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Abstract
The nonlinear Schrödinger equation is a second-order nonlinear, integrable partial differential equation describing
the propagation of nonlinear waves in a variety of media, including light propagation in optical fibres. Inspired by
recently reported experiments, here we consider its generalization to higher, even orders, of derivatives correspond-
ing in optics to higher orders of dispersion. We show that none of these equations are integrable and investigate the
nature of singularities that cause the equations to fail the Painlevé test.

1. Introduction

The propagation of high-intensity light pulses as they propagate through an optical fibre or waveguide
is principally affected by dispersion, the frequency-dependence of the refractive index, and the Kerr
nonlinearity, the intensity dependence of the refractive index.1 While dispersion and nonlinearity can
be modelled to almost arbitrary degrees of accuracy [3], considerable physical insight can be had by
taking the simplest models. These usually have two elements: (i) the dispersion is quadratic, so the
inverse group velocity depends linearly on frequency with a slope of V2; and (ii) the propagation constant
of the light has a component that is linearly proportional to the light intensity, with slope W. Under these
conditions, light propagation is well described by the nonlinear Schrödinger equation

i
mk

mz
− V2

2!
m2k

mT2 + W |k |2k = 0, (1.1)

which is well-understood and is known to be integrable [28]. Here z is the propagation coordinate, k
is the envelope of the electric field and T is time in a frame moving with k. We denote the evolution
parameter as z to be consistent with the optics literature.

Many generalizations of the nonlinear Schrödinger equation have been proposed and investigated,
including more general nonlinear terms [7], coupled equations to account for the polarization of light and

1We consider propagation lengths short enough so that the loss can be neglected.
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the inclusion of higher derivatives, representing a small correction to the dominant quadratic dispersion
[17, 20]. Here we are interested in generalizations in which the dispersion is not dominated by the
quadratic term, so that the evolution equations take the form

i
mk

mz
+

M∑
k=1

(−1)k V2k

(2k)!
m2kk

mT2k + W |k |2k = 0, (1.2)

where W > 0, V2M ≠ 0 and which reverts to Eq. (1.1) when M = 1. Here 2M is both the highest dispersion
order and the highest order derivative.

Interest in Eq. (1.2) is driven by recent experiments where M takes values up to M = 5 and all lower
derivatives vanish [8, 24, 25]. In other experiments, M takes values up to M = 8 and has lower derivative
terms [19]. These experiments highlight that in a waveguide, the dispersion is a controllable parameter
and can be engineered to suit a particular experimental need. Given this interest, it is pertinent to inves-
tigate the formal mathematical properties of Eq. (1.2) and of the ordinary differential equation (ODE)
that derive from it (see below). In this paper, we consider the possible integrability of these equations.

We focus on solitary wave solutions of the form k(z, T) = ei`zv(T), which are governed by
the ODE

−` v(T) +
M∑

k=1
(−1)k V2k

(2k)!v
(2k) (T) + W v(T)3 = 0, (1.3)

where v can be taken to be real and where its superscript indicates a time derivative of the associated
order. Such solitary wave solutions play an important role in physical settings [3, 11, 17, 19, 24, 25]
and the corresponding exact reduction of the partial differential equation (PDE) to the above ODE is
suitable to study integrability via the Ablowitz–Ramani–Segur conjecture [1, 2, 15, 27].

Applying a scaling

v =

(
`

W

) 1
2

u, T = d · t,

the ODE for u = u(t) can be written as

u3 = u +
M∑

k=1
U2k u(2k) , (1.4)

with coefficients

U2k = (−1)k+1 V2k

` (2k)! d2k (1 ≤ k ≤ M).

For the purpose of studying singularities in later sections (Section 2 onwards), it is convenient to choose
d such that the highest order coefficient is normalized to equal

U2M =
(M − 1)!
(3M − 1)! , (1.5)

while for the simpler examples, d is chosen such that U2M = 1.
The requirement of the absence of odd derivatives ensures that the solution can be made real.
Some analytic solutions to Eq. (1.4) are known for specific ratios of the coefficients. Karlsson and

Höök [16], for example, showed that for M = 2 and for particular values of the U2k the equation has a
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solution in the form of the square of a hyperbolic secant. This work was subsequently generalized to
higher M and to hyperbolic secants of higher powers and linear combinations thereof [18, 21]. More
recently, analytic solutions in the form of a rapidly converging series of functions were reported by
Qiang et al. [22]. Nonetheless, the general mathematical properties of Eq. (1.4) and the PDE Eq. (1.2)
from which they are derived remain largely unexplored.

As mentioned, the nonlinear Schrödinger equation (1.1) is integrable [28]. However, the integrability
of PDE Eq. (1.2) for M > 1, or that of the ODE Eq. (1.4) which derive from it, has not been investigated
systematically. Integrability would mean that the properties and tools of integrable systems, such as
the existence of sufficiently many conserved quantities and that of Lax pairs, can be used to investigate
these equations.

The aim of this paper is to investigate the integrability and, closely related to that, singularities
of these differential equations. We first investigate the integrability of ODE (Eq. 1.4) by applying the
Painlevé test [9, 12, 15]. From this, we draw conclusions regarding the integrability of PDEs of the
form of Eq. (1.2). We then analyse singularities of solutions and find that they are poles at leading order
with, generally, multi-valued subdominant contributions that obstruct the passing of the Painlevé test.
Through a numerical analysis, we further show that such branch-point singularities are present even in
the pure quartic solitary wave when analytically continued in the complex plane.

The paper is organized as follows. In Section 2, we apply the Painlevé test to ODE (1.4). In Section
3, we investigate singularities of solutions of ODE (1.4). This is followed by a numerical analysis of a
fundamental solution and its singularities in Section 4. The paper ends with a conclusion and discussion
in Sections 6 and 5. Appendix A contains a technical estimate.

2. Painlevé analysis of the ODE

In this section, we investigate for what values of the parameters, if any, ODE (1.4) has the Painlevé
property. As a reminder, an ODE has the Painlevé property when it does not have any movable branch
points. In that case, we also call the ODE Painlevé integrable. Furthermore, an ODE is said to have the
weak Painlevé property if all movable branch points are algebraic [23].

2.1. Derivation of the resonance polynomial

Various tests have been developed that check the necessary conditions for Painlevé integrability [9, 15].
For our purposes, the basic Painlevé test will suffice. The first step of this test is to find all possible
exponents p ∈ C, different from 0, 1, . . . , M − 1, such that substitution of u(t) ∼ u0(t − t0)p into ODE
(1.4) gives a consistent dominant balance. All such exponents are required to be integers for the ODE
to pass the first step of the test.

Substitution gives the dominant balance

u3
0(t − t0)3p ∼ U2M u0 (t − t0)p−2M p · (p − 1) · . . . · (p − 2M + 1). (2.1)

This balance is consistent only when p = −M, in which case, necessarily u2
0 = ±1, due to the normal-

ization of U2M in (1.5). Thus, the only non-trivial value that the exponent can take is p = −M, which is
integer and hence ODE (1.4) passes the first step in the test.

For the second part of the test, we develop u(t) in a Laurent series around t = t0 with a pole of order
M at t = t0. Since ODE (1.4) only involves even derivatives and odd powers of u, (t − t0)Mu(t) must be
even around t = t0, and thus the Laurent series of u(t) takes the form
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u(t) =
∞∑

k=0
uk (t − t0)−M+2k . (2.2)

Recall further that u0 = ±1, and since ODE (1.4) is invariant under u ↦→ −u, we may assume u0 = 1
without loss of generality.

For the ODE to pass the second part of the test, it is required that the substitution of the Laurent
series into the ODE leaves 2M −1 of the coefficients undetermined, so that, taking into account the free
parameter t0, the Laurent series contains a full 2M degrees of freedom.

Substituting the Laurent series into ODE (1.4) and comparing coefficients of order −3M + 2n, with
n ≥ 1, leads to the following relation among the coefficients,

∑
i,j≥0,i+j≤n

uiujun−i−j =

M∑
k=0

(3M − 2n − 1)2k U2k uk+n−M ,

where we used the notation uk = 0 for k < 0, U0 := 1 and (x)n is the falling factorial

(x)n =

x · (x − 1) · . . . · (x − n + 1) if n ≥ 1,

1 if n = 0.

Solving for un gives the following recurrence relation for the coefficients,

U2MPM (2n)un =
∑

(i,j) ∈An

uiujun−i−j −
M−1∑
k=0

(3M − 2n − 1)2k U2k uk+n−M , (2.3)

where An denotes the set of indices

An = {(i, j) ∈ Z2
≥0 : i + j ≤ n} \ {(n, 0), (0, n), (0, 0)}, (2.4)

and the resonance polynomial PM (r) is defined by

PM (r) : = (r − M) · (r − M − 1) · . . . · (r − 3M + 1) − 3
U2M

= (r − M)2M − (3M)2M , (2.5)

where the second equality follows from (1.5). We note that we could have bypassed the Laurent series
expansion and obtained the resonance polynomial directly [15], but regardless, we need it for the
singularity analysis in Section 3.

2.2. Roots of the resonance polynomials

The resonance polynomial PM (r) is a polynomial of degree 2M with a root at r = −1. For the ODE to
pass the second stage of the Painlevé test, it is required that all 2M − 1 remaining roots of the resonance
polynomial are positive integers. Remarkably, the resonance polynomial is entirely independent of any
lower-order dispersion coefficients U2k , 1 ≤ k ≤ M − 1.
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For M = 1, we have

P1(r) = (r − 1) (r − 2) − 6 = (r + 1) (r − 4),

so that (3.2) passes the second test, as expected. However, setting M = 2, we get

P2(r) = (r − 2) (r − 3) (r − 4) (r − 5) − 6 · 5 · 4 · 3

= (r + 1) (r − 8) (r2 − 7r + 30).

So, apart from the positive integer root r = 8, we have two non-real roots r = 1
2 (7 ±

√
71 i). This

means that ODE (1.4) with M = 2 is not Painlevé integrable for any value of the lower-order dispersion
coefficient U2.

The roots r = 1
2 (7±

√
71i) are not real and, in particular, not rational and thus indicate the existence

of movable branch points which are non-algebraic. Therefore, ODE (1.4) with M = 2 does not even have
the weak Painlevé property for any value of the lower-order dispersion coefficient U2.

For general M, we have the following result.

Lemma 1. For any M ≥ 1, the resonance polynomial PM (r) has only two real roots, r = −1 and
r = 4M.

Remark 1. We remark that the general theory guarantees that r = −1 is a root of the resonance polyno-
mial [9]. The second real root, r = 4M, is related to the existence of an integral of motion, as explained
in Remark 2.

Proof. From the formula PM (r) = (r − M)2M − (3M)2M , it is clear that r = −1 and r = 4M are roots
PM (r). To prove that those are the only real roots, we first show that PM (r) is negative on the interval
[M, 3M − 1]. To this end, take any r ∈ [M, 3M − 1] and choose an n ∈ Z such that n ≤ r < n + 1. Then
M ≤ n ≤ 3M − 1 and we can estimate

| (r − M)2M | = |r − M | · |r − M − 1| · . . . · |r − n + 1| · |r − n|
· |r − n − 1| · |r − n − 2| · . . . · |r − 3M + 2| · |r − 3M + 1|

≤ (n + 1 − M) · (n − M) · . . . · 2 · 1
· 1 · 2 · . . . · (3M − 2 − n) · (3M − 1 − n)

= (n + 1 − M)! · (3M − 1 − n)! ≤ (2M)! < (3M)2M ,

and thus PM (r) is negative for all r ∈ [M, 3M − 1].
On the other hand, PM (r) is strictly increasing for r > 3M − 1 and strictly decreasing for r <M.

Since further PM (r) ∼ r2M as r → ±∞, this means that PM (r) has exactly two real roots, one in the
interval (−∞, M) and another in the interval (3M − 1,∞). As we already know that r = −1 and r = 4M
are roots, these are the only two real roots and the lemma follows. �

According to the above lemma, ODE (1.4) fails the second step in the Painlevé test for M ≥ 2, for any
values of the lower-order dispersion coefficients U2k , 1 ≤ k ≤ M − 1. Since the resonance polynomial
PM (r) has 2M − 2 non-real roots, the ODE also does not have the weak Painlevé property for M ≥ 2
and any values of the dispersion coefficients.

As ODE (1.4) is an exact reduction of the PDE (1.2), this means that the original PDE does not
satisfy the Painlevé property. In light of the Ablowitz–Ramani–Segur conjecture [1, 2, 27], it further
suggests that the original PDE (1.2) is not solvable by inverse scattering for M ≥ 2 and any values of
the dispersion coefficients.
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3. Analysis of singularities

In this section, we study the movable singularities of ODE (1.4). We start by introducing a polynomial
integral of motion that plays an important role in the analysis in this section.

3.1. An integral of motion

ODE (1.4) has at least one integral of motion, which can be obtained by subtracting the left-hand side
from the right-hand side of Eq. (1.4), multiplying the result by u′ (t) and integrating, yielding

I (u) := 1
2u2 − 1

4u4 +
M∑

k=1
U2kDk (u), (3.1)

where, for k ≥ 1,

Dk (u) :=
∫

u(2k) (t)u′ (t) dt = (−1)k+1 1
2 (u

(k) )2 +
k−1∑
m=1

(−1)m+1u(2k−m)u(m) .

For example, considering the case M = 1, as normalized in Eq. (1.5),

u3 = u + 1
2u′′, (3.2)

the integral of motion is given by

I = 1
2u2 − 1

4u4 + 1
4 (u

′)2.

3.2. Pole singularities

Pole singularities of solutions of ODE (1.4) are characterized by the following lemma.

Lemma 2. Let M ≥ 1 and u(t) be a solution of ODE (1.4). If u(t) has a pole at t = t0 ∈ C, then this
pole has order M and u(t) admits a Laurent expansion around t = t0,

u(t) = ±(t − t0)−M

(
1 +

∞∑
k=1

uk (t − t0)2k

)
, (3.3)

for a unique sign ± and value of u2M , where the remaining coefficients are determined by recursion
(2.3). Conversely, for any choice of t0, u∗2M ∈ C and sign ±, there exist a locally unique solution u(t) of
ODE (1.4), meromorphic on an open neighbourhood of t0, admitting Laurent expansion (3.3) around
t = t0 with u2M = u∗2M .

Remark 2. The proof of Lemma 2 shows that the appearance of one free coefficient, u2M , in expansion
(3.3), is directly tied to the polynomial integral of motion (3.1), and that their values are related through
a linear equation. When M = 2, this linear equation reads

I = 89
540 + 212

45 U
2
2 − 2104

15 U4
2 − 57

10u4.

Proof. The forward implication follows from Eqs (2.1), (2.2) and (2.3).
To prove the backward implication, take t0, u∗2M ∈ C and fix the sign ± = + without loss of generality.

By Lemma 1, PM (2n) ≠ 0 for 1 ≤ n ≤ 2M − 1 and thus the recursive formulas (2.3) determine the
values of u1, u2, . . . , u2M−1 uniquely.
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When n = 2M, the left-hand side of Eq. (2.3) vanishes. We will show that the right-hand side vanishes
as well, so that u2M is free and we may set u2M = u∗2M . To show this, we use the integral of motion I
defined in Eq. (3.1). The equation

I (u) = I0, (3.4)

for any fixed value of I0, is an ODE for u that is essentially equivalent to the original ODE (1.4). Namely,
any solution of (1.4) satisfies (3.4), for some constant value of I0; conversely, any solution of (3.4) is
either a solution of (1.4) or a constant function.

When we substitute the Laurent series into (3.4), comparing terms of order −4M + 2n leads to a
polynomial relation among u1, . . . , un. It reads

P̂M (2n)un = FM,n(u1, . . . , un−1) − 1n=2MI0, (3.5)

where 1n=2M is the indicator function of the condition n = 2M, FM,n is a polynomial in (u1, . . . , un−1)
and P̂M (2n) is a polynomial in 2n, given by

P̂M (2n) = 1 + U2M

M−1∑
s=1

(−1)s [(−M)2M−s(−M + 2n)s + (−M + 2n)2M−s(−M)s]

+ U2M (2M − 1)M (−M + 2n)M .

The value of P̂M (2n) at n = 2M is

P̂M (4M) = 1 + 3M
(

1
M + 1

+ 1
M + 2

+ . . . + 1
3M − 1

)
,

which is clearly nonzero. Recurrence (3.5) is hence well-defined at n = 2M and there is a unique value
of I0 for which u2M = u∗2M . Thus the right-hand side in the original recurrence (2.3) must vanish at
n = 2M. Upon having fixed the value u2M = u∗2M , the coefficients un, n ≥ 2M + 1, are all uniquely
determined by the recurrence relation (2.3). To finish the proof of the lemma, it remains to be shown
that the formal Laurent series is convergent on a small enough punctured neighbourhood of t = t0. That
is, there exists an R ≥ 1 large enough such that the coefficients un, n ≥ 0, of the Laurent series solution
are bounded in modulus as

|un | ≤ Rn (n ≥ 0). (3.6)

This estimate is given in Appendix A. The lemma follows. �

Since ODE (1.4) has order 2M, whereas the expansions around poles in the above lemma only have
two free parameters, t0 and u2M , it might be expected that the remaining 2M − 2 free parameters enter
through multi-valued, subdominant contributions. We investigate this in the next section.

3.3. Dominant balance analysis and branch-point singularities

Let û(t) denote a Laurent series solution as in (3.3), for some choices of t0, u2M ∈ C and choice of sign
±. We perturb the Laurent series solution û(t) around the pole t0 by adding a lower-order contribution
y(t),
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u(t) = û(t) + y(t).

By taking the difference of two copies of the ODE (1.4), one with dependent variable u and the other
with û, we arrive at the following ODE for y,

y3 + 3 û y2 + 3û2y = y +
M∑

k=1
U2k y(2k) . (3.7)

We now employ the method of dominant balance to simplify Eq. (3.7). The two dominant terms are the
highest-order derivative and 3û2y. Taking the dominant contribution of û close to the pole, we obtain a
special case of Euler’s differential equation for the leading order of y,

(t − t0)2My(2M ) (t) = (3M)2M y(t). (3.8)

To obtain its general solution, we use the ansatz y(t) = (t − t0)_ where _ ∈ C. This gives the necessary
and sufficient condition

PM (M + _) = 0, (3.9)

where PM (r) is the resonance polynomial defined in (2.5).
We thus see that the resonance polynomial controls the multi-valued subdominant contributions of

the highest order. It thus forms the focal point of the analysis in the remainder of this section. Firstly,
to ensure that solutions of (3.9) provide the general solution of (3.8), we prove in the following lemma
that all the roots are simple.

Lemma 3. All the roots of the resonance polynomial PM (r) are simple.

Proof. The derivative of PM (r) is given by

P′
M (r) =

2M−1∏
k=0

(r − M − k)
2M−1∑
k=0

(r − M − k)−1

= (PM (r) + (3M)2M)
2M−1∑
k=0

(r − M − k)−1.

Now let r be a root of PM. By Lemma 1, either r = −1, r = 4M or Im(r) ≠ 0. In particular, since
r ∉ [M, 3M − 1] ∩ Z,

P′
M (r) = (3M)2M

2M−1∑
k=0

(r − M − k)−1.

If r = −1, then each term in the above sum is negative and hence P′
M (−1) < 0. On the other hand, if

r = 4M, then each term is positive and thus P′
M (4M) > 0. Finally, if Im(r) ≠ 0, then

sgn(=(r − M − k)−1) = −sgn(=(r − M − k)) = −sgn(=(r)),

for 0 ≤ k ≤ 2M − 1, so the imaginary part of each term has the same sign. It follows that P′
M (r) is not

real and thus also nonzero in this case. �
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Figure 1. The curve C defined in (3.12) is shown in blue in the complex x-plane, with in black the
solutions of (3.11) and red the points given in Eq. (3.13) for M= 5.

According to the above lemma, the general solution of (3.8) is given by

y(t) = d1(t − t0)−M−1 + d2 (t − t0)3M +
∑

1≤j≤2M−2
sj (t − t0)_j , (3.10)

where d1, d2 and the sj ∈ C are free constants and _j, 1 ≤ j ≤ 2M − 2, are the solutions of (3.9), other
than _ = −M − 1 and _ = 3M. Note that d2 plays the same role as the free coefficient u2M in Lemma 2.
Also, since y is assumed subdominant to û in the dominant balance analysis, we require d1 = 0. More
generally, only powers _ satisfying <_ > −M are permitted. In terms of r = _ +M, the latter condition
reads <r > 0. We have the following bounds for roots of the resonance polynomial.

Lemma. All of the roots r of the resonance polynomial PM (r), except r = −1 and r = 4M, satisfy the
bounds

−1 < <r < 4M .

Proof. From the defining equation of PM (r), (2.5), roots of the polynomial coincide with solutions of

QM (r) = (3M)2M , QM (r) := (r − M)2M .

It will be convenient to apply a change of variables r ↦→ x, where r = 2M − 1
2 + x, so that the equation

becomes

Q̂M (x) = (3M)2M , (3.11)
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where

Q̂M (x) = QM (2M − 1
2 + x) =

M−1∏
k=0

(x − ( 1
2 + k)) (x + ( 1

2 + k)).

This way, the solutions are centred around x = 0 since Q̂M (x) is a symmetric polynomial.
All the solutions of (3.11) lie on the curve

C = {x ∈ C : |Q̂M (x) | = (3M)2M}. (3.12)

Geometrically, this is the curve consisting of points x ∈ C such that the product of the distances from x
to the 2M real points

−M + 1
2 ,−M + 3

2 ,−M + 5
2 , . . . , M − 5

2 , M − 3
2 , M − 1

2 , (3.13)

is constant and equal to (3M)2M . A plot of C and the above points is given in Figure 1 for M = 5.
Note that x0 = 2M + 1

2 lies on the curve C as it is a solution to (3.11). Now, any point x ∈ C, not equal
to x0, with <x ≥ x0, certainly lies farther away than x0 from each of the points in (3.13). In particular,
necessarily

|Q̂M (x) | > |Q̂M (x0) | = (3M)2M .

It follows that any point x on the curve C satisfies <x ≤ 2M + 1
2 , and the only point on the curve where

this inequality becomes an equality, is x = 2M + 1
2 .

Furthermore, since Q̂M (z) is an even polynomial, C is symmetric under reflection in the imaginary
axis. Thus, we also obtain that each point x on the curve C satisfies <x ≥ −2M − 1

2 , and the only point
on the curve where this inequality becomes an equality, is x = −2M − 1

2 .
As C contains all the solutions to Eq. (3.1), it follows that any solution of the latter equation, apart

from x = ±(2M + 1
2 ), satisfies

−(2M + 1
2 ) < <x < 2M + 1

2 .

The lemma follows by translating these bounds to the roots of the polynomial PM (r)
via r = 2M − 1

2 + x. �

As a corollary from the above lemma, we see that solutions of Eq. (3.9), other than _ = −M − 1 and
_ = 3M, satisfy the bounds

−M − 1 < <_ < 3M .

Now, solutions _ with

−M − 1 < <_ ≤ −M, (3.14)

violate the assumptions of our dominant balance analysis. This suggests that such exponents would only
appear in conjunction with other exponents through subdominant terms of the form

(t − t0)Λ, Λ = j0 + j1_1 + j2_2 + . . . + j2M−2_2M−2, (3.15)

where jk ∈ Z≥0 for 0 ≤ k ≤ 2M − 2, in the full asymptotic expansion of the solution y of (3.7) around
t0, see (12, § 3.8).
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Remark 3. In the large M limit, the shape of the curve C, defined in (3.12), is described, after a rescaling
x = M z, by {

z ∈ C :
∫ 1

−1
log |z − t | dt = 3 log 3 − 2

}
. (3.16)

This follows from the fact that

1
M

log
|Q̂M (M z) |

M2M =
1
M

2M−1∑
k=0

log
����z + 1 − 2k + 1

2M

���� M→∞−−−−−→
∫ 1

−1
log |z − t | dt,

and

1
M

log
(3M)2M

M2M =
1
M

(log(3M)! − log M! − 2M log M) M→∞−−−−−→ 3 log 3 − 2,

by Stirling’s formula.

We conclude from our dominant balance analysis that the general singularities of solutions to ODE
(1.4), are at leading order poles of order M, with subdominant multi-valued contributions given by
complex powers with exponents that are roots of PM (M + _). Since pole singularities, as classified in
Lemma 2, only have two free parameters, they are a rare occurrence among general singularities when
M > 1. We remark that, nonetheless, for special values of the parameters, there exist global solutions of
ODE (1.4) on the complex plane that admit finite polynomial expressions in terms of hyperbolic secants
[21], and thus only have pole singularities, and infinitely many of them.

4. Numerical analysis of the pure quartic solitary wave

In this section, we discuss the pure quartic solitary wave, the shape of which is governed by the fourth-
order ODE

u3 = 4 u + u(4) , (4.1)

where u = u(t). Analogous to (3.1), this ODE has an integral of motion

I (u) := 2 u2 − 1
4u4 − 1

2 (u
′′)2 + u′u′′′. (4.2)

By applying the scaling

u ↦→ ũ = 2 u, t ↦→ t̃ = 30− 1
4 t,

the ODE is normalized as in (1.4), namely

ũ3 = ũ + U4 ũ(4) , U4 =
1

120
.

This scaling can be used to translate all the results in the previous sections to the standard form (4.1)
that we will be using here.

Our focus in this section is on the fundamental solution u(t) of Eq. (4.1). A plot of this solution is
given in Figure 2. The fundamental solution can be characterized as the smooth, real, even solution on
the real line with the smallest L2-norm, which, together with all of its derivatives, vanishes exponen-
tially as t → ±∞. This solution has been studied intensively experimentally [24], numerically [26] and

Downloaded from https://www.cambridge.org/core. 04 Oct 2025 at 08:56:41, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


12 Roffelsen et al.

- 10 - 5 5 10
t

0.5

1.0

1.5

2.0

2.5

u

Figure 2. Fundamental solitary wave solution of Eq. (4.1).

analytically [5, 22] on the real line. In this section, we carry out a numerical analysis of the fundamental
solution in the complex plane and investigate the singularities closest to the origin. Remarkably, we find
that even the fundamental solution has branch-point singularities.

First, we consider the Cauchy data of this solution at t = 0,

`0 = u(0), `1 = u′ (0), `2 = u′′ (0), `3 = u′′′ (0).

Since u is even, we know that `1 = `3 = 0. Therefore, Eq. (4.2) at t = 0 simplifies to

I (u) = 2 `2
0 − 1

4 `
4
0 − 1

2 `
2
2.

Furthermore, since u(t), as well as its derivatives, vanish exponentially as t → ±∞, it follows that
I (u) = 0. Therefore, the initial values (`0, `2) lie on the plain algebraic curve2

2 `2
2 = `2

0 (8 − `2
0). (4.3)

Using the analytic construction of the fundamental solution as a converging infinite series [13, 22],
we can obtain the values of the Cauchy data at t = 0 of the fundamental solution with arbitrary numerical
precision. By evaluating the convergent series, truncated at the 28th exponential term, i.e. j = 27 in [22,
Eq. (8)], at t = 0 we obtain

`0 = 2.539452989387891732547416944293400,
`2 = −2.236433917320019900927316157131181,

with 34 digits of significance. These values indeed satisfy (4.3) up to a numerical error of size 10−32.
Since u(t) is smooth on the real line and satisfies the ODE Eq. (4.1), it must be analytic on the real

line (as follows, e.g. by application of [14, Thm 2.2.2]). However, as solutions can generally develop
branch points at arbitrary locations in the complex plane, analytic continuation away from the real line

2This is the Lemniscate of Gerono, y2 = x2 (1 − x2 ) , after scaling `0 = 2
√

2x and `2 = 4
√

2y.
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is not guaranteed to be possible and the result is generally non-unique. By the analysis in Section 3,
near a singularity t = t0 of u(t), the solution is described by

u(t) = û(t) + y(t),

where û(t) is single-valued with a double pole at t = t0,

û(t) = ±
(√

120(t − t0)−2 + 1
3

√
2
15 (t − t0)2 + u4(t − t0)6

)
+O

(
(t − t0)10

)
,

and y(t) is a subdominant multi-valued contribution of the form

y(t) = s1 (t − t0)
3
2 −

√
71
2 i + s2 (t − t0)

3
2+

√
71
2 i +O

(
(t − t0)

3
2+X

)
, (4.4)

for some X > 0, since _ = 3
2 ±

√
71
2 i are the only solutions of Eq. (3.9) other than _ = −2 and _ = 6 when

M = 2, see also Eq. (3.10). Here, the sign ± and the values of u4, s1 and s2 are free. It can be convenient
to write the leading order behaviour of y(t) as

y(t) = (t − t0)
3
2

[
c1 cos

(√
71
2 log(t − t0)

)
+ c2 sin

(√
71
2 log(t − t0)

)]
+O

(
(t − t0)

3
2+X

)
,

with s1 = c1 + c2 i and s2 = c1 − c2 i.
We investigate the singularities of the fundamental solution u(t) closest to the origin and numerically

determine the values of the free constants in the above formulas for them. To determine their location,
we consider the power series expansion of u(t) around t = 0,

u(t) =
∞∑

n=0
ant2n, a0 = `0, a1 = 1

2 `2.

The coefficients are determined by the recursion

(2n + 4) (2n + 3) (2n + 2) (2n + 1)an+2 =
∑

(i,j) ∈An

aiajan−i−j + (3`0 − 4)an,

where An is the set defined in Eq. (2.4). Recursively computing the values of the coefficients yields that,
for n= 2000,

|an |−
1
2n ≈ 2.74. (4.5)

This suggests that u(t) has one or more singularities at a distance of approximately 2.74 from the origin in
the complex plane. Furthermore, since a0 > 0, a1 < 0 and 3`0−4 > 0, it follows from the recursion that
(−1)nan > 0, for all n ≥ 0. By the Vivanti–Pringsheim theorem, u(t) must therefore have singularities
at t = ±is, where s the radius of convergence of u(t).

To determine the value of s more precisely, we consider the solution u(t) on the imaginary axis. We
set

v(x) = u(ix), t = ix,

and consider x as a real variable. Then, v(x) is also a solution of the quartic ODE (4.1), which is real-
valued for real x around x = 0, with Cauchy data

v(0) = `0, v′ (0) = 0, v′′ (0) = −`2, v′′′ (0) = 0.
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Figure 3. The function y(x), defined in Eq. (4.7), on the interval 1 < x < s, where t= ix. Here is is the
location of the singularity of u(t) closest to the origin with =t ≥ 0. The numerical value of s is given
in (4.6).

Using Mathematica’s inbuilt NDSolve, we find that v(x) develops a singularity at

s = 2.747328905704978057791970142220888, (4.6)

rounded off at the 34th decimal point. This means that singularities of u(t), closest to the origin, are
located at t = ±is. We see numerically that v(x) ∼

√
120(x − s)−2 as x ↑ s. The difference

y(x) := v(x) −
(√

120(x − s)−2 + 1
3

√
2
15 (x − s)2

)
, (4.7)

is shown in Figure 3.
According to our analysis, see Eq. (4.4), y(x) should vanish with order 3

2 as x ↑ s, which is consistent
with the numerics in Figure 3. For a more precise numerical comparison, we set

h(x) := (s − x)− 3
2 y(x). (4.8)

This function is plotted in Figure 4.
Then, again according to our analysis, h(x) should be asymptotic to

hmod(x) = c1 cos
(√

71
2 log(s − x)

)
+ c2 sin

(√
71
2 log(s − x)

)
, (4.9)

for appropriate values of the constants c1 and c2. A numerical fit in Mathematica yields

c1 ≈ −0.00179, c2 ≈ 0.00092,

for which we get excellent asymptotic agreement between h(x) and hmod(x) as x ↑ s, as shown in Figure 4.
Returning to the original fundamental solution u(t), we draw the following conclusions. The singu-

larities closest to the origin are purely imaginary and lie at t = ±is, with the numerical value of s given
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Figure 4. The functions h(x) (solid blue) and hmod(x) (dashed red), defined in equations (4.8) and (4.9),
on the interval (1.5, s), where t= ix. Here is is the location of the singularity of u(t) closest to the origin
with =t ≥ 0. The numerical value of s is given in (4.6).

in Eq. (4.6). Around the singularity t = is, the local behaviour of u(t) is described by

u(ix) =
√

120(s − x)−2 + (s − x) 3
2 hmod(x) + 1

3

√
2
15 (s − x)2 +O

(
(s − x) X

)
,

as x → s with | arg(x − s) | < c, where hmod(x) is the multi-valued function defined in Eq. (4.9). Here
X > 2 and we expect the estimate to hold for X = 7

2 .
These numerical results show that the fundamental solution, corresponding to the pure quartic soli-

tary wave, has movable branch-point singularitities in the complex plane. In particular, this demonstrates
that the non-Painlevé integrability of ODE (1.4) manifests itself even in the fundamental solution. It
further suggests that the fundamental solution in the pure quartic case does not admit a simple exact
description like the Karlsson and Höök solution [16].

5. Discussion

The generalization of the nonlinear Schrödinger equation we have explored here is characterized by
the inclusion of high-order, even derivatives, corresponding to high orders of dispersion, whereas the
nonlinear term has been left unchanged. These equations describe the pulses that can be generated
using a setup that was recently reported [24, 25]. We note that other hierarchies based on the nonlinear
Schrödinger equation, with all members integrable, have been explored by Ankiewicz et al. [4] and by
Bandelow et al. [6]. However, in these equations most of the terms are nonlinear and include high-order
derivatives. In the context of the experiments by Blanco-Redondo et al. [8] and Runge et al. [24, 25],
such terms have no obvious physical significance.

Our work in this paper relied on the analytic method developed earlier [22] to find analytic expres-
sions, in terms of a rapidly converging sum of functions, for the solitary wave solutions of the generalized
nonlinear Schrödinger equation. We showed that this method can be used to explore these solutions to
very high accuracy in the complex plane. This is illustrated by the remarkable fact that we could find the
position of the branch point of Eq. (4.1) to over 30 decimal places. This represents a significant advan-
tage over purely numerical methods. Additional work done since the work discussed here, has shown
that this analytic method can be extended beyond the fundamental solution, to multi-peak solutions as
well. The modifications to the analytic method allowing for such solutions to be found are shown in a
paper currently in preparation.
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6. Conclusion

Recent experimental work has demonstrated the ability to generate the solutions to generalizations of
the nonlinear Schrödinger equation to higher orders of dispersion [8, 24, 25]. Although the properties
of some of the solutions have been explored, for example their functional forms [18, 21, 22] and their
stability [26], see also [10], this work has been applied to each order individually. Therefore, until
now overarching statements regarding the properties of the entire hierarchy Eq. (1.2) of the resulting
equations have been missing. In this paper we present the first such general results: we demonstrate that
none of them are integrable in the Painlevé sense. This conclusion applies irrespective of the order of
the differential equation and irrespective of the presence of possible lower order derivatives. We have
further shown that the non-integrability manifests itself in physically relevant solutions like the pure
quartic solitary wave, when extended into the complex plane.
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corresponding author Dr Pieter Roffelsen.

Acknowledgements. The authors thank Andrew Hone, Nalini Joshi and Yang Shi for fruitful discussions.

Author contributions. Conceptualization: P.R., C.M.dS. and N.G.R.B. Methodology: P.R. Formal analysis: P.R., P.L. and J.J.M-
B. Supervision: P.R., C.M.dS., N.G.R.B. and Y.L.Q. Validation: Y.L.Q. Visualization: P.R., P.L., J.J.M-B., N.G.R.B., Y.L.Q. and
C.M.dS. Writing original draft: P.R., P.L. J.J.M-B. All authors reviewed and edited the final version manuscript.

Funding statement. P.R. was supported by Australian Research Council Discovery Project #DP210100129. C.M.deS. was
supported by an ARC Discovery Project (DP230102200) and by the Australian Research Council Centre of Excellence in Optical
Microcombs for Breakthrough Science (project CE230100006) and funded by the Australian Government.

Competing interests. None.

Ethical standards. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

References
[1] Ablowitz MJ, Ramani A and Segur H (1978) Nonlinear evolution equations and ordinary differential equations of Painlevé

type. Lettere al Nuovo 23, 333–338.
[2] Ablowitz MJ, Ramani A and Segur H (1980) A connection between nonlinear evolution equations and ordinary

differential equations of P’type. I. Journal of Mathematical Physics 21, 715–721.
[3] Agrawal GP 4th edition (2007) Nonlinear Fibre Optics. Book. Academic Press.
[4] Ankiewicz A, Kedziora DJ, Chowdury A, Bandelow U and Akhmediev N (2016) Infinite hierarchy of nonlinear

Schrödinger equations and their solutions. Physical Review E 93, 012206.
[5] Bandara RI, Giraldo A, Broderick NGR and Krauskopf B (2021) Infinitely many multipulse solitons of different

symmetry types in the nonlinear Schrödinger equation with quartic dispersion. Physical Review A 103, 063514.
[6] Bandelow U, Ankiewicz A, Amiranashvili S and Akhmediev N (2018) Sasa-Satsuma hierarchy of integrable evolution

equations. Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 053108.
[7] Biswas A and Konar S (2007) Introduction to non-Kerr Law Optical Solitons. 1st edn. Boca Raton: Chapman & Hall/CRC

Applied Mathematics & Nonlinear Science.
[8] Blanco-Redondo A, de Sterke CM, Sipe JE, Krauss TF, Eggleton BJ and Husko C (2016) Pure-quartic solitons. Nature

Communications 7, 10427.
[9] Conte R (1999) The Painlevé Approach to Nonlinear Ordinary Differential Equations, New York, NY: Springer New York,

pp. 77–180.
[10] Curran M and Marangell R (2025) Detecting eigenvalues in a fourth-order nonlinear Schrödinger equation with a non-

regular Maslov box. Journal of Differential Equations 447, 113649.
[11] de Sterke CM, Runge AFJ, Hudson DD and Blanco-Redondo A (2021) Pure-quartic solitons and their generalizations—

theory and experiments. APL Photonics 6, 091101.
[12] Goriely A (2001) Integrability and nonintegrability of dynamical systems volume 19. World Scientific Publishing Co., Inc.,

River Edge, NJ.
[13] Hereman W, Banerjee PP, Korpel A, Assanto G, van Immerzeele A and Meerpoel A (1986) Exact solitary wave solu-

tions of nonlinear evolution and wave equations using a direct algebraic method. Journal of Physics A: Mathematical and
General 19, 607.

[14] Hille E (1976) Ordinary differential equations in the complex domain. Pure and Applied Mathematics. New York-London-
Sydney: Wiley-Interscience [John Wiley & Sons].

Downloaded from https://www.cambridge.org/core. 04 Oct 2025 at 08:56:41, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Journal of Nonlinear Waves 17

[15] Hone ANW (2009) Painlevé tests, singularity structure and integrability. In Integrability 767, Berlin: Springer,
pp. 245–277.

[16] Karlsson M and Höök A (1994) Soliton-like pulses governed by fourth order dispersion in optical fibers. Optics
Communications 104, 303–307.

[17] Kivshar Y and Agrawal GP (2003) Optical Solitons: From Fibers to Photonic Crystals, San Diego: Academic Press.
[18] Kudryashov N (2020) Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Applied

Mathematics and Computation 371, 124972.
[19] Lourdesamy JP, Runge AFJ, Alexander TJ, Hudson DD, Blanco-Redondo A and de Sterke CM (2022) Spectrally

periodic pulses for enhancement of optical nonlinear effects. Nature Physics 18, 59–66.
[20] Piché M, Cormier JF and Zhu X (1996) Bright optical soliton in the presence of fourth-order dispersion. Optics Letters

21, 845–847.
[21] Qiang YL, Alexander TJ and de Sterke CM (2022) Solitons in media with mixed, high-order dispersion and cubic

nonlinearity. Journal of Physics A: Mathematical and Theoretical 55, 385701.
[22] Qiang YL, Broderick NGR and de Sterke CM (2024) Analytic method for finding stationary solutions to generalized

nonlinear Schrödinger equations. Physica D: Nonlinear Phenomena 462, 134148.
[23] Ramani A, Dorizzi B and Grammaticos B (1982) Painlevé conjecture revisited. Physical Review Letters 49, 1539–1541.
[24] Runge AFJ, Hudson DD, Tam KKK, de Sterke CM and Blanco-Redondo A (2020) The pure-quartic soliton laser.

Nature Photonics 14, 492–497.
[25] Runge AFJ, Qiang YL, Alexander TJ, Rafat MZ, Hudson DD, Blanco-Redondo A and de Sterke CM (2021) Infinite

hierarchy of solitons: Interaction of Kerr nonlinearity with even orders of dispersion. Physical Review Research 3, 013166.
[26] Tam KKK, Alexander TJ, Blanco-Redondo A and de Sterke CM (2019) Stationary and dynamical properties of pure-

quartic solitons. Optica Publishing Group 44, 3306–3309.
[27] Weiss J, Tabor M and Carnevale G (1983) The Painlevé property for partial differential equations. ournal of Mathematical

Physics 24, 522–526.
[28] Zakharov VE and Shabat AB (1971) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation

of waves in nonlinear media. Zhurnal ÉksperimentalŉoI i Teoreticheskoi Fiziki 61, 118–134.

Appendix A. An estimate of coefficients

In this Appendix we derive estimate (3.6). Our starting point to obtain this estimate, is the following
estimate that we obtain from recursion (2.3),

|UM | |PM (2n) | |un | ≤
∑

(i,j) ∈An

|uiujun−i−j | +
M−1∑
k=0

|uk+n−M | |Uk |
2k∏
j=1

|2n − 3M + j |, (A.1)

for all n ≥ 0.
Since PM (2n) ∼ (2n)2M as n → ∞, we can find an N1 ≥ 2M such that, for all n ≥ N1,

|PM (2n) | ≥ 1
2 (2n)2M .

Then, for n ≥ N1, we infer the following estimate from (A.1),

|un | ≤
2

|UM | (2n)2M

∑
(i,j) ∈An

|uiujun−i−j |

+
M−1∑
k=0

|uk+n−M |
���� Uk

UM

���� 2
(2n)2M−2k

2k∏
j=1

����2n − 3M + j
2n

���� .
Next, we choose an N2 ≥ N1 such that, for all n ≥ N2 and for all 0 ≤ k ≤ M − 1,

2k∏
j=1

����2n − 3M + j
2n

���� ≤ 2.
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Then, for n ≥ N2, we have the estimate

|un | ≤
2

|UM | (2n)2M

∑
(i,j) ∈An

|uiujun−i−j | +
M−1∑
k=0

|uk+n−M |
���� Uk

UM

���� . (A.2)

Finally, we choose N ≥ N2, such that, for all n ≥ N ,

2
|UM | (2n)2M ( 1

2 (n + 1) (n + 2) − 3) ≤ 2
3

, (A.3)

and we set

R = max
(
R0, 1, |u1 |, |u2 |

1
2 , |u3 |

1
3 , . . . , |uN |

1
N

)
, R0 := 3

M−1∑
k=0

���� Uk

UM

���� . (A.4)

Note that, by definition of R, |un | ≤ Rn for all 0 ≤ n ≤ N . To prove the same inequality for n>N, we
use estimate (A.2) and induction. So, suppose n>N is such that |um | ≤ Rm holds for all 0 ≤ m ≤ n− 1.
Then we obtain, from estimate (A.2),

|un | ≤
2

|UM | (2n)2M

∑
(i,j) ∈An

Rn +
M−1∑
k=0

Rk+n−M
���� Uk

UM

����
≤ 2

|UM | (2n)2M #(An)Rn + Rn−1
M−1∑
k=0

���� Uk

UM

����
=

2
|UM | (2n)2M ( 1

2 (n + 1) (n + 2) − 3)Rn + Rn−1( 1
3R0)

≤ 2
3Rn + 1

3Rn = Rn,

where, to obtain the third line, we used that the cardinality of An is #(An) = 1
2 (n+ 1)(n+ 2) − 3 as well

as the definition of R0 in (A.4). The fourth line was obtained by application of inequality (A.3) and the
fact that R ≥ R0. By induction, we obtain estimate (3.6) for all n ≥ 0.
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