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Optimal-mode theory (Landreman et al. 2015 J. Plasma Phys. 81, 905810501) can be
used to derive upper bounds on growth rates of local gyrokinetic instabilities (Helander
& Plunk 2021 Phys. Rev. Lett. 127, 155001). These bounds follow from thermodynamic
principles (specifically on the Helmholtz free energy) (Helander & Plunk Phys. Rev. Lett.
127, 2021, p. 155001), and thus apply to any instability and geometry, independently of
many plasma parameters. In this work, we compare these upper bounds with the growth
rates of linear gyrokinetic eigenmodes. Experimentally relevant scenarios of density-
gradient- and ion-temperature-gradient-driven instabilities are considered. The difference
between the upper bounds and the numerically computed growth rates is always positive,
as it must be, but depends strongly on the instability in question and on the geometry
of the magnetic field. The nature of this difference can be analysed by examining the
contributions of optimal modes to gyrokinetic eigenmodes. This approach exploits the
completeness and orthogonality properties of optimal modes.

Key words: fusion plasma, plasma instabilities, plasma simulation

1. Introduction

Gyrokinetics is a mean-field theory which is used, among other things, to
investigate transport phenomena in magnetically confined fusion plasmas, but its
origin dates back to the development of a linear theory of drift wave instabili-
ties (Rutherford & Frieman 1968; Taylor & Hastie 1968). As the most accurate
model currently available to describe both the linear and nonlinear behaviour of
such plasma microinstabilities, the gyrokinetic system of equations has been widely
adopted, yielding, over the past several decades, numerous analytical and numerical
results.

The thermodynamic properties of the gyrokinetic theory are, however, not
always obvious within its multiple applications. Recently, Helander & Plunk
(2021) developed a framework grounded in fundamental thermodynamic principles,
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resulting in linear and nonlinear energetic bounds on gyrokinetic instabilities. These
upper bounds are obtained by considering modes of optimal growth (Landreman
et al. 2015b), which are distinct from the conventional normal modes, the latter
being solutions to the linearised gyrokinetic system of equations. This approach
introduces two complementary, yet distinct, methodologies for analysing gyrokinetic
instabilities.

In particular, the difference between the two methodologies arises from a different
treatment of the gyrokinetic equation. Normal modes exhibit an exponential tempo-
ral dependence, exp(−iωt), where �[ω] represents the frequency of the mode and
γ = �[ω] its growth rate. As a result, these modes are infinitely sustained by the
linear system of equations. In contrast, optimal modes are not eigenmodes of this
system; rather, they describe states that maximise the instantaneous growth of the
Helmholtz free energy associated with the fluctuations. Such ‘modes’ are generally
not sustainable by the system.

One advantage of the optimal-mode approach based on the Helmholtz free energy
lies in its independence from magnetic geometry, making it capable of revealing
common features shared across a range of plasma parameters, including collisions,
plasma-β and the number of particle species. Consequently, the theory is valid for
all local gyrokinetic instabilities, in stark contrast to the majority of the results in this
field deriving from the conventional normal-mode description of the instabilities.

In this paper, which is Part 5 of the series of energetic bounds on gyrokinetic
instabilities, we explore the relation between optimal modes and normal modes, with
the primary intent of comparing growth rates over a range of plasma parameters in
differently shaped magnetic fields. Our approach is numerical and semi-analytical.
Optimal modes and their associated instantaneous growth rates are based on the
framework formulated in Parts 1 and 2 (Helander & Plunk 2022; Plunk & Helander
2022). The growth rates of normal modes are determined by using the δ f -gyrokinetic
code stella (Barnes et al. 2019) or by semi-analytically solving the gyrokinetic
equation in simplified geometries. The analysis includes several magnetic geometries,
i.e. tokamak, stellarator, Z-pinch and slab. We begin by focusing on an electrostatic,
collisionless hydrogen plasma with adiabatic electrons, and then extend the compar-
ison by incorporating kinetic electrons. Our analysis includes instabilities driven by
both the ion temperature gradient and the density gradient.

In all these comparisons, the upper bounds lie above the numerically computed
growth rates, as they must do, and are often found to successfully predict the qual-
itative dependence of the latter on plasma parameters and the wavelength of the
instability. The ratio between the upper bounds and the growth rates of normal
modes varies depending on the choice of geometry and physical parameters, such
as normalised gradients. While the absence of specific geometrical information is
advantageous in some respects, it causes the upper bounds to be less tight for fusion-
relevant devices like tokamaks and stellarators. This is because certain effects, such
as wave–particle resonance, are not considered in the calculation of the Helmholtz
free energy. To obtain tighter, device-specific bounds, a generalised free energy can
be defined and used to calculate a distinct set of orthogonal optimal modes. This
approach, not explored here, is developed in Part 3 of this series (Plunk & Helander
2023) and applied in Part 4 (Costello & Plunk 2025) to investigate ion-scale instabil-
ities with bounce-averaged electrons. In this context, the impact of the maximum-J
property on these instabilities is also examined.

The disparity between normal and optimal modes can be assessed by examining
how ‘optimal’ the behaviour of normal modes is. Specifically, normal modes can be
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expanded into the basis of optimal modes that is complete and orthogonal (Plunk &
Helander 2022). We evaluate the projections of normal modes onto optimal modes
across different parameters to identify scenarios where normal modes approach
either instantaneous growth or instantaneous damping. This analysis focuses on the
ion-temperature-gradient-driven mode with an adiabatic electron response.

The article is organised as follows. In the next two sections (§§ 2 and 3), we give
a review on the mathematical framework used for the optimal- and normal-mode
formulations. In § 4, we contrast the two formulations by comparing the respective
growth rates across a variety of geometrical and physical scenarios. Finally, in § 5,
we investigate the relationship between the optimal and normal modes using the
method of mode projection.

2. Gyrokinetic equation and optimal-mode theory

The starting point of both the conventional normal-mode approach to microinsta-
bilities and the optimal-mode one is the nonlinear gyrokinetic equation (Frieman &
Chen 1982),

∂ga,k

∂t
+ v‖

∂ga,k

∂l
+ iωdaga,k − 1

B2

∑
k′

B · (k × k
′
) ¯δφkga,k−k′

=
∑

b

[Cab(ga,k, Fb0)+ Cab(Fa0, gb,k)] + ea Fa0

Ta

(
∂

∂t
+ iωT

∗a

)
¯δφk ,

(2.1)

with δφ̄k = J0 (k⊥v⊥/�a) δφk the gyroaveraged electrostatic potential fluctuations.
The equation describes the evolution of the non-adiabatic part of the perturbed
distribution function for the particle species a,

fa(r, Ea, μa, t)= Fa0(ψ, Ea)

(
1 − eaδφ(r)

Ta

)
+ ga(R, Ea, μa, t) , (2.2)

having a Maxwellian equilibrium distribution function Fa0 with temperature Ta(ψ),
density na(ψ), mass ma and charge ea. The particle position is r and R = r − b × v/
�a is the gyrocentre position, with �a = ea B/ma the gyrofrequency. Flux-tube geom-
etry is assumed and the magnetic field B = B(l)b = ∇ψ × ∇α is written in terms of
Clebsh coordinates (ψ, α). The instability wavenumber can thus be decomposed
as k = k⊥ = kψ∇ψ + kα∇α, with ∇ψ and ∇α functions of the arc length l along
magnetic field lines, while kψ and kα are independent of it. The optimal-mode
theory discussed in the next section will thus be applicable to local instabilities,
although the underlying thermodynamic principles hold more generally. The par-
ticle velocity can be decomposed as v = v‖b + v⊥, and all derivatives in (2.1) are
taken at constant unperturbed energy Ea = mav

2/2 + ea�(ψ) and magnetic moment
μa = mav

2
⊥/(2B).

In this work, we limit ourselves to the study of electrostatic microinstabilities,
where the electrostatic potential fluctuations δφ are given by the quasineutrality
condition ∑

a

λaδφk =
∑

a

ea

∫
ga,k J0ad3v , (2.3)

where λa = nae2
a/Ta and Jna = Jn(k⊥v⊥/�a). The remaining terms in the gyrokinetic

equation (2.1) are the drift frequency ωda = k · vda , with vda the unperturbed drift
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velocity, and the diamagnetic frequencies

ω∗a = kαTa

ea

d ln na

dψ
,

ωT
∗a =ω∗a

[
1 + ηa

(
v2

2v2
th,a

− 3
2

)]
,

(2.4)

with ηa = (d ln Ta/dψ)/(d ln na/dψ) and vth,a = √
Ta/ma the species thermal veloc-

ity. Finally, Cab is the collision operator between species a and b.
The optimal-mode theory follows from thermodynamic considerations on the

gyrokinetic equation. Specifically, an equation for the Helmholtz free energy budget
is derived by applying the following operation to (2.1):

Re
∑
a,k

Ta

〈∫
(. . .)

g∗
a,k

Fa0
d3v

〉
. (2.5)

This operation and its effect on the gyrokinetic equation are explained in detail in
Part 1 (Helander & Plunk 2022), with only the key points summarised here. Notably,
this operation causes both the nonlinear term and all terms explicitly dependent on
the geometry to vanish. This latter effect is why the resulting upper bounds are
applicable to any type of plasma geometry. The remaining terms in the equation can
then be reorganised to yield the Helmholtz free energy budget,

d
dt

∑
k

H(k, t)= 2
∑

k

[C(k, t)+ D(k, t)], (2.6)

with H the Helmholtz free energy of fluctuations,

H(k, t)=
∑

a

〈
Ta

∫ |ga,k|2
Fa0

d3v − λa|δφk|2
〉
, (2.7)

D the drive term,

D(k, t)= Im
∑

a

ea

〈∫
ga,kω

T
∗a

¯δφ∗
kd3v

〉
, (2.8)

and C the collisional term, which is always negative or vanishes by Boltzmann’s
H -theorem,

C(k, t)= Re
∑
a,b

Ta

〈∫
g∗

a,k

Fa0
[Cab(ga,k, Fb0)+ (Fa0, gb,k)]d3v

〉
� 0 . (2.9)

Equation (2.6) is the starting point for the derivation of upper bounds on lin-
ear and nonlinear growth rates (Helander & Plunk 2021). From Boltzmann’s
H -theorem, it indeed follows that the instabilities linear growth rate is bounded
from above,

γ (k)� D(k, t)

H(k, t)
. (2.10)

For the ratio D/H to serve as a suitable bound, it must be bounded from above: it
must be smaller than some finite number for any set of distribution functions ga,k.

https://doi.org/10.1017/S0022377825000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000479


Journal of Plasma Physics 5

The primary challenge in proving this result lies in identifying an appropriate lower
bound for H(k, t). In the following paragraphs, we review methods for achieving
this goal and obtaining tight bounds in different cases relevant to this work, starting
with the simplest case and progressing to more general ones.

2.1. Adiabatic electrons
The simplest case for deriving the upper bound is that of an electrostatic, hydro-

gen plasma with adiabatic electrons. As detailed in Part 1, in this limit, D and H are
quadratic functionals of g = gi,k, the perturbed ion distribution function. The opti-
mal upper bound is obtained by maximising the ratio D[g]/H [g] over all possible
distribution functions g. This maximisation is achieved by minimising H [g], which
leads to the identification of the aforementioned optimal modes. These modes take
the form

g = (c0 + c1v̂
2)J0i Fi0 , (2.11)

where c0 and c1 are the Lagrange multipliers used to minimise H [g], and
v̂ = miv

2/2Ti . As shown in Part 1, the problem of constructing optimal modes
is thus reduced to the question of determining these two constants. These modes
realise optimal, instantaneous growth of free energy and differ from normal modes,
which satisfy (2.1). In particular, we underline they contain no information on the
geometry.

To obtain the best upper bound

Λ= max
c0,c1

(
D

H

)
, (2.12)

we take the variations of H and D, so that

δD =ΛδH . (2.13)

This equation describes a two-dimensional eigenproblem having as non-trivial
solutions

Λ= ±|ηiω∗i |
2

√
G

(1 + τ)(1 + τ − G0)
, (2.14)

with τ = Ti/Te, and

G0(bi)= Γ0(bi),

G1(bi)=
(

3
2

− bi

)
Γ0(bi)+ biΓ1(bi),

G2(bi)=
(

15
4

− 5bi + 2b2
i

)
Γ0(bi)+ (4 − 2bi)biΓ1(bi),

G(bi)= G0(bi)G2(bi)− G2
1(bi).

(2.15)

Here, Γn(bi)= In(bi)e−bi , with In denoting modified Bessel functions and bi ≡
k2

⊥ρ
2
i = k2

⊥Ti/(mi�
2
i ).

An upper bound on the linear growth rate of instabilities is obtained by choosing
the positive eigenvalue of (2.14). The negative eigenvalue indicates a decrease in
free energy and is thus linked to damped modes. Notably, this upper bound depends
only on a few parameters: the density and temperature gradients, encapsulated by
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ηiω∗i , the ratio of ion-to-electron temperatures τ , and the perpendicular wavenum-
ber, through bi . This last parameter hides an implicit dependency on geometry, as
the value of k⊥(l) varies along the magnetic field line. However, the optimal modes
exhibit a δ(l − l0) spatial dependency and thus only depend on the magnetic field at
one single location along the flux tube under consideration. Specifically, l0 is selected
by the criterion (Helander & Plunk 2022)

bi(l0)= bi,min

= min
l

{[
k2
ψ |∇ψ |2(l)+ 2kψkα∇ψ(l) · ∇α(l)+ kα|∇α|2(l)] Ti mi

e2 B2(l)

}
.

(2.16)

In fact, much of the explicit geometry dependency was already eliminated by apply-
ing the operation defined in (2.5). As a result, the upper bound becomes spatially
local, both across and along magnetic field lines. This localisation implies that the
upper bound serves as a constraint on the linear growth rate of local gyrokinetic
instabilities in any flux-tube magnetic geometry.

Under the assumptions of an electrostatic, hydrogen plasma with adiabatic elec-
trons, this bound is applicable to ion temperature gradient (ITG) and trapped-ion
instabilities. We highlight two significant limits of the upper bound, which corre-
spond to the opposite extremes of the bi domain, namely the small and large ones:

Λsmall = ±|ηiω∗i |
√

3
8τ(1 + τ)

,

Λlarge = ± |ηiω∗i |√
8πbi(1 + τ)

.

(2.17)

To extend the upper bound to any plasma β and any number of kinetic particle
species, a more general approach is required. This broader framework allows the
upper bound to encompass the description of all gyrokinetic instabilities in a flux
tube.

2.2. Kinetic electrons
The computation of the upper bound follows a similar mathematical approach

also when kinetic electrons are included. The objective remains to maximise the
ratio Λ= D/H and the way it is achieved is through a variational problem, as in
(2.13). The eigenvalue problem to be solved is∑

b

Dabgb =Λ
∑

b

Habgb, (2.18)

with a and b denoting particle species indices, and D and H purely imaginary and
purely real Hermitian linear operators on the space of distribution functions. Their
form is given in more detail in Part 2.

In general, D and H are functions of both gi,k and ge,k, but they depend on a
small set of velocity moments of these distribution functions. By considering linear
combinations of these velocity moments, we can reduce the problem to a closed
linear system, thereby decreasing its dimensionality. In the full electromagnetic case,
(2.18) represents a 6Ns -dimensional eigenproblem, where Ns is the number of par-
ticle species. However, when using linear combinations of the velocity moments,
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the dimensionality is reduced to just 6 for any number of species. This reduction
is useful as it ensures the upper bounds are easily calculated in any multi-species
plasma.

For electrostatic instabilities, the final problem to solve is a two-dimensional alge-
braic system. When the spatial dependency is assumed to be δ(l − l0), the solutions to
(2.18) form a complete and orthogonal basis for the space of distribution functions.
The upper bound is again determined by the positive eigenvalue of the algebraic
problem described by (2.18). However, the form of this eigenvalue is more complex
than the one in (2.14). Therefore, we will present only its asymptotic limits, which
were derived in Part 2, for the scenarios relevant to our present purposes.

We again consider a hydrogen plasma and derive the asymptotic limits for ITG
modes in the presence of an ion temperature gradient only. Our primary interest
lies in comparing normal modes and optimal modes characterised by small to inter-
mediate wavenumbers. To understand the relevant order of magnitude, we use the
expansion parameter

ε =
√

be

bi
=
√

meTe

mi Ti
� 1 . (2.19)

In the small-wavenumber limit, where bi ∼ ε and be ∼ ε3, the upper bound for
an electrostatic, hydrogen plasma, with kinetic electrons and an ion temperature
gradient, can be approximated by

Λsmall,∇Ti = ±|ηiω∗i |
√

3
8bi

. (2.20)

For intermediate wavenumbers, where bi ∼ ε−1 and be ∼ ε, the upper bound instead
becomes

Λinterm,∇Ti = ±|ηiω∗i |
√

5τ

16
√

2π(1 + τ)
√

bi

. (2.21)

To estimate the range of validity for these asymptotic limits, we note that in an
equithermal (τ = 1) hydrogen plasma, ε ≈ 0.02. In the same range of validity, the
asymptotic trends of the upper bound for an electrostatic, hydrogen plasma, with
kinetic electrons and a density gradient only, are

Λsmall,∇n = ±|ω∗i |
√

τ

(1 + τ)bi
,

Λinterm,∇n = ±|ω∗i |
√

τ√
2π(1 + τ)

√
bi

.

(2.22)

Using these asymptotic limits, we will provide an upper bound for trapped-particle
instabilities driven by density gradients. In all the reported scenarios, the upper
bound remains dependent on a limited set of parameters. We will discuss the trends
of these upper bounds and their asymptotic limits in § 4.

3. Normal-mode solutions in simplified geometries

In contrast to optimal modes, normal modes are solutions to the linearised gyroki-
netic equation (2.1). To solve the equation, a typical approach involves solving an
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initial value problem. In this work, we will mainly compute normal modes by solving
the linear gyrokinetic equation with the δ f -gyrokinetic code stella (Barnes et al.
2019). The initial distribution function ga(R, Ea, μa, t = 0) is set to be a Maxwellian,
with a Gaussian structure along the magnetic field line. The equation is evolved till
the solution matches an exponential behaviour of the type exp(−iωt). We consider
the simulation to be converged when the average value of ω over the last 10 % of the
simulation exhibits a relative error of only a few percent.

Gyrokinetic codes allow for the solution of the gyrokinetic equation in magnetic
fields of any complexity. For simpler magnetic equilibria, analytically treatable dis-
persion relations can be derived. In § 4, we will compare the upper bounds derived
in § 2 with results from two such cases: a plasma slab and a purely toroidal plasma.
Specifically, we will examine an electrostatic, collisionless hydrogen plasma with
adiabatic electrons, focusing on the derivation of the ITG mode dispersion relations.

3.1. Slab ITG dispersion relation
We first consider the case of a plasma slab (Kadomtsev & Pogutse 1970; Cowley

et al. 1991), which applies when the curvature drift is negligible ωdi = 0 and the
magnetic field strength is constant. The mode is thus not confined to any location
along magnetic field lines and we can assume the solution to the gyrokinetic equation
to be a plane wave gi,k ∝ exp(ik‖l − iωt). The gyrokinetic equation (2.1) thus yields

gi,k = ω−ωT
∗i

ω− v‖k‖

ei Fi0

Ti

¯δφk . (3.1)

To get the dispersion relation, we substitute this result into the quasineutrality condi-
tion (2.3), and after computing the velocity integrals and writing everything in terms
of the plasma dispersion function Z(ζ ) (Fried & Conte 1961), we obtain

0 = 1 + τ + Γ0

{
ζ Z(ζ )+ ω∗i

ω‖

[(
3ηi

2
− 1

)
Z(ζ )− ζηi (1 + ζ Z(ζ ))

]}

−ω∗i

ω‖
ηi [(1 − bi)Γ0 + biΓ1] Z(ζ ) .

(3.2)

Here, τ = Ti/Te, Γn = Γn(bi)= In(bi)e−bi , with In modified Bessel functions and bi ≡
k2

⊥ρ
2
i = k2

⊥Ti/(mi�
2
i ). We have also defined ω‖ = k‖vth,i and ζ =ω/ω‖.

It is instructive to consider the limit of short wavelength, bi → ∞, where

Γ0(bi)� 1√
2πbi

(
1 + 1

8bi

)
,

Γ1(bi)� 1√
2πbi

(
1 − 3

8bi

)
,

(3.3)

and the dispersion relation (3.2) thus reduces to

0 = 1 + τ + ω∗i

ω‖
√

2πbi

[(η− 1) Z(ζ )− ζηi (1 + ζ Z(ζ ))]. (3.4)

In this equation, ω∗i/
√

bi is independent of k⊥, which thus drops out of the equation.
It follows that the growth rate γ =ω‖�[ζ ] is also independent of k⊥. In other words,
the growth rate approaches a finite, non-zero constant in the short-wavelength limit,
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FIGURE 1. Upper bound for an electrostatic and collisionless hydrogen plasma with τ = 1 and
adiabatic electrons (2.14) compared with results from gyrokinetic simulations and analytically
derived toroidal and slab ITG dispersion relations.

bi → ∞, despite the decay of the Bessel functions. This behaviour is very different
from that of gyrokinetic instabilities in tokamak or stellarator geometry, which tend
to be stable at sufficiently short wavelengths.

For the comparison with upper bounds, we examine the growth rate derived from
the dispersion relation (3.2) as a function of the perpendicular wavenumber k⊥ρi .
The latter appears in (3.2) in the diamagnetic frequency ω∗i and in bi . The parallel
wavenumber k‖ is a free parameter. To find the largest growth rate for each k⊥ρi , we
fix k⊥ρi and we vary k‖ to find the root of (3.2) that maximises the growth rate for a
given set of τ , ω∗i and ηi . The result is shown in § 4, in the comparison between the
upper bound and normal-mode growth rates for a plasma with adiabatic electrons
(figure 1).

3.2. Toroidal ITG dispersion relation
To derive the toroidal ITG dispersion relation, a similar approach is employed.

We assume an exponential temporal behaviour for the non-adiabatic part of the per-
turbed distribution function, gi,k ∝ exp(−iωt). We then adopt a local approximation
by neglecting streaming along magnetic field lines, which is equivalent to assuming
that ω‖ �ω. It follows that (2.1) can be rewritten as

gi,k = ω−ωT
∗i

ω−ωdi

ei Fi0

Ti

¯δφk . (3.5)

Keeping arbitrary Larmor radius (LR), the resulting dispersion relation (Zocco
et al. 2018) becomes

1 + τ = Γ0(bi)− ω∗i

ω

(
1 − 3

2
ηi

)
J (0)

+ ω∗i

ω

(
ωκi

ω∗i
− ηi

)
J (2)‖ + ω∗i

ω

(
ωBi

2ω∗i
− ηi

)
J (2)⊥ ,

(3.6)
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with ωκi and ωBi the curvature and ∇ B components of the drift frequency, so that

ωdi =ωκi

v2
‖

v2
th,i

+ωBi
v2

⊥
2v2

th,i

. (3.7)

For a purely toroidal electrostatic plasma, ωBi =ωκi = kyρivth,i/R, with R the aver-
age curvature length scale. J (0), J (2)‖ and J (2)⊥ are trascendental functions of ωκi , ωBi

and bi and can be found in Appendix B of Zocco et al. (2018). Notice that we have
corrected a typo (J (2)⊥ ↔ J (2)‖ ) in (B13) of Zocco et al. (2018). Taking this correc-
tion into account, we calculate the toroidal ITG critical gradient yielded by (3.6) in
Appendix A.

This dispersion relation reduces to the one derived by Biglari et al. (1989) if the
drift-kinetic limit (bi → 0) is taken (Zocco et al. 2018),

1 + τ =
(
1 − ω∗i

ω

)
�Z 2(

√
�)+ ηi

ω∗i

ω

[
(1 − 2�)�Z 2(

√
�)− 2�3/2 Z(

√
�)
]
, (3.8)

with �=ω/ωκi .
The roots of both dispersion relations need ultimately to be calculated numerically.

In Appendix A, we show that they coincide for bi → 0 and discuss how they compare
with results from gyrokinetic simulations.

If we order the frequencies as ω∗i/τ �ω�ωκi , we can expand the denominator
of (3.5). In this way, we are considering the non-resonant limit for which we obtain
the strongly driven toroidal-branch dispersion relation

ω= −ω∗i +ωκi ±√
(ω∗i −ωκi)2 − 4τωκiω∗i(1 + ηi)

2τ
. (3.9)

This particular ordering allows terms of order ωκi/τ to be retained. While they
are non-negligible for τ → 0, they can be neglected for large τ and the disper-
sion relation becomes the non-resonant toroidal branch dispersion relation of Biglari
et al. (1989).

We now proceed with the comparison of the results obtained through optimal-
and normal-mode theories.

4. Comparing upper bounds with normal-mode growth rates

The main computational task of this paper is to compare the upper bounds with
growth rates of normal modes in specific cases. We focus on the electrostatic limit of
a collisionless hydrogen plasma with τ = 1. Initially, we consider adiabatic electrons
and then we include the effects of kinetic electrons. These scenarios are chosen
because they represent the instabilities most harmful to magnetic fusion confinement
devices, specifically ion temperature gradient (ITG) modes and trapped electron
modes (TEMs).

For the comparison, we employ electrostatic, collisionless, flux-tube linear simula-
tions using the gyrokinetic code stella. To encompass a wide range of scenarios,
we perform simulations across various magnetic fusion devices and plasma gradi-
ents. The selected magnetic equilibria include the tokamak Cyclone Base Case (CBC)
(Dimits et al. 2000), different magnetic configurations of the stellarator Wendelstein
7-X (W7-X) and the Z-pinch geometry implemented in stella, which is thoroughly
discussed and validated in Appendix A.
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Device R/a r0/a q ŝ
CBC 2.7 0.5 1.4 0.796
KJM 10.5 0.7 1.1 −0.125
DBM 10.2 0.7 1.3 −0.085
Z-pinch 1 – – –

TABLE 1. Geometric parameters for the different devices simulated: a tokamak Cyclone Base
Case (CBC), two different W7-X magnetic configurations: high-mirror (KJM) and low-iota

(DBM) and lastly, the Z-pinch geometry.

In stella, the Fourier-decomposed linear gyrokinetic equation is normalised
by (a2/ρrefvT,ref) exp(−v2/vT,a)/Fa0, where a represents the effective minor radius
and ρref = vT,ref/�ref is the Larmor radius of the reference species, characterised by
thermal velocity vT,ref = √

2Tref/mref, mass mref and temperature Tref.
1

The phase-
space coordinates used in stella are (x, y, z, v‖, μ). The plane perpendicular to
the magnetic field lines is parametrised by the radial and binormal coordinates (x, y),
which measure the distance from the magnetic field line at the centre of the flux tube:
x = dx/dψ |ψ0(ψ −ψ0) and y = dy/dα|α0(α − α0). The definitions of dx/dψ |ψ0 and
dy/dα|α0 depend on the choice of magnetic geometry (see e.g. Barnes et al. (2019)
and Appendix A).

The inverse gradient scale length for a given quantity X is defined as

1
L X

= − 1
X

dX

dr
, (4.1)

with r the effective minor radius of the device. The gradient scale length is then
normalised by the scale length of the magnetic field variation, here denoted with a.
In stella, this is chosen to be the effective minor radius at the last closed flux-
surface, both for tokamak CBC and W7-X magnetic geometries, while in the case of
a Z-pinch, it coincides with the cylinder radius (table 1 and Appendix A).

The simulations are conducted with the resolution Nz × Nv‖ × Nμ = 96 × 36 × 24.
The minimum simulated binormal wavenumber is �kyρi ≈ 0.07, with the total num-
ber of wavenumbers varying depending on the equilibrium. The radial wavenumber
is set to zero, kxρi = 0. Key geometric parameters, such as the aspect ratio R/a, the
radial location of the simulated flux-surface r0/a, the safety factor q and the global
shear ŝ, depend on the magnetic equilibrium and are listed in table 1. The selected
gradients are detailed in the following subsections, where we present the validation
results.

4.1. Pure ITG case
The first comparison is carried out for a plasma with adiabatic electrons and only

an ion temperature gradient, as described by (2.14). We compare it with a CBC
and two W7-X simulations having a/LT i = 3. The two W7-X configurations include

1Note that, to maintain consistency with the notation used in Part 1, the results presented throughout this
paper are normalised by vth,ref rather than vT,ref = √

2vth,ref.
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a high-mirror (KJM) and a low-iota (DBM) configuration, with the differences
between them detailed in table 1.

Additionally, we solve the dispersion relation for the slab ITG (3.2) with a/LT i = 3
and the toroidal ITG with full LR effects (3.6) for a/LT i = 8.3. The latter is com-
pared with a Z-pinch simulation using the same gradient. All the results are presented
in figure. 1, where we plot the upper bound and the normal modes growth rates,
normalised to |ηiω∗i |/(k⊥ρi)min, against (k⊥ρi)min. The perpendicular wavenumber
is taken at the location along the magnetic field line of (k⊥ρi)min = minl(k⊥ρi) as
shown in (2.1). The real frequencies associated with the calculated growth rates are
provided in figure 11 in Appendix B.

We observe that the upper bound exceeds the growth rates of all the normal modes
considered, as it must, and qualitatively follows the trend set by the largest such
growth rate. Specifically, for small perpendicular wavenumbers, the upper bound
is proportional to k⊥ρi . This is evident from the limit given in (2.1), which, when
normalised and for τ = 1, reads Λ(k⊥ρi)min/|ηiω∗i | = √

3/16(k⊥ρi)min. The upper
bound effectively captures the behaviour of the strongly driven toroidal ITG mode,
whose dispersion relation is proportional to

√
ωκiηiω∗i (3.9). This linear behaviour

can also be observed in the comparison with Z-pinch simulations in figure 7 of
Appendix A.

The upper bound shown by the red line in figure 1 qualitatively resembles the
growth rate of the slab mode, shown in orange, which it exceeds by a factor of
approximately 3–4. Both the upper bound and the linear growth rate approach a
non-zero constant as k⊥ρi → ∞, as predicted analytically above.

The results from the toroidal dispersion relation and the Z-pinch simulation are
qualitatively different in the sense that the linear instability growth rate becomes
negative for large k⊥ρi . However, at long wavelengths, both the upper bound and
the growth rate remain positive for all wavenumbers different from (k⊥ρi)min = 0.
This is because they are all derived from local theories that do not account for
potential Landau damping effects. In contrast, the CBC, slab ITG and W7-X cases
all display a finite critical (k⊥ρi)min �= 0, below which γ < 0. This difference arises
because these cases retain field line dependencies and thus include Landau damping
effects.

We note that the upper bound reflects the perpendicular wavenumber at which
finite Larmor radius (FLR) effects become significant. This is marked by a deviation
from the linear trend, as seen in the case of the full LR local dispersion relation and
the Z-pinch and CBC simulations. This behaviour is observed in W7-X too, with an
additional destabilisation of a short-wavelength ITG mode (SWITG) branch (Hirose
et al. 2002; Smolyakov et al. 2002a; Gao et al. 2003; Rodriguez & Zocco 2025), due
to the reduction of FLR effects at larger wavenumbers. In this scenario, the upper
bound also successfully predicts the destabilisation of this secondary ITG branch,
which is manifested as a bump between (k⊥ρi)min ≈ 1 and 2.

At long wavelengths, the upper bound converges to a constant value, as described
by (2.1). For τ = 1, this constant is given by Λ(k⊥ρi)min/|ηiω∗i | = 1/

√
32π . A similar

behaviour is observed in the slab branch, which also tends to a constant value at large
wavenumbers, but as already remarked, the constant differs from that of the upper
bound.

The upper bound effectively captures the qualitative behaviour of the growth rates
for all ITG branches. However, it does not provide a precise quantitative match. The
discrepancy arises because the upper bound is independent of the specific geometry,
which, while advantageous for describing a broad range of instabilities using only
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FIGURE 2. Upper bound for an electrostatic and collisionless hydrogen plasma with τ = 1,
∇Ti �= 0 and kinetic electrons compared with results from gyrokinetic simulations. The W7-X
simulation is obtained for a/LT i = 3.

a few parameters, leads to an overestimation of the actual growth rates of normal
modes. Among the cases considered, the toroidal ITG branch, calculated both with
stella and by solving the full LR dispersion relation, most closely approaches
the upper bound. The temperature gradient used in the comparison is chosen such
that the maxima of these curves align as closely as possible with the upper bound.
Nevertheless, the two curves exhibit different slopes as they approach zero, and the
ratio of the peak values – found at (k⊥ρi)min ≈ 0.5 – remains approximately 1.5.

4.2. ITG with kinetic electrons and density-gradient-driven instabilities
We proceed by extending the ITG scenario just considered to include kinetic

electrons. We compare the upper bound derived from optimal modes (as discussed
in § 2.2) with results from linear flux-tube simulations conducted for Z-pinch, CBC
and W7-X KJM geometries. The comparison is illustrated in figure 2. The real
frequencies corresponding to the growth rates shown are reported in figure 12 in
Appendix B.

As noted in Part 2, this bound is not merely a generalisation of the single-kinetic-
species ITG result. The two-species case can also describe magnetohydrodynamic
interchange-like instabilities, which are present in closed-field-line geometries (Ricci
et al. 2006). These instabilities are characterised by a non-zero growth rate as
k⊥ → 0, which explains why, at small wavenumbers, the upper bound approaches
Λ(k⊥ρi)min/|ηiω∗i | = √

3/8 (2.20). The Z-pinch simulations confirm this behaviour,
exhibiting a finite growth rate as k⊥ρi → 0, especially as the ion temperature gradient
increases.

As in the case of adiabatic electrons, we observe that the bound can predict
the presence of both a primary and a secondary ITG maximum at approximately
(k⊥ρi)min ≈ 0.5 and ≈ 1.5, respectively. This behaviour is consistent across all the
reported simulations, including those with Z-pinch, CBC and W7-X geometries. It is
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FIGURE 3. Upper bound for an electrostatic and collisionless hydrogen plasma with τ = 1,
∇n �= 0 and kinetic electrons compared with results from gyrokinetic simulations. The W7-X
and CBC simulations are obtained for a/Ln = 3.

important to note that the absence of a SWITG mode in Z-pinch and CBC geome-
tries in figure 1 can be attributed to the use of smaller gradients, resulting in a
reduced drive. This is evident in figure 2, where the CBC spectrum at a/LT i = 10
shows destabilisation at higher wavenumbers, while the spectrum at a/LT i = 3 does
not. A similar trend is observed in W7-X.

For intermediate wavenumbers, the normalised upper bound behaves as
∼ √

(k⊥ρi)min (2.21). At larger wavenumbers, we expect an inflection that causes
the upper bound to stop increasing indefinitely and instead reach a saturation at a
constant value. However, for the purposes of this article, we focus exclusively on
ion-scale wavenumbers and therefore do not consider the upper bound behaviour
at even larger wavenumbers. In general, the upper bound for two kinetic species is
approximately four times higher than that for a single species. While this leads to a
good qualitative agreement with the growth rates of normal modes, the quantitative
match is less accurate, particularly for reactor-relevant geometries like the tokamak
configuration of the CBC and the stellarator geometry of W7-X.

Next, we perform a similar comparison, but with gradients ∇Ti = 0 and ∇n �= 0,
again including the Z-pinch, CBC and W7-X geometries in our analysis. For the
Z-pinch configuration, we vary the normalised density gradient while keeping the
other parameters fixed. We observe that, as in the previous cases, large density
gradients drive instabilities with a non-zero growth rate for k⊥ρi = 0. This behaviour
is reflected in the upper bound, which tends to a constant for small wavenumbers.
This constant value is given by (2.22) and is equal to Λ(k⊥ρi)min/|ω∗i | = √

1/2 for
τ = 1.

For intermediate wavenumbers, the upper bound behaves like ∼ √
(k⊥ρi)min, and

we observe the same destabilisation of intermediate to large wavenumbers both in
the Z-pinch and CBC geometries. As with the case of ∇Ti �= 0, we expect that the
growth will not continue indefinitely, but will eventually saturate at a finite value for
very large wavenumbers. However, our focus remains on ion-scale wavenumbers.
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As with the previous scenario, the W7-X curve is the furthest from the upper bound,
while the Z-pinch with a/Ln = 7 is the closest, with a ratio of ≈1.5.

The characterisation of the instabilities in the CBC and W7-X simulations allows
us to identify them as either trapped electron modes (TEMs) or ion-driven trapped
electron modes (Plunk et al. 2017), depending on whether the real frequency of
the instabilities aligns with the electron or ion diamagnetic direction, respectively.
In W7-X, we also find universal instabilities for small values of the perpendicular
wavenumber (Coppi & Pegoraro 1977; Smolyakov et al. 2002b; Landreman et al.
2015a; Helander & Plunk 2015; Costello et al. 2023; Podavini et al. 2024). The
characterisation required the inspection of the real frequency sign (see figure 13 in
Appendix B) and the parallel structure of the eigenfunctions along the magnetic field
lines.

5. How optimal are normal modes?

In the previous section, we contrasted optimal-mode theory with normal-mode the-
ory by comparing growth rates across different geometries and plasma parameters.
We observed that, while the upper bound often provides a qualitative match with
the growth rates, it falls short of being a quantitative match in many cases. This
discrepancy arises from the different types of modes with which the upper bound
and growth rates are associated. As previously mentioned, optimal modes are not
conventional eigenmodes; they represent the system’s instantaneous response to a
localised injection of free energy. In contrast, normal modes describe exponentially
growing, or damped, instabilities with a defined structure along magnetic field lines.
Consequently, optimal modes and normal modes can have very different mathemat-
ical forms, and we do not expect them to coincide. However, we can explore how
closely they approach each other by exploiting the completeness and orthogonality
of the optimal modes.

In particular, considering the vector g, with components ga, the inner product
between two vectors g1 and g2 is given by

(g1, g2)=
∑

a

〈
Ta

∫
g∗

a1ga2

Fa0
d3v

〉
(5.1)

and the free energy balance equation (2.6) can be rewritten in inner product notation
as

d
dt
(g,Hg)= 2(g,Dg) . (5.2)

The state g can be expanded by taking into consideration the completeness of
optimal modes,

g =
∑

n

cngn . (5.3)

It follows that

(g,Hgn)=
∑

m

cm(gm,Hgn)

= cn(gn,Hgn)

= cn||gn||2,
(5.4)
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where we used the orthogonality property (Plunk & Helander 2022) (gm,Hgn)=
δmn||gn||2, defining ||gn||2 ≡ (gn,Hgn). The coefficients of the expansion are thus
given by cn = (g,Hgn)/||gn||2.

For this study, we decide to focus on the ITG scenario with adiabatic electrons
for two reasons: first, because of the promising results obtained for the comparison
shown in figure 1 and second, since the ITG instability can be analytically described
in certain limits, as outlined in § 3.

We consider the non-adiabatic part of the distribution function for the ions,
denoted as gi , and expand it using the appropriate optimal modes basis (2.11).
To simplify the analysis, we focus on the small Larmor radius scenario, for which
the optimal modes are

g± =
(

−3
2

∓ i

√
3(τ + 1)

2τ
+ v̂2

)
Fi0 , (5.5)

where g+ is associated with instantaneous growth and g− with instantaneous
damping. In this case, the H operator is defined as follows:

Hg = g − F0

n(1 + τ)

∫
g(v′)d3v′ . (5.6)

Following (5.3), we write
gi = c+g+ + c−g− + g0 , (5.7)

where g0 represents the contribution lying in the null space of the D operator, which
is populated by modes that do not increase nor decrease the Helmholtz free energy
associated with gi .

We then use the orthogonality of the optimal modes to calculate the fractions that
represent the relative contribution of each optimal mode to the ITG eigenmode.
These fractions collectively sum to unity,

f+ + f− + f0 = 1, (5.8)

where
f± = |c±|2||g±||2/||gi ||2 = |(gi ,Hg±)|2/||gi ||2

f0 = ||g0||2/||gi ||2 . (5.9)

The contributions from each optimal mode vary depending on the parameters
on which both gi and the optimal modes depend. Specifically, the optimal modes
are solely a function of τ (as shown in (5.5)), while gi depends on τ but also on
the diamagnetic frequency ω∗i and, if the mode is toroidal-like (3.5), on the drift
frequency ωκi . For slab-like modes (3.1), gi depends on the parallel transit frequency
ω‖. Therefore, we conduct a parameter scan to analyse the trends in these different
contributions.

To begin, we assume gi describes a strongly driven toroidal ITG mode. Under
this assumption, the resonant denominator in (3.5) can be expanded and the mode
frequency ω is given by (3.9). We further simplify the analysis by considering flat
density profiles, setting ω∗i = 0, while keeping ηiω∗i ≡ωt

∗i �= 0. We then produce
three different maps illustrating the contributions f+, f− and f0 for various values
of τ and the ratio 2ωt

∗i/ωκi = a/LT i . These maps are shown in figure 4.
In these maps, two distinct regions are outlined by the marginality (linear stability

threshold) contour. The solid orange line indicates marginality calculated using the
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FIGURE 4. Projections of the strongly driven toroidal ITG mode onto the optimal modes basis
for an electrostatic hydrogen plasma with adiabatic electrons. The solid orange line indicates
marginality for the strongly driven ITG (3.9), while the dashed red curve indicates marginality
as calculated by solving the small Larmor radius dispersion relation (3.8). The definitions of f+,
f− and f0 are reported in (5.9).

strongly driven toroidal ITG dispersion relation of (3.9), whereas the red dashed
curve represents the exact marginality contour derived from the small Larmor radius
dispersion relation of (3.8). The coincidence of the two contours in the limit τ → 0
suggests that, in this regime, the mode behaves as in the fluid approximation, even
approaching the point of marginal stability.

The unstable region lies to the right of the marginality curve, and within this
region, we expect that f+ > f−. This follows from

2γ = d
dt

||gi ||2/||gi ||2 = 2Λ+( f+ − f−) , (5.10)

which we derived starting from (5.2), whose right-hand side has been evaluated by
using (5.3) and (2.18). Moreover, we used Λ− = −Λ+, as evident from (2.14).

The results shown in figure 4 agree with our expectations. In the region to the
right of the marginality contour, where instability is expected, we indeed observe
that f+ > f−. The maximum projection onto the growing optimal mode occurs at
the parameter set {2ωt

∗i/ωκi , τ } = {3, 0.3}, where f+ reaches a value of approximately
0.75. Conversely, for this same parameter set, the projection onto the damped opti-
mal mode f− reaches its minimum. The projection onto the null space f0 is very
small across almost the entire map.

As ωt
∗i/τ increases, corresponding to the region where the fluid approximation is

valid, both f+ and f− tend towards a value of approximately 0.5, with f+ approach-
ing from above and f− from below. According to (5.10), this indicates that the ratio
γ /Λ+ approaches zero. Consequently, in the fluid limit, the upper bound is furthest
from the normal-mode growth rate. Indeed, while the fluid-ITG growth rate scales
as
√
ωκiω

t
∗i/τ (3.9), the upper bound scales as ∼ωt

∗i/τ (2.14), causing their ratio to
decrease as the temperature gradient increases or τ decreases.

On the fluid marginality contour, i.e. for τ � 1, f+ = f− and thus f+ − f− = 0,
once again indicating that the fluid approximation correctly describes this region. In
contrast, it is important to note that the fluid approximation used does not accurately
describe the stability threshold for τ � 1, where kinetic effects become dominant. We
expect neither the strongly driven toroidal ITG eigenmode nor the optimal modes
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FIGURE 5. Projections of the drift-kinetic toroidal ITG mode onto the optimal modes basis
for an electrostatic hydrogen plasma with adiabatic electrons. The solid orange line indicates
marginality for the strongly driven ITG (3.9), while the dashed red curve indicates marginality
as calculated by solving the small Larmor radius dispersion relation (3.8). The definitions of f+,
f− and f0 are reported in (5.9).

to reliably capture the stability threshold there. Consequently, the projections in the
region near the kinetic marginality contour should be interpreted with this in mind.

To also accurately describe marginality for τ � 1, we use the full kinetic toroidal
ITG distribution function (3.5) and substitute ω derived from numerically solving
the small Larmor radius dispersion relation of Biglari et al. (1989) (3.8), while
considering ω∗i = 0 and ωt

∗i �= 0.
The results are presented in figure 5. At marginality, the projections align with the

expectations from (5.10). Specifically, along the kinetic marginality contour, both
f+ and f−, as well as their difference f+ − f−, approach values close to zero. In the
same region, f0 attains larger values, indicating that the null space – which neither
contributes to the mode’s growth nor its damping – becomes increasingly significant
in this part of the parameter space.

Crossing the kinetic marginality contour from left to right, we go from a region
where f+ < f−, and thus where the mode is damped, to a region where f+ > f−,
and thus where the instability is present. The maximum of the projection onto the
growing optimal mode is reached along the 10τ ≈ 2ωt

∗i/ωκi contour. Specifically, the
global maximum is reached for {2ωt

∗i/ωκi , τ } = {10, 0.3}, where f+ reaches a value
of approximately 0.76. This contour reflects the toroidal ITG resonance condition
of Biglari et al. (1989) found for ωt

∗i ∼ωκi and suggests that the resonance is impor-
tant to approach optimal behaviour. In the region where ωt

∗i/τ is large, both f+
and f− approach 0.5, with f+ taking values slightly larger than 0.5 and f− slightly
smaller. This confirms that the strongly driven dispersion relation, as given by (3.9),
is appropriate for this limit.

We conclude that the drift-kinetic toroidal ITG mode is up to approximately
80 % composed of an instantaneously growing optimal mode, and this proportion
is attained in the neighbourhood of the stability threshold, indicating that resonance
effects are influential. However, this behaviour is observed only when the threshold
is resonant (τ � 1). In contrast, near the threshold described by a fluid approxima-
tion (τ � 1), this proportion is not observed. The fluid-like toroidal ITG, which is
found at τ � 2ωt

∗i/ωκi , is composed to 50 % by an optimal growing mode and to
50 % by a damped one, with the former having the upper hand in the sense that an
instability indeed occurs.
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As already observed for the projections derived assuming a fluid approximation
for gi (figure 4), this brings to an unfavourable scaling of the ratio γ /Λ+ with ωt

∗i/τ .
It is shown in Part 3 (Plunk & Helander 2023) and Part 4 (Costello & Plunk 2025)
that a more favourable trend of the toroidal ITG normal-mode and upper bound
ratio is achievable through the definition of a generalised free energy.

The area to the left of the marginality contour encompasses a region where the
ITG eigenmode is stabilised and only damped solutions exist. Consequently, we omit
the analysis of the projections in this area.

6. Conclusions

In this work, we have compared the conventional normal-mode approach
to gyrokinetic instabilities with the recently developed optimal-mode approach
(Helander & Plunk 2021; Plunk & Helander 2022). We have considered three sep-
arate cases of two gyrokinetic instabilities relevant to fusion magnetic confinement
devices, the ion temperature gradient (ITG) mode and the density-gradient-driven
trapped electron modes (TEMs). A range of magnetic geometries were considered,
including tokamak, stellarator, Z-pinch and slab plasmas.

All the cases considered showed that the growth rates of normal modes consis-
tently remain below the upper bounds across various geometries and temperature or
density gradients. This result was anticipated, as the derivation of the upper bounds
is based on thermodynamic principles and involves no approximations.

The upper bounds are sometimes several times higher than the normal-mode
growth rates, especially for tokamaks and stellarators. This discrepancy stems from
the fact that the sources of Helmholtz free energy are independent of the magnetic
geometry. As a result, the upper bounds studied here do not incorporate the geomet-
ric effects and resonance mechanisms that affect the stability properties of different
magnetic confinement devices.

However, we also observe that the upper bounds, somewhat unexpectedly, repli-
cate key features of the growth-rate spectra. For instance, they capture the behaviour
at small and intermediate wavenumbers, relative to ion scales, and surprisingly accu-
rately indicate the positions of the fastest-growing modes for both the conventional
ITG and short-wavelength ITG instabilities. These observations underscore the qual-
itative utility of the upper bounds in describing key characteristics of gyrokinetic
instabilities, even if they do not precisely match the growth rates.

For improved quantitative agreement, optimal mode theory is being extended to
include information about the magnetic geometry, as well as physics of wave–particle
resonances. These extensions could enable the development of quasi-linear models,
offering an alternative to existing approaches based on normal modes.

Conceptually, normal modes and optimal modes are distinct mathematical objects,
as discussed in §§ 2 and 3. To quantify the difference between these two types of
modes, we have measured the distance between them by projecting normal modes
– specifically for a toroidal ITG mode with adiabatic electron response – onto the
optimal modes basis across a wide range of parameters. For the cases studied, our
analysis demonstrated that the decomposition of an ITG mode has at most a 80 %
contribution from the instantaneously growing optimal mode, achieved in the reso-
nant limit. This emphasises the difference between optimal mode theory and fluid
theory, a common approximation for instabilities, which fails in the resonant limit.
It also explains why we do not observe, nor should expect, the growth rates of nor-
mal modes to exactly coincide with the upper bounds derived from Helmholtz free
energy.
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Appendix A. Numerical validation of toroidal ITG dispersion relation and Z-pinch
geometry implementation

In this appendix, we assess the range of validity of the dispersion relations reported
in § 3. To do so, we solve the gyrokinetic equation (2.1) using stella, by imple-
menting a purely toroidal magnetic field, referred to as Z-pinch geometry. We
further validate the dispersion relations and the stella Z-pinch geometry imple-
mentation by comparing the results with simulations performed with the gyrokinetic
code GENE (Jenko et al. 2000). Our Z-pinch geometry implementation is indeed
based on previous work conducted with the GENE code (Navarro et al. 2016).

The Z-pinch geometry is achieved by mapping the cylindrical coordinates (r̃ , θ̃ , z̃)
to stella coordinates (x, y, z). The magnetic field lines are described by the field-
following coordinate z = θ̃ ≡ b̂, which, along with the y coordinate, parametrises
the flux surfaces. The chosen flux surface is identified with the cylinder’s radius
r̃ = R. The coordinate x is thus perpendicular to the flux surfaces, while y maps the
direction of the current I that produces the magnetic field B, as illustrated in figure 6.
Together, x and y describe the plane perpendicular to magnetic field lines. It follows
that the magnetic field magnitude is described by B(x)= 2I/cx , and the metric
coefficients that enter in the gyrokinetic equation are gxx = gyy = gzz = 1, gxy = gxz =
gyz = 0. The scale length of the magnetic field variation, L B , is determined by its
radial derivative and coincides with the cylinder radius

− 1
B

dB

dx
= 1

L B
= 1

R
. (A.1)

The scale length L B is used to normalise all other scale lengths and to keep a con-
sistent notation with § 4, it is hereafter defined as a. The ∇ y component of the
magnetic drift, (b̂ × κ) · ∇ y = (b̂ × ∇ B) · ∇ y, is proportional to the radial deriva-
tive of the magnetic field and is therefore constant along the field line. There is no
magnetic drift in the x -direction.

To validate the local theories described in § 3, we perform electrostatic, colli-
sionless flux-tube simulations while neglecting the parallel streaming term in (2.1).
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FIGURE 6. Sketch of the cylindrical Z-pinch flux-surface parametrised by the coordinates
implemented in stella. Drawing adapted from Ivanov et al. (2020).

FIGURE 7. Normalised growth rate γ a/vth,i and real frequency ωa/vth,i for Z-pinch geometry
simulations performed for a/LT i = 6.4 with the gyrokinetic codes GENE and stella, com-
pared with solutions of the full Larmor radius (full LR) resonant dispersion relation – (3.6) –
and the small Larmor radius (SLR) one – (3.8).

We simulate a single ion kinetic species and set τ = Ti/Te = 1. Our initial com-
parison focuses on the dispersion relations for a fixed value of the normalised ion
temperature gradient a/LT i = 6.4. We set a flat density profile.

In figure 7, we compare the outcomes from GENE and stella simulations with
the roots of the resonant dispersion relation that includes full Larmor radius effects
(full LR – (3.6)) and of the small Larmor radius one (SLR – (3.8)). The comparison
shows excellent agreement both between the two codes and the full LR dispersion
relation.

2
As anticipated, the SLR dispersion relation provides a good approximation

of both the numerical results and the analytical full LR dispersion relation only for
kyρi → 0. In this regime, the growth rate shows a linear behaviour with kyρi , as
expected for a strongly driven toroidal ITG (3.9).

We perform additional benchmark cases for various normalised temperature gra-
dients: in figure 8, we show the one for a/LT i = 3.7 and in figure 9, the one
for a/LT i = 12.8. For the case with a/LT i = 3.7, we once again observe excellent

2The reason for the small discrepancy between the gyrokinetic simulations and (3.6) is that the latter employs
a Padé approximation, which is not entirely accurate.
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FIGURE 8. Normalised growth rate γ a/vth,i and real frequency ωa/vth,i for Z-pinch geometry
simulations performed for a/LT i = 3.7 with the gyrokinetic codes GENE and stella, com-
pared with solutions of the full Larmor radius (full LR) resonant dispersion relation – (3.6) –
and the small Larmor radius (SLR) one – (3.8).

0.0 0.5 1.0 1.5
kyρi

0.0

0.5

1.0

1.5

γ
a
/v

th
,i

GENE

stella

full LR

SLR

FIGURE 9. Normalised growth rate γ a/vth,i for Z-pinch geometry simulations performed for
a/LT i = 12.8 with the gyrokinetic codes GENE and stella, compared with solutions of the
full Larmor radius (full LR) resonant dispersion relation – (3.6) – and the small Larmor radius
(SLR) one – (3.8).

agreement between the growth rate and the frequency, both when comparing the
two different numerical results and when comparing the numerical results with
the full LR dispersion relation. At small wavenumbers, the agreement with the
SLR dispersion relation is also perfect, further validating the accuracy of the SLR
approximation in this regime.

As we move further from marginality, the agreement between the numerical
results and the full LR dispersion relation worsens. This is evident in figure 9 with
a/LT i = 12.8. In particular, the full LR dispersion relation underestimates the desta-
bilisation of the SWITG modes for kyρi � 2. This discrepancy might be attributed to
an overestimation of the stabilising FLR effects in the analytical case. Despite this,
the agreement remains excellent for kyρi � 1.5, and the comparison with the SLR
dispersion relation holds well for kyρi � 0.5.
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FIGURE 10. Normalised critical gradient as a function of the temperature ratio τ calculated for a
q = 100 circular tokamak with the gyrokinetic code GENE compared with the analytical theories
with full LR effects and the SLR limit. The Tricomi series expansion of the full LR dispersion
relation is also reported. The GENE data is taken from Zocco et al. (2018).
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FIGURE 11. Normalised real frequencies associated with the growth rates shown in figure 1 for
an electrostatic and collisionless hydrogen plasma with τ = 1, ∇Ti �= 0 and adiabatic electrons.

In this appendix, we also revisit the calculation of the toroidal ITG critical gradient
performed by Zocco et al. (2018) taking into account that in (B13) of Zocco et al.
(2018) J (2)⊥ ↔ J (2)‖ . We solve both the full LR and the SLR dispersion relations
((3.6) and (3.8)) by setting bi = k2

⊥ρ
2
i = 0.1 and varying a/LT i . The critical gradient

a/LT i |crit is determined by the condition γ = 0. We repeat this procedure for various
τ values to capture the trend of the critical gradient with respect to the temperature
ratio.

The results are presented in figure 10. We now observe that (3.6) yields, for the
critical temperature gradient, quantitative agreement with the GENE code results.
The small Larmor radius theory underestimates the critical gradient, particularly
at higher τ values. The plot also includes the Tricomi expansion of the full LR

https://doi.org/10.1017/S0022377825000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825000479


24 L. Podavini et al.

FIGURE 12. Normalised real frequencies associated with the growth rates shown in figure 2 for
an electrostatic and collisionless hydrogen plasma with τ = 1, ∇Ti �= 0 and kinetic electrons.
The W7-X simulation is obtained for a/LT i = 3.

FIGURE 13. Normalised real frequencies associated with the growth rates shown in figure 3 for
an electrostatic and collisionless hydrogen plasma with τ = 1, ∇n �= 0 and kinetic electrons. The
W7-X and CBC simulations are obtained for a/Ln = 3.

dispersion relation, which we proved to work for small τ values. Although this
expansion is not detailed here, it can be found in Appendix D of Zocco et al. (2018).

Appendix B. Real frequencies
In figures 11–13, we report the normalised normal-mode real frequencies associ-

ated with the growth rates used to perform the upper bound theory validation. The
real frequencies trends and signs are useful to characterise the nature of normal
modes.
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