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Abstract

For £ > 3, an £-uniform hypergraph is disperse if the number of edges induced by any set of £ + 1 vertices
is 0, 1, £, or £ + 1. We show that every disperse £-uniform hypergraph on n vertices contains a clique or
independent set of size n*(", answering a question of the first author and Tomon. To this end, we prove
several structural properties of disperse hypergraphs.
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1. Introduction

The Erdés-Hajnal conjecture [6] is a fundamental problem in extremal graph theory, stating that
for every fixed graph H, every induced H-free n-vertex graph has a homogeneous set (i.e. a clique
or independent set) of size at least n, where cy > 0 is a constant depending only on H. This
is in sharp contrast to general graphs, which may only have homogeneous sets of size O(log n).
Despite significant recent progress (see, e.g. [4, 10, 11] and the references therein), the Erdés-
Hajnal conjecture remains open in general.

It is natural to ask for analogues of the Erdds-Hajnal conjecture for hypergraphs. We will use
the term £-graph as shorthand for £-uniform hypergraph. Let log; (x) denote the k-times iterated
logarithm, that is, log, (x) = x, log; (x) =log (x), and log; (x) =log (log;_, (x)). Let h¢(n) denote
the maximum size of a homogeneous set guaranteed to exist in every £-vertex n-graph. It is well-

known (7] that he(n) > (logg_1 (n))Q(l), and it is conjectured that the number £ — 1 of iterated

logarithms is best possible, that is, h¢(n) < (log,_, (n))o(l). Thus, a natural analogue of the Erdés-
Hajnal conjecture for £-graphs would be that for every fixed £-graph H, every induced H-free
n-vertex {-graph has a homogeneous set of size (log,_, (n))CH . However, there is some evidence
that this might not be true for every H. Indeed, it is known that for uniformity £ > 4, the so-
called stepping up construction gives a tight lower bound for Ramsey numbers in terms of the
number of iterated logarithms (though this number is not known, as for the critical case £ =3
we only know that the number of logarithms is at least 1 and at most 2; this corresponds to at
least £ — 2 and at most £ — 1 logarithms for uniformity £). Conlon, Fox, and Sudakov [5] showed
that the stepping up construction avoids certain H as induced subgraphs. Thus, for £ > 4, there

exist £-graphs H such that induced H-free £-graphs do not have significantly larger homogeneous

sets than general £-graphs. Therefore, if hp(n) < (long1 (n))o(l) (as conjectured), then the above

£-uniform analogue of the Erdés-Hajnal conjecture fails. See also [1, 12] for additional Erdés-
Hajnal-type results for hypergraphs.
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2 L. Gishboliner and E. Honest

Recently, there has been some interest in variants of the Erdds-Hajnal problem where one for-
bids order-size pairs instead of induced subgraphs H. To the best of our knowledge, this setting
was first considered in [9]. Let us define the problem. For a set Q of pairs of integers, we say that
an £-graph G is Q-free if for every (m, f) € Q, there is no set of m vertices in G which induces
exactly f edges. What can we say about the size of homogeneous sets in Q-free £-graphs? It was
recently shown by Arnold, the first author, and Sudakov [2] that this problem does in fact satisfy
the natural hypergraph analogue of the Erdds-Hajnal conjecture, in the sense that for every £ > 2,
all but a finite number! of the sets Q # I satisfy that every Q-free £-graph on n vertices contains a
homogeneous set of size at least (log,_, (1)) ™.

The papers [3, 8] studied the special case where £ = 3 and Q consists of pairs of the form (4, f);
that is, we forbid certain numbers of edges on vertex-sets of size four. The first author and Tomon
[8] showed that if an n-vertex 3-graph G has no four vertices spanning exactly two edges, then G
has a homogeneous set of size n° (where ¢ > 0 is an absolute constant). They also asked to show
that this extends to £-graphs, in the following sense: If an n-vertex £-graph G, with £ > 3, has no
£+ 1 vertices spanning 2, 3,4, .. ., £ — 1 edges, then G has a homogeneous set of size n. Here we
prove this conjecture. We call £-graphs with this property disperse.

Definition 1.1. Let G be an £-graph, £ > 3. We say that G is disperse if, for every (£ + 1)-set X =
{(vis....ver1} S V(G), it holds that eg(X) € {0,1, ¢, £ + 1}.

Note that if G is disperse then so is its complement G.

Theorem 1.2. Let G be a disperse £-graph on n vertices. Then, max («(G), w(G)) > Q(n%%l).

The constant ﬁ in Theorem 1.2 is best possible up to a factor of roughly % Indeed, note that
if an €-graph G has no two edges intersecting in £ — 1 vertices, then G is disperse (because every
(€ 4 1)-set of vertices spans 0 or 1 edges). Such £-graphs are known aspartial (¢, ¢ — 1)-Steiner

systems. It is known [13] that there exist n-vertex partial (¢, £ — 1)-Steiner systems with indepen-
dence number O(nﬁ). Hence, the constant in Theorem 1.2 cannot be improved beyond Z%l
It is also worth noting that in the case £ =3, the constant é given by Theorem 1.2 significantly
improves the constant obtained in [8], which was much smaller and therefore not calculated
explicitly. It would be interesting to determine the best possible constant in Theorem 1.2. For
£ =3, the best upper-bound on this constant comes from [3], which constructed a disperse
n-vertex 3-graph G with max (a(G), »(G)) < O(n'/3).2

As mentioned above, one example of disperse £-graphs is partial (¢, £ — 1)-Steiner systems. Let
us now describe another important example. A hypergraph G is called a cohypergraph if either
|[V(G)| =1, or there is a vertex partition V(G) =X U Y such that G[X], G[Y] are cohypergraphs
and E(G) contains all or none of the £-sets which intersect both X and Y. It is easy to check
(by induction) that every cohypergraph is disperse. Also, note that for £ =2, this recovers the
definition of cographs. Recall also that a graph is a cograph if and only if it is induced P4-free,
where P is the path with 4 vertices.

To prove Theorem 1.2, we show (implicitly) that every disperse £-graph is close to being a
cohypergraph. To this end, we prove several structural properties of disperse hypergraphs. Let
us now state the two key facts we will use, Theorems 1.4 and 1.5. We first introduce the basic
definitions related to tight connectivity.

Definition 1.3. Let G be an £-graph. A tight walk is a sequence of edges ey, . . ., ey, € E(G) such that
leiNeiy1|>€—1forall1<i<m—1. For A,B¢ (‘gi(;l)), we say that A, B are connected in G if

!t is conjectured in [2] that these exceptions are not necessary and the result in fact holds for every non-empty Q.
2In fact, this construction avoids not only four vertices spanning two edges, but also four vertices spanning three edges.
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there is a tight walk ey, . .., ey, with A C e; and B C ey, This is an equivalence relation.? A tight
component of G is an equivalence class in this relation. Thus, the tight components partition (\g(_Gl))

We say that G is tightly connected if there is a single tight component, namely (V(G))

-1/
In other words, G is tightly connected if for every A, B € (‘Z(_Gl)), there is a tight walk ey, . . ., ep
with A C e; and B C e,,. Note that in the case £ = 2, this coincides with the usual notion of graph

connectivity.

For a hypergraph G, we use G to denote the complement of G. Our first theorem states that for
adisperse G, either G or G is not tightly connected. Our second theorem states that in a disperse G,
each tight component is a complete hypergraph, that is, it consists of all (¢ — 1)-tuples contained
in some vertex set.

Theorem 1.4. Let G be a disperse £-graph. Then G or G is not tightly connected.

Theorem 1.5. Let G be a disperse £-graph. Then for every tight component C of G, thereis U C V(G)

such that C = (ZEI).

Combining these two theorems, we conclude that for every disperse £-graph G, either in G or
in G we can find a vertex set ¥ # X C V(G) such that there is no edge having ¢ — 1 vertices in X
and one vertex in Y: = V(G) \ X. Indeed, we simply take X to be the vertex set corresponding to
a tight component (via Theorem 1.5). One can then show, using the fact that G is disperse, that
there are only few edges intersecting both X and Y. Repeating this inside X and Y (with some
technicalities omitted here), we can show that G is close to a cohypergraph.

Theorems 1.4 and 1.5 are proved in Section 2. We then prove Theorem 1.2 in Section 3.
Section 4 contains some further remarks and open problems. We mostly use standard graph-
theoretic notation. For a vertex-set X in a hypergraph G, we use eg(X) to denote the number of
edges of G contained in X. Throughout the rest of the paper, we assume that the uniformity £ is at
least 3, unless explicitly stated otherwise.

2. Structural results

In this section we study the structure of disperse hypergraphs, and in particular prove
Theorems 1.4 and 1.5. Let us begin with some lemmas. For an £-graph G and v € V(G), the link
L(v) is the (£ — 1)-graph on V(G) \ {v} with edge set {e € (V(EE\I{V}):e U {v} € E(G)}. A useful fact
is that the links of a disperse hypergraph are also disperse.

Lemma 2.1. Let G be a disperse £-graph. Then for every v € V(G), L(v) is disperse.

Proof. Suppose that there is v € G such that L(v) is not disperse, and let X = {v1, ..., v} SV \ {v}
witness this, namely, 2 < |ep)(X)| <€ — 2. Then 2 < eg(X U {v}) < £ — 1, contradicting that G is
disperse. 0

We will also use the following easy lemma.

Lemma 2.2. Let G be a disperse £-graph, let f,g € E(G) with |f Ng| > £ — 1, letvefandlet A,BC
g\{v} with |A| = |B| =€ — 2. Then A, B are connected in L(v).

Proof. If v € g then the assertion clearly holds, because g \ {v} is a (one-edge) tight walk between A
and B in L(v). So suppose that v ¢ g. Then we can write f = {v,v,...,ve_1},g={v1, ..., ve—1, W}
with w#v. As G is disperse, the (£ + 1)-set f Ug must miss at most one edge. This means
that there are e;, e; € E(G) with {v} UA Ce; and {v} UB C e;. Now e;\{v}, ex\{v} is a tight walk
between A and B in L(v). O

3Indeed, let ey, .. ., e, be a tight walk with A Ce;,BCey, and let fi,. .., f be a tight walk with B C e, C C fi. Then
el .., em>fls- o> fi is a tight walk connecting A and C.
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The following is our main technical lemma. It shows that in a disperse hypergraph, if there is
a tight walk of length 3 from a vertex v to an (£ — 1)-set B, then there is also such a tight walk of
length 2.

Lemma 2.3. Let G be a disperse £-graph, let e, f, g be a tight walk in G, let v € e, and let B C g with
|B| =€ — 1. Then there is a tight walk f', ¢’ in G such that v € f' and BC g'.

Proof. We first consider some easy degenerate cases. If v € f or v € g then we can take (f',¢') =

(f.g) or (f,g') = (g, g), respectively. If BC f then take (f',g') =(e,f), and if leNg|>£—1
then take (f',g') =(e,g). Assuming that none of the above holds, without loss of general-

ity we may write e={v, wy,...,we_1},f ={w1,...,we} and g={ws, ..., wp41} with the ver-
tices v, wi, . . ., we41 being distinct, and B = {w», ..., wey1}\{w;} for some i # ¢ + 1. Note that
fNBl=¢€—2.

Suppose, for the sake of contradiction, that there is no tight walk f/, ¢’ as in the lemma. We
proceed via a series of claims which will eventually give a contradiction.

Claim 2.4. For all A C f\{w} with |A| =€ — 2, it holds that {v, w;} U A € E(G).

Proof. Consider the (£ + 1)-set X = {v, w1, ..., we}. As e, f are both edges of G contained in X,
and as G is disperse, G misses at most one edge on X. Note that h: = {v, w,, . . ., w,} is not an edge
of G, as otherwise f' =hand g’ =g satisfyve f', | Ng'| = [{wz, ..., we}| =€ —1and BC ¢’. So,
G contains all edges on X besides k; in particular, G contains {v, w;} U A for all A € f\{w,} of size
£—2. O

Claim 2.5. Forall A C g with |A| = £ — 1, it holds that {v} U A & E(G).

Proof. Otherwise we can take f' = {v}UA and ¢’ =g, which satisfy vef’, | Ng|=|A|=¢—1
andBC g O

Claim 2.6. For all A C g with |A| = — 1, it holds that {w} U A € E(G) if and only if A # B.

Proof. Let X ={w1, ..., wpy1}. Note that f, g are edges of G contained in X, and thus, G misses
at most one edge on X. Moreover, if {w1} U B € E(G), then letting f = {v, w1} U (f N B) (which is
an edge by Claim 2.4) and ¢’ = {w;} U B gives the desired result. Thus, {w;} U B ¢ E(G), implying
that G must contain all other edges on X - in particular, all edges of the form {w;} U A with A C g,
|A|]=¢ —1and A # B.

Claim 2.7. Forall A C Bwith |A| ={ — 2 and A # f N B, it holds that {v, w;} U A & E(G).

Proof. Let X ={v,w;} UB, so |X| ={+ 1. By Claim 2.5 we have {v} U B ¢ E(G), and by Claim 2.6
we have {w;} U B ¢ E(G). Hence, as G is disperse, it can contain at most one edge on X, which
must be the edge {v, w;} U (f N B), as this is an edge by Claim 2.4. So, G cannot contain any edge
of the form {v, w1} U A for A C Bwith |A|=¢ —2and A # f N B. O

Now, we use the above claims to derive a contradiction and hence prove Lemma 2.3. Fix an
arbitrary x € f N B (this is possible because |f N B| =€ — 2 > 1). Set C = g\{x}, and note that |C| =
£ —1; C#Band hence [CNB|=4£ —2; wey1 € C (as wyqq ¢ f and so x # wey1); and CN B #
fNB(asx e f N Bwhilex ¢ C). Consider the set X = {v, w1} U C, so | X| = £ + 1. We will show that
there exist two edges and two non-edges on X. Indeed, by Claim 2.4, {v, w1} U (C\{w¢+1}) € E(G),
and by Claim 2.6, {w;} U C € E(G). On the other hand, by Claim 2.5, {v} U C ¢ E(G), and by Claim
2.7, {v, w1} U (CN B) ¢ E(G). This contradicts the assumption that G is disperse, as desired. U

Lemma 2.3 easily implies the following.

Lemma 2.8. Let G be a disperse £-graph, let ey, . . . , en, be a tight walk in G, and let v € e;. Then for
all 1 <i<m— 1, there exists a tight walk f, g such thatv e f and e; N ej11 C g.

Proof. We prove this by induction on i. For i =1 the claim is trivial by letting f = g = e;. For the
inductive step, let f, g be a tight walk with v € f and e;_; Ne; C g. Note that f, g, e; is a tight walk
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as f, g is a tight walk and |gNe;| > |e;—1 Ne;] =€ — 1. Moreover, v € f and B: =e; Nejy1 C e, SO
we may apply Lemma 2.3 to obtain a tight walk f/, ¢’ with v € f and e; Ne;1 C g, as desired. U

We now use this result to prove the following key lemma.

Lemma 2.9. Let G be a disperse £-graph, let v e V(G) and let A, BC V(G)\{v} with |A| =|B|=
£ —2. If AU {v} and BU {v} are connected in G, then A and B are connected in L(v).

Proof. Letey,. .., ey be atight walk in G between A U {v} and BU {v}. We will prove the lemma
by induction on m. For m < 2 the lemma is trivial, by simply observing that e; \{v}, e, \ {v} is a tight
walk between A and B in L(v). So, suppose m > 3. First, consider the case where v € ¢; for some
1 <i<m. Fix any C C ¢;\{v} of size £ — 2. By the inductive hypothesis, A and C are connected
in L(v), because ey, . . ., ¢; is a tight walk between A U {v} and CU {v} in G. Similarly, C and B are
connected in L(v), by applying the inductive hypothesis to e;, . . ., e,. By transitivity, A and B are
connected in L(v).

Now, suppose that v € e; forevery 1 <i<m.For1 <i<m —2,let C;:=e¢; Neiy; Nejyz. Then
|Ci| > £ — 2 and we may assume, by passing to a subset if necessary, that |C;| = ¢ — 2. Note that
v ¢ C; for every 1 <i<m — 2. Set also Cy = A and C,,_; = B. It suffices to show that for every
1 <i<m—1,Cj_, Cjare connected in L(v). Indeed, this would imply, by transitivity, that A = Cy
and B= C,,_; are connected in L(v). Observe that A and C; are connected in L(v) because e\ {v}
is an edge of L(v) containing A, C;. Similarly, B and C,,_; are connected in L(v) because v € e,
and B, Cp—2 C e, \{v}. Now let 2 <i <m — 2. By Lemma 2.8, there is a tight walk f, g with v e f
and e; N e;+1 € g. By definition, C;, Ci—; € e; N ej41, and hence C;, Ci—; C g. Now, by Lemma 2.2,
Ci, Ci_; are connected in L(v), as required. g

Lemma 2.9 immediately implies the following.

Theorem 2.10. Let G be a tightly connected disperse £-graph. Then L(v) is tightly connected for all
v e V(G).

Proof. Letv € V(G).Fixany A, BC V(G) \ {v} of size £ — 2. As G is tightly connected, A U {v} and
BU {v} are connected in G. Hence, by Lemma 2.9, A and B are connected in L(v). This shows that
L(v) is tightly connected. 0

Next, we need the following simple lemma proved by the first author and Tomon [8]. For
completeness, we include the proof.

Lemma 2.11. Let G be a disperse 3-graph. Then L(v) is a cograph for every v € V(G).

Proof. Let v € V(G), and suppose by contradiction that 4, b, ¢, d is an induced path in L(v). In
order for v, a, b, ¢ not to span two edges, we must have {a, b, ¢} € E(G). Similarly, {b, ¢, d} € E(G)
and {a, b, d}, {a, ¢, d} ¢ E(G). But now a4, b, ¢, d span two edges, a contradiction. U

We now proceed to the proof of Theorem 1.4.

Proof of Theorem 1.4. We use induction on £. When ¢ = 3, the link of each vertex is a cograph
by Lemma 2.11, and every cograph H satisfies that H or H is not connected. In particular, by the
contrapositive of Theorem 2.10, this implies that G or G is not tightly connected. Now, suppose
£ > 3. Fix any v € V(G). By Lemma 2.1, Lg(v) is disperse. Hence, by the induction hypothesis,
Lo(v) or Lg(v) = Lg(v) is not tightly connected. Thus, G or G is not tightly connected by the
contrapositive of Theorem 2.10, as desired. ]

Next, we consider the structure of tight components in disperse hypergraphs, with the goal of
proving Theorem 1.5. We begin a sequence of lemmas.

Lemma 2.12. Let G be a disperse £-graph and let A}, Ay C V(G) with |A1|=|Az|=¢—1 and
|A1 N Az| =€ — 2. Suppose that G has a tight walk between Ay and A,. Then there exists such a
tight walk on two or less edges.
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Proof. We prove this claim by induction on the uniformity £. First, suppose £ =3 and write
A1 ={v,x}, Ay ={v,y}. By Lemma 2.9, x and y are in the same component of L(v). Since L(v)
is a cograph by Lemma 2.11, L(v) is induced P4-free, and so, the shortest path from x to y in L(v)
has length at most 2. Thus, G contains a tight walk from {v, x} to {v, y} of length at most 2, as
required. Now, suppose £ > 4. Let v € A; N A, be arbitrary. By Lemma 2.9, there is a tight walk
from A;\{v} to A2\{v} in L(v). Hence, by the inductive hypothesis, there exists such a walk of
length at most 2. Denote this walk by e;, e; (possibly e; = e;). Then, e; U {v},e; U{v} is a tlght
walk of length at most 2 from A; to A; in G, as desired.

Lemma 2.13. Let G be a disperse £-graph, let BC V(G) of size £, and let Aj, Ay C B be distinct
subsets of size £ — 1. If Ay, A, belong to the same tight component C of G, then every (£ — 1)-subset
of B also belongs to C.

Proof. By assumption, G has a tight walk between A; and A,. By Lemma 2.12, there exists
such a tight walk W of length at most 2. If W has length 1 then it consists of the single edge
e=A; UA; =B, and thus, any (£ — 1)-subset of B clearly belongs to C. So suppose that W has
length 2 and write W = (e}, e2), where A} C e;, Ay C e, and ej # ey. Since G is disperse, G misses
at most one edge on the (£ + 1)-set C: =e; U e,. This implies that for every (¢ — 1)-set A C C,
there is an edge e € E(G) with A C e C C (indeed, otherwise C misses at least two edges). As
leNey| > € — 1, we have a tight walk (e}, €) between A; and A. Hence, A belongs to C, as required]

Lemma 2.14. Let G be a disperse {-graph and let ey, . ..,en be a tight walk in G. Then all
(€ — 1)-subsets of | JI | e; belong to the same tight component of G.

Proof. We will prove this claim by induction on m. The claim is trivial when m=1, as e;
is a tight walk between any two (£ — 1)-subsets of e;. Now assume m > 2. By the induc—

tion hypothe51s, there is a tight component C containing all (¢ — 1)-subsets of W:=J!"| e,

If e, C Ui:l e; then there is nothing to prove, so suppose otherwise. Let x be the unique
vertex in ey, \ em—1, and write e, ={vi,v2,...,ve—1,x}. It suffices to show that for every
Wi, ..., we—z € W, the (€ — 1)-set {wy, w2, ..., wg_2, x} belongs to C. We now prove by induc-
tion on j that for every 0 <j <€ —2, Aj:={wi,..., W}, Vj+1,...,Ve—2,x} €C. For the base case
j=0, note that Ao ={v1,...,v¢—2,x} is in the same tight component as {v;,...,v,—1}€C,
because both of these (¢ —1)-sets are contained in e,. For the induction step, let 1<
j<{£—2. By the inductive hypothesis, A o1 = {wi,..., Wim1, Vi, Vitls - - - ve—a,x} € C. Also,
{wi, o oW v Vi, .. e—2) € C because all vertices of this (¢ — 1)-set belong to W. Hence, by
Lemma 2.13 for the set B: = {wy,..., W}, Vj, Vj+1,. .., Ve—2, x}, every (£ — 1)-subset of B, and in
particular A;, also belongs to C. This completes the induction step. Taking j = £ — 2, we get that
Ag—y={wi,...,we_p, x} €C, as required. g

Using the above lemmas, we can now prove Theorem 1.5.

Proof of Theorem 1.5. Let C be a tight component of G. Let U be the set of all v € V(G) such that
v € A for some A € C. We want to show that C = ([Hl). So suppose for the sake of contradiction
that there exists some A C U of size £ — 1 such that A € C. Let A’ be a largest subset of A such that
A’ CBforsomeBeC.As A ¢ C,wehave |A’| < |A|.So fix x € A\A'. As x € U, there is some C € C
with x € C (by the definition of U). As B, C € C, there is a tight walk ey, .. ., e, in G between B
and C. By Lemma 2.14, each (¢ — 1)-tuple of vertices in | J!~, e; also belongs to C. As A" U {x} C
BUCC U, e, there is an (¢ — 1)-tuple D € C with A’ U {x} € D. However, this contradicts the
maximality of A’, completing the proof. U

3. Proof of Theorem 1.2

The following is a standard bound on the independence number of hypergraphs, due to
Spencer [14].
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Lemma 3.1. Let G be an £-graph with n vertices and average degree d. Then

-1
a(G) > n~min{1,d*1/(zfl)}.

Proof. Ifd <1 then e(G) = ’Zd < 7, and deleting one vertex per edge gives an independent set of
size at least L = L. Suppose now that d > 1. Sample a random subset U C V(G) with probability

p:=d /(=D < 1, Deleting one vertex per edge in U gives an independent set of 51ze at least | Ul —
¢ dn

e(U). By linearity of expectation, we have E[|U| — e(U)] = pn — p* <7 = pn(1 — ) = 5 pn =
‘Zl;lnd_l/“_l). O
It is well-known that every n-vertex cograph contains a homogeneous set of size at least n'/2.
The same proof applies to cohypergraphs, as follows.
Lemma 3.2. Every cohypergraph G on n vertices satisfies o(G)-w(G)>n and hence
max (a(G), 0(G)) = n?.
Proof. We prove this by induction on n. The case n =1 is trivial, so suppose n > 2. By definition,
we can write V(G) = V(H;) U V(H,), where H; and H, are vertex-disjoint cohypergraphs, and G
has either all edges or no edges which intersect both V(H;) and V(H,). By the inductive hypoth-
esis, «(H;) - w(H;) > |V(H;)| for i =1, 2. Let us assume that G his all edges which intersect both
V(H1) and V(H;); the other case is symmetrical (by switching to G). Then w(G) = w(H}) + w(H3)
and o(G) = max («(H;), «(H3)), giving
a(G) - w(G) = max (a(H1), «(Hz)) - (w(H1) + w(H>))

> a(Hy) - w(Hy) + a(Hz) - w(Ha)

> |V(H)| + [V(Hy)|

=V(G)|=n,
as desired. d

For a tight component C of a disperse £-graph G, we denote by V(C) the vertex set U satisfying
C=( EE’I), using Theorem 1.5. The following lemma shows that if all tight components of G are

small, then G has a large independent set.
Lemma 3.3. Let G be a disperse £-graph on n vertices, and suppose that for every tight component C
of G it holds that |V(C)| < m. Then a(G) > e (n/m)é I,

Proof. First, we will bound the number of edges of G. Note that each edge of G is contained in
V(C) for some tight component C. Thus, by summing over all tight components, we obtain that

eG) <y ("?')

B _C Z <|v_c>|)

_m n
e \e—-1)

where the equality uses the fact that every (¢ — 1)-subset of V(G) is contained in V(C) for exactly

one tight component C, as the tight components partition (V(G))

degree of G, we get

Letting d denote the average
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Thus, by Lemma 3.1,

-1 n L—1 /n\&=
a(G)z E . e (;2: Z .<_)51’
mié-1pt-1

as desired. O

For two disjoint vertex-sets X, Y in an £-graph G and for 1 <i < ¢ — 1, denote by EG(Xi, Y[_")
the set of edges of G having i vertices in X and £ — i vertices in Y, and let eg(X’, Y*~) be the
number of such edges. An edge in Uf:_ll Eq(X!, Y*~7) is said to cross (X, Y).

Lemma 3.4. Let G be a disperse £-graph, and let X,Y C V(G) be disjoint vertex-sets with
ec(Xt-1, YY) =0.Let A={vy,...,v—1} SXUY, denotei=|ANY|andassumei> 1. Then there
are less than 2171 edges in Eg(Xt—1 YY) containing A.

Proof. We prove the claim by induction on i. The base case i=1 holds by assumption as
ec(X*~1, Y') =0. Now let 2 < i < £ — 1 and suppose that the result holds for i — 1. Without loss
of generality, assume that v;, ve_; € Y (note that |[A N Y| =i > 2). Suppose, for the sake of contra-
diction, that there are at least 21! edges in Eg(Xef", Y?) which contain A. As |[ANY|=1i, each
such edge consists of A and a vertex from X. So let X4 ={xe X\ A:{x} UA € E(G)} denote
the set of vertices in X such that {x} UA € Eg(X*~, Y?). Then |X4| > 2""!. Observe that for
any x1, xy € X4, the set of vertices {x;,x2} UA contains at least two edges (namely, the edges
{xj}UA for j=1,2), and thus, avoids at most one edge (as G is disperse). Colour the pair
X1X € (XZA) blue if {x1, x2, v2, . . ., v¢—1} € E(G), and red otherwise. So, if x; x; is coloured red, then
{x1,x2,v1,...,ve—2} € E(G). Fix any v € X4. By pigeonhole, at least (%] > 2172 of the edges
touching v have the same colour. Without loss of generality, suppose this colour is red. That is,
{v, %, V1, ..., vi—2} € E(G) for at least 212 vertices x. Note that the set A’: = {vy, . .., v¢_a, v} sat-
isfies |[A’ N Y| =i — 1, because v¢—; € Y and v € X. Hence, each edge {v, x, v1, . .., v¢—2} as above
belongs to Eg(X¢~"*1, Y1), Therefore, the number of edges in Eg(X‘~"*!, Y'~!) containing A’
is at least 272, a contradiction to the induction hypothesis. U

Finally, we prove Theorem 1.2.

Proofof Theorem 1.2. Sete = ;;r 11 Y =3 [ ;- We first define an algorithm to maintain a partition

P of V(G) and a set of £-tuples B C (V(ZG)), as follows.
We first give the following claim, which will be used later.
Claim 3.5. Let U C V(G). If U contains no £-tuple from B, then G[U] is a cohypergraph.

Proof. Observe that at each step of the algorithm, the hypergraph H (Line 3) has no edges which
cross (XN U, YN U) (because all such edges are added to BB). This implies that G contains all or
none of the edges crossing (X N U, Y N U) (by the choice of H). Moreover, |[UN W| < ¢ —1 for
every W € P (here P is the partition at the end of the algorithm), because U contains no £-tuple
from B, whereas (‘2/) C B. It follows that G[U] is a cohypergraph obtained by starting with the
empty hypergraphs G[U N W], W € P, and repeatedly joining two of the parts (by backtrackmg
the algorithm).

Note that in Line 9 of the algorithm, we have EH(XZ*I, Y') =, because X is the vertex set of a
tight component C of H. Indeed, if there were an edge {x;,...,x/—1,y} € Ep(X*~1,Y"), then we
would have y € V(C) = X, a contradiction.

If the algorithm terminates in the first condition (Lines 4-5), then there is some set W C V(G)
with |[W| > n'~7 such that in either GIW] or G[W], all tight components have size at most nl—e.
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Algorithm 1 PARTITION-ALGORITHM

1: |Initialise P = {V(G)}

2:  while 3W e P such that |W| > n*~7, do

3 LetHe {G[W],m] such that H is not tightly connected (Theorem 1.4)

4 if A1l tight components C of Hsatisfy |V(C)| < n'~¢, then

5: Terminate

6 else

7 Partition W =XU Y where |X| > n’~¢ and X = V(C) for a tight component C of H
8 Replace Wwith X,YinP

9 Add to Balledgesin Ey(X’, Y*~/) forevery1<i<f—2

10: end if

11:  end while

12:  forW e P do

13: Add (V) to B
14:  end for

Thus, by Lemma 3.3 (with m = n'~¢), we have

1

max (@(G), () = . <M>
Y2 m

e~y
> 0.5nt-1

1
= 05}1 3(—-1 S

using our choice of €, y. Hence, we may assume from now on that the algorithm does not
terminate on the first condition.

Thus, by Claim 3.5, our goal from now on is to find a large set U C V(G) which is independent
in the hypergraph with edge set 5. To this end, we upper-bound |3|. Let 3; (resp. 32) be the set
of £-tuples added to B in Line 9 (resp. Line 13) of the algorithm.

Claim 3.6. |B;| < 2tnt—1te,

Proof. We will bound |B;] as follows. For each pair of sets (X, Y) obtained in Line 7 of the algo-
rithm, and each edge of H e which crosses (X, Y), we assign to e an (£ — 1)-subset A C e with
ANY =eNY (if there are several such A, namely if [e N Y| < £ — 2, then choose one such A arbi-
trarily). In other words, for any given (£ — 1)-set A, we will bound the number of edges e of H
crossing (X, Y), which contain A and satisfy ANY =eN Y. Summing over all A € (‘g(ﬁ)) and all
choices for (X, Y) will give us the desired bound on |3,].

So, let A € V(G) be an arbitrary set of size £ — 1. Let (X, Y1), ..., (Xs, Y¢) be all pairs of sets
(X, Y) obtained in the course of the algorithm for which A crosses (X, Y), ordered according to
when the algorithm processed them. Since any two sets handled by the algorithm are disjoint or
nested, and since all Y; intersect A, we must have Y] D Y, D - - - D Y;. Also, since | X;| > n!~¢ for
every i (see Line 7 of the algorithm), we have | Y;| < |Y;_1| — n! =€ forall 2 < i < t, and thus, t < n€.
Now, fixany 1 <i<t. As eH(Xffl, Yil) =0, Lemma 3.4 implies that the number of edges e of H
crossing (Xj, Y;) and satisfying A N Y; =eNY; is less than Zf:_ll 271 =261 — 1. Summing over
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all choices of A € (V(G)) andi=1,...,t, we get that
n
|31|§< )'fl€~2Z
-1
< 2lpt-te,
as desired. U

Claim 3.7. |B| < n®~¢=Dr,

Proof. By the definition of the algorithm, we have |W| < n!~7 for every W € P (where P denotes
the partition at the end of the algorithm). Hence,

1B>| < Z (IVZI)

WeP
<@y w
weP
:nﬁ—(ﬂ—l)y,

as desired. O

We now complete the proof of the theorem. Consider the auxiliary £-graph on the vertex set
V(G) and edge set B = B; U B,. Let us denote this hypergraph by B as well. By Claims 3.6 and 3.7,

|E(B)| < anf—l-i-é 4 n[—(f—l)y
— 2ene—1+f;—_11 + ne-(z-1)-3g—_l

¢ 302-30—0+1+0+1 30202042
n 30—1 + n 30—1

—3042

=+’ ==

Hence, the average degree of 13 is at most

3023042 -1 302—60+3 3(e—1)2
Ol n 3t—1 =0l n 31 =0 n3t-1 }.

Thus, by Lemma 3.1,

Thus, by Claim 3.5, G contains an induced cohypergraph of size Q(nﬁ ). By Lemma 3.2,
max (a(G), w(G)) > Q (nﬁ> ,
as desired. N

Note that the above proof in fact shows that every n-vertex disperse £-graph can be made into a

cohypergraph by adding/deleting O(n o ) = 0(n* %) = o(n") edges. Indeed, changing the
£-tuples in 3 in an appropriate way yields a cohypergraph.
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4. Concluding remarks

For a set LC{0,1,...,£+ 1}, let us call an £-graphL-free if it contains no induced (£ + 1)-
vertex subgraph whose number of edges belongs to L. Thus, an £-graph is disperse if and only
if it is {2,3,...,¢ — 1}-free. Our main result is that disperse ¢-graphs have polynomial-size
homogeneous sets.

Problem 4.1. Is there any proper subset L C{2,3,...,¢ — 1} for which L-free £-graphs have
polynomial-size homogeneous sets?

This trivially fails for £ = 3, and can also be shown to fail for £ = 4; but such an L could exist
for £ > 5.

By combining Lemmas 2.1 and 2.11, we get that in a disperse £-graph G, for every £ — 2 dis-
tinct vertices vy, . . ., v¢—2, the link graph L(vy, ..., v¢—3) is a cograph (this graph consists of all
pairs xy such that {v;,...,v,—2, %, y} € E(G)). Thus, the following would be a strengthening of
Theorem 1.2.

Problem 4.2. Is there ¢, > 0 such that if G is an n-vertex £-graph in which all links L(vy, . . ., v¢—2)
are cographs, then G has a homogeneous set of size at least n ?

Another well-studied graph class is that of split graphs. A graph is split if it has a vertex partition
X,Y such that X is a clique and Y is an independent set. One can ask for the size of homoge-
neous sets in 3-graphs in which every link is split. It turns out that such 3-graphs might only have
homogeneous sets of logarithmic size, due to the following variant of a well-known construction.
Take a random graph F ~ G(n, 3), and define a 3-graph G on V(F) in which xyz is an edge if
er({x, y, z}) > 2. It is easy to show, using standard arguments, that w(G), 2(G) = O(log n). Also,
for every vertex v, Np(v) is a clique in the link of v, and V(F)\(Np(v) U {v}) is an independent set
in the link of v. Hence each link is split.

We can also show that the above construction is inevitable, in the sense that if G is a 3-graph
where all links are split, then G contains a large vertex-set which induces the above construction.

Proposition 4.3. Let G be an n-vertex 3-graph in which every link is split. Then there is U C V(G),
|U| > n'/3, and a graph F on U, such that for every distinct x,y,z € U, xyz € E(G) if and only if
er({x, ,2}) = 2.

Proof. By assumption, for each v € V(G), there is a partition V(G)\{v} = A, U B, such that A,
is independent in the link of v and B, is a clique in the link of v. Call a pair of vertices xy good
if xe Ay<=yecA, (ie. x€A) and y € Ay, or x € B, and y € By). Otherwise, call xy bad. We
first claim that there is no Ky consisting of bad pairs. Suppose otherwise; let x1, x2, x3, x4 such
that x;x; is bad for every 1 <i < j < 4. Orient the edges x;x; by letting x; — x; if x; € Ay, (note that
exactly one of xj € Ay,, x; € Ay; holds). Every tournament on 4 vertices has a transitive tournament
on 3 vertices. Hence, without loss of generality, we can assume that x; — x7, x3 and x; — x3. It
follows that x;, x3 € Ay, and hence x1x3x3 ¢ E(G). On the other hand, xi, x; € By;, and hence
x1x2x3 € E(G), giving a contradiction.

We showed that the graph of bad pairs has no Ky. As R(Ky, Kp,) < (M;Z) < m3, there is a set
U C V(G), |U| > n'/3, such that U contains no bad pairs. Now define a graph F on U by letting xy
be an edge of F if x € B, and y € By (so xy is not an edge of Fif x € Aj and y € Ay). Let x, y,z€ U
be distinct. If xy, xz € E(F), then y, z € By, so xyz € E(G). Similarly, if xy, xz ¢ E(F), then y,z € A,
and so xyz ¢ E(F). This proves the proposition. U
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