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A Problem in the Linear Flow of Heat discussed from the

point of view of the Theory of Integral Equations.

By Professor H. S. CAESLAW.

(Received 11th March 1912. Bead lfyh June 1912.)

In the first section of Kneser's book on Integral Equations and
their Applications to Mathematical Physics,1 he applies that theory
to the solution of some of the problems which arise in the Linear
Flow of Heat. The object of this paper is to illustrate Kneser's
use of Integral Equations in the Mathematical Theory of the Con-
duction of Heat by the discussion of one of the classical problems
of Linear Flow which he leaves untouched.

§ 1. The problem to be solved is the following :—
A thin rod of length I is coated with a substance preventing

radiation at the surface. At the ends x = 0 and x = l, radiation
takes place into a medium at zero temperature. The initial tem-
perature of the rod is an arbitrary function fix). To find the
temperature at any point of the rod at the time t.

With the usual notation2 the equations for the temperature are

-^-+hv = 0, at a= = 0, (2)
OX

^ 0, at x = l, (3)
ox

and v=f\x) for t = 0, (0<x<l). (4)

1 Kneser, Die Integralgleichungen und ihre Anwendungen in der Mathe-
matischen Physik (Braunschweig, 1911).

2Cf., for example, Carslaw, Fourier's Series and Integrals and the
Mathematical Theory of the Conduction of Heat, §105, p. 270. In future
this book will be referred to as Fourier's Series.
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It is well known that the case in which radiation takes place
at the surface, as well as at the ends, can be reduced to the one
named above by a simple substitution.3 Also, it will be clear from
the discussion below that the problem can be solved on similar
lines, when the emissivities at the ends of the rod are not the
same.

The analysis is made simpler by changing the variable t, so that
equation (1) is replaced by

dt ~07? ( 1 '
We shall use this form (1*) in the argument which follows.

§ 2. With the usual method of solution we put

v = e ~ ^l<f>,

where <£ is a function of x only.
Then we have the equations

^ £ + A<£ = 0, (0<x<t) (5)

d<t>
--Z + h<f> = 0, a t x = 0, (6)

and - ? + A<£ = 0, a t x = l. (7)

ax

From (5) it follows that
<j> = Acosax + Bsinaa;, where A = a2.

Also (6) and (7) are satisfied, if
A _ B
a ~ h

2ah
and t&aal = ———. (8)

Hence the expressions <f>H = An(ancosana: + hsinanx) satisfy (5),
(6) and (7), provided that alt a^, ... are roots of (8).

I t is clear that we can omit the root a — 0 : also that the
negative roots are equal in absolute value to the positive ones ; so
that the functions need only be taken for the positive roots.

3 Cf. Fourier's Series, p. 230.
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From (5), (6) and (7) it follows that
i

<t>mfadx = O, when m=¥n.JI o

Also it is easy to show4 that

Hence, if we take An = /»/-

so that fa, = V (a
 8 + h*)l + 2k (a»cosa»x + A s i n a»x) ' (9)

we have fatdx=l.
J

fat

J 0
These functions fa, fa, ... will be referred to as the orthogonal

functions of the problem, and in the form given in (9), where

they are said to be normalised.

Fourier's method of solving such questions amounts in principle
to assuming that the arbitrary function J\x) can be expanded in a
series of these normalised orthogonal functions

and that the series can be integrated term by term.

On this assumption it would follow that

Aj'fa\x)dx = An= ff[x)fa{x)dx.
Jo Jo

And finally we would have

§ 3. We proceed to show how the Theory of Integral Equations
enables us to avoid the assumptions to which we have referred
above. This discussion follows the lines laid down by Kneser.

4 The properties of these funotions are worked oat at length in the
disoussion of the problem in Fourier1! Series, §106.
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There exists a continuous function K(a:,£) which satisfies the
equation for steady temperature

and the same boundary conditions,

- — + hv = 0, at x = 0,
ax

dv
— + At> = 0, &tx = l:
dx

while its differentia] coefficient with regard to x, denoted by
K'(*, £), is discontinuous for the value x = £, in such a way that

Otherwise the derivative is continuous in the interval

This function is called by Hilbert the Green's Function6 for
the case considered. It is obvious that it is the steady temperature
at x due to a continuous point source of unit strength at £, under
the given boundary conditions.

It will be seen that in our case

(10)

This function occupies a prominent place in the rest of our
argument.

' We use the notation [F(*)T for F(6) - F(a).
6 The Green's Functions employed in the applications of Integral

Equations to the Conduction of Heat must not be confused with those to
which the same term was applied in the case of Instantaneous Point Sources.
As a matter of fact, the new Green's Functions can be obtained from the old
by integration : and the results given in my paper in these Proceedings [Vol.
XXI., p. 40, 1903], and in Fourier's Series, Chapter XVIII., can be used in
the work on Integral Equations.
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§4. Having established the existence of the function K(a;, £), we
return to the equations of §2.

There we have <f>" + X.<j> = 0, and certain boundary conditions.
Also we have K"(JC, £) = 0, and the same boundary conditions.
Let F(JC) = <j>(x)K'(x, £) - <\>'(xjK.(x, £). Then F(x) is discontinuous

at a: = £, but is otherwise continuous in the interval 0<x<l.

But f'F(a:)<fa= f1" W(x)dx+ f F'(x)dx
Jo Jo J f+o

f-o
Jl + O

; - 0

J|+o'

since F(0) = F(Z) = 0.
And <f>(x), <i>'(x) are continuous in the interval.

I t follows that <K£)FK' (*. $)¥ " ° = A. f' K(x, £)̂ >(a
L Jf+o Jo

Ci
Thus i)i>(t) = A K(«, b)tj>(x)dx.

Jo

It will be seen from the expressions for K(x, £) in § 3 (10)
that the Green's Function is a symmetrical function of the two
variables, which enter into it.

In other words, K(£, -q) = K(»/, £).7

The result we have obtained can therefore be written

Thus the orthogonal functions of §2 occur as solutions of the
Homogeneous Integral Equation whose symmetrical kernel is the
Green's Function of the problem considered.

7 For a general proof, of. Kneier, loc. tit., p. 6.
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§5. The converse is also true, namely, that every continuous
solution of the integral equation

o
is an orthogonal function of the problem in Linear Flow, which we
are examining.

To prove this, we start with the equation

<f>(x) = A | K(x, a)<t>(a)da.
J 0

Since K(a;, o) is finite and continuous, we have

<£'(*) = A f K'(K, a)<t>(a)da.
J o

I t follows that

= A f [ ± K'(x, a) + hK(x, a)]<£(a)rfa.
Jo

Therefore <f>(x) satisfies the boundary equations, since K(x, a)
does so.

Further, we may write

<t>'(x) = A \*~*K'(x, a)</>(a)rfa + A f K'(x, a)<t>(a)da.
Jo Ja:+O

Then i t is clear that

4>"(x) = A f K"(x, a)i>(a)da + A[K'(x, x - 0) - K'(x, x + 0]<£(se)
J o

= X[K'(x, x - 0) - K'(x, x + 0)]<j>(x),

since K"(x, a) = 0.
I t will be seen from the expressions for K(x, £), for *3:£, in § 3

(10) that
K'(*,a;-0) = K'(a: + 0,a!)

and K'(x, x + 0) = K'(x - 0, x).
I t follows that

'(* - 0, x) - K'(x + 0, x

for any value of £ in the interval
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Thus we have 4>"(x) + \<f>(x) = 0.

Therefore we have shown that all the orthogonal functions of our
problem in the Linear Flow of Heat are solutions of the Integral
Equation

r K(x, a)4>(a)da,
Jo

and that all the continuous solutions of this equation are orthogonal
functions of that problem.

The solution of the integral equation and the corresponding
value of X will be denoted by 4>Jx) and Xn.

§6. Now, in the Theory of Integral Equations it is proved that
if the series of normalised orthogonal functions

is uniformly convergent in the region

the sum of this series is equal to the Green's Function K(a;, y), the
symmetrical kernel of the Integral Equation.8

In the problem we are examining we have seen, § 2 (9), that
the normalised orthogonal functions are

the values of a being the positive roots of the equation

2ah

And we have AB = on
a.

But it is easy to show that

(n- l)ir<anl<nir.

8Cf. BOoher, An Introduction to the Study of Integral Equations {Camb.
Math. Tracts, No. 10), p. 68, where a more exact statement of this funda-
mental theorem is giren.

Also Kneser, loc. cit., pp. 33-4.
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Hence the order of the term

K
becomes —-, as n increases.

n-
Thus the series

converges uniformly in the given interval.
Therefore, by the theorem at the beginning of this paragraph,

§ 7. This result can be verified independently as follows : —
In a paper on The Use of Green's Functions in the Theory of.

Condition of Heat," I have shown that the temperature at time t
due to an instantaneous point source of unit strength at the point
£ at time I' is given by

t') {h$manx + a.cosanar) (Asina^ + ancosa,g)

Now the steady temperature, K(a:, £), would be obtained by
placing a continuous source supplying unit quantity of heat per
unit time at the point £, and acting from - » up to the time t.

The temperature due to this continuous source will be found by
integrating the above expression with regard to t' from t' = - « to
t' = t. Also we can integrate the series term by term.

Thus we have
-On'it-f)

2 <£„
r°° - o - s

) e 7dy
Jo

» Proc. Edin. Math. Soc, Vol. XXI., p. 40, 1903. Also Fourier's Sena,
p. 386.
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§ 8. We are now able to establish the following theorem :—
Let ^(x) be any function of x such that the interval 0<x<l can

be broken up into a finite number of segments in which <p(x) is
continuous, while in each of them the function tends towards a
limiting value at the ends. Also letf[x) be defined by the equation

J\x)= \'K(x,*)+(a)da.
J o

Then the function f\x) can be represented by the series of
normalised orthogonal functions

where A.= \'f{fS)UPW-
J 0

f[x) = j" K(a;J a)^(a)rfaWe have

1 A » J 0

since this series can be integrated term by term.

Also J Vl/3)tf.(j8)rf/8 = j \ ( /? ) [ J \ ( 0 , a)f(a)dajd(i

Thus we have shown that

?An<t>n(x), where A . - [''
i J o

§ 9. The limitations which have been imposed upon the function
f(x) in the theorem of §'8 can be shown to leave that function still
very general. Indeed, any function f[x) which, with its first
derivative is continuous in the interval 0<x<l, while its second
derivative, if discontinuous, is discontinuous only in the sense in
which \j/(x) was discontinuous in that theorem, can be represented by
an integral of the type

K(x,o.)f(a)da,f
J o
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provided that J\x) satisfies the boundary conditions to which K(a:, a)
is subjected.

To prove this we have only to note that

and J ^
Hence, under the conditions named above,

^ [ K ' ^ f ) ? " 0 = - ['f"(x)K(x,S)dx.
L J£+o Jo

Therefore f(x) = - | K(a;, a)f"(a)da,

r "ii-o
since K(a;,£) is symmetrical, and K'(a:,£) =1-

L Jl+o
Therefore we have proved that under these very general

conditions the function f(x) can be expanded in the series

and that the coefficients are obtained by term-by-term integration
in the usual Fourier's method.

Kneser's argument also shows10 that the expansion is possible
when the condition of continuity is removed, and when J{x)
does not satisfy the same boundary conditions as the Green's
Function. But it is beyond the purpose of this paper to enter
into these details, so that the exact statement of the condition
under which the expansion is shown to be possible is omitted.

§ 10. I t was pointed out at the end of § 2 that, if we are in a
position to state that the arbitrary function f[x), expressing the
initial temperature, can be represented by the series

the temperature at the time t is given by

We have thus shown how the Theory of Integral Equations fills
up the gap in Fourier's discussion of this problem.

10 Cf. Kneser, foe. cit. p. 20.
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