
THE PREDICTION ERROR OF BORNHUETTER/FERGUSON

BY

THOMAS MACK

ABSTRACT

Together with the Chain Ladder (CL) method, the Bornhuetter/Ferguson (BF)
method is one of the most popular claims reserving methods. Whereas a formula
for the prediction error of the CL method has been published already in 1993,
there is still nothing equivalent available for the BF method. On the basis of
the BF reserve formula, this paper develops a stochastic model for the BF
method. From this model, a formula for the prediction error of the BF reserve
estimate is derived.

Moreover, the model gives important advice on how to estimate the para-
meters for the BF reserve formula. E.g. it turns out that the appropriate BF
development pattern is different from the CL pattern. This is a nice add-on as
it makes BF to a standalone reserving method which is fully independent from
CL. The other parameter required for the BF reserve is the well-known initial
estimate for the ultimate claims amount. Here the stochastic model clearly shows
what has to be meant with ‘initial’.

In order to apply the formula for the prediction error, the actuary must
assess his uncertainty about both sets of parameters, about the development
pattern and about the initial ultimate claims estimates. But for both, much
guidance can be drawn from the estimates itself and from the run-off data given.
Finally, a numerical example shows how the resulting prediction error compares
to the one of the CL method.

1. INTRODUCTION

For most insurance companies and their auditors, the use of the Chain Lad-
der method (CL) and of the Bornhuetter/Ferguson method (BF) has become
a certain standard or benchmark in claims reserving. This means that these
methods are applied in almost every case, and only if they seem to fail, one
looks for other methods. Originally, these methods gave only a point estimate
for the claims reserve. But this was not satisfactory because then one could
not decide whether the estimates differ significantly or not. Moreover, for the
calculation of risk based capital and of premium loadings one needs to assess
the prediction error of the estimate (i.e. the standard deviation of the true
claims reserve from the point estimate).
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In 1993, a formula for the prediction error of the CL reserve estimate was
published (Mack (1993)) which in the mean time is very popular. This formula
gives an answer to the question of significant differences to other methods and
measures the variability of the true reserves for business segments where CL
is acceptable. But for BF, such a formula is still missing. This may seem strange
because BF is even simpler than CL. But this simplicity is just the problem.
The prediction error consists of two components, the process error and the
estimation error. Whereas the estimation error basically always can be calcu-
lated via the laws of error propagation, for the process error a stochastic model
of the claims process is required. The latter was feasible in the CL case because
the way in which the CL age-to-age factors are estimated contains implicit
information on the underlying stochastics. In the BF case, no clear procedure
on how to estimate the parameters has been established. In such a situation,
many models may seem admissible.

The stochastic model for BF which is introduced in this paper is very sim-
ilar in its structure to the CL model of Mack (1993) but adequately reflects
the two fundamental differences between CL and BF. The first difference is the
fact that the CL reserve is directly proportional to the claims amount known
so far whereas the BF reserve does not depend at all from the known claims
amount. This is reflected in an additional independence assumption of the BF
model. The second difference is the fact that the BF reserve estimate includes
the full tail of the claims development whereas the standard CL reserve (i.e.
without additional tail factor) only considers the development until a given
last development year. The latter fact implies that the parameter estimation for
the BF model has also to consider the tail of the development where there is
no data and some judgement is required. Therefore, we do not give a unique
estimation formula for the tail parameters but discuss two alternative ways
to cope with this problem. In any case, the development pattern suggested by
the BF model turns out to be different from the well-known CL pattern.
This makes BF to a really standalone reserving method. But still, the actuary
may make his own selections regarding the development pattern, especially for
the tail.

In addition to the development pattern, the BF reserve formula requires
another element, an initial estimate for the ultimate claims amount. Of course,
the uncertainty of this estimate must have a high impact on the prediction
error. As this estimate usually comes from outside (e.g. from pricing) or is
simply set by the actuary on the basis of his knowledge of the business, its
uncertainty must be assessed from outside of the run-off triangle, too. And an
actuary who is able to set (or accept) a point estimate should also be able
to quantify (or ask for quantification of) the uncertainty of this estimate.
Moreover, from the stochastic model important advice can be derived for the
assessment of these estimates and their uncertainty. Altogether, this means
that the prediction error of the BF reserve estimate depends largely on the
(more or less subjective) assessment of the actuary as it is already the case
with the BF reserve estimate itself.
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Section 2 gives a short review of the BF method and of its connections
and differences to the CL method. Section 3 describes the appropriate sto-
chastic BF model. Section 4 shows two ways to estimate or select the model
parameters. The estimation of the standard error of the parameters is dis-
cussed in Section 5 where also the formula for the prediction error and its
components is derived. Section 6 gives a numerical example.

2. THE BF METHOD

Let Ci,k denote the cumulative claims amount (either paid or incurred) of acci-
dent year i after k years of development, 1 # i, k # n, and vi be the premium
volume of accident year i where n denotes the most recent accident year. Then
Ci,n +1– i denotes the currently known claims amount of accident year i. Let
further Si,k = Ci,k – Ci, k –1 denote the incremental claims amount (with Ci,0 = 0)
and Ui the (unknown) ultimate claims amount of accident year i. Then Ri =
Ui – Ci,n +1– i is the (unknown true) claims reserve for accident year i. Let finally
Si,n+1 = Ui – Ci,n be the incremental claims amount after development year n (tail
development).

Bornhuetter/Ferguson (1972) introduced their method to estimate Ri in order
to cope with a major weakness of the CL method. Therefore we first consider
this weakness. CL uses link ratios (age-to-age factors) fk and a tail factor f3 in
order to project the current claims amount Ci,n +1– i to ultimate, i.e. it estimates
Ui

CL = Ci,n +1– i · fn +2– i · … · fn · f3, and therefore the CL reserve is 

Ri
CL = Ui

CL – Ci,n +1– i = Ci,n +1– i ( fn +2– i · … · f3 – 1).

This means that the reserve strongly depends on the current amount Ci,n +1– i

which can e.g. lead to a nonsense reserve Ri
CL = 0 for accident years where

currently no claims are paid or reported which is not unusual in excess-of-loss
reinsurance for the most recent accident year(s).

The BF reserve estimate avoids this dependency from the current claims
amount Ci,n +1– i . It is

Ri
BF = Ui (1 – zn +1– i)

where Ui = ni qi with a prior estimate qi for the ultimate claims ratio qi = Ui /vi

of accident year i, zk ! [0,1] is the estimated percentage of the ultimate claims
amount which is expected to be known after development year k.

qi is called ‘prior’ (or ‘initial’) as opposed to the posterior estimate (Ci,n +1– i +
Ri

BF ) /vi for the ultimate claims ratio which is based on the prior qi and is
different iff Ci,n +1– i ≠ zn +1– ini qi , i.e. if the current claims amount deviates from
its estimated expectation. The percentages z1, z2, ... constitute the expected
cumulative development pattern and 1 – zn +1– i is therefore an estimate for the
percentage of the expected outstanding claims of accident year i.
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Having already an estimate Ui , the question may arise why BF does not sim-
ply use Ri = Ui – Ci, n +1– i as reserve estimate. In that case, the reserve estimate
would become the higher, the smaller the current amount Ci,n +1– i is and would
again strongly depend on Ci,n +1– i. With CL, the reserve estimate behaves just
in the opposite way, i.e. is the smaller, the smaller Ci,n +1– i is. Here BF takes a
neutral position: It does not care about the size of Ci,n +1– i at all, i.e. it con-
siders the deviation between the observed amount Ci,n +1– i and the expected
amount  zn +1– i Ui as purely random and by no means indicative for the future
development. Altogether, the essential feature of the BF method is to avoid any
dependency between Ci,n +1– i and Ri

BF.
In order to apply the BF method, the actuary has to estimate the parameters

qi and zk for all i and k. In practice, the ultimate claims ratios qi are estimated
in various ways, mainly based on additional pricing and market information
in such a way that any expected differences between the accident years are rea-
sonably reflected. The zk are usually derived from the (selected) CL link ratios
f2, …, fn together with a selected tail factor f3 in the following way:

zn = f3–1, zn – 1 = ( fn · f3 )–1, …, z1 = ( f2 · … · fn · f3 )–1.

The systematic use of the CL link ratios assumes that the outstanding claims
part is a direct multiple of the already known part at each point of the devel-
opment. This contradicts to the basic BF idea of the independence between
Ci,n +1– i and Ri

BF, i.e. between past and future claims, which was fundamental
for the origin of the BF method. At least, with the use of the CL pattern, the
BF method cannot really claim to be a standalone reserving method. Moreover,
in the following we will see that the stochastic BF model suggests a different
way to estimate the BF development pattern.

3. A STOCHASTIC MODEL UNDERLYING THE BF METHOD

From the BF reserve formula it is clear that the appropriate model for BF has
to be cross-classified of the type

E(Ci,k) = xizk or equivalently E(Si,k) = xi yk for 1 ≤ i ≤ n and 1 ≤ k ≤ n + 1.

Because of xi yk = (xi a) (yk /a) for any a > 0, xi and yk are only unique up to a
constant factor. Thus we can – without loss of generality – impose the restric-
tion y1 + … + yn + yn+1 = 1. This yields E(Ui ) = E(Si,1 +…+ Si,n+1) = xi and
shows that xi can be considered to be a measure of volume for accident year i.
We therefore will assume in addition that Var (Ui) is proportional to xi or
Var (Ui /xi) proportional to 1/xi. This is the usual assumption for the influence
of the volume on the variance. Furthermore, the fundamental BF property
of independence between past and future claims suggests to assume that all
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increments Si,k of the same accident year are independent – the independence
of the accident years themselves being a standard assumption anyway. Note
that the independence within the accident years does not hold in the CL model
of Mack (1993).

Thus we work with the following model for the increments Si,k, 1 ≤ i ≤ n,
1 ≤ k ≤ n + 1:

(BF1) All increments Si,k are independent.

(BF2) There are unknown parameters xi, yk with E(Si,k) = xi yk and y1 +…
+ yn+1 = 1.

(BF3) There are unknown proportionality constants s2
k with Var(Si,k) = xi s

2
k.

From these assumptions, we deduce

E(Ri) = xi(yn+2 – i +…+ yn+1) = xi(1 – zn+1– i ) with zk := y1 +…+ yk

which shows that the expected claims reserve has the same form as the BF
reserve estimate.

This model is thought to be the most general model fitting to the philoso-
phy of the BF method. Like with the CL model and as suggested by having
only one single column parameter yk for the expectation, it here, too, makes
sense to assume that the variability constant s2

k is the same for all Si,k within
each column k but differs from column to column. The simpler assumption
Var(Si,k) = cxi yk for all i,k seems to contradict to reality as has already been
mentioned by Taylor (2002) because then ‘the coefficient of variation of the
claim size is inversely related to the mean claim size’ which is ‘opposite of what
one observes’. Moreover, this last variance assumption is just a special case of
(BF3) and thus less general. Finally, this variance assumption would imply
that all yk be > 0 which is not the case with (BF3) and which would prevent
from using the model for incurred claims amounts where negative incremental
claims are not uncommon.

Like with the CL model of Mack (1993), this model is heavily parametrized,
especially for the late development years. But of course, the actuary may
– depending on the data – apply additional regression assumptions in order to
reduce the number of parameters and to stabilize the estimates. This is shown
in the numerical example below.

From the above model, we deduce further

n n2 1+ - +... .Var R x s si i i
2 2

= + +^ ah k

As background for the next section, we note that with x1, …, xn known,

,x,k i k
i

n k

i
i

n k

1

1

1

1
=

=

+ -

=

+ -

y S! ! (1)
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is a best linear unbiased estimate of yk, 1 ≤ k ≤ n, and

2
k n k S x xs 1

,i k i k i
i

n k
2

1

1
=

-
-

=

+ -

y! ^ h (2)

is an unbiased estimate of s2
k , 1 ≤ k ≤ n – 1.

4. PARAMETER ESTIMATION FOR THE BF MODEL

From the model above we clearly see what is meant with calling Ui a ‘prior’
estimate: It has to be an estimate xi for xi = E(Ui ) and not for the ‘posterior’
expectation E(Ui | Ci,n +1– i ), given Ci,n +1– i . This shows that the claims amount
Ci,n +1– i = Si,1 +…+ Si,n+1– i known so far should not be the main basis for
the estimate xi. For example, it would be wrong to use the posterior estimate
Ci,n – i + Ri

BF ( n –1) of last year’s reserving as xi because it is an estimate rather for
E(Ui | Ci,n +1– i ) than for E(Ui ). Even a very large random claim which hap-
pened in accident year i and is already known must not change the estimate xi.
As an extreme example we might have an accident year where xi < Ci,n +1– i.
But this does not mean that the prior estimate xi cannot change during the
claims development.

To fix ideas, let us assume that xi originally stems from pricing (which has
taken place before the end of development year 1). Usually, the pricing is based
on the (trended) claims experience of the preceding accident years (i.e. on the
years i –1, i –2, …) and on assumptions on the future claims cost inflation.
This basic information develops from year to year because the claims experi-
ence of the preceding years develops as well as the relevant inflation index.
Thus, we can reprice the business of accident year i every later year and thus
arrive at updated estimates for xi = E(Ui ). We may even include the claims
experience of the accident years i, i +1, … into this repricing of accident year i
as long as they can be translated to the portfolio of accident year i. In any case,
the own claims experience Ci,n +1– i should only have a marginal influence on
xi otherwise we would rather estimate E(Ui |Ci,n +1– i ). Thus, the estimate xi

may change over the years but normally not to a large extent, at least if the
first estimate for xi came from a sound pricing.

When the actuary does not have the result of a complete repricing available,
he has at least the data {vi,Cik} of the run-off triangle. On basis of this data
and some rather general information on rate level changes, he may follow the
procedure outlined in Mack (2006) which is not a full repricing but brings all
accident years on about the same claims ratio level as basis for the calculation
of the initial ultimate claims ratio qi .

After these clarifying remarks, we assume that the initial estimate Ui of
Section 2 fulfills the requirements for being an estimate of xi = E(Ui). Thus we
write Ui instead of xi in the following. Having now an estimate Ui for E(Ui),
we are only left with the task to estimate yk and s2

k. The main problem here is
the fact that we have only very few observations for the late development years.
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As we do not have any observations beyond development year n, we cannot
estimate the tail ratio yn+1 without further assumptions. An outside estimate
may be gained from similar portfolios with more accident years where the
claims experience of later development years than year n is available. Without
such information, the actuary may arrive at an estimate yn+1 by extrapolation
from y1, …, yn (which are not available yet). Similarly, an estimate for s2

n

cannot be obtained from the only available observation of column n alone
but may be obtained by extrapolation, too. Therefore, in order to fix ideas
for an iterative procedure, we first consider the situation where we have already
reasonable estimates yn+1, s2

1, …, s2
n. Then we can get a weighted least squares

estimate (i.e. with the weights inversely proportional to the variances) for
y1, …, yn by minimizing

k

Q
S

s
,

i

i k i k

k

n i

i

n
2

1

1

1

=
-

=

+ -

=
2

y

U

U
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` j

under the constraint y1 + …+ yn = 1 – yn+1. Note that yn = S1,n /U1 may not be
optimal due to this constraint. As starting values for the minimization we can
use

y1k = ,,i k
i

n k

i
i

n k

1

1

1

1

=

+ -

=

+ -

S U! ! (3)

(see (1)) but these will usually not fulfill the constraint.
In most cases the data will not be so stable that the resulting least squares

estimates y1, …, yn seem reliable enough to leave them as they are (especially
for k large). Therefore, the actuary will apply a smoothing procedure to select
his own final y*

1, …, y*
n , y*

n+1 (i.e. including a possible revision of the tail ratio
in view of the other y*

k ) with y*
1 +…+ y*

n + y*
n+1 = 1.

On the basis of the fact that the actuary will in any case make some own
selections due to the few data, he can dispense with the above exact mini-
mization and just proceed as follows: He starts with the raw estimates y1k, 1 #
k # n, as given in (3) and applies some manual smoothing and extrapolating
in order to arrive at his final selection for y*

1, …, y*
n , y*

n+1 fulfilling y*
1 +…+ y*

n +
y*

n+1 = 1. In view of (2), he then estimates s2
k by

s1
2
k = k ,n k S1

,i k i i
i

n k 2

1

1

-
-

=

+ -
*yU U! a k 1 # k # n – 1, (4)

and again applies some smoothing in order to select his final s1
2*, …, s 2*

n –1 and
an extrapolation to obtain s 2*

n . Note that s 2*
n +1 cannot be obtained in this way

because it usually has to cover several development years as is the case for yn+1,
too. Therefore, s2*

n+1 may be arrived at by interpolating a regression of s2*
k against

| y*
k | at the point | y*

n+1|. (Note that some yk may be negative.) The whole esti-
mation procedure is shown in the numerical example.
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A more formal way to estimate the parameters yk, s2
k (in case of rather sta-

ble data) would be as follows: On the basis of y1k, 1 # k # n we decide on the
formula for a smoothing regression, e.g. ln(yk) = a – b · k for k above some
k1 < n (assuming yk > 0 there), which then is extrapolated until some final
development year k2 > n. Then we calculate s12k (according to (4) but using the
smoothened yk for k > k1). The resulting values s121 , …, s12n –1 are now kept fixed
and used in the above constrained minimization of Q to obtain better values
for y1, …, yk1

, a, b under the constraint

y1 +…+ yk1
+ exp(a – b (k1 + 1)) +…+ exp(a – bk2) = 1.

Note that in Q we have to leave out the term for (i, k) = (1,n) because now we do
not yet have a value for sn. This minimization yields our selections for all y*

k :
The values for k = 1, …, k1 are obtained directly, those for k = k1 + 1, …, n are
taken from the smoothing regression and y*

n+1 is obtained by adding up the
extrapolated values of the regression up to development year k2. Using these y*

k ,
we calculate new values s12k according to (4) and plot ln (s12k ) for k > k1 against
|y*

k | or ln(|y*
k |) in order to select appropriate values for s 2*

k , especially for k = n
(over |y*

n |) and k = n + 1 (over |y*
n+1|). Of course, we could now apply another

constraint minimization with these new values of s 2*
k , but usually this will not

change much. Note that the values of s 2*
k for k > k1 will be overestimated a lit-

tle as we did not change the degrees of freedom in formula (4) for s1 2k which
would have been possible as the regression employs fewer parameters.

As result of each of these two estimation procedures we have selected y*
1, …,

y*
n , y*

n+1 and s1
2*, …, s 2*

n , s 2*
n +1 from which we estimate the BF claims reserve by

Ri
BF = Ui (y*

n + 2 – i +…+ y*
n+1) = Ui (1 – z*

n + 1– i) with z*
k = y*

1 +…+ y*
k .

s1
2*, …, s 2*

n , s 2*
n +1 will be needed for the prediction error.

The properties of the above estimators can be sketched as follows:

(a) y*
1, …, y*

n , y*
n+1 are pairwise (slightly) negatively correlated as they have to

add up to unity.

(b) y*
1, …, y*

n , y*
n+1 and therefore also z*

1, …, z*
n+1 are practically independent

from U1, …, Un as the latter do not really influence the size of any y*
k because

these have to add up to unity in any case and because of selections and
regressions used.

(c) Ri
BF and Ri are independent (due to BF1).

(d) E(Ui) = E(Ui) = xi, 1 # i # n.

(e) E(y*
k ) = yk, 1 # k # n + 1, and therefore E(z*

k) = zk, 1 # k # n + 1.

(f) E(s 2*
k ) = s2

k, 1 # k # n + 1.

In (d)-(f) we have simply assumed that the actuary’s selections are unbiased.
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The unbiasedness of the reserve estimate follows directly from these properties:

E(Ri
BF) = E(Ui ) E(1 – z*

n + 1– i) = xi (1 – zn + 1– i) = E(Ri).

Note that the raw estimates y1k according to (3) are identical to the estimates bk

in Mack (2006) which were shown there as being suggested directly by the BF
reserve formula itself. In any case and even without any smoothing of y1k, the
resulting development pattern will turn out to be different from the CL pattern
(see also the numerical example below).

Now we are prepared to derive the formula for the prediction error.

5. THE PREDICTION ERROR OF THE BF METHOD

As one is interested in the future variability only, given the data observed so
far, the mean squared error of prediction of any reserve estimate Ri is defined
to be

, ..., .msep E R S SR R , ,i i i i i n i
2

1 1= - + -` `cj j m

According to (BF1), Ri = Si, n + 2 – i + … + Si, n +1 is independent from Si,1, …,
Si, n +1– i. Also, the BF reserve estimate Ri

BF can be taken as being independent
from Si,1, …, Si, n +1– i (as these play at most a marginal role when selecting Ui

and z*
k ), more precisely, Ri and Ri

BF are taken to be commonly independent
from Si,1, …, Si, n +1– i. Thus we have

i i

i i

i ,

msep E R

Var R E E R

Var Var R

R R

R R

R

BF BF
i

BF
i

BF
i

BF
i

2

2

= -

= - + -

= +

a ae

a a ^b

a ^

k k o

k k hl

k h

i.e. the mean squared error of prediction is the sum of the (squared) estima-
tion error Var( Ri

BF) and of the (squared) process error Var(Ri).
For the process error we simply have

Var(Ri ) = Var(Si, n +2 – i) +…+ Var(Si, n +1) = xi (s 2
n +2 – i +…+ s 2

n +1)

which will be estimated by

Var(Ri) = Ui (s 2*
n +2 – i +…+ s 2*

n +1).

For the estimation error of Ri
BF = Ui (1 – z*

n + 1– i) we use the general formula 

Var(XY ) = (E(X ))2Var(Y ) + Var(X )Var(Y ) + Var(X ) (E(Y ))2
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for independent random variables X and Y and obtain

Var(Ri
BF) = (E(Ui ))

2Var(z*
n + 1– i) + Var(Ui )Var(z*

n + 1– i) + Var(Ui )(1 – E(z*
n + 1– i))

2

= (x2
i + Var(Ui ))Var(z*

n + 1– i) + Var(Ui ) (1 – zn + 1– i)
2.

Whereas we have already estimators Ui for xi and z*
n + 1– i for zn + 1– i , we still need

estimates for Var(Ui ) and Var(z*
n + 1– i), i.e. we have to quantify the precision of

Ui and z*
n + 1– i .

The standard error s.e.(Ui ), i.e. an estimate for ,Var iU` j cannot be
obtained from the estimation error s.e.(Ri

BF(n –1) ) of last year’s reserving because
this would ignore the variability of Ci, n+1– i which has to be included into s.e.(Ui ).
Like Ui itself, s.e.(Ui ) is best be obtained from a repricing of the business.
But one has to be cautious there. For example, the variability of the posterior
claims ratio estimates U1

post /n1, …, Un
post /nn would underestimate s.e.(Ui /ni )

because these estimates are positively correlated via the common estimates z*
k .

Similarly, also the prior estimates Û1, …, Ûn will usually be positively correlated.
Thus the formula

j

j. .s e n qn
1i

i
j

j

n2
2

1

=
-

-
=

nU
U

n!
J

L

K
K``

N

P

O
Ojj with jq

j

n

j
j

n

1 1

=
= =

U n! ! (5)

(which is analogous to (1), (2) for BF3) is applicable only if the prior estimates
Uj can assumed to be uncorrelated. But even then, using the real premiums vj

would include the market cycle of premium adequacy into s.e.(Ui ) which would
overestimate s.e.(Ui ) in those situations where we can predict the market cycle
rather well. Thus, we should remove the influence of the market cycle from (5)
by using on-level premiums vj. In addition, we should correct for any positive
correlation between the Ui’s by replacing the term n –1 of (5) with e.g. n n-
for a constant correlation coefficient rU

ij = 1/ n between Ui and Uj or with
(approximately) n n2- for a decreasing correlation coefficient rU

ij = 1/ (1+

| i – j |); the precise formula being j
in r

, ji j
i-
+ +

U
n
n

n
n

! with .nii

n

1
=+ =

n !

These standard errors s.e.(Ui ) usually will not change much over the years.
Of course, we will have slight changes as long as the Ui change. But even at
the end of the development, we will not know E(Ui) much more precisely than
at the beginning. The actuary should plausibilize the resulting values of s.e.(Ui ),
for instance in the following way: If we assume a normal distribution, then the
interval (Ui – 2 · s.e.(Ui ), Ui + 2 · s.e.(Ui )) will contain the true E(Ui) with 95%
probability. Thus, if the size of the interval is plausible, then s.e.(Ui ) is plau-
sible, too.

Next, we have to decide on how to estimate

Var(1 – z*
n + 1– i) = Var(z*

n + 1– i) = Var(y*
1 +…+ y*

n+1– i) = Var(y*
n+2– i +…+ y*

n+1).
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From property (a) we see that we will be on the safe side when we replace
Var(y*

1 +…+ y*
n+1– i) with Var(y*

1) +…+Var(y*
n+1– i). But whereas the latter sum

increases with each additional term, this is not the case with Var(y*
1 +…+

y*
n+1– i) as finally Var(y*

1 +…+ y*
n+1) = Var(1) = 0. Therefore we replace Var(z*

k ) =
Var(1 – z*

k ) for small k with Var(y*
1 ) + … + Var(y *

k ) and for large k with
Var(y*

k+1)+…+Var(y*
n+1). More precisely, we replace – still being on the safe side – 

Var(z*
k ) with min (Var(y*

1) +…+ Var(y*
k ), Var(y*

k+1) +…+ Var(y*
n+1)).

Due to y*
k . y1k . ,j k

j

n k

j
j

n k

1

1

1

1

=

+ -

=

+ -

S x! ! we can assume that

k ,Var Var
s

,k j k
j

n k

j
j

n k

jj

n k
1

1

1

1

1

1

2

. =
=

+ -

=

+ -

=

+ -
*y S x

x
! !

!

J

L

K
Ka

N

P

O
Ok 1 # k # n.

Therefore we estimate Var
k
*ya k by

j

k
. . ,s e

s *

k

j

n k

2

1

1

2

=

=

+ -
*y

U!
ab kl 1 # k # n. (6)

But the value of s.e.(y*
n+1) must come from outside. Without this, a plausible

choice is often a coefficient of variation c.v.(y*
n+1) = 50% assuming a normal

distribution with 95% probability within the interval (0; 2 y*
n+1).

Altogether, our estimate (s.e.(z*
k ))2 for Var(z*

k ) is

(s.e.(z*
k ))2 = min((s.e.(y*

1))2 +…+ (s.e.(y*
k))2, (s.e.(y*

k+1))2 +…+ (s.e.(y*
n+1))2). (7)

In any case, we have s.e.(z*
n+1) = s.e.(1) = 0. Of course, the actuary will plausi-

bilize s.e.(z*
k ) similarly as s.e.(Ui ) and, if necessary, manually adjust some of

the resulting values.
Thus we finally obtain the following estimator for the mean squared error

of prediction:

msep(Ri
BF) = Ui (s 2*

n +2 – i +…+ s 2*
n +1) + (Ui

2 + (s.e.(Ui ))
2) (s.e.(z*

n + 1– i))2

+ (s.e.(Ui ))2 (1 – z*
n + 1– i)

2.

This is the formula one needs for risk based capital and premium loading
calculations as well as for the construction of a confidence interval for Ri.
In order to check the significance of differences between alternative reserve
estimates or to construct a confidence interval for E(Ui) one only needs the pure
estimation error

(s.e.( Ri
BF))2 = (Ui

2 + (s.e.(Ui ))
2) (s.e.(z*

n + 1– i))2 + (s.e.(Ui ))2 (1 – z*
n + 1– i)

2.

THE PREDICTION ERROR OF BORNHUETTER/FERGUSON 97

0587-07_Astin38/1_05  02-06-2008  11:54  Pagina 97

https://doi.org/10.2143/AST.38.1.2030404 Published online by Cambridge University Press

https://doi.org/10.2143/AST.38.1.2030404


A closer analysis of this formula shows that 

s.e.( Ri
BF) /Ui . s.e.(z*

n + 1– i) for z*
n + 1– i close to 1,

s.e.( Ri
BF) /Ui . s.e.(Ui ) / Ui for z*

n + 1– i close to 0,

i.e. for the very green accident years, the uncertainty of the initial ultimate
claims estimate is directly transferred to the reserve estimate.

For the overall reserve R = R1 +…+ Rn we have the unbiased estimate RBF =
R1

BF +…+ Rn
BF. Its mean squared error of prediction is msep(RBF) = Var(RBF) +

Var(R). For the process error we have Var(R) = Var(R1) +…+ Var(Rn) due to
the independence of the accident years (BF1) and thus get the estimate

Var(R) = i
i

n

1=

U! (s 2*
n +2 – i +…+ s 2*

n +1).

The estimation error Var(RBF) is more involved because R1
BF, …, Rn

BF are pos-
itively correlated via the common parameter estimates y*

k (and in addition via
the Ui’s). We have

ji i , .Var Var CovR R R R2
<

BF BF

i

n
BF BF

i j1

= +
=

! !a a ak k k

For Cov(Ri
BF, Rj

BF) = Cov(Ui (1 – z*
n+1– i), Uj(1 – z*

n+1– j)) we use the general formula

Cov(XY, WZ) = Cov(X,W)E(Y )E(Z) + Cov(X,W)Cov(Y,Z)

+ E(X )E(W) Cov(Y,Z)

for random variables X,Y,W,Z where the sets {X,W} and {Y,Z} are indepen-
dent. We omit the term in the middle which is of lower order and obtain

j

j

j

i

i

n i n j

n i n j

n i n j

1 1

1 1

1 1

+ - + -

+ - + -

+ - + -

,Cov

Var Var E E

Var Var E E

z z

z z

z z

r

r

1 1

1 1

i

j i

j i

- - =

= - -

+ z

U

* *

* *

* *

U

U U

U U

Ua ab

` ` a a

a a ` `

k kl

j j k k

k k j j

with the correlation coefficients

j ji , ,Cov Var Varr j i i=U U U UU` ` `j j j

i n i n j n i n j1 1 1 1+ - + - + - + -, .Cov Var Varz z z zr 1 1j = - -z * * * *a a ak k k
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Thus, we only have to estimate these correlation coefficients as we have esti-
mates for all the other terms. If the actuary does not has the possibility to
obtain data-based estimates for rU

ij (e.g. from repricing) and r z
ij , he may simply

use one of the two estimates rU
ij as given above (after (5)) and

i
n i n j

n j n i

1 1

1 1

+ - + -

+ - + -

r
z z

z z

1

1
j =

-

-
z

* *

* *

a

a

k

k

for i < j and z*
1 # … # z*

n + 1.

The latter estimate stems from assuming a Dirichlet distribution (which is a gen-
eralization of the Beta distribution) for y*

1, …, y*
n . Thus we finally get

ji i. . . . ,s e s e ovR R C R R2
<

BF BF

i

n
BF BF

i j

2 2

1

= +
=

! !ab ab akl kl k

with 

Cov(Ri
BF, Rj

BF) = rU
ij s.e.(Ui ) s.e.(Uj) (1 – z*

n + 1– i) (1 – z*
n + 1– j)

+ rz
ij s.e.(z*

n + 1– i) s.e.(z*
n + 1– j) Ui Uj .

6. NUMERICAL EXAMPLE

The paid triangle of Exhibit A of Mack (2006) with n = 13 is used as exam-
ple and we keep the initial ultimate claims estimates Ui (Exhibit C, column (I))
from there (see also Table 2 below, second column). In a first approach, we also
keep the development pattern z*

k (= bk of Exhibit C, row (9), of Mack (2006)),
see the row ‘selected z’ in the first block of Table 1 below. This pattern can also
be obtained – except for rounding differences – from the raw estimates y1k
according to (3) by manually smoothing with the selections y*

8 = 8%, y*
9 = 5%,

y*
10 = 3.7%, y*

11 = 2.1%, y*
12 = 1.5%, y*

13 = 1.4% and a tail ratio y*
14 = 3.5%,

see the second and third row of Table 1 below. In Mack (2006), this tail ratio
was based on the calculation for the incurred data. From the pattern and the
initial Ui the reserve estimates Ri

BF1 = Ui( y*
n+2– i +…+ y*

n+1) = Ui (1 – z*
n + 1– i) are

calculated. These reserves, see the fourth column of Table 2, are thus the same
as in Mack (2006) except for rounding differences.

For the prediction error, we first select s 2*
k . For this purpose, we calculate

the raw s 1 2k according to (4) and plot ln(s 1 2k ) against | y*
k | for the decreasing

part k $ 4. We see that the plot looks reasonably smooth. Crucial cases are
always s1 2n –1 and s1 2n –2 which rely on very few data. Here (n = 13), according
to the plot, s1 2n – 2 = 21.8 and s1 2n –1 = 19.5 seem to be rather small. Thus, we adjust
these to s 2*

n – 2 = s 2*
11 = 30, s 2*

n – 1 = s 2*
12 = 25, leave s 1 2k , 1 # k # 10, as they are,

i.e. s2*
k = s12k , and manually select from the plot the missing values s2*

13 = 20 (over
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y*
13 = 1.4%) and s 2*

14 = 35 (over y*
14 = 3.5%). With these selections for s2*

k we cal-
culate s.e. (y*

k ) for 1 # k # n = 13 according to (6) and find the resulting values
and their coefficients of variation plausible. Then, we have to quantify our
uncertainty in y*

14 = 3.5% and select it to be s.e.(y*
14) = 1.5% assuming a 95%-

range from 0.5% up to 6.5%. This fits well to the s.e. of y*
10 which is close to

y*
14. Now we calculate s.e.(z*

k) according to (7). All estimates and selections are
shown in the first block of Table 1, where a bold number indicates a pure selec-
tion or a change from the raw estimate.

Finally, we have to select s.e.(Ui). In this example, we have an extreme pre-
mium cycle: The ultimate claims ratios Ui /vi first decrease to 63%, then increase
to 277%, then decrease again to 69% (see Mack (2006)). Thus, an application
of equation (5) does not make sense. In Mack (2006), on-level premium fac-
tors r*

i were estimated which bring all accident years on about the same claims
ratio level. Then, the prior Ui were chosen to be 

Ui = ni r*
i m*( y11 +…+ y1n+1)

with y1k according to (3) and a certain constant factor m*. We can assume that
the variability of r*

i m* is small compared to the one of y11 +…+ y1n+1. Then we
have

Var(Ui) . (ni r*
i m*)2Var(y11 +…+ y1n+1) = (ni r*

i m*)2 (Var(y11) +…+ Var(y11))

because the y1k’s are fully independent due to BF1 as they do not have to add
up to unity. As in the derivation of (6), we have

Var(y1k) . jks
j

n k2

1

1

=

+ - U! ,

i.e. we take (s.e.(y1k))2 = (s.e.(y*
k ))2 = jk .s

j

n k2

1

1

=

+ - U!

Finally, in order to get rid of the factor ni r*
i m*, we consider the coefficient of

variation and obtain

. .
. .
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=
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U
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As we have ignored the variability of r*
i m* and have eliminated the full premium

cycle (which probably would not have been achieved a priori), we deliberately
increase this c.v. to c.v.(Ui) = 10% for all accident years i. This is considered to
be a rather high uncertainty for an estimate of E(Ui) for classical insurance
business because, e.g. for Ui /vi = 90%, this corresponds to a wide 95% confidence
range of (72%; 108%) – note that this is the range for E(Ui) and not for Ui !
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Note further that this approach only works for prior estimates Ui which
were obtained in this specific way. It cannot be applied to estimates Ui obtained
differently, e.g. via repricing, because each approach to Ui has its own uncer-
tainties. Normally, c.v.(Ui) will not be the same for all accident years but will
be lower for years with higher volume. In our example, we leave c.v.(Ui) = 10%
constant (see the third column of Table 2) assuming the varying volume has
essentially been caused by writing varying shares of the same treaties. With these
selections, we obtain the error estimates shown in the block ‘Bornh/Ferg 1’ of
Table 2.

We also may apply the alternative estimation procedure described in Sec-
tion 4: Then, we do not use the pattern of Mack (2006) but start with the orig-
inal raw y1k according to (3) (see second row of Table 1) and select as last pay-
ment year k2 = 20. Looking at the plot of ln(| y1k | ) against k, we select k1 = 3
and take an initial smoothing regression ln(yk) = a – bk with a = –0.03874 and
b = 0.3632 for k > k1. With the resulting initial values for yk, initial values for
s1 21 , …, s1 2n –1 are calculated according to (4) which then are kept fixed during the
following minimization of Q (without the term for i = 1 and k = n = 13). The
minimum 79.98 is obtained at y*

1 = 0.65%, y*
2 = 4.7%, y*

3 = 13.0%, a = –0.4003
and b = 0.2920 which leads to y*

14 = 3.9% by adding up the extrapolated values
for yk from k = 14 to k = 20. For the other y*

k (from the new regression) and the
resulting z*

k see the block ‘Alternative Estimates’ of Table 1. Then the corres-
ponding new s1 2k are calculated according to (4) and the resulting values ln(s1 2k )
are plotted against | y*

k | for k > k1. In view of this plot, we change s1 212 = 18.7 to
s2*

12 = 25 and select s2*
13 = 23 and s2*

14 = 36. Finally, we calculate s.e.(y*
k ) according

to (6) and select c.v.(y*
14) = 50% which gives s.e.(y*

14) = 1.93. The resulting
reserves Ri

BF2, see Table 2, block ‘Bornh/Ferg 2’, are slightly higher than Ri
BF1

for the old years and slightly lower for the new ones. The amounts (not the
%ages) of the prediction error (using c.v.(Ui) = 10% as before) are all a little
bit higher. Using rU

ij = 1/(1 + | i – j | ), the overall reserve is RBF2 = 875.497 with
a prediction error of 72.940 consisting of an estimation error of 62.770 and a
process error of 37.152.

As comparison we apply the Chain Ladder method, too. All parameters
used are given in the last block of Table 1. We have replaced the last four raw
age-to-age factors with 1.04, 1.03, 1.02, 1.015 and selected a tail factor of 1.04.
The latter is in accordance with the tail ratio of 3.5%-3.9% used above. From the
age-to-age factors we can derive the corresponding cumulative development pat-
tern zk as described in Section 2. The resulting values shown in Table 1 are close
to the z-estimates of the two BF approaches but not identical. The imple-
mentation of the tail factor into the formulae for the prediction error has been
done according to Mack (1999). The raw sigma-parameters (see Mack (1993)
or Mack (1999)) have been kept and were supplemented with s 2

n = 18 and
s 2

n+1 = 40 on basis of a plot of ln(s 2
k ) against ln(| fk – 1|). Finally, for the tail

factor, s.e.( fn+1) = 0.02 was assumed, i.e. a 95%-range from 1.00 to 1.08. This
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yields the results shown in the last block of Table 2. The CL reserves are close
to the ones of BF except for the most recent years 2003 and 2004: In 2003,
the CL reserve is about half of the BF reserve, whereas in 2004 the CL reserve
is more than twice the BF reserve. This higher volatility is reflected in the
markedly higher prediction errors for i $ 1999, caused by a much higher process
error. The CL and BF reserve estimates for 1992-2002 are not significantly dif-
ferent (i.e. not different by more than 2 · s.e.(Ri)). But the reserves for 2003 are
judged as being different by either method; the 2004 reserves are only different
from the BF viewpoint whereas the CL estimation error is so large that the BF
reserve is not judged to be different although it is less than 50% of the CL reserve.
This is a good example for the fact that CL often cannot be reasonably applied
in the standard way for new accident years in Excess business where almost
nothing is paid in the first development year(s).
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