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Abstract We consider the existence and multiplicity of standing-wave solutions

ψ(x, t) = exp
(

− iEt

�

)
u(x)

of nonlinear Schrödinger equations with electromagnetic fields and critical nonlinearity

i�
∂ψ

∂t
= − �2

2m
(∇ + iA(x))2ψ + W (x)ψ − K(x)|ψ|2

∗−2ψ − h(x, |ψ|2)ψ, (t, x) ∈ R × R
N , N � 3.

Under suitable assumptions, we prove that it has at least one solution and that, for any m ∈ N, it has
at least m pairs of solutions.
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1. Introduction

The linear Schrödinger equation is a basic tool of quantum mechanics, and it provides
a description of the dynamics of a particle in a non-relativistic setting. The nonlinear
Schrödinger equation arises in different physical theories, e.g. the description of Bose–
Einstein condensates and nonlinear optics (see [6] and the references therein). Both
the linear and the nonlinear Schrödinger equations have been widely considered in the
literature. The main purpose of this paper is to study the existence and multiplicity of
semiclassical solutions of the perturbed Schrödinger equations with electromagnetic fields
and critical nonlinearity of the form

i�
∂ψ

∂t
= − �

2

2m
(∇+iA(x))2ψ+W (x)ψ−K(x)|ψ|2∗−2ψ−h(x, |ψ|2)ψ for x ∈ R

N , (1.1)
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where i is the imaginary unit, � is Planck’s constant,

A(x) = (A1(x), A2(x), . . . , AN (x)) : R
N → R

N

is a real vector (magnetic) potential with magnetic field B = curlA and W (x) : R
N → R

N

is a scalar electric potential.
We are interested in standing-wave solutions, i.e. solutions to (1.1) of the type

ψ(x, t) = exp
(

− iEt

�

)
u(x),

when � is sufficiently small, when E is a real number and u(x) is a complex-valued
function which satisfies

−(∇ + iA(x))2u(x) + λ(W (x) − E)u(x) = λK(x)|u|2∗−2u + λh(x, |u|2)u in R
N , (1.2)

where λ−1 = �
2/2m. The transition from quantum mechanics to classical mechanics can

be formally performed by letting � → 0. Thus, the existence of solutions for � small,
semi-classical solutions has important physical interest.

In recent years, a lot of work has been devoted to investigating standing-wave solutions
in the case A(x) ≡ 0. In this case one is led to look for positive solutions u : R

N → R of
the semilinear equation with more general nonlinearity:

−∆u(x) + λ(W (x) − E)u(x) = λg(x, u). (1.3)

Different approaches have been taken to attack this problem under various hypotheses
on the potential and the nonlinearity (see, for example, [16,17,21,24,27] and references
therein). Observe that in all the aforementioned papers, the nonlinearities are assumed
to be subcritical:

|g(x, u)| � c(1 + |u|p−1) with p ∈ (2, 2∗), (1.4)

together with some other technical conditions, of course. Under the condition

inf
x∈RN

(W (x) − E) > 0,

there have been extensive investigations on problem (1.3). In [21], using a Lyapunov–
Schmidt reduction, Floer and Weinstein established the existence of standing-wave solu-
tions of (1.3); W (x) − E is a bounded function having a non-degenerate critical point
for sufficiently small � > 0. Moreover, they showed that u concentrates near the given
non-degenerate critical point of W (x) − E when � → 0. Their method and results were
later generalized by Oh [24] to the higher-dimensional case, and the existence of multi-
bump solutions concentrating near several non-degenerate critical points of W (x)−E as
� → 0 was obtained. For more results, we refer the reader to [1,2,11,12,16,17]. Clapp
and Ding [15] studied problem (1.3) in the case when the nonlinearities are assumed
to be critical, with g(x, u) = µu + u2∗−1; here W (x) − E � 0 has a potential well
and is invariant under an orthogonal involution of R

N . They established the existence
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and multiplicity of solutions which change sign exactly once and these solutions localize
near the potential well for µ small and λ large. Ding and Lin [18] showed the existence
and multiplicity of semiclassical solutions of perturbed nonlinear Schrödinger equations
with critical nonlinearity. Ding and Wei [19] established the existence and multiplicity of
semiclassical bound states of the nonlinear Schrödinger equations under the assumption
that W (x) − E changes sign and g is superlinear with critical or supercritical growth as
|u| → ∞.

There are also many works dealing with the magnetic case when A(x) �≡ 0 and g(x, u)
is subcritical growth. The first one would appear to be [20], in which the existence of
standing waves was obtained for � > 0 fixed and for special classes of magnetic fields.
If A and W are periodic functions, the existence of various types of solutions for fixed
� > 0 has been proved in [3] by applying minimax arguments. Concerning semiclassical
bound states, it is proved in [23] that � > 0 small admits a least-energy solution which
concentrates near the global minimum of W . A multiplicity result for solutions had
been obtained in [10] by using a topological argument. It is also proved therein that
the magnetic potential A only contributes to the phase factor of the solitary solutions
for � > 0 sufficiently small. In [13], single-bump bound states were obtained by using
perturbation methods. These concentrate near a non-degenerate critical point of W as
� → 0. If g(x, u) is of critical growth, in this case, Wang [27] studied the electromagnetic
Schrödinger equations

−(∇ + iA(x))2u(x) + λV (x)u(x) = K(x)|u|2∗−2u for x ∈ R
N . (1.5)

By using the linking theorem twice with the corresponding functional, Wang established
the existence results. Chabrowski and Szulkin [9] considered (1.5) under the assumption
that V (x) changes sign, by using a min–max type argument based on a topological
linking. They obtained a solution in the Sobolev space which is defined in their paper.
Assuming K(x) ≡ 1, Han [22] studied problem (1.5) and established the existence of
non-trivial solutions in the critical case by means of the variational method. For other
results, we refer the reader to [4,8,14,25,26,28].

In the present paper, we consider the standing waves of problem (1.1) under the condi-
tion infx∈RN (W (x)−E) = 0 and critical nonlinearity. It seems that Byeon and Wang [6]
were the first to study the energy level and the asymptotic behaviour of positive solutions
to Schrödinger equations under the condition infx∈RN (W (x) − E) = 0. In [7], Cao and
Noussair extended the results of [6]. However, it seems there is almost no work on the
existence of semi-classical solutions to problems on R

N involving critical nonlinearities
and electromagnetic fields. We mainly follow the idea of [18,19]. Note that although the
idea was used before for other problems, the adaptation of the procedure to our problem
is not trivial at all: because of the appearance of electromagnetic potential A(x), we
must consider our problem for complex-valued functions and so we need more delicate
estimates.

The paper is organized as follows: in § 2, we describe our main results (Theorem 2.3).
Section 3 is devoted to behaviour of Palais–Smale (PS) sequences. Section 4 contains the
proofs of the main results.
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2. Main results

We set V (x) = W (x) − E and rewrite (1.2) in the following form:

−(∇ + iA(x))2u(x) + λV (x)u(x) = λK(x)|u|2∗−2u + λh(x, |u|2)u for x ∈ R
N . (2.1)

We make the following assumptions on A(x) and V (x) throughout this paper:

(V ) V (x) ∈ C(RN , R), V (x0) = minV = 0, and there exists b > 0 such that the set
V b = {x ∈ R

N : V (x) < b} has finite Lebesgue measure;

(A) Aj(x) ∈ C(RN , R), j = 1, 2, . . . , N , and A(x0) = 0;

(K) K ∈ C(RN × R, R), 0 < m := inf K � M := supK < ∞;

(h1) h ∈ C(RN × [0, +∞), R) and h(x, t) = o(1) uniformly in x as t → 0;

(h2) there are C0 > 0 and q ∈ (2, 2∗) such that |h(x, t)| � C0(1 + t(q−2)/2);

(h3) there are a0 > 0, p > 2 and 2 < µ < 2∗ such that H(x, t) � a0t
p/2 and 1

2µH(x, t) �
h(x, t)t for all (x, t), where

H(x, t) =
∫ t

0
h(x, s) ds.

A typical nonlinearity considered in physical problems is h(x, |u|2)u = |u|p−2u. Here
we allow h to be more general as specified in assumptions (h1)–(h3).

Let
∇Au = (∇ + iA)u

and
H1

A(RN ) = {u ∈ L2(RN ) : ∇Au ∈ L2(RN )}.

Hence, H1
A(RN ) is the Hilbert space under the scalar product

(u, v) = Re
∫

RN

((∇u + iA(x)u)(∇v + iA(x)v) + uv̄),

the norm induced by the product (· , ·) is

‖u‖H1
A(RN ) =

( ∫
RN

(|∇Au|2 + |u|2)
)1/2

=
( ∫

RN

(|∇u + iA(x)u|2 + |u|2)
)1/2

=
( ∫

RN

(|∇u|2 + (|iA(x)|2 + 1)|u|2) − 2 Re
∫

RN

iA(x)ū∇u

)1/2

.

Let

E :=
{

u ∈ H1
A(RN ) :

∫
RN

V (x)|u|2 < ∞
}

,

https://doi.org/10.1017/S0013091509000492 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000492


Perturbed Schrödinger equations with EM fields and critical nonlinearity 135

which is a Hilbert space equipped with the norm

‖u‖2
E =

∫
RN

(|∇Au|2 + V (x)|u|2).

Remark 2.1. We have the following diamagnetic inequality (see, for example, [20]):

|∇Au(x)| � |∇|u(x)|| for u ∈ H1
A(RN ).

Indeed, since A is real-valued,

|∇|u|(x)| =
∣∣∣∣Re

(
∇u

ū

|u|

)∣∣∣∣ =
∣∣∣∣Re(∇u + iAu)

ū

|u|

∣∣∣∣ � |∇u + iAu|

(the bar denotes complex conjugation); this fact means that if u ∈ H1
A(RN ), then |u| ∈

H1(RN ) and therefore u ∈ Lp(RN ) for any p ∈ [2, 2∗].

Remark 2.2. The spaces H1
A(RN ) and the spaces H1(RN ) are not comparable; more

precisely, in general H1
A(RN ) �⊆ H1(RN ) and H1(RN ) �⊆ H1

A(RN ). However, it was proved
by Arioli and Szulkin [3] that if K is a bounded domain with regular boundary, then
H1

A(K) and H1(K) are equivalent, where H1
A(K) = {u ∈ L2(K) : ∇u ∈ L2(K)} with the

norm

‖u‖H1
A(K) =

( ∫
K

(|∇Au|2 + |u|2)
)1/2

.

Let

Eλ :=
{

u ∈ H1
A(RN ) :

∫
RN

V (x)|u|2 < ∞
}

with the norms

‖u‖2
λ =

∫
RN

(|∇Au|2 + λV (x)|u|2).

Thus, it is easy to see that the norm ‖ · ‖E is equivalent to ‖ · ‖λ for each λ > 0. From
Remark 2.1, for each s ∈ [2, 2∗], there is cs > 0 (independent of λ) such that, if λ > 1,

( ∫
RN

|u|s
)1/s

� cs

( ∫
RN

|∇|u||2
)1/2

� cs

( ∫
RN

|∇Au|2
)1/2

� cs‖u‖λ. (2.2)

Consider the functional

Jλ(u) := 1
2

∫
RN

(|∇Au|2 + λV (x)|u|2) − λ

2∗

∫
RN

K(x)|u|2∗ − λ

2

∫
RN

H(x, |u|2)

= 1
2‖u‖2

λ − λ

2∗

∫
RN

K(x)|u|2∗ − λ

2

∫
RN

H(x, |u|2).

Under the assumptions, standard arguments [29] show that Jλ ∈ C1(E, R) and its critical
points are solutions of (2.1).
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Our main result is as follows.

Theorem 2.3. Let (V ), (A), (K) and (h1)–(h3) be satisfied. Thus, we have the fol-
lowing.

(i) For any σ > 0 there is Λσ > 0 such that problem (2.1) has at least one solution uλ

for each λ � Λσ satisfying 0 < Jλ(uλ) � σλ1−N/2.

(ii) Assume additionally that h(x, t) is odd in t; for any m ∈ N and σ > 0 there
is Λmσ > 0 such that problem (2.1) has at least m pairs of solutions uλ with
0 < Jλ(uλ) � σλ1−N/2 whenever λ � Λmσ.

3. Behaviour of (PS) sequences

The main result of this section is the following compactness result.

Proposition 3.1. Assume that (V ), (A), (K) and (h1)–(h3) are satisfied. Then there
is a constant α0 > 0 independent of λ such that, for any (PS)c sequence (un) for Jλ(u),

Jλ(un) → c, (3.1)

J ′
λ(un) → 0 strongly in E∗, (3.2)

and either un → u or c − Jλ(u) � α0λ
1−N/2.

As a consequence, we obtain the following result.

Corollary 3.2. Under the assumptions of Proposition 3.1, Jλ(u) satisfies the (PS)c

condition for all c < α0λ
1−N/2.

The proof of Proposition 3.1 consists of a series of lemmas which occupy this section.

Lemma 3.3. Suppose that a sequence {un} ⊂ E satisfies (3.1) and (3.2). Then there
exists a constant M(c) which is independent of λ � 0 such that c � 0 and

lim sup
n→∞

‖u‖2
λ � M(c).

Proof. On the one hand, by (3.1) and (3.2) one has

Jλ(un) − 1
µ

J ′
λ(un)un = c + o(1) + εn‖un‖λ, (3.3)

where εn → 0 as n → ∞.
On the other hand,

Jλ(un) − 1
µ

J ′
λ(un)un

=
(

1
2

− 1
µ

) ∫
RN

(|∇Aun|2 + λV (x)|un|2) +
(

1
µ

− 1
2∗

)
λ

∫
RN

K(x)|un|2∗

+
λ

µ

∫
RN

h(x, |un|2)|un|2 − λ

2

∫
RN

H(x, |un|2). (3.4)
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Assumption (h3) implies that

1
µ

h(x, |un|2)|un|2 − 1
2H(x, |un|2) � 0.

Thus, it follows from (K), (3.3) and (3.4) that(
1
2

− 1
µ

)
‖un‖2

λ � c + o(1) + εn‖un‖λ.

Hence, for n large enough, we have

‖un‖2
λ � 2µ

µ − 2
c.

Thus, ‖un‖λ is bounded as n → ∞. Taking the limit in (3.4) shows that c � 0. Then
{un} is bounded and c � 0. �

From Lemma 3.3 we may assume without loss of generality un ⇀ u in E(H1
A(RN )),

un → u in Ls
loc(R

N ) for 1 � s < 2∗ and un(x) → u(x) a.e., for x ∈ R
N . Clearly, u is a

critical point of Jλ.

Lemma 3.4. If t ∈ [2, 2∗), there is a subsequence {umi
} of {un} such that, for each

ε > 0, there exists sε > 0 such that

lim sup
i→∞

∫
Bi\Bs

|umi |t � ε,

for s � sε, where BR = {x ∈ R
N : |u| � R}.

Proof. From un → u in Lt
loc(R

N ) we have∫
Bi

|um|t →
∫

Bi

|u|t as m → ∞,

and for each i ∈ N there exists m̃i ∈ N such that∫
Bi

(|umj |t − |u|t) <
1
i

for all mj = m̃i + j, j = 1, 2, . . . .

Let m̃i+1 � m̃i. In particular, for mi = m̃i+1 + i, we have∫
Bi

(|umi |t − |u|t) <
1
i

for all mi = m̃i + i, i = 1, 2, . . . .

Observe that there exists an sε such that∫
RN \Bs

|u|t < 1
3ε (3.5)
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for all s � sε since∫
Bi\Bs

|umi
|t =

∫
Bi

(|umi
|t − |u|t) +

∫
Bi\Bs

|u|t +
∫

Bs

(|u|t − |umi
|t)

� 1
i

+
∫

RN \Bs

|u|t +
∫

Bs

(|u|t − |umi
|t)

� ε as n → +∞.

�

Remark 3.5. From the proof of Lemma 3.4 we can find a subsequence (unj ) such
that the result of the lemma holds for both s = 2 and s = q.

Let η : [0,∞) → [0, 1] be a smooth function satisfying η = 1 if t � 1
2 , η = 0 if t � 1.

Define

ûj(x) = η

(
2|x|
j

)
u(x).

Obviously,
‖u − ûj‖E → 0 as j → +∞. (3.6)

We have the following lemma.

Lemma 3.6. Let {um} and {ûm} be as defined above. Then

lim
j→∞

Re
∫

RN

(h(x, |umj |2)umj
− h(x, |umj

− ûj |2)(umj
− ûj) − h(x, |ûj |2)ûj)w̄ → 0

uniformly in w ∈ E with ‖w‖ � 1.

Proof. Remark 2.2, (3.6) and the local compactness of Sobolev embedding imply that,
for any r > 0,

lim
j→∞

Re
∫

Br

(h(x, |umj |2)umj − h(x, |umj − ûj |2)(umj − ûj) − h(x, |ûj |2)ûj)w̄ = 0

uniformly in w ∈ E with ‖w‖ � 1. For any ε > 0 it follows from (3.5) that

lim sup
j→∞

∫
Bj\Bs

|ûj |t �
∫

RN \Bs

|u|t � ε

for all s � sε. By Remark 3.5 and (h1), (h2) we have

lim sup
j→∞

Re
∫

RN

(h(x, |umj
|2)umj

− h(x, |umj
− ûj |2)(umj

− ûj) − h(x, |ûj |2)ûj)w̄

= lim sup
j→∞

Re
∫

Bj\Bs

(h(x, |umj
|2)umj

− h(x, |umj
− ûj |2)(umj

− ûj) − h(x, |ûj |2)ûj)w̄

� c lim sup
j→∞

∫
Bj\Bs

(|unj | + |ûj |)|w| + C lim sup
j→∞

∫
Bj\Bs

(|unj |q−1 + |ûj |q−1)|w|
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� c lim sup
j→∞

(|unj
|L2(Bj\Bs) + |ûj |L2(Bj\Bs))|w|2

+ C lim sup
j→∞

(|unj
|q−1
Lq(Bj\Bs) + |ûj |q−1

Lq(Bj\Bs))|w|q

� c′ε1/2 + C ′ε(q−1)/q,

where c, C, c′ and C ′ are positive constants. This completes the proof of Lemma 3.6. �

Lemma 3.7. Let {um} and {ûm} be as defined above. Then the following conclusions
hold:

(i) Jλ(un − ûn) → c − Jλ(u);

(ii) J ′
λ(un − ûn) → 0.

Proof. Since

Jλ(un − ûn) = 1
2

∫
RN

(|∇A(un − ûn)|2 + λV (x)|un − ûn|2)

− λ

2∗

∫
RN

K(x)|un − ûn|2∗ − λ

2

∫
RN

H(x, |un − ûn|2)

= Jλ(un) − Jλ(ûn)

+
λ

2∗

∫
RN

K(x)(|un|2∗ − |un − ûn|2∗ − |ûn|2∗
)

+
λ

2

∫
RN

(H(x, |un|2) − H(x, |un − ûn|2) − H(x, |ûn|2)).

On the one hand, using (3.6) and along the lines of proving the Brézis–Lieb Lemma [29],
we have ∫

RN

K(x)(|un|2∗ − |un − ûn|2∗ − |ûn|2∗
) → 0

and ∫
RN

(H(x, |un|2) − H(x, |un − ûn|2) − H(x, |ûn|2)) → 0.

On the other hand, together with Jλ(un) → c, Jλ(ûn) → Jλ(u) as n → ∞. This completes
the proof of Lemma 3.7 (i).

In order to prove (ii), observe that, for any w ∈ E,

J ′
λ(un − ûn)w

= Re
{ ∫

RN

∇A(un − ûn)∇Aw + λV (x)(un − ûn)w̄

− λ

∫
RN

K(x)|un − ûn|2∗−2(un − ûn)w̄

− λ

∫
RN

h(x, |un − ûn|2)(un − ûn)w̄
}
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= J ′
λ(un)w − J ′

λ(ûn)w

+ λ Re
∫

RN

K(x)(|un|2∗−2unw̄ − |ûn|2∗−2ûnw̄ − |ûn|2∗−2ûnw̄)

+ λ Re
∫

RN

(h(x, |un|2)un − h(x, |un − ûn|2)(un − ûn) − h(x, |ûn|2)ûn)w̄.

It follows by a standard argument that

lim sup
n→∞

Re
∫

RN

K(x)(|un|2∗−2unw̄ − |ûn|2∗−2ûnw̄ − |ûn|2∗−2ûnw̄) = 0

uniformly in ‖w‖ � 1. By Lemma 3.6 we have

lim sup
n→∞

Re
∫

RN

(h(x, |un|2)un − h(x, |un − ûn|2)(un − ûn) − h(x, |ûn|2)ûn)w̄ = 0

uniformly in ‖w‖ � 1. This completes the proof of Lemma 3.7 (ii). �

Let

vn := un − ûn.

Then un − u = vn + (ûn − u), and by (3.6), un → u if and only if vn → 0. By Lemma 3.7
we have Jλ(vn) → c − Jλ(u) and J ′

λ(vn) → 0. Note that

Jλ(vn) − 1
2J ′

λ(vn)vn � λ

N

∫
RN

K(x)|vn|2∗ � λm

N

∫
RN

|vn|2∗
.

Hence,

|vn|2∗

2∗ � N(c − Jλ(u))
λm

+ o(1). (3.7)

Let

νb := max{V (x), b}, (3.8)

where b is the positive constant from assumption (V ). Since V b has finite measure and
vn ∈ L2

loc(R
N ), we see that

∫
RN

V (x)|vn|2 =
∫

RN

νb|vn|2 + o(1).

It follows from assumptions (h1)–(h3) that there exists a constant cb > 0 such that

∫
RN

K(x)|u|2∗
+

∫
RN

h(x, |u|2)|u|2 � b|u|22 + cb|u|2∗

2∗ . (3.9)
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Proof of Proposition 3.1. Assume that un �→ u. Then lim infn→∞ ‖vn‖ > 0 and
c − Jλ(u) > 0. By (2.2), (3.8) and (3.9) we have

1
cs

|vn|22∗ �
∫

RN

|∇Avn|2 + λV (x)|vn|2 − λ

∫
RN

V (x)|vn|2

= λ

∫
RN

K(x)|u|2∗
+ λ

∫
RN

h(x, |u|2)|u|2 − λ

∫
RN

νb|vn|2

� λ

∫
RN

K(x)|u|2∗
+ λ

∫
RN

h(x, |u|2)|u|2 − λb

∫
RN

|vn|2 + o(1)

� λcb|vn|2∗

2∗ + o(1).

By (3.7) we have

1
cs

� λcb|vn|2
∗−2

2∗ + o(1)

� λcb

(
N(c − Jλ(u))

λm

)2/N

+ o(1)

= λ1−2/Ncb

(
N

m

)2/N

(c − Jλ(u))2/N + o(1).

Therefore,
α0λ

1−N/2 � c − Jλ(u) + o(1),

where
α0 =

m

c
N/2
s cbN

.

This completes the proof of Proposition 3.1. �

4. Proof of Theorem 2.3

In the following we always consider λ � 1. By the assumptions (V ), (A), (K) and (h1)–
(h3), one can see that Jλ(u) have mountain pass geometry.

Lemma 4.1. Assume that (V ), (A), (K) and (h1)–(h3) hold. There exist αλ, ρλ > 0
such that Jλ(u) > 0 if u ∈ Bρλ

\ {0} and Jλ(u) � αλ if u ∈ ∂Bρλ
, where Bρλ

= {u ∈ E :
‖u‖ � ρλ}.

Proof. By (K) and (h1)–(h3), for δ � (4λcs)−1 there is Cδ > 0 such that

1
2∗

∫
RN

K(x)|u|2∗
+ 1

2H(x, |u|2) � δ|u|2 + Cδ|u|2∗
.

So, from (A) and (V ) it follows that

Jλ(u) � 1
2‖u‖2

λ − λδ|u|22 − λCδ|u|2∗

2∗

� 1
4‖u‖2

λ − λCδ|u|2∗

2∗ .

By (2.2) and 2∗ > 2 we know that the conclusion of Lemma 4.1 holds. This completes
the proof of Lemma 4.1. �
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Lemma 4.2. Under the assumptions of Lemma 4.1, for any finite-dimensional sub-
space F ⊂ E,

Jλ(u) → −∞ as u ∈ F, ‖u‖ → ∞.

Proof. Using conditions (A), (V ), (K) and (h1)–(h3), we deduce

Jλ(u) � 1
2‖u‖2

λ − λa0|u|pp

for all u ∈ E since all norms in a finite-dimensional space are equivalent and p > 2. This
completes the proof of Lemma 4.2. �

Since Jλ(u) does not satisfy the (PS)c condition for all c > 0, in the following we
will find special finite-dimensional subspaces by which we construct sufficiently small
minimax levels.

Recall that the assumption (V ) implies that there exists x0 ∈ R
N such that

V (x0) = min
x∈RN

V (x) = 0.

Without loss of generality we assume from now on that x0 = 0.
Observe that, by (h3),

λ

2∗

∫
RN

K(x)|u|2∗
+

λ

2

∫
RN

H(x, |u|2) � a0λ

∫
RN

|u|p.

Define the function Iλ ∈ C1(E, R) by

Iλ(u) := 1
2

∫
RN

(|∇Au|2 + λV (x)|u|2) − a0λ

∫
RN

|u|p.

Then Jλ(u) � Iλ(u) for all u ∈ E and it suffices to construct small minimax levels for Iλ.
Note that

inf
{ ∫

RN

|∇φ|2 : φ ∈ C∞
0 (RN ), |φ|p = 1

}
= 0.

For any δ > 0 one can choose φδ ∈ C∞
0 (RN ) with |φδ|p = 1 and suppφδ ⊂ Brδ

(0) so that
|∇φδ|22 < δ. Let

fλ = φδ(λ1/2x). (4.1)

Then
supp fλ ⊂ Bλ−1/2rδ

(0).

Thus, for t � 0,

Iλ(tfλ) =
t2

2

∫
RN

(|∇Afλ|2 + λV (x)|fλ|2) − tpa0λ

∫
RN

|fλ|p

= λ1−N/2
(

t2

2

∫
RN

(|∇Aφδ|2 + V (λ−1/2x)|φδ|2) − tpa0

∫
RN

|φδ|p
)

= λ1−N/2Ψλ(tφδ),
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where Ψλ ∈ C1(E, R) defined by

Ψλ(u) := 1
2

∫
RN

(|∇Au|2 + V (λ−1/2x)|u|2) − a0

∫
RN

|u|p.

Obviously,

max
t�0

Ψλ(tφδ) =
p − 2

2p(pa0)2/(p−2)

( ∫
RN

|∇Aφδ|2 + V (λ−1/2x)|φδ|2
)p/(p−2)

.

On the one hand, since V (0) = 0 and support φδ ⊂ Brδ
(0), there exists Λδ1 > 0 such

that
V (λ−1/2x) � δ

|φδ|22
for all |x| � rδ and λ � Λδ1 .

On the other hand, by Hölder’s inequality, we have∫
RN

|∇Aφδ|2 �
∫

RN

2|∇φδ|2 + 2|A(λ−1/2x)φδ|2. (4.2)

Since A(x) is continuous on R
N and A(0) = 0, there exists Λδ2 > 0 such that

|A(λ−1/2x)| �
√

δ

|φδ|22
for all |x| � rδ and λ � Λδ2 . (4.3)

Without loss of generality we can take Λδ := {Λδ1 , Λδ2}. So, by (4.2) and (4.3) we deduce

max
t�0

Ψλ(tφδ) � p − 2
2p(pa0)2/(p−2) (5δ)p/(p−2). (4.4)

Therefore, for all λ � Λδ,

max
t�0

Jλ(tφδ) � p − 2
2p(pa0)2/(p−2) (5δ)p/(p−2)λ1−N/2. (4.5)

Thus, we have the following lemma.

Lemma 4.3. Under the assumptions of Lemma 4.1, for any σ > 0 there exists Λσ > 0
such that for each λ � Λσ, there is f̂λ ∈ E with ‖f̂λ‖ > ρλ, Jλ(f̂λ) � 0 and

max
t∈[0,1]

Jλ(tf̂λ) � σλ1−N/2. (4.6)

Proof. Choose δ > 0 so small that

p − 2
2p(pa0)2/(p−2) (5δ)p/(p−2) � σ

and let fλ ∈ E be the function defined by (4.1). We take Λσ = Λδ. Let t̂λ > 0 be such
that t̂λ‖fλ‖λ > ρλ and Jλ(tfλ) � 0 for all t � t̂λ. Let f̂λ = t̂λfλ. We know that the
conclusion of Lemma 4.3 holds. �
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For any m∗ ∈ N , one can choose m∗ functions φi
δ ∈ C∞

0 (RN ) such that suppφi
δ ∩

suppφk
δ = ∅, i �= k, |φi

δ|p = 1 and |∇φi
δ|22 < δ. Let rm∗

δ > 0 be such that suppφi
δ ⊂ Bi

rδ
(0)

for i = 1, 2, . . . , m∗. Let

f i
λ(x) = φi

δ(λ
1/2x) for j = 1, 2, . . . , m∗

and
Hm∗

λδ = span{f1
λ, f2

λ, . . . , fm∗

λ }.

Observe that, for each

u =
m∗∑
i=1

cif
i
λ ∈ Hm∗

λδ ,

we have ∫
RN

|∇Au|2 =
m∗∑
i=1

|ci|2
∫

RN

|∇Af i
λ|2,

∫
RN

V (x)|u|2 =
m∗∑
i=1

|ci|2
∫

RN

V (x)|f i
λ|2,

1
2∗

∫
RN

K(x)|u|2∗
=

1
2∗

m∗∑
i=1

|ci|2
∗
∫

RN

K(x)|u|2∗

and

1
2

∫
RN

H(x, |u|2) =
1
2

m∗∑
i=1

∫
RN

H(x, |cif
i
λ|2).

Thus,

Jλ(u) =
m∗∑
i=1

Jλ(cif
i
λ)

and, as before,
Jλ(cif

i
λ) � λ1−N/2Ψ(|ci|f i

λ).

Set
βδ := max{|φi

δ|22 : j = 1, 2, . . . , m∗}
and choose Λm∗δ > 0 so that

V (λ1−N/2x) � δ

βδ
for all |x| � rm∗

δ and λ � Λm∗δ.

As before, we can obtain the following inequality

max
u∈Hm∗

λδ

Jλ(u) � m∗(p − 2)
2p(pa0)2/(p−2) (5δ)p/(p−2)λ1−N/2 (4.7)

for all λ � Λm∗δ.
Using this estimate we have the following.
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Lemma 4.4. Under the assumptions of Lemma 4.1, for any m∗ ∈ N and σ > 0 there
exists Λm∗σ > 0 such that, for each λ � Λm∗σ, there exists an m∗-dimensional subspace
Fλm∗ satisfying

max
u∈Fλδ

Jλ(u) � σλ1−N/2.

Proof. Choose δ > 0 so small that
m∗(p − 2)

2p(pa0)2/(p−2) (5δ)p/(p−2) � σ

and take Fλδ = Hm∗

λδ . By (4.5) we know that the conclusion of Lemma 4.4 holds. �

We now establish the existence and multiplicity results.

Proof of Theorem 2.3. Using Lemma 4.3 we choose Λσ > 0 and define, for λ � Λσ,
the minimax value

cλ := inf
γ∈Γλ

max
t∈[0,1]

Jλ(tf̂λ),

where
Γλ := {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = f̂λ}.

By Lemma 4.1 we have αλ � cλ � σλ1−N/2. By virtue of Proposition 3.1, we know
that Jλ satisfies the (PS)cλ

condition; there exists uλ ∈ E such that J ′
λ(uλ) = 0 and

Jλ(uλ) = cλ; hence, the existence is proved.
Denote the set of all symmetric (in the sense that −Z = Z) and closed subsets of E

by Σ, for each Z ∈ Σ. Let gen(Z) be the Krasnoselski genus and let

i(Z) := min
h∈Γm∗

gen(h(Z) ∩ ∂Bρλ
),

where Γm∗ is the set of all odd homeomorphisms h ∈ C(E, E) and ρλ is the number from
Lemma 4.1. Then i is a version of Benci’s pseudoindex [5]. Let

cλi := inf
i(Z)�i

sup
u∈Z

Jλ(u), 1 � i � m∗.

Since Jλ(u) � αλ for all u ∈ ∂B+
ρλ and since i(Fλm∗) = dimFλm∗ = m∗,

αλ � cλ1 � · · · � cλm∗ � sup
u∈Hλm∗

Jλ(u) � σλ1−N/2.

It follows from Proposition 3.1 that Jλ satisfies the (PS)cλ
condition at all levels ci. By

the usual critical-point theory, all ci are critical levels and Jλ has at least m∗ pairs of
non-trivial critical points. �
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18. Y. H. Ding and F. H. Lin, Solutions of perturbed Schrödinger equations with critical
nonlinearity, Calc. Var. PDEs 30 (2007), 231–249.

19. Y. H. Ding and J. C. Wei, Semiclassical states for nonlinear Schrödinger equations with
sign-changing potentials, J. Funct. Analysis 251 (2007), 546–572.

20. M. Esteban and P. L. Lions, Stationary solutions of nonlinear Schrödinger equations
with an external magnetic field, in Partial differential equations and the calculus of vari-
ations, essays in honor of Ennio De Giorgi, pp. 369–408 (Birkhäuser, 1989).
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