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Abstract

Financial contracts with options that allow the holder to extend the contract maturity
by paying an additional fixed amount have found many applications in finance. Closed-
form solutions for the price of these options have appeared in the literature for the case
when the contract for the underlying asset follows a geometric Brownian motion with
constant interest rate, volatility and nonnegative dividend yield. In this paper, option
price is derived for the case of the underlying asset that follows a geometric Brownian
motion with time-dependent drift and volatility, which is more important for real life
applications. The option price formulae are derived for the case of a drift that includes
nonnegative or negative dividend. The latter yields a solution type that is new to the
literature. A negative dividend corresponds to a negative foreign interest rate for foreign
exchange options, or storage costs for commodity options. It may also appear in pricing
options with transaction costs or real options, where the drift is larger than the interest
rate.

2010 Mathematics subject classification: 91G20.

Keywords and phrases: exotic options, extendible maturities, holder-extendible option,
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1. Model

Financial contracts with options that allow the holder to extend the contract maturity
by paying an additional fixed amount have found many applications in finance. The
European option with extendible maturity (written on the underlying asset Xt) can
be exercised by the holder on a decision time T1 using strike K1. The holder may
also exercise the option later at some maturity T2 > T1, using strike K2, by paying
an extra premium A > 0 at time T1. Denote the value of this option at time t ≤ T1
as Q(Xt, t; K1, K2, T1, T2); we want to find the fair value of this option today at time
t = T0 = 0. At time T1, the payoffs for the holder-extendible call and put options are

QC(XT1 ,T1; K1,K2,T1,T2) = max(XT1 − K1,C(XT1 ,T1; K2,T2) − A, 0), (1.1)
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and

QP(XT1 ,T1; K1,K2,T1,T2) = max(K1 − XT1 , P(XT1 ,T1; K2,T2) − A, 0), (1.2)

respectively. Here, C(Xt, t; K, T ) and P(Xt, t; K, T ) are the standard European call and
put options (so-called vanilla options) at time t, respectively, for the underlying asset
value Xt (referred to as spot value), strike K and maturity at time T , that is, their
payoffs at maturity are max(XT − K, 0) and max(K − XT , 0), respectively.

Applications of these options include extendible options on foreign exchange,
nondividend and continuous dividend yield stocks, real estate, bonds, and so on. For
example, the standard holder-extendible option in foreign exchange (FX) allows the
holder to extend the maturity of an FX vanilla option by paying an extra premium. An
option on real estate often allows the option holder to extend the contract expiry date by
paying an additional amount to the option writer. In general, any contract that involves
rescheduling payments can be viewed as a contract with extendible option. Closed-
form solutions for these options were presented by Longstaff [6], Haug [4, p. 48],
Chung and Johnson [2], and Chateau and Wu [1] for the case when the underlying
asset Xt follows a geometric Brownian motion with a constant drift and volatility. Of
course, the Monte Carlo method, direct integration and other numerical methods can
also be used to price these options. For example, Ibrahim et al. [5] have applied fast
Fourier transform to the valuation of extendible options.

In this paper, we consider a geometric Brownian motion model with a time-
dependent drift and volatility, which is still important for practical applications, and
derive a closed-form solution for holder-extendible options in the case of a drift that
can include nonnegative or negative dividend. The latter case yields a new solution
type that has not been studied in the literature. We also fix several typographical errors
in the formula for the holder-extendible put option presented in Longstaff [6, equation
12] and Haug [4, equation 2.15, p. 48].

Let Q be a risk-neutral probability measure under which the underlying asset Xt

follows the stochastic risk-neutral process

dXt = Xtµ(t) dt + Xtσ(t) dWt, (1.3)

where Wt is the standard Brownian motion, σ(t) is the instantaneous volatility, µ(t) =

r(t) − q(t) is the risk-neutral drift, r(t) is the risk-free domestic interest rate and q(t) is
a known continuous function of time (hereafter referred to as dividend). This model
is often used for pricing a holder-extendible option on a foreign exchange rate, where
q(t) corresponds to the foreign interest rate. In the case of an option on a dividend
paying stock, q(t) corresponds to the continuous dividend yield. Assuming constant
drift and volatility, Longstaff [6] and Chung and Johnson [2] have considered the case
of zero dividend q(t) = 0; Haug [4] and Chateau and Wu [1] have considered the case
of nonnegative dividend q(t) ≥ 0. In this paper, we allow for a negative dividend q(t)
(for example, negative foreign interest rate in the case of FX options), leading to a new
solution type that has not been considered in the literature. Also, the drift and volatility
are allowed to be time-dependent.
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For the stochastic process (1.3), the joint distribution of ln XT1 and ln XT2 , given X0,
is a bivariate normal distribution with

E[ln XTi | ln X0] = ln X0 +

∫ Ti

0

(
r(τ) − q(τ) −

1
2
σ2(τ)

)
dτ, i = 1, 2;

Cov[ln XTi , ln XT j | ln X0] =

∫ min(Ti,T j)

0
σ2(τ) dτ, i, j = 1, 2.

(1.4)

According to the standard option valuation methodology, the Black–Scholes
framework generalized by Harrison and Pliska [3], a fair price of the holder-extendible
option at t = 0 is a conditional expectation (with respect to the risk-neutral probability
measure Q)

Q(X0, 0; K1,K2,T1,T2) = exp
(
−

∫ T1

0
r(τ) dτ

)
EQ[Q(XT1 ,T1; K1,K2,T1,T2)|X0], (1.5)

where Q(XT1 , T1; K1, K2, T1, T2) is given by (1.1) and (1.2) for the holder-extendible
call and put options, respectively. The above expectation can be calculated using (1.4)
and integral identities (see the Appendix) in closed-form as demonstrated in the
following sections. We derive option price formulas for both the holder-extendible
call and the holder-extendible put options, and the formulae are derived for the cases
of nonnegative and negative dividend.

2. Notation and definitions
Hereafter, the following notation and identities are used.

• Model parameters are

qi j =
1

T j − Ti

∫ T j

Ti

q(τ) dτ, ri j =
1

T j − Ti

∫ T j

Ti

r(τ) dτ, µi j = ri j − qi j,

σ2
i j =

1
T j − Ti

∫ T j

Ti

σ2(τ) dτ and ρ =
σ01
√

T1

σ02
√

T2

for Ti < T j and i, j = 0, 1, 2.
• Transformation functions are

g1(y) =
ln(y/X0) − µ01T1 + σ2

01T1/2

σ01
√

T1
, g̃1(y) = g1(y) − σ01

√
T1,

g2(y) =
ln(y/X0) − µ02T2 + σ2

02T2/2

σ02
√

T2
, g̃2(y) = g2(y) − σ02

√
T2,

with their inverses

g−1
1 (y) = X0 exp

(
µ01T1 −

1
2σ

2
01T1 + σ01

√
T1y

)
,

g−1
2 (y) = X0 exp

(
µ02T2 −

1
2σ

2
02T2 + σ02

√
T2y

)
.

(2.1)
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• Critical values of the underlying asset defining exercise regions on a decision
time are denoted as {I1, I2, I3} for the holder-extendible call option, and
{J0, J1, J2} for the holder-extendible put option.
• We use N(·) and N2(·, ·; ρ) to denote the standard normal distribution and

the standard bivariate normal distribution with correlation ρ, respectively;
their densities are denoted as n(x) and n2(x, y; ρ), respectively. We use
M2(a,b, c,d;ρ) to denote the probability of the standard bivariate normal density
with correlation ρ for the region [a, b] × [c, d], and M(a, b) to denote the
probability of the standard normal density in the interval [a, b] that can be
expressed through N(·) and N2(·, ·; ρ) as given in Section 5.
• The standard European call and put prices at time Ti with maturity T j > Ti are

C(x,Ti; K,T j) = xe(µi j−ri j)(T j−Ti)N(d1) − Ke−ri j(T j−Ti)N(d2),
P(x,Ti; K,T j) = Ke−ri j(T j−Ti)N(−d2) − xe(µi j−ri j)(T j−Ti)N(−d1),

d1 =
ln(x/K) + (µi j + σ2

i j/2)(T j − Ti)

σi j
√

T j − Ti
, d2 = d1 − σi j

√
T j − Ti.

• To compare the calculus with Longstaff [6], one has to set

σ01 = σ02 = σ12 = σ, µ01 = µ02 = µ12 = r01 = r02 = r12 = r. (2.2)

Some notations are chosen for the purpose of easier comparison with existing results
in the literature.

3. Holder-extendible call

The decision at t = T1 to extend or exercise the call option is determined by
comparing two risky payoffs

C(XT1 ,T1; K2,T2) − A and max(XT1 − K1, 0),

and choosing the largest payoff. If the first payoff is larger then the option is extended,
otherwise it is exercised when XT1 > K1 or expires worthless when XT1 ≤ K1; for
an illustrative example, see Figure 1. Note that the standard European call option
C(x,T1; K2,T2) is calculated at time T1 for maturity at T2.

Denote the region of XT1 = x where the option is extended as

ΩC = {x ≥ 0 | C(x,T1; K2,T2) − A > max(x − K1, 0)},

and the region where it is exercised as

ΩC = {x > K1 | x − K1 ≥ C(x,T1; K2,T2) − A}.

For all other values of XT1 , the option expires worthless. Then, using transformation of
XT1 and XT2 to the random variables, Z1 = g1(XT1 ) and Z2 = g1(XT2 ), from the standard
normal distribution, today’s price (1.5) of the holder-extendible call option
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Figure 1. Some possible holder-extendible call option payoffs on a decision time T1. The payoff is
determined by choosing the largest value between the solid line C(x, T1; K2, T2) − A and the dashed line
max(x − K1, 0). The case of positive dividend q12 > 0 may lead to cases in (a) and (e), q12 = 0 may lead
to cases in (a), (b) and (e); and q12 < 0 may lead to cases in (b–d).

QC(X0, 0; K1,K2,T1,T2)

= e−r01T1

∫ ∞

−∞

max(C(x1,T1; K2,T2) − A, x1 − K1, 0)n(z1) dz1

= e−r02T2

∫
x1∈ΩC

dz1

∫ ∞

g2(K2)
(x2 − K2)n2(z1, z2; ρ) dz2

− e−r01T1 A
∫

x1∈ΩC

n(z1) dz1 + e−r01T1

∫
x1∈ΩC

n(z1)(x1 − K1) dz1. (3.1)

Here x1 = g−1
1 (z1) and x2 = g−1

2 (z2) are functions of z1 and z2, respectively, as in (2.1).
The regions ΩC and ΩC are determined using solutions (critical asset values) of

nonlinear equations

f C
1 (x) = C(x,T1; K2,T2) − A = 0, x ≥ 0, (3.2)
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and
f C
2 (x) = C(x,T1; K2,T2) − x + K1 − A = 0, x > K1. (3.3)

These can be solved numerically using, for instance, the Newton–Raphson algorithm
combined with the standard bisection algorithm.

The equation (3.2) has one solution denoted by x = I1, which is bounded as

Aeq12(T2−T1) ≤ I1 ≤ Aeq12(T2−T1) + K2e−µ12(T2−T1).

The second equation f C
2 (x) = 0 may have two, one or no solution depending on

the option characteristics (strikes, maturities, model parameters) that will determine
today’s option price. If they exist, the solutions will be denoted as I2, I3. Figure 1
illustrates some of the possible cases. Below, we consider two distinct cases of
nonnegative and negative dividend, that is, the cases q12 ≥ 0 and q12 < 0, respectively.
This is so, because if q12 ≥ 0 then f C

2 (x) = 0 may have one or no solution, and if
q12 < 0 then f C

2 (x) = 0 may have two solutions. Note that the extendible call formula
in Longstaff [6, equation 7] corresponds to the case of zero dividend, that is, q12 = 0.

All conditions listed in Sections 3.1 and 3.2 on option characteristics to determine
the solution type can be proved using the facts that the European call option price
C(x,T1; K2,T2) is a continuous and increasing function of x, and its first derivative is

∆C(x) =
∂C(x,T1; K2,T2)

∂x

= e−q12(T2−T1)N
( ln(x/K2) + (µ12 + σ2

12/2)(T2 − T1)

σ12
√

T2 − T1

)
. (3.4)

It is important to note that 0 ≤ ∆C(x) ≤ 1 when q12 ≥ 0, however, if q12 < 0 then
∆C(x) > 1 is possible.

3.1. Nonnegative dividend Consider the case of a nonnegative dividend, q12 ≥ 0.

• If I1 ≥ K1, then the call option is never extended (that is, f C
2 (x) = 0 has no

solutions for x > K1), and thus,

QC(X0, 0; K1,K2,T1,T2) = C(X0, 0; K1,T1),

which is a standard European call option. This is the case illustrated by
Figure 1(e).
• If I1 < K1, then the nonlinear equation f C

2 (x) = 0 (for x > K1) has either
one solution denoted as I2, or none as illustrated by Figure 1(a) and 1(b),
respectively. In the case of one solution I2, the call option is extended when
I1 < XT1 < I2, exercised when XT1 ≥ I2, and it expires worthless when XT1 ≤ I1.
If there is no solution, then the call option is extended when I1 < XT1 , and it
expires worthless when I1 ≥ XT1 . In particular,

(I) if q12 > 0, then there is a finite I2,
(II) if q12 = 0, then I2 is finite when K1 − A − K2e−r12(T2−T1) < 0; and f C

2 (x) = 0
has no finite solution when K1 − A − K2e−r12(T2−T1) ≥ 0.
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Then, today’s price of the holder-extendible call option can be calculated by
integrating (3.1) with ΩC = [I1, I2] and ΩC = [I2,∞) to obtain

QC(X0, 0; K1,K2,T1,T2) = C(X0, 0; K1,T1)
+ X0e(µ02−r02)T2 M2(−g̃1(I2),−g̃1(I1),−∞,−g̃2(K2); ρ)
−K2e−r02T2 M2(−g1(I2),−g1(I1),−∞,−g2(K2); ρ)
− Ae−r01T1 M(−g1(I2),−g1(I1))
− X0e−q01T1 M(−g̃1(I2),−g̃1(K1))
+ K1e−r01T1 M(−g1(I2),−g1(K1)). (3.5)

Note that the case when f C
2 (x) = 0 has no solution can be treated by setting I2 = ∞.

This expression (3.5) reduces to the original Longstaff [6, equation 7] formula for
the holder-extendible call option after setting parameters as in (2.2), and using the
Longstaff [6] notation

γ1 = −g̃1(I2), γ2 = −g̃1(I1), γ3 = −g̃2(K2), γ4 = −g̃1(K1).

Example 3.1. Consider the holder-extendible call option with initial maturity of T1 = 1
year that can be extended to T2 = 2 years. The model parameters are: spot value
X0 = 0.9, strike on decision K1 = 0.9, strike at final maturity K2 = 0.95, interest
rate r = 0.02, dividend q = 0, volatility σ = 0.3 and extra premium A = 0.03. The
payoffs and critical values are shown in Figure 1(a). Solving nonlinear equations (3.2)
and (3.3) via the bisection algorithm gives critical values I1 ≈ 0.734 and I2 ≈ 1.074.
Finally, using formula (3.5), it is found that today’s price of the holder-extendible call
option is QC(X0, 0; K1,K2,T1,T2) ≈ 0.129.

3.2. Negative dividend The case of a negative dividend, q12 < 0, is slightly
complicated. This is because the first derivative of the European call option ∆C(x)
(see (3.4)) can become greater than one.
• If I1 > K1 then nonlinear equation (3.3) has one finite solution I2, and the call
option is extended when XT1 > I2, as shown in Figure 1(d). The price is calculated
by integrating (3.1) with ΩC = [I2,∞) and Ω = [K1, I2]

QC(X0, 0; K1,K2,T1,T2) = C(X0, 0; K1,T1)
+ X0e−q02T2 N2(−g̃1(I2),−g̃2(K2); ρ)
−K2e−r02T2 N2(−g1(I2),−g2(K2); ρ)
− Ae−r01T1 N(−g1(I2)) − X0e−q01T1 N(−g̃1(I2))
+ K1e−r01T1 N(−g1(I2)).

• If I1 ≤ K1 then nonlinear equation (3.3) has either two solutions I2 and I3 (with
I3 ≥ I2 ≥ I1, as illustrated in Figure 1(c), and the call option is extended if I1 < XT1 < I2

or XT1 > I3) or none, as illustrated in Figure 1(b). For the latter, the call option is
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extended if XT1 > I1. Specifically, f C
2 (x) has a minimum at x = x∗c where d f C

2 (x)/dx =

0. Using (3.4), it is found that

x∗c = K2 exp
(
σ12

√
T2 − T1F−1

N (eq12(T2−T1)) − (µ12 + 1
2σ

2
12)(T2 − T1)

)
,

f C
2 (x∗c) = K1 − A − K2e−r12(T2−T1)N(F−1

N (eq12(T2−T1))),

where F−1
N (·) is the inverse of the standard normal distribution function. Thus, if

f C
2 (x∗c) < 0 then there are two finite solutions, otherwise there is no solution. In the

case of no solution, the price is given by (3.5) with I2 set to ∞. In the case of two
solutions, I2 and I3 can be found, for example, via the bisection algorithm for [K1, x∗c)
and [x∗c,∞), respectively, and integration in (3.1) with ΩC = {(I1, I2) ∪ (I3,∞)} and
ΩC = [I2; I3] gives

QC(X0, 0; K1,K2,T1,T2) = C(X0, 0; K1,T1)
+ X0e−q02T2 [M2(−g̃1(I2),−g̃1(I1),−∞,−g̃2(K2); ρ) + N2(−g̃1(I3),−g̃2(K2); ρ)]
−K2e−r02T2 [M2(−g1(I2),−g1(I1),−∞,−g2(K2); ρ) + N2(−g1(I3),−g2(K2); ρ)]
− Ae−r01T1 [M(g1(I1), g1(I2)) + N(−g1(I3))]
+ X0e−q01T1 [M(̃g1(I2), g̃1(I3)) − N(−g̃1(K1))]
−K1e−r01T1 [M(g1(I2), g1(I3)) − N(−g1(K1))]. (3.6)

Example 3.2. Consider the holder-extendible call option with initial maturity T1 =

1 year, which can be extended to T2 = 2 years. The model parameters are: spot
value X0 = 0.9, strike on decision K1 = 0.9, strike at final maturity K2 = 1.4, interest
rate r = 0.02, dividend q = −0.28, volatility σ = 0.3 and extra premium A = 0.03.
The payoffs and critical values are shown in Figure 1(c). Solving the nonlinear
equation (3.2) via the bisection algorithm gives critical value I1 ≈ 0.771. Using
conditions listed in this section, it is easy to find that the nonlinear equation (3.3)
has two solutions I2 ≈ 1.024 and I3 ≈ 1.459, obtained via the bisection algorithm for
[K1, x∗c) and [x∗c,∞), respectively. Finally, using formula (3.6), one may find that
today’s price of the holder-extendible call is QC(X0, 0; K1,K2,T1,T2) ≈ 0.357.

4. Holder-extendible put

The decision at T1 to extend or exercise the put option is determined by comparing
two risky payoffs

P(XT1 ,T1; K2,T2) − A and max(K1 − XT1 , 0)

and choosing the largest payoff. If the first payoff is larger then the option is extended,
otherwise it is exercised when XT1 < K1, or expires worthless when XT1 ≥ K1; for
an illustrative example, see Figure 2. Note that the standard European put option
P(x,T1; K2,T2) is calculated at time T1 for maturity at T2.

Denote the region of XT1 values where the put option is extended as

ΩP = {x ≥ 0 : P(x,T1; K2,T2) − A > max(K1 − x, 0)},
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Figure 2. Possible holder-extendible put payoffs on a decision time T1. The payoff is determined by
choosing the largest value between solid line P(x, T1; K2, T2) − A and dashed line max(K1 − x, 0). The
case of positive dividend q12 ≥ 0 may lead to cases shown in (a), (b) and (e), and q12 < 0 may lead to
cases in (a–e).

and the region where it is exercised as

ΩP = {0 ≤ x < K1 : K1 − x ≥ P(x,T1; K2,T2) − A}.

For all other values of XT1 , the option expires worthless. Then the holder-extendible
put option price can be written as

QP(X0, 0; K1,K2,T1,T2)

= e−r01T1

∫ ∞

−∞

max(P(x1,T1; K2,T2) − A,K1 − x1, 0)n(z1) dz1

= e−r02T2

∫
x1∈ΩP

dz1

∫ g2(K2)

−∞

(K2 − x2)n2(z1, z2; ρ) dz2

− e−r01T1 A
∫

x1∈ΩP

n(z1) dz1 + e−r01T1

∫
x1∈ΩP

n(z1)(K1 − x1) dz1, (4.1)

where x1 = g−1
1 (z1) and x2 = g−1

2 (z2) are functions of z1 and z2, as given by (2.1).
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The regions ΩP and ΩP can be determined using critical asset values which are
solutions of nonlinear equations

f P
1 (x) = P(x,T1; K2,T2) − K1 + x − A = 0, 0 ≤ x < K1, (4.2)

and
f P
2 (x) = P(x,T1; K2,T2) − A = 0, x ≥ 0. (4.3)

As in the case of the holder-extendible call option, these can be solved numerically
using the Newton–Raphson algorithm combined with the standard bisection algorithm.

If A > P(0, T1; K2, T2) = K2e−r12(T2−T1), then f P
2 (x) < 0 for all x ≥ 0, and thus the

put option is never extended, that is, QP(X0, 0; K1, K2, T1, T2) = P(X0, 0; K1, T1).
Otherwise, f P

2 (x) = 0 has one solution denoted as x = J2, and this case is considered
hereafter.

The first equation f P
1 (x) = 0 may have no solution, one solution (denoted as J1) or

two solutions (denoted as J0 and J1) depending on the option characteristics (strikes,
maturities, model parameters) that will determine today’s option price. Figure 2
illustrates all such possibilities. Below, we consider the cases of nonnegative and
negative dividend, that is, the cases q12 ≥ 0 and q12 < 0, respectively. Similar to the
holder-extendible call option, f P

1 (x) = 0 may have one or no solution if q12 ≥ 0, and
two solutions if q12 < 0. Note that the extendible put formula in Longstaff [6, equation
12] corresponds to the case of zero dividend q12 = 0.

All conditions listed in Sections 4.1 and 4.2 on option characteristics to determine
solution type can easily be proved using the facts that the European put price
P(x, T1; K2, T2) is continuous and a decreasing function of x, and its first derivative

∆P(x) =
∂P(x,T1; K2,T2)

∂x

= e−q12(T2−T1)
[
N
( ln(x/K2) + (µ12 + σ2

12/2)(T2 − T1)

σ12
√

T2 − T1

)
− 1

]
(4.4)

is negative. It is important to note that −1 ≤ ∆P(x) ≤ 0 when q12 ≥ 0, however, if
q12 < 0 then ∆P(x) < −1 is possible.

4.1. Nonnegative dividend Here we consider the case of a nonnegative dividend
q12 ≥ 0.

• If J2 ≤ K1 then the put option is never extended, and thus,

QP(X0, 0; K1,K2,T1,T2) = P(X0, 0; K1,T1),

which is a standard European put option, as shown in Figure 2(e).
• If J2 > K1 the nonlinear equation (4.2) may have one solution J1 (that is, the

option is extended if J1 < XT1 < J2) or none as shown in Figure 2(a) and 2(b),
respectively. The latter case corresponds to the put option, which is extended
for XT1 < J2. In particular, if K1 < K2e−r12(T2−T1) − A then there are no solutions,
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otherwise, there is one finite solution J1. Then, today’s price can be calculated
by integrating (4.1) with ΩP = [J1, J2] and ΩP = [0, J1] (the case when f P

1 (x) has
no solution can be treated by setting J1 = 0) to obtain

QP(X0, 0; K1,K2,T1,T2) = P(X0, 0; K1,T1)
− X0e(µ02−r02)T2 M2(̃g1(J1), g̃1(J2),−∞, g̃2(K2); ρ)
+ K2e−r02T2 M2(g1(J1), g1(J2),−∞, g2(K2); ρ)
− Ae−r01T1 M(−g1(J2),−g1(J1))
+ X0e(µ01−r01)T1 M(−g̃1(K1),−g̃1(J1))
−K1e−r01T1 M(−g1(K1),−g1(J1)). (4.5)

This formula appeared in the literature with typographical errors. To make a
comparison easier, rewrite the formula using Longstaff’s [6] notation

γ1 = −g̃1(J2), γ2 = −g̃1(J1), γ3 = g̃2(K2), γ4 = −g̃1(K1).

Then the holder-extendible put option can be written as

QP(X0, 0; K1,K2,T1,T2) = P(X0, 0; K1,T1)
− X0e(µ02−r02)T2 M2(−γ2,−γ1,−∞,−γ3; ρ)

+ K2e−r02T2 M2(σ01
√

T1 − γ2, σ02
√

T2 − γ1,−∞, σ02
√

T2 − γ3; ρ)

− Ae−r01T1 M(γ1 − σ01
√

T1, γ2 − σ01
√

T1)
+ X0e(µ01−r01)T1 M(γ4, γ2)

−K1e−r01T1 M(γ4 − σ01
√

T1, γ2 − σ01
√

T1).

After setting parameters as in (2.2), the difference between this formula (see
underlined terms) and Longstaff’s formula [6, equation 12] is clear. For the
latter, γ3, γ3 − σ

√
T2 and ρ should be changed to −γ3, −γ3 + σ

√
T2 and −ρ,

respectively, and the factor in the third term, exp(−r(T2 − T1)), should be
replaced with exp(−rT2). Also, note that the formula for the holder-extendible
put option in Haug [4, equation 2.15, p. 48] has a typographical error where ρ
should be changed to −ρ. When comparing the formulas the following symmetry
property is useful:

M2(a, b, c, d, ρ) = M2(−b,−a, c, d,−ρ).

Example 4.1. Consider the holder-extendible put option with initial maturity T1 =

1 year that can be extended to T2 = 2 years. The model parameters are: spot value
X0 = 0.9, strike on decision K1 = 0.9, strike at final maturity K2 = 0.9, interest rate
r = 0.02, dividend q = 0, volatility σ = 0.3, extra premium A = 0.03. The payoffs and
critical values are shown in Figure 2(a). Solving nonlinear equations (4.2) and (4.3)
via the bisection algorithm gives critical values J1 ≈ 0.758 and J2 ≈ 1.157. Finally,
using formula (4.5), it is found that today’s price of the holder-extendible put is
QP(X0, 0; K1,K2,T1,T2) ≈ 0.113.
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4.2. Negative dividend The case of a negative dividend, q12 < 0, is slightly more
complicated due to the fact that the first derivative of the European put option ∆P may
become less than −1 (see (4.4)).

• If J2 < K1 then nonlinear equation (4.2) has either one finite solution J1, and
the put option is extended if XT1 < J1, or none, as shown in Figure 2(d) and
Figure 2(e), respectively. Specifically, if K1 < K2e−r12(T2−T1) − A, then there is
one solution, otherwise there is no solution. If there is no solution then the
put option is never extended, that is, QP(X0, 0; K1,K2,T1,T2) = P(X0, 0; K1,T1).
Otherwise, the price is calculated by integrating (4.1) with ΩP = [0, J1] and
ΩP = [J1,K1] to obtain

QP(X0, 0; K1,K2,T1,T2) = P(X0, 0; K1,T1) − X0e−q02T2 N2(̃g1(J1), g̃2(K2); ρ)
+ K2e−r02T2 N2(g1(J1), g2(K2); ρ) − Ae−r01T1 N(g1(J1))
+ X0e−q01T1 N (̃g1(J1)) − K1e−r01T1 N(g1(J1)).

• If J2 ≥ K1 then nonlinear equation (4.2) has either two solutions J0 and J1

(the put option is extended if 0 < XT1 < J0 or J1 < XT1 < J2), one solution (the
put option is extended if J1 < XT1 < J2) or none (the put option is extended
if XT1 > J1). These three cases are shown in Figures 2(c), 2(a) and 2(b),
respectively. Specifically, f P

1 (x) has a minimum at x = x∗p where d f P
1 (x)/dx = 0.

Using (4.4), it is easy to find that

x∗p = K2 exp
(
σ12

√
T2 − T1F−1

N (d) − (µ12 + 1
2σ

2
12)(T2 − T1)

)
,

f P
1 (x∗p) = K2e−r12(T2−T1)N

(
σ12

√
T2 − T1 − d

)
− A − K1,

where F−1
N (·) is the inverse of the standard normal distribution function and

d = F−1
N (1 − eq12(T2−T1)). Thus, if f P

1 (x∗p) > 0 then there is no solution, and the
price can be calculated using (4.5) with J1 set to zero. If f P

1 (x∗p) ≤ 0 and
K1 > K2e−r12(T2−T1) then there is one finite solution J1, and the price can be
calculated using (4.5). If f P

1 (x∗p) ≤ 0 and K1 ≤ K2e−r12(T2−T1) then there are two
finite solutions J0 ≤ J1. For the last case, J0 and J1 can be found via the bisection
algorithm for [0, x∗p] and [x∗p,K1], respectively, and the integration in (4.1) with
Ω = {[0, J0) ∪ (J1, J2)} and ΩP = [J0, J1] gives

QP(X0, 0; K1,K2,T1,T2) = P(X0, 0; K1,T1)
− X0e−q02T2 [N2(̃g1(J0), g̃2(K2); ρ) + M2(̃g1(J1), g̃1(J2),−∞, g̃2(K2); ρ)]
+ K2e−r02T2 [N2(g1(J0), g2(K2); ρ) + M2(g1(J1), g1(J2),−∞, g2(K2); ρ)]
− Ae−r01T1 [N(g1(J0)) + M(g1(J1), g1(J2))]
− X0e−q01T1 [M(̃g1(J0), g̃1(J1)) − N (̃g1(K1))]
+ K1e−r01T1 [M(g1(J0), g1(J1)) − N(g1(K1))]. (4.6)
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Example 4.2. Consider the holder-extendible put with initial maturity T1 = 1 year that
can be extended to T2 = 2 years. The model parameters are: spot value X0 = 0.9,
strike on decision K1 = 0.9, strike at final maturity K2 = 1.1, interest rate r = 0.02,
dividend q = −0.28, volatility σ = 0.3 and extra premium A = 0.03. The payoffs and
critical values are shown in Figure 2(c). Solving the nonlinear equation (4.3) via the
bisection algorithm gives critical value J2 ≈ 1.107. Using conditions listed in this
section, it is easy to find that the nonlinear equation (4.2) has two solutions J0 ≈ 0.468
and J1 ≈ 0.779 that we find via the bisection algorithm applied to regions [0, x∗p] and
[x∗p, K1], respectively. Finally, using formula (4.6), we find that today’s price of the
holder-extendible put is QP(X0, 0; K1,K2,T1,T2) ≈ 0.034.

5. Conclusion

We have derived closed-form formulas for the holder-extendible call and put options
in the presence of a dividend yield that can be zero, positive or negative. A negative
dividend can correspond to a negative foreign interest rate for FX options or storage
costs for a commodity option. It may also appear in pricing options with transaction
costs or real options, where the drift is larger than the interest rate. Previously, the
zero dividend case was studied by Longstaff [6] and Chung and Johnson [2] and the
nonnegative dividend case was treated by Haug [4] and Chateau and Wu [1]. It is
important to note that a negative dividend may lead to solutions involving three critical
asset values defining decision regions, while the nonnegative dividend case leads to
solutions involving only two critical values. Finally, all formulas are derived for the
case of geometric Brownian motion with a time-dependent drift and volatility which
is important for practical applications.

Appendix. Integral formulas and identities

All integrals involved in calculation of today’s option price (3.1) and (4.1) can be
found using closed-form integrals∫ a

−∞

∫ b

−∞

n2(x, y; ρ)eβx dx dy = exp
(
β2

2

)
N2(a − β, b − βρ; ρ),∫ ∞

a

∫ ∞

b
n2(x, y; ρ)eβx dx dy = exp

(
β2

2

)
N2(β − a, βρ − b; ρ),∫ ∞

a
n(x)eβx dx = exp

(
β2

2

)
N(β − a),∫ a

−∞

n(x)eβx dx = exp
(
β2

2

)
N(a − β).

Also, the following relationships for the probability functions are used throughout the
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paper to simplify the formulas:

M2(a, b, c, d; ρ) = N2(b, d; ρ) − N2(a, d; ρ) − N2(b, c; ρ) + N2(a, c; ρ),
M2(a, b,−∞, d; ρ) = N2(b, d; ρ) − N2(a, d; ρ),

M(a, b) = N(b) − N(a).
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