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Abstract

Brockett has studied the isospectral flow H = [H, [H, N]], with [A, B] = AB -
BA , on spaces of real symmetric matrices. The flow diagonalises real symmetric
matrices and can be used to solve linear programming problems with compact
convex constraints. We show that the flow converges exponentially fast to the
optimal solution of the programming problem and we give explicit estimates for
the time needed by the flow to approach an e-neighbourhood of the optimum.
An interior point algorithm for the standard simplex is analysed in detail and a
comparison is made with a continuous time version of Karmarkar algorithm.

1. Introduction

Isospectral, that is eigenvalue preserving, flows evolving on spaces of sym-
metric matrices have been intensively studied over the past few years, one of
the main initial sources of interest being that they provide an explicit method
to solve various completely integrable Hamiltonian systems. The current in-
terest in analog computing and networks has also shifted the focus from the
application of combinatorial or algebraic approaches to problems in discrete
mathematics, towards continuous time methods (differential equations).

In recent work, Brockett [2] has studied the ordinary differential equation
on the set of real symmetric n x n matrices H:

where [A, B] = AB-BA denotes the Lie bracket and N = diag(^, , . . . , fin),
H{ > • •• > nn , is a fixed real diagonal matrix. Brockett proves that (1.1) de-
fines an isospectral flow which diagonalises H(t) asymptotically as t —> oo.
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496 U. Helmke [2]

Furthermore, he shows that (1.1) solves linear programming problems and
achieves sorting. His approach to the linear programming problem is similar
in spirit to Karmarkar's algorithm, in the sense that in both cases a trajectory
is constructed which approaches the optimal solution from the interior of
the constraint set. Nevertheless, there seems to be an essential difference be-
tween Karmarkar's and Brockett's algorithms. This is due to the fact that the
optimising trajectory in Brockett's approach is constructed using a gradient
flow evolving on a higher dimensional smooth manifold.

The usefulness of (1.1) could appear moreover limited in view of Brock-
ett's remark that convergence of the gradient linear programming algorithm
is not exponential in time. In this note we show that the proposed algorithm
does in fact converge exponentially fast to the optimal solution. Explicit
bounds for the rate of convergence are given, as well as for the time needed
for the trajectory produced from (1.1) to enter an e-neighbourhood of the
optimal solution. In the special case where the convex set is the standard
simplex, Brockett's equation, or rather its simplification studied in Section
2, is shown to induce an interior point algorithm. The algorithm in this
case is formally very similar to Karmarkar's interior point flow and our re-
sult suggests the possibility of common generalisations of these algorithms.
Very recently, Faibusovich [3] has constructed a new class of interior point
algorithms for linear programming which, in the case of a standard simplex,
coincide with the flow studied here. These flows can thus be expected to have
similar performance properties to the Karmarkar algorithm.

In this paper no attempt is made to achieve maximal generality. Instead,
we rather try to give a thorough analysis of Brockett's algorithm, thus trying
to emphasise its basic simplicity and beauty.

We proceed as follows. After reviewing Brockett's approach to linear pro-
gramming, we develop a simplified set of equations for linear programming
(Theorem 2.2). An extension of these ideas leads to an interior point flow on
the set of stochastic matrices which is analysed by Theorem 2.3. In Section
3 an interior point flow on the standard simplex is derived (Corollary 3.1)
and its connection with the Karmarkar flow is pointed out. Proposition 3.2
and Theorem 3.3 estimate the time required for these algorithms to reach an
a-neighbourhood of the optimum. The connection with the recent work of
Faibusovich is made. We conclude with some further remarks in Section 4.

2. The linear programming problem

Let C(vx, ... , vm) c M." denote the convex hull of m vectors v{, ... ,vm

e R" . Given the compact convex set C(vl,... ,vm) cR" and a row vector
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[3] Isospectral flows and linear programming 497

c = ( c , , . . . , cn) e K" , the linear programming problem then asks to find a
vector x e C(vl,... , vm) which maximises e x . Of course, the optimal
solution is a vertex point vf of the constraint set C(vl,... , vm).

Since C(vx,... , vm) is not a smooth manifold in any reasonable sense,
it is not possible to apply in the usual way steepest descent gradient methods
in order to find the optimum. One possibly way to circumvent such techni-
cal difficulties would be to replace the constraint set C{vl, ... , vm) by some
suitable compact manifold M so that the optimisation takes place on M in-
stead of C(vi, ... , vm). A mathematically convenient way here would be to
construct a suitable resolution space for the singularities of C{vl, ... , vm).
This is actually the approach taken by Brockett.

Let Am_, = {(»/,, . . . , rjj e Rm\ni > 0 , £™, //,. = 1} denote the stan-
dard (m - l)-dimensional simplex in Rm . Let

be the real n x m matrix whose column vectors are the vertices vx, ... ,vm.
Thus T: Rm -> R" maps the simplex Am_l of Em linearly onto
C(vl, ... , vm). We can thus use T in order to replace the constraint set
C(vl, ... , vm) by the standard simplex Am_,.

Suppose that we are to solve the linear programming problem consisting
of maximising c'x over the compact convex set of all x e C(vl, ... , vm).
Brockett's recipe to solve the problem is this (cf. Theorem 6 in [2]).

THEOREM 2.1. Let N be the real m x m matrix defined by

N = diagtc'v,, . . . , c'vm) (2.2)

and assume that N satisfies the genericity conditions c'vi ^ c'v. for i ^ j .

Let Q = diag(l ,0,... ,0) eRmxm . Then for almost all orthogonal matrices
6 € O(m) the solution H{t) of the differential equation (with [A, B] =
AB-BA the Lie bracket)

2 2 -2HNH,

H(0) = e'QO

converges as t —• oo to a diagonal matrix H^ = d iag(0 , . . . , 0, 1, 0, . . . , 0),
with the entry 1 being at position it so that x = vt is the optimal vertex of
the linear programming problem.

Thus the optimal solution of a linear programming problem can be ob-
tained by applying the linear transformation T to a vector obtained from the
diagonal entries of the stable limiting solution of (2.3). Brockett's method,
while theoretically appealing, has however a number of shortcomings.
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498 U. Helmke [4]

First, it works with a huge overparametrisation of the problem. The differ-
ential equation (2.3) evolves on the \m(m + l)-dimensional vector space of
real symmetric m x m matrices H, while the linear programming problem
is set up in the w-dimensional space C(vl,... , vm). Of course, usually n
will be much smaller than ^m(m + 1).

Second, convergence to H^ is guaranteed only for a generic choice of
orthogonal matrices. No explicit description of this generic set of initial data
is given.

Finally the method requires the knowledge of the values of the cost func-
tional at all vertex points in order to define the matrix N.

Clearly the last point is the most critical one and therefore Theorem 2.1
should be regarded only as a theoretical approach to the linear programming
problem. To overcome this difficulty along with the other difficulties we
proceed as follows.

Let Sm~l = {(£,, . . . , £ J e Mm|2Xi£,2 = 1} denote the set of unit
vectors of W.m . We consider the polynomial map

denned by

/ («, , . . . .«J = «?, . . . ,£ ) . (2.4)
Since / maps the vectors ±(£l, ..., £m) to the same point on the simplex
Am_i, we can eliminate this sign ambiguity by passing to the correspond-
ing projective space. This forces uniqueness of the attractor for the flow
constructed below. Thus let l P m ~ ' denote the (m - l)-dimensional pro-
jective space of lines in Km . We follow the standard notation of using ho-
mogeneous co-ordinates to describe the points of RP"1"1. Thus for a unit
vector £ = (<*,,... , £m) e Mm let [<*,:. . . : £m] denote the line, passing
through 0 G Rm, which is generated by £,. If £,, fi are unit vectors then
[£,: . . . : £m] = [rjl: ...: r\m] if and only if rj = ±£. With these notations in
mind, the map (2.4) descends to a real algebraic map on the projective space

By composing F with the map T: Am_, —• C(vt, ... , vm) we obtain a real
algebraic map

\ " /
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[5] Isospectral flows and linear programming 499

The linear programming task is to maximise the restriction of the linear
functional

X:C(vl,...,vJ->R, n i ,

over C(vx, ... , vm). The idea now is to consider instead of the maxi-
misation of (2.7) the maximisation of the induced smooth function
XonT: RPm~' -» R, which is straightforward, since RP"1"1 is smooth.

THEOREM 2.2. Let N be defined by (2.2) and assume the genericity condition

c («,.-«,)#<> foralli±j. (2.8)

(a) The gradient vector-field of Xo nT on RPm~" is

£ = 2( iV-£ '#£)£, (2.9)

|^|2 = 1 . Also, (2.9) has exactly m equilibrium points [ 1 : 0 : . . . : 0 ] , . . . ,
[0 : . . . : 1 ] , given by the standard basis vectors e{, ..., em of Rm.

(b) The eigenvalues of the linearisation of (2.9) at [ej are

c'(vl - « , ) , . . . , c\vt_x - «,.), c'(vi+l - « , ) , . . . , c\vm - v,) (2.10)

and there is a unique index 1 < /, < m such that [et ] is asymptotically
stable.

(c) Let X = KPm~2 be the smooth codimension-one submanifold of MPm~'
defined by

* = {K,: . . . : ^ 1 1 ^ = 0 } . (2.11)

With the exception of initial points contained in X, every solution £,(t) of
(2.9) converges exponentially fast to the attractor [et ] and nT(£(t)) con-
verges exponentially fast to the optimal solution nT{[ei ]) = v( of the linear
programming problem, with a bound on the rate of convergence

l»r«f(O) " \ I < conste"2"('"'o)

where
» = min\c'(v-vi )|. (2.12)

PROOF. For any diagonal m x m matrix N = diag(«1, ... , nm) consider
the smooth function q>: Rm - {0} -» R denned by

Vm nx2

9ixlt....xm) = ^p-LJ-. (2.13)
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A straightforward computation shows that the gradient of <p at a unit vector
xzSm~l is

Furthermore, if «(

map (p: RP"1"1

rij for i

= 2(JV - x'Nx)x.

t j , then the critical points of the induced

> R are the homogeneous co-ordinates of the standard basis
vectors, i.e. by [ e , ] , . . . , [em]. This proves (a). The Hessian of <p: RFm~l —>
R at [et\ is readily computed as

Hf([e,]) = 2 d i a g ( n , - « , , . . . , « , _ , - n t , n i + l - n i , . . . , n m - « , ) .

Let /„ be the unique index such that ni = max1<><m nj . Thus /^([e,-]) < 0

if and only if / = i, which proves (b). Let XC c RPm~2 be the closed
submanifold of MP"1"1 defined by (2.11). Then RPm"' - X is equal to the
stable manifold of \ei ] and X is equal to the union of the stable manifolds
of the other equilibrium points [e{], i ^ /„ . The result follows.

REMARKS, (a) From (2.11)

n T ( X ) = X { v x , . . . , v t _ x , v K + l , . . . , v m ) . (2.14)

Thus if n = 2 and C(vl o j c l 2 is the convex set, illustrated by the
following Figure 2.1 with optimal vertex point vi then the shaded region
describes the image nT{X) of the set of exceptional initial conditions.

(b) The flow (2.3) with Q = diag( 1, 0, . . . , 0) is equivalent to the gradient
flow (2.9) on RP m ~ ' ; [4]. Also, (2.9) has an interesting interpretation in
neural network theory; see Oja [7]. It is possible to replace the use of the
projective space RP"1"1 in Theorem 2.2 by the sphere Sm~l. This, however,

FIGURE 2.1. The convex set C(v.,... , v )
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[7] Isospectral flows and linear programming 501

would be at the expense of doubling the number of equilibrium points. Also
there would then be two (local) attractors ±et . Otherwise, the analysis
would go through likewise.

(c) For any (skew-)symmetric matrix Q € Rmxm

£ = 2(N + £1 - £(N + n)O£ (2.15)

defines a flow on RPm~1 . If Q = - Q ' is skew-symmetric, the functional
<p{£) = £,'{N + Q)^ = £,'N£, is not changed by co and therefore has the same
critical points. Thus, while (2.15) is not the gradient flow of q> (if Q = -Q.'),
it can still be of interest for the linear programming problem. If Q = Q' is
symmetric, (2.15) is the gradient flow of y/(£) — £'(N + Q)<̂  on RPm~1.

We now study the following specific linear programming problem. Let
) c R"x" denote the subset of n x n real stochastic matrices. That is,

if and only if

Pin
r 1 n,

= [p , ••• , p ] (2.16)

•Pn\ ••• Pnn-

with pu > 0 and YH=\Pij = 1 for j = 1, . . . , n . Thus 3°{n)£ c An_, x

• • • x An_, is a compact convex subset of R" . Given an n x n matrix

C = e l " (2.17)

we consider the task to solve the linear programming problem of maximising
the functional

P •-» tr(CP)

over . Let

M:= - l x • • • x RP"- l

denote the n-fold product of real projective (n - l)-space and let

denote the map defined by
2 n

*=11 • • • ' ' I n

KIJf:

(2.18)

(2.19)

(2.20)

(2.21)
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502 U. Helmke [8]

where ^tj are homogeneous coordinates with Yl"=i£,7 = 1» J' — 1 , ••• , n .
Thus n: M —• R"x" is a smooth real algebraic map of M onto its image
&(n) = 7t(M). The proof of the following theorem is completely similar to
that of Theorem 2.2 and is therefore omitted.

THEOREM 2.3. Suppose the entries of the ith row vector c\ of C are all
pairwise distinct, i = I, ... , n. Let C( = diag(c,') denote the diagonal nxn-
matrix, whose first, . . . , nth diagonal entry is given by the first, . . . , nth
entry of c\.

(a) The gradient vector field of X o n: M —» R is

<*,. = 2(C,.-A° *([£])£,-, (2.22)

1 = 1 , . . . , n, where |£,.|2 = 1, [fl = ([£,], . . . , [£„]) e M. Also, (2.22)
has exactly n" critical points ([e ] , . . . , [e.; ]), given by arbitrary n-tuples of

1 n

standard basis vectors et , ..., et of E." .
(b) The eigenvalues of the linearisation of (2.22) at {[ei ] , . . . , [ £ , - ] ) are

1 n

equal to {c't = { c n ,..., cin))

2 ( C l a , " C l / , ' C2a2 ~ C2i2 ' • • • ' Cnan ~ Cni)> a l * 'l > • • • > a n * *n> ( 2 " 2 3 )

and there exists a unique n-tuple {co{, ... , con) of indices such that {[ew ] ,
• • • . Ko ]) is asymptotically stable.

(c) Let X = Xt x • • • x Xt be the codimension n submanifold of RP""1 x

•••x RP""1 defined by X, = {K,: . . . : {„] e KP""1^. = 0}, i = 1, . . . , n.
With the exception of initial points contained in X, every solution of (2.22)
converges exponentially fast to ([ew], ... , [ew]) and *([£,(/)], •••, KB(01)
converges exponentially to the optimal solution Pw = (ew , ... , ew) e£°(n),
with a bound on the rate of convergence

2 ^ ^ \ c t J - cia\. (2.24)

REMARK. The codimension n submanifold of X, which has to be excluded,
is diffeomorphic to RP""1 x ••• x RPn~' and is mapped under n into the
(distinguished) boundary dAm_l x ••• x dAm_{ of 3P(n). Thus (2.22) is
really an interior point algorithm.

3. Interior point flows

Brockett's equation (2.3) and its simplified version (2.9) both evolve on
a high-dimensional manifold M so that the projection of the trajectories
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into the polytope leads to a curve which approaches the optimum from the
interior. We have also considered in Theorem 2.3 one case where (2.9) ac-
tually leads to flow evolving on the convex polytope such that the optimum
is approached from all trajectories starting in the interior of the constant
set. Such algorithms are called interior point algorithms, an example being
the celebrated Karmarkar algorithm [5]. Here we like to take such issues
a bit further in the case where the constraint set is the standard simplex
Am_, C Rm.

In this case, (2.9) on KPm ' becomes

i=U.-.,m, (3.1)

ULi & = 1 • T n u s wit*1 t n e substitution xt; = %f , i = I, ... , m,v/e obtain

i=l,...,m, (3.2)

*,- > 0> T,7=ixi = ! • s i n c e T,i=ixi = ° . (3-2) i s a flow o n t n e simplex
Am_,. The set X c RP^""1 of exceptional initial conditions is mapped by
the quadratic substitution xx: = %f , i =\, ... , m, onto the boundary 9Am_,
of the simplex. Thus Theorem 2.2 implies

COROLLARY 3.1. Equation (3.2) defines a flow on Am_l. Every solution
x(t) with initial condition x(0) in the interior of Am_, converges to the
optimal solution ei of the linear programming problem: Maximise c'x over
x e Am_,, with an exponential rate of convergence given by

\x(t) — e, I < const • e~ *", a — min(c. - c,).

REMARKS, (a) Equation (3.2) is a Volterra-Lotka type of equation and thus
belongs to a well studied class of equations in population dynamics; cf. Schu-
ster et al. [8], Zeeman [10].

o

(b) If the interior Am - 1 of the simplex is endowed with the Riemannian
o

metric defined on TxAm_l by

then (3.2) is actually 4 times the gradient flow of the linear functional x

c'x on Am_,.
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504 U. Helmke [10]

FIGURE 3.1. Phase portrait of (3.2)

(c) In [6] Karmarkar has analysed a class of interior point flows which are
the continuous-time versions of the discrete time algorithm described in [5].
In the case of the standard simplex, Karmarkar's equations turn out to be

(3.3)

Xj > 0 , £)=, X; = I. By linearising (3.3) around the optimal solution et it
is easily shown that Karmarkar's equation (3.3) converges exponentially fast
to ei with (up to a factor 4) the same rate of convergence as for (3.3). A
more general class of equations with the same convergence properties as (3.2)
or (3.3) would be

* / = 'IX*I) - i = 1, . . . , m., (3.4)

with / : [0, 1] —> K a monotonically increasing C1 function. Incidentally,
the Karmarkar flow (3.3) is just a special case of the equations studied by
Zeeman [10].

The following result estimates the time a trajectory of (3.2) needs in order
to reach an e-neighbourhood of the optimal vertex.

PROPOSITION 3.1. Let 0 < e < 1 and n = min^. (c( - Cj). Then for any
initial condition x{0) in the interior of Aml the solution x(t) of (3.2) is
contained in an e-neighbourhood of the optimum vertex e{ if t > tc where

|log(min1</<mx,.(0)e2)|
(3.5)
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PROOF. We first show that every solution x(t) of (3.2) is of the form

x(t) =
e4tNx(0)

(e4tNx(0))

505

(3.6)

e4lc'where N = diag(c,, ... , cj and (e4tNx(0)) = E j l , evc'Xj(O).
In fact, by differentiating the right-hand side of (3.6) one sees that both

sides satisfy the same conditions (3.2) with identical initial conditions. Thus
(3.6) holds. Using (3.6) one has

(e*tNx(0))

<2-2-
t (0)

e*tN{e*tNx(0))

Now

and thus

(3.7)

(3.8)

Wxtf-eJ2 < 2-2(l
Therefore ||jc(r) - ei || < e if

- 1

i.e., if

t>
|log(e2min

l £ | . < w
jcf(0))|

This proves the result.
Note that for the initial condition JC(0) =

becomes

4/*

1) the estimate (3.5)

(3.9)

and (3.9) gives an effective lower bound for (3.5) valid for all JC(O) e A m - 1 .
We can use Proposition 3.2 to obtain an explicit estimate for the time

needed in either Brockett's flow (2.3) or for (2.9) that the projected interior
point trajectory nT(x(t)) enters an e-neighbourhood of the optimal solution.

Thus let N, T be defined by (2.1), (2.2) with (2.8) understood and let
vt denote the optimal solution for the linear programming problem of max-
imising c'x over the convex set C(vl, ..., vm).
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THEOREM 3.1. Let 0 < e < 1, n = min^, (c'vi -cv}), and let X be defined

by (2.11). Then for all initial conditions £(0) e RP"1"1 - X the projected
trajectory nT{£,{i)) e C(vi,..., vm) of the solution £(t) of (2.9) is in an
e-neighbourhood of the optimal vertex vt for all t > te with

t = — ^ i ^ _ ( 3 ]
e

PROOF. By (2.6), nT(Z(t)) = Tx{t) where x(t) = (^(t)2, . . . , £m{t)2) satis-
fies

/ « , \
I ' ^ ' I i = 1 , ... , m.xt = 4 I c'vi -^C'VJXJ I x,,

Proposition (3.2) implies \\x(t) - e, II < e/||ri| for t > I log —r-j\4u and
' . m\\T\]

hence
\\nT^t))~Vi II ^ II7! ' ll*(0 ~ei II < 6-

In the above, we were mainly concerned with interior point flows evolv-
ing on the standard simplex Am_,. Thus these flows, such as (3.2)-(3.4),
enable us to do sorting of lists of real numbers rather than solving more gen-
eral linear programming problems. In recent work [3], L. Faibusovich has
developed a rather complete theory of such interior point flows for linear pro-
gramming, leading in fact to different flows than those studied by Karmarkar
[6]. We briefly sketch Faibusovich's approach and stress its connection with
the present work.

Let us consider the task of optimising a C1 function p : l " - t l over the
convex constraint set P defined by the conditions

(i) x > 0, xeE.",
(ii) Ax = b.
Here A £Rm*n, rk A — m<n and x > 0 means that all components of

x are non-negative. By linearity of the constraint (ii), the tangent space of
P at an element x coincides with the kernel of A, that is,

TXP = {£ € R"\A£ = 0}, x eP.
0

Given an interior point x e P and tangent vectors ^, n e TXP, an inner
product on TXP is defined by

((Z,ri)):=Z'D(xylr,, xeP, (3.11)

where D(x) = diag(xt, ... , xn). This defines a Riemannian metric on the

set P = {x e R"\Ax = b, x > 0} of interior points of P.
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o

It is now easy to compute the gradient of <p: P —> E with respect to the
o

Riemannian metric ( ( )) . In fact, the gradient of <p at x e P is characterised
by the property

«gradp(x), £» = Vq>(x)'t V£ € TXP (3.12)

where

Using (3.11) it follows that (3.12) is equivalent to D(x)"1 g rad^(x) -
being orthogonal to the kernel of A. Thus

D(x)~x gradp(;c) - V(p{x) = A'X

for a uniquely determined A e Rm . Since ^grad^(x) = 0 thus

A = -(AD(x)A')~i AD{x)V<p{x)

and therefore

gradp(x) = D{x)V<p(x) - D(x)A'(AD(x)A')-lAD(x)V<p(x)

= (I - D{x)A'(AD(x)A')~lA)D(x)V<p{x).

Note that AD(x)Ar is positive definite, and hence is invertible, if A has full
o

row rank and x e P.
The associated gradient interior point flow for maximising <p(x) subject

to x € P thus is
x = (I - D(x)A'(AD(x)A'ylA)D(x)Vtp(x). (3.14)

This coincides with the interior point flow first derived and studied by Faibu-
sovich [3]. If A = ( 1 , . . . , 1) and b = I, then the polytope P is equal
to the simplex Am_{. Let us also consider the special case where <p{x) —
£" = 1 fj(Xj). Then (3.14) is equivalent to

*,•= yMi)-Y,fMj)xAxi> i=l,-,n, (3.15)

which is of the form (3.4). If <p(x) = c'x, the flow (3.15) coincides with (3.2)
(up to constant factor), a
flow (3.3) on the simplex.
(up to constant factor), and for <p(x) = J2cjxj > (3-15) is just Karmarkar's
fl 3) h i l

4. Farther remarks and conclusions

As can be seen from the preceding sections, the "gradient method" for
linear programming consists of the following program:
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(i) To find a smooth compact manifold M and a smooth map
n: M —» R" , which maps M onto the convex constraint set C.
(ii) To solve the gradient flow of the smooth function Aon: M —> R
and determine its stable equilibria points.

In the cases discussed here we had M = RP m - 1 (or M —
RP"1"1 x • • • x RPm"') and n: RP"1"1 -> Rn was the composition
of the linear map T: Am_, -» C{v{, ... , vm) with the smooth
map from RP"1"1 -» Am_, defined by (2.4).

Note that for any smooth map n: M -» Rm with 7r(Af) = C, the bound-
ary points y 6 9C are necessarily critical values of n. Furthermore, if
A: R" —• R is a generic smooth function with no critical points in C, then
the critical points of A o n: M —• R are all contained in n~\dC), thus re-
flecting the fact that A assumes its minima and maxima on the boundary of
C.

In a similar way other discrete optimisation problems may be investigated.
Certainly the previous results say nothing about the actual convergence speed
of these algorithms when implemented on a computer. Furthermore, there is
in general no canonical choice for the compact manifolds M. In particular,
it would be of interest to know the minimal dimension of M (this asks for a
nonlinear realisation theory for linear programming!). The problem is even
of interest if n = 2, i.e. for C a given compact subset of R2. Here the
minimal dimension is two.

(i) If C2 = (0, el, e2) c R2 is the standard 2-simplex of R2 ,

defines a real algebraic (finite) map from the projective plane onto
the standard 2-simplex C , c R 2 .

(ii) If Q = {(x, y) e R2||;c| < 1, \y\ < 1} has 4 vertices, there
exists a smooth real algebraic (finite) map from the 2-torus onto
Q.

n-.S1 xSl - Q ,

(z, w) i-> (Rez, Ret/;).
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(iii) Let C6 be the hexagon imbedded into R3 by C6 = {(Xn{l),
K(2)> K(3))\n a permutation}, where Xx > X2 > A3 are fixed real
numbers. Let Jac(A,, X2, A3) denote the set of real symmetric
3 x 3 Jacobi matrices

509

H =
bx 0

0 b,
a2 b2

having fixed eigenvalues A,, A2, A3. Then Jac(A1, A2, A3) can
be shown to be a compact orientable two-manifold (of genus 2),
Tomei [9], and

n: Jac(A1, A2, A3)

H (ax, a2, a

is a surjection onto C6 . The gradient flow of the induced linear
functional H >-+ £? = 1 c{at on Jac(A,, X2, X3) with respect to a
certain Riemannian metric is then identical with Brockett's flow
(1.1) for N = diag(c,, c2, c3), if (c,, c2, c3) = (1 , 2, 3) [1].

These are all cases in which I know how to construct explicitly a map from
a smooth compact surface onto a given polytope.

One can always construct a smooth map n: X -> C(vx, ... , vm) from
an amalgated sum M = MP2 x • • • x W2 of real projective planes onto
C{vx, ... ,vm). But this map n would in general not be finite.

Another possibility could be to use complex variable theory to obtain a
uniformisation of a given convex subset of R2 by the upper half-plane as in
Figure 4.1.

While the uniformising map S can be explicitly written down by means
of the Schwarz-Christoffel formula, it is much harder to find the inverse im-
ages of the vertex points. Thus this approach does not really lead to an
effective way of computing the induced gradients on the upper half plane.
Also the higher dimensional analogy of this approach would require higher
dimensional uniformisation theory which is known to be deep and difficult.

FIGURE 4.1. Example of maps S
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