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Abstract
For � ≥ 3, an �-uniform hypergraph is disperse if the number of edges induced by any set of � + 1 vertices
is 0, 1, �, or � + 1. We show that every disperse �-uniform hypergraph on n vertices contains a clique or
independent set of size n��(1), answering a question of the first author and Tomon. To this end, we prove
several structural properties of disperse hypergraphs.
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1. Introduction
The Erdős-Hajnal conjecture [6] is a fundamental problem in extremal graph theory, stating that
for every fixed graph H, every induced H-free n-vertex graph has a homogeneous set (i.e. a clique
or independent set) of size at least ncH , where cH > 0 is a constant depending only on H. This
is in sharp contrast to general graphs, which may only have homogeneous sets of size O( log n).
Despite significant recent progress (see, e.g. [4, 10, 11] and the references therein), the Erdős-
Hajnal conjecture remains open in general.

It is natural to ask for analogues of the Erdős-Hajnal conjecture for hypergraphs. We will use
the term �-graph as shorthand for �-uniform hypergraph. Let logk (x) denote the k-times iterated
logarithm, that is, log0 (x)= x, log1 (x)= log (x), and logk (x)= log ( logk−1 (x)). Let h�(n) denote
the maximum size of a homogeneous set guaranteed to exist in every �-vertex n-graph. It is well-
known [7] that h�(n)≥

(
log�−1 (n)

)�(1), and it is conjectured that the number � − 1 of iterated
logarithms is best possible, that is, h�(n)≤

(
log�−1 (n)

)O(1). Thus, a natural analogue of the Erdős-
Hajnal conjecture for �-graphs would be that for every fixed �-graph H, every induced H-free
n-vertex �-graph has a homogeneous set of size

(
log�−2 (n)

)cH . However, there is some evidence
that this might not be true for every H. Indeed, it is known that for uniformity � ≥ 4, the so-
called stepping up construction gives a tight lower bound for Ramsey numbers in terms of the
number of iterated logarithms (though this number is not known, as for the critical case � = 3
we only know that the number of logarithms is at least 1 and at most 2; this corresponds to at
least � − 2 and at most � − 1 logarithms for uniformity �). Conlon, Fox, and Sudakov [5] showed
that the stepping up construction avoids certain H as induced subgraphs. Thus, for � ≥ 4, there
exist �-graphsH such that inducedH-free �-graphs do not have significantly larger homogeneous
sets than general �-graphs. Therefore, if h�(n)≤

(
log�−1 (n)

)O(1) (as conjectured), then the above
�-uniform analogue of the Erdős-Hajnal conjecture fails. See also [1, 12] for additional Erdős-
Hajnal-type results for hypergraphs.
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2 L. Gishboliner and E. Honest

Recently, there has been some interest in variants of the Erdős-Hajnal problem where one for-
bids order-size pairs instead of induced subgraphs H. To the best of our knowledge, this setting
was first considered in [9]. Let us define the problem. For a set Q of pairs of integers, we say that
an �-graph G is Q-free if for every (m, f ) ∈Q, there is no set of m vertices in G which induces
exactly f edges. What can we say about the size of homogeneous sets in Q-free �-graphs? It was
recently shown by Arnold, the first author, and Sudakov [2] that this problem does in fact satisfy
the natural hypergraph analogue of the Erdős-Hajnal conjecture, in the sense that for every � ≥ 2,
all but a finite number1 of the sets Q �= ∅ satisfy that every Q-free �-graph on n vertices contains a
homogeneous set of size at least

(
log�−2 (n)

)cQ .
The papers [3, 8] studied the special case where � = 3 and Q consists of pairs of the form (4, f );

that is, we forbid certain numbers of edges on vertex-sets of size four. The first author and Tomon
[8] showed that if an n-vertex 3-graph G has no four vertices spanning exactly two edges, then G
has a homogeneous set of size nc (where c> 0 is an absolute constant). They also asked to show
that this extends to �-graphs, in the following sense: If an n-vertex �-graph G, with � ≥ 3, has no
� + 1 vertices spanning 2, 3, 4, . . . , � − 1 edges, thenG has a homogeneous set of size nc� . Here we
prove this conjecture. We call �-graphs with this property disperse.

Definition 1.1. Let G be an �-graph, � ≥ 3. We say that G is disperse if, for every (� + 1)-set X =
{v1, . . . , v�+1} ⊆V(G), it holds that eG(X) ∈ {0, 1, �, � + 1}.
Note that if G is disperse then so is its complement G.

Theorem 1.2. Let G be a disperse �-graph on n vertices. Then,max (α(G),ω(G))≥ �(n
1

3�−1 ).

The constant 1
3�−1 in Theorem 1.2 is best possible up to a factor of roughly 1

3 . Indeed, note that
if an �-graph G has no two edges intersecting in � − 1 vertices, then G is disperse (because every
(� + 1)-set of vertices spans 0 or 1 edges). Such �-graphs are known aspartial (�, � − 1)-Steiner
systems. It is known [13] that there exist n-vertex partial (�, � − 1)-Steiner systems with indepen-
dence number Õ(n

1
�−1 ). Hence, the constant in Theorem 1.2 cannot be improved beyond 1

�−1 .
It is also worth noting that in the case � = 3, the constant 1

8 given by Theorem 1.2 significantly
improves the constant obtained in [8], which was much smaller and therefore not calculated
explicitly. It would be interesting to determine the best possible constant in Theorem 1.2. For
� = 3, the best upper-bound on this constant comes from [3], which constructed a disperse
n-vertex 3-graph G with max (α(G),ω(G))≤ Õ(n1/3).2

As mentioned above, one example of disperse �-graphs is partial (�, � − 1)-Steiner systems. Let
us now describe another important example. A hypergraph G is called a cohypergraph if either
|V(G)| = 1, or there is a vertex partition V(G)= X ∪ Y such that G[X],G[Y] are cohypergraphs
and E(G) contains all or none of the �-sets which intersect both X and Y . It is easy to check
(by induction) that every cohypergraph is disperse. Also, note that for � = 2, this recovers the
definition of cographs. Recall also that a graph is a cograph if and only if it is induced P4-free,
where P4 is the path with 4 vertices.

To prove Theorem 1.2, we show (implicitly) that every disperse �-graph is close to being a
cohypergraph. To this end, we prove several structural properties of disperse hypergraphs. Let
us now state the two key facts we will use, Theorems 1.4 and 1.5. We first introduce the basic
definitions related to tight connectivity.

Definition 1.3. Let G be an �-graph. A tight walk is a sequence of edges e1, . . . , em ∈ E(G) such that
|ei ∩ ei+1| ≥ � − 1 for all 1≤ i≤m− 1. For A, B ∈ (V(G)

�−1
)
, we say that A, B are connected in G if

1It is conjectured in [2] that these exceptions are not necessary and the result in fact holds for every non-empty Q.
2In fact, this construction avoids not only four vertices spanning two edges, but also four vertices spanning three edges.
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there is a tight walk e1, . . . , em with A⊆ e1 and B⊆ em. This is an equivalence relation.3 A tight
component of G is an equivalence class in this relation. Thus, the tight components partition

(V(G)
�−1

)
.

We say that G is tightly connected if there is a single tight component, namely
(V(G)

�−1
)
.

In other words, G is tightly connected if for every A, B ∈ (V(G)
�−1

)
, there is a tight walk e1, . . . , em

with A⊆ e1 and B⊆ em. Note that in the case � = 2, this coincides with the usual notion of graph
connectivity.

For a hypergraph G, we use G to denote the complement of G. Our first theorem states that for
a disperseG, eitherG orG is not tightly connected. Our second theorem states that in a disperseG,
each tight component is a complete hypergraph, that is, it consists of all (� − 1)-tuples contained
in some vertex set.

Theorem 1.4. Let G be a disperse �-graph. Then G or G is not tightly connected.

Theorem 1.5. Let G be a disperse �-graph. Then for every tight component C of G, there is U ⊆V(G)
such that C = ( U

�−1
)
.

Combining these two theorems, we conclude that for every disperse �-graph G, either in G or
in G we can find a vertex set ∅ �= X �V(G) such that there is no edge having � − 1 vertices in X
and one vertex in Y :=V(G) \ X. Indeed, we simply take X to be the vertex set corresponding to
a tight component (via Theorem 1.5). One can then show, using the fact that G is disperse, that
there are only few edges intersecting both X and Y . Repeating this inside X and Y (with some
technicalities omitted here), we can show that G is close to a cohypergraph.

Theorems 1.4 and 1.5 are proved in Section 2. We then prove Theorem 1.2 in Section 3.
Section 4 contains some further remarks and open problems. We mostly use standard graph-
theoretic notation. For a vertex-set X in a hypergraph G, we use eG(X) to denote the number of
edges of G contained in X. Throughout the rest of the paper, we assume that the uniformity � is at
least 3, unless explicitly stated otherwise.

2. Structural results
In this section we study the structure of disperse hypergraphs, and in particular prove
Theorems 1.4 and 1.5. Let us begin with some lemmas. For an �-graph G and v ∈V(G), the link
L(v) is the (� − 1)-graph on V(G) \ {v} with edge set {e ∈ (V(G)\{v}

�−1
)
:e∪ {v} ∈ E(G)}. A useful fact

is that the links of a disperse hypergraph are also disperse.

Lemma 2.1. Let G be a disperse �-graph. Then for every v ∈V(G), L(v) is disperse.

Proof. Suppose that there is v ∈G such that L(v) is not disperse, and let X = {v1, . . . , v�} ⊆V \ {v}
witness this, namely, 2≤ |eL(v)(X)| ≤ � − 2. Then 2≤ eG(X ∪ {v})≤ � − 1, contradicting that G is
disperse. �
We will also use the following easy lemma.

Lemma 2.2. Let G be a disperse �-graph, let f , g ∈ E(G) with |f ∩ g| ≥ � − 1, let v ∈ f and let A, B⊆
g\{v} with |A| = |B| = � − 2. Then A, B are connected in L(v).

Proof. If v ∈ g then the assertion clearly holds, because g \ {v} is a (one-edge) tight walk betweenA
and B in L(v). So suppose that v /∈ g. Then we can write f = {v, v1, . . . , v�−1}, g = {v1, . . . , v�−1,w}
with w �= v. As G is disperse, the (� + 1)-set f ∪ g must miss at most one edge. This means
that there are e1, e2 ∈ E(G) with {v} ∪A⊆ e1 and {v} ∪ B⊆ e2. Now e1\{v}, e2\{v} is a tight walk
between A and B in L(v). �
3Indeed, let e1, . . . , em be a tight walk with A⊆ e1, B⊆ em, and let f1, . . . , fk be a tight walk with B⊆ e1, C ⊆ fk. Then

e1, . . . , em, f1, . . . , fk is a tight walk connecting A and C.
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The following is our main technical lemma. It shows that in a disperse hypergraph, if there is
a tight walk of length 3 from a vertex v to an (� − 1)-set B, then there is also such a tight walk of
length 2.

Lemma 2.3. Let G be a disperse �-graph, let e, f , g be a tight walk in G, let v ∈ e, and let B⊆ g with
|B| = � − 1. Then there is a tight walk f ′, g′ in G such that v ∈ f ′ and B⊆ g′.
Proof. We first consider some easy degenerate cases. If v ∈ f or v ∈ g then we can take (f ′, g′)=
(f , g) or (f ′, g′)= (g, g), respectively. If B⊆ f then take (f ′, g′)= (e, f ), and if |e∩ g| ≥ � − 1
then take (f ′, g′)= (e, g). Assuming that none of the above holds, without loss of general-
ity we may write e= {v,w1, . . . ,w�−1}, f = {w1, . . . ,w�} and g = {w2, . . . ,w�+1} with the ver-
tices v,w1, . . . ,w�+1 being distinct, and B= {w2, . . . ,w�+1}\{wi} for some i �= � + 1. Note that
|f ∩ B| = � − 2.

Suppose, for the sake of contradiction, that there is no tight walk f ′, g′ as in the lemma. We
proceed via a series of claims which will eventually give a contradiction.

Claim 2.4. For all A⊆ f \{w1} with |A| = � − 2, it holds that {v,w1} ∪A ∈ E(G).

Proof. Consider the (� + 1)-set X = {v,w1, . . . ,w�}. As e, f are both edges of G contained in X,
and as G is disperse, Gmisses at most one edge on X. Note that h:= {v,w2, . . . ,w�} is not an edge
of G, as otherwise f ′ = h and g′ = g satisfy v ∈ f ′, |f ′ ∩ g′| = |{w2, . . . ,w�}| = � − 1 and B⊆ g′. So,
G contains all edges on X besides h; in particular, G contains {v,w1} ∪A for all A⊆ f \{w1} of size
� − 2. �
Claim 2.5. For all A⊆ g with |A| = � − 1, it holds that {v} ∪A �∈ E(G).

Proof. Otherwise we can take f ′ = {v} ∪A and g′ = g, which satisfy v ∈ f ′, |f ′ ∩ g′| = |A| = � − 1
and B⊆ g′. �
Claim 2.6. For all A⊆ g with |A| = � − 1, it holds that {w1} ∪A ∈ E(G) if and only if A �= B.

Proof. Let X = {w1, . . . ,w�+1}. Note that f , g are edges of G contained in X, and thus, G misses
at most one edge on X. Moreover, if {w1} ∪ B ∈ E(G), then letting f ′ = {v,w1} ∪ (f ∩ B) (which is
an edge by Claim 2.4) and g′ = {w1} ∪ B gives the desired result. Thus, {w1} ∪ B /∈ E(G), implying
that Gmust contain all other edges on X – in particular, all edges of the form {w1} ∪A with A⊆ g,
|A| = � − 1 and A �= B. �
Claim 2.7. For all A⊆ B with |A| = � − 2 and A �= f ∩ B, it holds that {v,w1} ∪A �∈ E(G).

Proof. Let X = {v,w1} ∪ B, so |X| = � + 1. By Claim 2.5 we have {v} ∪ B �∈ E(G), and by Claim 2.6
we have {w1} ∪ B /∈ E(G). Hence, as G is disperse, it can contain at most one edge on X, which
must be the edge {v,w1} ∪ (f ∩ B), as this is an edge by Claim 2.4. So, G cannot contain any edge
of the form {v,w1} ∪A for A⊆ B with |A| = � − 2 and A �= f ∩ B. �

Now, we use the above claims to derive a contradiction and hence prove Lemma 2.3. Fix an
arbitrary x ∈ f ∩ B (this is possible because |f ∩ B| = � − 2≥ 1). Set C = g\{x}, and note that |C| =
� − 1; C �= B and hence |C ∩ B| = � − 2; w�+1 ∈ C (as w�+1 /∈ f and so x �=w�+1); and C ∩ B �=
f ∩ B (as x ∈ f ∩ Bwhile x /∈ C). Consider the setX = {v,w1} ∪ C, so |X| = � + 1.Wewill show that
there exist two edges and two non-edges on X. Indeed, by Claim 2.4, {v,w1} ∪ (C\{w�+1}) ∈ E(G),
and by Claim 2.6, {w1} ∪ C ∈ E(G). On the other hand, by Claim 2.5, {v} ∪ C �∈ E(G), and by Claim
2.7, {v,w1} ∪ (C ∩ B) �∈ E(G). This contradicts the assumption that G is disperse, as desired. �

Lemma 2.3 easily implies the following.

Lemma 2.8. Let G be a disperse �-graph, let e1, . . . , em be a tight walk in G, and let v ∈ e1. Then for
all 1≤ i≤m− 1, there exists a tight walk f , g such that v ∈ f and ei ∩ ei+1 ⊆ g.

Proof. We prove this by induction on i. For i= 1 the claim is trivial by letting f = g = e1. For the
inductive step, let f , g be a tight walk with v ∈ f and ei−1 ∩ ei ⊆ g. Note that f , g, ei is a tight walk
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as f , g is a tight walk and |g ∩ ei| ≥ |ei−1 ∩ ei| = � − 1. Moreover, v ∈ f and B:= ei ∩ ei+1 ⊆ ei, so
we may apply Lemma 2.3 to obtain a tight walk f ′, g′ with v ∈ f ′ and ei ∩ ei+1 ⊆ g′, as desired. �
We now use this result to prove the following key lemma.

Lemma 2.9. Let G be a disperse �-graph, let v ∈V(G) and let A, B⊆V(G)\{v} with |A| = |B| =
� − 2. If A∪ {v} and B∪ {v} are connected in G, then A and B are connected in L(v).

Proof. Let e1, . . . , em be a tight walk in G between A∪ {v} and B∪ {v}. We will prove the lemma
by induction onm. Form≤ 2 the lemma is trivial, by simply observing that e1\{v}, em\{v} is a tight
walk between A and B in L(v). So, suppose m≥ 3. First, consider the case where v ∈ ei for some
1< i<m. Fix any C ⊆ ei\{v} of size � − 2. By the inductive hypothesis, A and C are connected
in L(v), because e1, . . . , ei is a tight walk between A∪ {v} and C ∪ {v} in G. Similarly, C and B are
connected in L(v), by applying the inductive hypothesis to ei, . . . , em. By transitivity, A and B are
connected in L(v).

Now, suppose that v �∈ ei for every 1< i<m. For 1≤ i≤m− 2, let Ci:= ei ∩ ei+1 ∩ ei+2. Then
|Ci| ≥ � − 2 and we may assume, by passing to a subset if necessary, that |Ci| = � − 2. Note that
v /∈ Ci for every 1≤ i≤m− 2. Set also C0 =A and Cm−1 = B. It suffices to show that for every
1≤ i≤m− 1,Ci−1, Ci are connected in L(v). Indeed, this would imply, by transitivity, thatA= C0
and B= Cm−1 are connected in L(v). Observe that A and C1 are connected in L(v) because e1\{v}
is an edge of L(v) containing A, C1. Similarly, B and Cm−2 are connected in L(v) because v ∈ em
and B, Cm−2 ⊆ em\{v}. Now let 2≤ i≤m− 2. By Lemma 2.8, there is a tight walk f , g with v ∈ f
and ei ∩ ei+1 ⊆ g. By definition, Ci, Ci−1 ⊆ ei ∩ ei+1, and hence Ci, Ci−1 ⊆ g. Now, by Lemma 2.2,
Ci, Ci−1 are connected in L(v), as required. �
Lemma 2.9 immediately implies the following.

Theorem 2.10. Let G be a tightly connected disperse �-graph. Then L(v) is tightly connected for all
v ∈V(G).

Proof. Let v ∈V(G). Fix anyA, B⊆V(G) \ {v} of size � − 2. AsG is tightly connected,A∪ {v} and
B∪ {v} are connected in G. Hence, by Lemma 2.9, A and B are connected in L(v). This shows that
L(v) is tightly connected. �

Next, we need the following simple lemma proved by the first author and Tomon [8]. For
completeness, we include the proof.

Lemma 2.11. Let G be a disperse 3-graph. Then L(v) is a cograph for every v ∈V(G).

Proof. Let v ∈V(G), and suppose by contradiction that a, b, c, d is an induced path in L(v). In
order for v, a, b, c not to span two edges, we must have {a, b, c} ∈ E(G). Similarly, {b, c, d} ∈ E(G)
and {a, b, d}, {a, c, d} /∈ E(G). But now a, b, c, d span two edges, a contradiction. �
We now proceed to the proof of Theorem 1.4.

Proof of Theorem 1.4. We use induction on �. When � = 3, the link of each vertex is a cograph
by Lemma 2.11, and every cograph H satisfies that H or H is not connected. In particular, by the
contrapositive of Theorem 2.10, this implies that G or G is not tightly connected. Now, suppose
� > 3. Fix any v ∈V(G). By Lemma 2.1, LG(v) is disperse. Hence, by the induction hypothesis,
LG(v) or LG(v)= LG(v) is not tightly connected. Thus, G or G is not tightly connected by the
contrapositive of Theorem 2.10, as desired. �

Next, we consider the structure of tight components in disperse hypergraphs, with the goal of
proving Theorem 1.5. We begin a sequence of lemmas.

Lemma 2.12. Let G be a disperse �-graph and let A1,A2 ⊆V(G) with |A1| = |A2| = � − 1 and
|A1 ∩A2| = � − 2. Suppose that G has a tight walk between A1 and A2. Then there exists such a
tight walk on two or less edges.
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Proof. We prove this claim by induction on the uniformity �. First, suppose � = 3 and write
A1 = {v, x}, A2 = {v, y}. By Lemma 2.9, x and y are in the same component of L(v). Since L(v)
is a cograph by Lemma 2.11, L(v) is induced P4-free, and so, the shortest path from x to y in L(v)
has length at most 2. Thus, G contains a tight walk from {v, x} to {v, y} of length at most 2, as
required. Now, suppose � ≥ 4. Let v ∈A1 ∩A2 be arbitrary. By Lemma 2.9, there is a tight walk
from A1\{v} to A2\{v} in L(v). Hence, by the inductive hypothesis, there exists such a walk of
length at most 2. Denote this walk by e1, e2 (possibly e1 = e2). Then, e1 ∪ {v}, e2 ∪ {v} is a tight
walk of length at most 2 from A1 to A2 in G, as desired. �
Lemma 2.13. Let G be a disperse �-graph, let B⊆V(G) of size �, and let A1,A2 ⊆ B be distinct
subsets of size � − 1. If A1,A2 belong to the same tight component C of G, then every (� − 1)-subset
of B also belongs to C.
Proof. By assumption, G has a tight walk between A1 and A2. By Lemma 2.12, there exists
such a tight walk W of length at most 2. If W has length 1 then it consists of the single edge
e=A1 ∪A2 = B, and thus, any (� − 1)-subset of B clearly belongs to C. So suppose that W has
length 2 and writeW = (e1, e2), where A1 ⊆ e1, A2 ⊆ e2, and e1 �= e2. Since G is disperse, Gmisses
at most one edge on the (� + 1)-set C:= e1 ∪ e2. This implies that for every (� − 1)-set A⊆ C,
there is an edge e ∈ E(G) with A⊆ e⊆ C (indeed, otherwise C misses at least two edges). As
|e∩ e1| ≥ � − 1, we have a tight walk (e1, e) between A1 and A. Hence, A belongs to C, as required.�
Lemma 2.14. Let G be a disperse �-graph and let e1, . . . , em be a tight walk in G. Then all
(� − 1)-subsets of

⋃m
i=1 ei belong to the same tight component of G.

Proof. We will prove this claim by induction on m. The claim is trivial when m= 1, as e1
is a tight walk between any two (� − 1)-subsets of e1. Now assume m≥ 2. By the induc-
tion hypothesis, there is a tight component C containing all (� − 1)-subsets of W:= ⋃m−1

i=1 ei.
If em ⊆ ⋃m−1

i=1 ei then there is nothing to prove, so suppose otherwise. Let x be the unique
vertex in em \ em−1, and write em = {v1, v2, . . . , v�−1, x}. It suffices to show that for every
w1, . . . ,w�−2 ∈W, the (� − 1)-set {w1,w2, . . . ,w�−2, x} belongs to C. We now prove by induc-
tion on j that for every 0≤ j≤ � − 2, Aj:= {w1, . . . ,wj, vj+1, . . . , v�−2, x} ∈ C. For the base case
j= 0, note that A0 = {v1, . . . , v�−2, x} is in the same tight component as {v1, . . . , v�−1} ∈ C,
because both of these (� − 1)-sets are contained in em. For the induction step, let 1≤
j≤ � − 2. By the inductive hypothesis, Aj−1 = {w1, . . . ,wj−1, vj, vj+1, . . . , v�−2, x} ∈ C. Also,
{w1, . . . ,wj, vj, vj+1, . . . , v�−2} ∈ C because all vertices of this (� − 1)-set belong to W. Hence, by
Lemma 2.13 for the set B:= {w1, . . . ,wj, vj, vj+1, . . . , v�−2, x}, every (� − 1)-subset of B, and in
particular Aj, also belongs to C. This completes the induction step. Taking j= � − 2, we get that
A�−2 = {w1, . . . ,w�−2, x} ∈ C, as required. �
Using the above lemmas, we can now prove Theorem 1.5.

Proof of Theorem 1.5. Let C be a tight component of G. Let U be the set of all v ∈V(G) such that
v ∈A for some A ∈ C. We want to show that C = ( U

�−1
)
. So suppose for the sake of contradiction

that there exists some A⊆U of size � − 1 such that A �∈ C. Let A′ be a largest subset of A such that
A′ ⊆ B for some B ∈ C. As A /∈ C, we have |A′| < |A|. So fix x ∈A\A′. As x ∈U, there is some C ∈ C
with x ∈ C (by the definition of U). As B, C ∈ C, there is a tight walk e1, . . . , em in G between B
and C. By Lemma 2.14, each (� − 1)-tuple of vertices in

⋃m
i=1 ei also belongs to C. As A′ ∪ {x} ⊆

B∪ C ⊆ ⋃m
i=1 ei, there is an (� − 1)-tuple D ∈ C with A′ ∪ {x} ⊆D. However, this contradicts the

maximality of A′, completing the proof. �

3. Proof of Theorem 1.2
The following is a standard bound on the independence number of hypergraphs, due to
Spencer [14].

https://doi.org/10.1017/S0963548325100205 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325100205


Combinatorics, Probability and Computing 7

Lemma 3.1. Let G be an �-graph with n vertices and average degree d. Then

α(G)≥ � − 1
�

n ·min{1, d−1/(�−1)}.

Proof. If d < 1 then e(G)= nd
�

< n
�
, and deleting one vertex per edge gives an independent set of

size at least �−1
�
n. Suppose now that d ≥ 1. Sample a random subset U ⊆V(G) with probability

p:= d−1/(�−1) ≤ 1. Deleting one vertex per edge inU gives an independent set of size at least |U| −
e(U). By linearity of expectation, we haveE[|U| − e(U)]= pn− p� dn

�
= pn(1− p�−1d

�
)= �−1

�
pn=

�−1
�
nd−1/(�−1). �
It is well-known that every n-vertex cograph contains a homogeneous set of size at least n1/2.

The same proof applies to cohypergraphs, as follows.

Lemma 3.2. Every cohypergraph G on n vertices satisfies α(G) · ω(G)≥ n and hence
max (α(G),ω(G))≥ n

1
2 .

Proof. We prove this by induction on n. The case n= 1 is trivial, so suppose n≥ 2. By definition,
we can write V(G)=V(H1)∪V(H2), where H1 and H2 are vertex-disjoint cohypergraphs, and G
has either all edges or no edges which intersect both V(H1) and V(H2). By the inductive hypoth-
esis, α(Hi) · ω(Hi)≥ |V(Hi)| for i= 1, 2. Let us assume that G has all edges which intersect both
V(H1) andV(H2); the other case is symmetrical (by switching toG). Thenω(G)= ω(H1)+ ω(H2)
and α(G)=max (α(H1), α(H2)), giving

α(G) · ω(G)=max (α(H1), α(H2)) · (ω(H1)+ ω(H2))
≥ α(H1) · ω(H1)+ α(H2) · ω(H2)
≥ |V(H1)| + |V(H2)|
= |V(G)| = n,

as desired. �
For a tight component C of a disperse �-graph G, we denote by V(C) the vertex set U satisfying

C = ( U
�−1

)
, using Theorem 1.5. The following lemma shows that if all tight components of G are

small, then G has a large independent set.

Lemma 3.3. Let G be a disperse �-graph on n vertices, and suppose that for every tight component C
of G it holds that |V(C)| ≤m. Then α(G)≥ �−1

�
· (n/m)

1
�−1 .

Proof. First, we will bound the number of edges of G. Note that each edge of G is contained in
V(C) for some tight component C. Thus, by summing over all tight components, we obtain that

e(G)≤
∑
C

(|V(C)|
�

)

≤ m
�

∑
C

(|V(C)|
� − 1

)

= m
�

(
n

� − 1

)
,

where the equality uses the fact that every (� − 1)-subset of V(G) is contained in V(C) for exactly
one tight component C, as the tight components partition

(V(G)
�−1

)
. Letting d denote the average

degree of G, we get

d = � · e(G)
n

≤ m
( n
�−1

)
n

≤mn�−2.
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Thus, by Lemma 3.1,

α(G)≥ � − 1
�

· n

m
1

�−1 n
�−2
�−1

= � − 1
�

·
( n
m

) 1
�−1 ,

as desired. �
For two disjoint vertex-sets X, Y in an �-graph G and for 1≤ i≤ � − 1, denote by EG(Xi, Y�−i)

the set of edges of G having i vertices in X and � − i vertices in Y , and let eG(Xi, Y�−i) be the
number of such edges. An edge in

⋃�−1
i=1 EG(Xi, Y�−i) is said to cross (X, Y).

Lemma 3.4. Let G be a disperse �-graph, and let X, Y ⊆V(G) be disjoint vertex-sets with
eG(X�−1, Y1)= 0. Let A= {v1, . . . , v�−1} ⊆ X ∪ Y, denote i= |A∩ Y| and assume i≥ 1. Then there
are less than 2i−1 edges in EG(X�−i, Yi) containing A.

Proof. We prove the claim by induction on i. The base case i= 1 holds by assumption as
eG(X�−1, Y1)= 0. Now let 2≤ i≤ � − 1 and suppose that the result holds for i− 1. Without loss
of generality, assume that v1, v�−1 ∈ Y (note that |A∩ Y| = i≥ 2). Suppose, for the sake of contra-
diction, that there are at least 2i−1 edges in EG(X�−i, Yi) which contain A. As |A∩ Y| = i, each
such edge consists of A and a vertex from X. So let XA = {x ∈ X \A : {x} ∪A ∈ E(G)} denote
the set of vertices in X such that {x} ∪A ∈ EG(X�−i, Yi). Then |XA| ≥ 2i−1. Observe that for
any x1, x2 ∈ XA, the set of vertices {x1, x2} ∪A contains at least two edges (namely, the edges
{xj} ∪A for j= 1, 2), and thus, avoids at most one edge (as G is disperse). Colour the pair
x1x2 ∈ (XA

2
)
blue if {x1, x2, v2, . . . , v�−1} ∈ E(G), and red otherwise. So, if x1x2 is coloured red, then

{x1, x2, v1, . . . , v�−2} ∈ E(G). Fix any v ∈ XA. By pigeonhole, at least � |XA|−1
2 
 ≥ 2i−2 of the edges

touching v have the same colour. Without loss of generality, suppose this colour is red. That is,
{v, x, v1, . . . , v�−2} ∈ E(G) for at least 2i−2 vertices x. Note that the set A′:= {v1, . . . , v�−2, v} sat-
isfies |A′ ∩ Y| = i− 1, because v�−1 ∈ Y and v ∈ X. Hence, each edge {v, x, v1, . . . , v�−2} as above
belongs to EG(X�−i+1, Yi−1). Therefore, the number of edges in EG(X�−i+1, Yi−1) containing A′
is at least 2i−2, a contradiction to the induction hypothesis. �

Finally, we prove Theorem 1.2.

Proof of Theorem1.2. Set ε = �+1
3�−1 , γ = 2

3�−1 .We first define an algorithm tomaintain a partition
P of V(G) and a set of �-tuples B ⊆ (V(G)

�

)
, as follows.

We first give the following claim, which will be used later.

Claim 3.5. Let U ⊆V(G). If U contains no �-tuple from B, then G[U] is a cohypergraph.

Proof. Observe that at each step of the algorithm, the hypergraph H (Line 3) has no edges which
cross (X ∩U, Y ∩U) (because all such edges are added to B). This implies that G contains all or
none of the edges crossing (X ∩U, Y ∩U) (by the choice of H). Moreover, |U ∩W| ≤ � − 1 for
every W ∈P (here P is the partition at the end of the algorithm), because U contains no �-tuple
from B, whereas (W

�

) ⊆ B. It follows that G[U] is a cohypergraph obtained by starting with the
empty hypergraphs G[U ∩W], W ∈P , and repeatedly joining two of the parts (by backtracking
the algorithm). �

Note that in Line 9 of the algorithm, we have EH(X�−1, Y1)= ∅, because X is the vertex set of a
tight component C of H. Indeed, if there were an edge {x1, . . . , x�−1, y} ∈ EH(X�−1, Y1), then we
would have y ∈V(C)= X, a contradiction.

If the algorithm terminates in the first condition (Lines 4-5), then there is some setW ⊆V(G)
with |W| ≥ n1−γ such that in either G[W] or G[W], all tight components have size at most n1−ε .
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.

Algorithm 1 PARTITION-ALGORITHM

1: InitialiseP = {V(G)}
2: while ∃W ∈P such that |W| ≥ n1−γ , do

3: Let H ∈
{
G[W], G[W]

}
such that H is not tightly connected (Theorem 1.4)

4: if All tight components C of H satisfy |V(C)| ≤ n1−ε , then

5: Terminate

6: else

7: PartitionW = X ∪ Y where |X| ≥ n1−ε and X = V(C) for a tight component C of H
8: ReplaceW with X, Y inP
9: Add to B all edges in EH(Xi, Y�−i) for every 1≤ i≤ � − 2

10: end if

11: end while

12: forW ∈P do

13: Add
(W

�

)
toB

14: end for

Thus, by Lemma 3.3 (withm= n1−ε), we have

max (α(G),ω(G))≥ � − 1
�

·
( |W|

m

) 1
�−1

≥ 0.5n
ε−γ
�−1

= 0.5n
1

3�−1 ,

using our choice of ε, γ . Hence, we may assume from now on that the algorithm does not
terminate on the first condition.

Thus, by Claim 3.5, our goal from now on is to find a large set U ⊆V(G) which is independent
in the hypergraph with edge set B. To this end, we upper-bound |B|. Let B1 (resp. B2) be the set
of �-tuples added to B in Line 9 (resp. Line 13) of the algorithm.

Claim 3.6. |B1| ≤ 2�n�−1+ε .

Proof. We will bound |B1| as follows. For each pair of sets (X, Y) obtained in Line 7 of the algo-
rithm, and each edge of H e which crosses (X, Y), we assign to e an (� − 1)-subset A⊆ e with
A∩ Y = e∩ Y (if there are several such A, namely if |e∩ Y| ≤ � − 2, then choose one such A arbi-
trarily). In other words, for any given (� − 1)-set A, we will bound the number of edges e of H
crossing (X, Y), which contain A and satisfy A∩ Y = e∩ Y . Summing over all A ∈ (V(G)

�−1
)
and all

choices for (X, Y) will give us the desired bound on |B1|.
So, let A⊆V(G) be an arbitrary set of size � − 1. Let (X1, Y1), . . . , (Xt , Yt) be all pairs of sets

(X, Y) obtained in the course of the algorithm for which A crosses (X, Y), ordered according to
when the algorithm processed them. Since any two sets handled by the algorithm are disjoint or
nested, and since all Yi intersect A, we must have Y1 ⊇ Y2 ⊇ · · · ⊇ Yt . Also, since |Xi| ≥ n1−ε for
every i (see Line 7 of the algorithm), we have |Yi| ≤ |Yi−1| − n1−ε for all 2≤ i≤ t, and thus, t ≤ nε .
Now, fix any 1≤ i≤ t. As eH(X�−1

i , Y1
i )= 0, Lemma 3.4 implies that the number of edges e of H

crossing (Xi, Yi) and satisfying A∩ Yi = e∩ Yi is less than
∑�−1

i=1 2i−1 = 2�−1 − 1. Summing over
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all choices of A ∈ (V(G)
�−1

)
and i= 1, . . . , t, we get that

|B1| ≤
(

n
� − 1

)
· nε · 2�

≤ 2�n�−1+ε ,

as desired. �
Claim 3.7. |B2| ≤ n�−(�−1)γ .

Proof. By the definition of the algorithm, we have |W| ≤ n1−γ for everyW ∈P (where P denotes
the partition at the end of the algorithm). Hence,

|B2| ≤
∑
W∈P

(|W|
�

)

≤ (n1−γ )�−1 ·
∑
W∈P

|W|

= n�−(�−1)γ ,

as desired. �
We now complete the proof of the theorem. Consider the auxiliary �-graph on the vertex set

V(G) and edge set B = B1 ∪ B2. Let us denote this hypergraph by B as well. By Claims 3.6 and 3.7,

|E(B)| ≤ 2�n�−1+ε + n�−(�−1)γ

= 2�n�−1+ �+1
3�−1 + n�−(�−1)· 2

3�−1

= 2�n
3�2−3�−�+1+�+1

3�−1 + n
3�2−�−2�+2

3�−1

= (2� + 1)n
3�2−3�+2

3�−1 .

Hence, the average degree of B is at most

O
(
n

3�2−3�+2
3�−1 −1

)
=O

(
n

3�2−6�+3
3�−1

)
=O

(
n

3(�−1)2
3�−1

)
.

Thus, by Lemma 3.1,

α(B)≥ �
(
n1−

3(�−1)2
3�−1 · 1

�−1
)

= �
(
n1−

3�−3
3�−1

)

= �
(
n

2
3�−1

)
.

Thus, by Claim 3.5, G contains an induced cohypergraph of size �(n
2

3�−1 ). By Lemma 3.2,

max (α(G),ω(G))≥ �
(
n

1
3�−1

)
,

as desired.

Note that the above proof in fact shows that every n-vertex disperse �-graph can be made into a

cohypergraph by adding/deleting O(n
3�2−3�+2

3�−1 )=O(n�− 2�−2
3�−1 )= o(n�) edges. Indeed, changing the

�-tuples in B in an appropriate way yields a cohypergraph.
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4. Concluding remarks
For a set L⊆ {0, 1, . . . , � + 1}, let us call an �-graphL-free if it contains no induced (� + 1)-
vertex subgraph whose number of edges belongs to L. Thus, an �-graph is disperse if and only
if it is {2, 3, . . . , � − 1}-free. Our main result is that disperse �-graphs have polynomial-size
homogeneous sets.

Problem 4.1. Is there any proper subset L� {2, 3, . . . , � − 1} for which L-free �-graphs have
polynomial-size homogeneous sets?

This trivially fails for � = 3, and can also be shown to fail for � = 4; but such an L could exist
for � ≥ 5.

By combining Lemmas 2.1 and 2.11, we get that in a disperse �-graph G, for every � − 2 dis-
tinct vertices v1, . . . , v�−2, the link graph L(v1, . . . , v�−2) is a cograph (this graph consists of all
pairs xy such that {v1, . . . , v�−2, x, y} ∈ E(G)). Thus, the following would be a strengthening of
Theorem 1.2.

Problem 4.2. Is there c� > 0 such that if G is an n-vertex �-graph in which all links L(v1, . . . , v�−2)
are cographs, then G has a homogeneous set of size at least nc� ?

Another well-studied graph class is that of split graphs. A graph is split if it has a vertex partition
X, Y such that X is a clique and Y is an independent set. One can ask for the size of homoge-
neous sets in 3-graphs in which every link is split. It turns out that such 3-graphs might only have
homogeneous sets of logarithmic size, due to the following variant of a well-known construction.
Take a random graph F ∼G(n, 12 ), and define a 3-graph G on V(F) in which xyz is an edge if
eF({x, y, z})≥ 2. It is easy to show, using standard arguments, that ω(G), α(G)=O( log n). Also,
for every vertex v, NF(v) is a clique in the link of v, and V(F)\(NF(v)∪ {v}) is an independent set
in the link of v. Hence each link is split.

We can also show that the above construction is inevitable, in the sense that if G is a 3-graph
where all links are split, then G contains a large vertex-set which induces the above construction.

Proposition 4.3. Let G be an n-vertex 3-graph in which every link is split. Then there is U ⊆V(G),
|U| ≥ n1/3, and a graph F on U, such that for every distinct x, y, z ∈U, xyz ∈ E(G) if and only if
eF({x, y, z})≥ 2.

Proof. By assumption, for each v ∈V(G), there is a partition V(G)\{v} =Av ∪ Bv such that Av
is independent in the link of v and Bv is a clique in the link of v. Call a pair of vertices xy good
if x ∈Ay ⇐⇒ y ∈Ax (i.e. x ∈Ay and y ∈Ax, or x ∈ By and y ∈ Bx). Otherwise, call xy bad. We
first claim that there is no K4 consisting of bad pairs. Suppose otherwise; let x1, x2, x3, x4 such
that xixj is bad for every 1≤ i< j≤ 4. Orient the edges xixj by letting xi → xj if xj ∈Axi (note that
exactly one of xj ∈Axi , xi ∈Axj holds). Every tournament on 4 vertices has a transitive tournament
on 3 vertices. Hence, without loss of generality, we can assume that x1 → x2, x3 and x2 → x3. It
follows that x2, x3 ∈Ax1 , and hence x1x2x3 /∈ E(G). On the other hand, x1, x2 ∈ Bx3 , and hence
x1x2x3 ∈ E(G), giving a contradiction.

We showed that the graph of bad pairs has no K4. As R(K4,Km)≤
(m+2

3
) ≤m3, there is a set

U ⊆V(G), |U| ≥ n1/3, such thatU contains no bad pairs. Now define a graph F onU by letting xy
be an edge of F if x ∈ By and y ∈ Bx (so xy is not an edge of F if x ∈Ay and y ∈Ax). Let x, y, z ∈U
be distinct. If xy, xz ∈ E(F), then y, z ∈ Bx, so xyz ∈ E(G). Similarly, if xy, xz /∈ E(F), then y, z ∈Ax
and so xyz /∈ E(F). This proves the proposition. �
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