras with congenial involution but we have not produced a
counter-example.

3. The image of U*

We first show that the Rosenberg-Ware theorem remains valid for hermitian forms
under odd degree Galois field extensions.

Let L be an odd degree Galois extension of K and assume that there is an involution
~ of the second kind on K which extends to an involution of the second kind on L. We
also use ~ to denote this involution. Letting Lo and Ko be the fixed fields of the
involutions on L and K respectively we have that Lo is a Galois extension of Ko. Let G
and Go be the Galois group of L over K and Lo over Ko respectively. Now L = L0K
and the restriction to Lo of each element of G yields an isomorphism between G and Go.
We identify G and Go via this isomorphism.

The Galois groups G and Go act naturally on W(L,~) and W(L0) respectively. Recall
that this action is defined as follows:

Given \j/:V xV-*L0, a symmetric bilinear form over Lo we define a new L0-vector
space V9 for g e Go by letting V9=V as an additive abelian group but with a new scalar
multiplication defined by A*v = A.B~'v for XeL0, veV. The form ip9:V9xV9->L0 is
defined by \j/9(v,w) = \j/{o,w)9. A similar definition may be given for the G-action on

Theorem 4. The map I/?: W(K,~)-* W(L,~) is injective with image W(L,~)G, i.e. the
subgroup of elements of W(L, ~) fixed by G.
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Proof. The fact that U\ is injective follows from what we have done earlier. To find
the image of U% consider the following commutative diagram with exact rows:

) — — W(L0) — — W(L)

u*

0 W(K,") W(K0) W(K)

The maps U*, U%, U* are the natural extension maps, SL and SK are the injective maps
described at the start of Section 2, and VL and VK are the extension maps to the
quadratic extensions L and K of Lo and Ko respectively. The exactness of the rows is
well-known [9, p. 348]. Also the maps t/J, t/J, U* are injective.

It is evident that {SL^)9 = SL(\p9) for geG. (Recall that we identify G and Go). Also \j/9

is isometric to i]/ if and only if (SLip)9 is isometric to SL\j/. It is clear also that t// is fixed
by G if and only if SLi// is fixed by Go. Thus the image of V* is contained in W(L,~)G

since the image of U% is W(Lo)
Go by the Rosenberg-Ware theorem. Given an arbitrary

element of W(L,~)G a diagram chasing argument shows that it must be in the image of
Uf. This completes the proof.

Now we investigate whether a similar result holds for the image of
U*: W(K,~)-*W(A,~) when A is a central simple .K-algebra of odd degree. Let G
denote the group of all automorphisms of the algebra A which act as the identity map
on K, and also which commute with the involution ~ on A. This last condition is
needed to ensure that the form \\i9 is hermitian symmetric for g e G, i// a hermitian form
over (A,~). (The definition of \j/9 is analogous to the field case earlier.)

Theorem 5. Let A be a central simple K-algebra of odd degree and with an involution
of the second kind. Then G fixes all of W(A, ~).

Proof. Let geG. Then, since all automorphisms of A are inner by the Skolem-
Noether theorem, there exists a unit ueA such that g(x) = uxu~1 for all xeA. The
condition that g commutes with ~ implies that uu belongs to K.

Now U*:W(K,~)->W{A,~) is injective and uu is trivially a hermitian square in A.
Hence uu must be a hermitian square in K, i.e. uu = fill for some j?eK. Thus
g(x) = uxu~l =zxz where z — p~lu. It follows that \\i9 is isometric to i// for each hermitian
form i// over (A,~), and hence the whole of W(A,~) is fixed by G.

Comment 1. The group G is infinite and geG will have finite order m if and only if
dm is an element of K.

Comment 2. If the analogue of the Rosenberg-Ware result were to hold for this
group G then U* would have to be surjective. This is certainly not the case in general.
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Example. Let K be an algebraic number field with an involution of the second kind.
Let D be a cyclic division algebra over K admitting an involution of the second kind.
Hermitian forms over (D,~) are classified up to isometry by rank, determinant and a set
of signatures one at each real prime /t of Ko at which D becomes a full matrix ring over
K^ Here K^ = K ®Ko(

Ko)/. anc* (^o)> is t n e completion at prime /fc. Note that K^ is
isomorphic to C, the complex numbers. The classification was done originally by
Landherr [5]. See also [7] and [9, ch. 10] for a modern treatment. Forms exist with
any prescribed set of invariants, modulo the obvious relationships that must exist
between these invariants. Let us assume that our involution is definite [9, p. 376]. i.e.
that at each real prime of the kind mentioned above the involution on D^, = D®KK^
corresponds to conjugate transpose on MnC. It is easy to see that the form <1> over
(D,~) has signature n at each prime /? and hence that any element in the image of
V*: W(K,~)-*W{D,~) must have each of its signatures divisible by n. Since W(D,~)
contains components Z corresponding to signatures it is clear that U* is not surjective.

Comment 3. It is possible to impose strong restrictions on the nature of the algebra
A and on the base field K which ensures that the map U* is surjective. In general it is
not at all clear that the image of U* can be described in a concise way in any kind of
analogue of the Rosenberg-Ware result.
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