THE *j*-DIFFERENTIAL AND ITS INTEGRAL

by W. H. INGRAM (Received 10th December, 1961)

The reciprocity, $dy = f(x)dg(x) \leftrightarrow y(x) - y(a) = \int_{a}^{x} fdg$, has been shown to hold when g(x) is in B^{*} [*Proc. Edin. Math. Soc.*, 12 (1960), 85]. The purpose of the present note is to show that it holds more generally and in particular when g(x) is in a subclass B'', of functions of bounded variation B, such that $B^{*} \subset B'' \subset B'$; it is assumed that f(x) is any function in D_{1} and that f(x)and g(x) are both continuous on the left and possibly with simultaneous

Definition. By B'' is to be understood that subclass of B' such that if g(x) is in B'' and $v_{jg}(x) = \lim_{\sigma} \sum_{\sigma/[ax)} |jg|$ is the total variation of jg(x) over [ax], then $\lim_{\delta \to +0} (v_{jg}(x+\delta)-v_{jg}(x+))/\delta = 0$ at all points $x, a \leq x < b$.

The theorems of the original paper remain true when B'' is substituted for B^* , and in fact, if g(x) has only *n* points of discontinuity in (*ab*), when B' is substituted for B^* . The demonstration is simplified when the integral

$$\lim_{\sigma} \Sigma_{\sigma/[ab)} f dg = (RJDS\sigma) \int_{a}^{b} f dg,$$

to be called the *right jump-differential Stieltjes* σ -integral, is given autonomous status.

Theorem I'. When f(x) is in D_1 and g(x) is in B', the RJDS σ -integral exists. **Proof.** $\Sigma_{\sigma_i} | jg |$, i = 1, 2, ..., is an increasing sequence, since the σ 's proceed by inclusion, and is bounded on [ab] since g(x) is in B' and therefore in B, and $f(x+)g'^+(x+)$ is in D_1 ; hence

$$\lim_{\sigma} \Sigma_{\sigma/[ab]} \{ \bar{f}jg + f(x+)g'^+(x+)dx \} = \int_a^b f dg$$

exists as the sum of the two limits.

points of discontinuity.

The elementary integral properties of paragraph 3 of the original paper hold for this integral if by $\int_{a}^{x} dg$ we understand the special case of $\int_{a}^{x} f dg$ with f(x) = 1, viz., $\int_{a}^{x} dg = g(x) - g(a)$. The mean-value lemma does not hold for the *BLDSz* integral, but the supplementary polyticity

the $RJDS\sigma$ -integral, but the supplementary relations

(1)
$$\int_{x}^{x+} f dg = \bar{f} j g$$
, (2) $\lim_{\delta \to +0} \frac{1}{\delta} \int_{x+}^{x+\delta} f dg = f(x+)g'^{+}(x+)$,

W. H. INGRAM

hold when g(x) is in B". On the one hand, we have the equation

$$\int_{x_0}^{x_0+\delta} f dg = \lim_{\sigma} \sum_{\sigma/[x_0, x_0+\delta), j} jg + (LM) \int_{x_0}^{x_0+\delta} f(x+)g'^+(x+)dx$$

of which the second term on the right vanishes with δ , by the mean-value lemma, and of which the first term is equal to

 $\overline{f}(x_0)jg(x_0) + \lim_{\sigma} \Sigma_{\sigma/(x_0, x_0+\delta)} \overline{f}jg.$

The second term here vanishes with δ because $\sum_{\sigma/(x_0, x_0+\delta)} |jg|$ is a decreasing function of δ with limit zero because, with limit k>0, |jg| would be greater than k/2 at an infinity of points which is impossible for a function in B; thus "1" holds for any function g(x) in B'. On the other hand, there is the equation

$$\lim_{\delta \to +0} \frac{1}{\delta} \int_{x_0+}^{x_0+\delta} f dg = \lim_{\delta} \frac{1}{\delta} \lim_{\sigma} \Sigma_{\sigma/(x_0, x_0+\delta)} \tilde{f} jg + \lim_{\delta} \frac{1}{\delta} \int_{x_0}^{x_0+\delta} f(x+)g'^+(x+)dx$$

where the second term on the right, by the mean-value lemma, is $f(x_0+)g'^+(x_0+)$ and where the first term is zero either because g(x) in B' has only n points of discontinuity or, otherwise, because g(x) is in B".

Theorem II'. Theorem II remains true when g(x) is in B''.

Since the $RJDS\sigma$ -integral has the same *j*-differential properties as has the *LM*-integral at each point *x*, $a \le x < b$, the two integrals are equivalent.

Integration-by-parts. Because of Theorem II', if f(x) and g(x) are in B'', then

$$\int_a^x f dg + \int_a^x g df = [fg]_a^x.$$

This follows also from the equation fdg + gdf = d(fg). Moreover, from the definitions in paragraph 1 of the original paper,

$$\int_a^x f dg + \int_a^x g df = \lim_{\sigma} \Sigma_{\sigma/[ax)} jp + \int_a^x p'^+(x+) dx = p(x) \mid_a^x,$$

where p(x) = f(x)g(x).

Theorems III and IV remain valid when g(x) is in B''.

150 CLAREMONT AVENUE NEW YORK 27

86