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Abstract
An actively controllable cascaded proton acceleration driven by a separate 0.8 picosecond (ps)
laser is demonstrated in proof-of-principle experiments. MeV protons, initially driven by a
femtosecond laser, are further accelerated and focused into a dot structure by an electromag-
netic pulse (EMP) on the solenoid, which can be tuned into a ring structure by increasing the
ps laser energy. An electrodynamics model is carried out to explain the experimental results
and show that the dot-structured proton beam is formed when the outer part of the incident
proton beam is optimally focused by the EMP force on the solenoid; otherwise, it is overfo-
cused into a ring structure by a larger EMP. Such a separately controlled mechanism allows
precise tuning of the proton beam structures for various applications, such as edge-enhanced
proton radiography, proton therapy and pre-injection in traditional accelerators.

Introduction

High-quality proton beams produced by laser-driven thin solid foils (Refs 1–6) can be used in
various fields such as proton therapy (Refs 7, 8), proton imaging (Ref. 9) and fast ignition of
inertial confinement fusion (Ref. 10). Several mechanisms have been proposed for energetic
proton generation, such as radiation pressure acceleration (RPA) (Refs 11–14), collisionless
shock acceleration (CSA) (Ref. 15), target normal sheath acceleration (TNSA) (Ref. 16), break-
out afterburner acceleration (Ref. 17) and other combined mechanisms (Refs 18, 19). To date,
TNSA is still considered themost robust accelerationmechanism for obtaining∼100MeV pro-
ton beams (Ref. 20). However, these ion beams typically exhibit broad energy spectra or large
beam divergence, limiting their direct application in fields like proton therapy (Refs 7, 8). To
address this, a cascaded acceleration mechanism based on the robust TNSA mechanism has
been developed (Refs 21–23), where a sheath field generated on a second target tailors the
spectra and maximum energy of the incident proton beam from the first acceleration stage
(Refs 23, 24).

However, the previous cascaded mechanisms were inefficient because only a small fraction
(usually≪10%) of the incident proton beam from the first stage is accelerated by the finite static
sheath field driven by the small focal spot of the second laser on the second target (Refs 22,
25). Recently, Kar et al. proposed a post-processing scheme by using a femtosecond (fs) laser
to drive a metallic foil attached to a solenoid to improve the cascaded acceleration efficiency.
The main reason is that the electromagnetic pulse (EMP) driven by the laser on the solenoid
can synchronise with the incident protons under an optimal space–time condition to further
accelerate and collimate the incident proton beam for a longer time and larger distance (Refs
25–31). However, since the solenoid is directly connected to the target’s back, it limits the ability
to flexibly tune the parameters of the incident protons and the solenoid independently, resulting
in the limited tuning for the energy, spectra and divergence of the proton beam. Therefore,
separating the solenoid from the target may be an efficient method to potentially introduce
more innovations to the present cascaded solenoid acceleration mechanism.

In this article, we present an actively controllable cascaded proton acceleration mechanism
driven by a separated picosecond (ps) laser in experiments. It is found that an fs-laser irradiates
the target to generate MeV protons in the first stage, which are further tuned by an EMP on an
independent solenoid irradiated by another ps laser in the second stage. An electrodynamics
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Figure 1. (a) Experimental setup. The fs laser drives a 10 μm copper to generate a proton beam, and the ps laser drives a 500 μm copper to generate an EMP to modulate
the proton beam. (b) Proton imaging setup. The diameter of the folded copper wire was 0.1 mm, with a width of ∼3 mm and a vertical spacing of ∼0.75 mm between wires.
(c) Active-controlled cascaded proton acceleration setup. The solenoid was constructed with 0.1 mm diameter copper wire, with an inner diameter of ∼0.7 mm, a pitch of
∼0.3 mm, 10 turns, and an overall length of ∼3 mm.

model is carried out to explain the experimental results, show-
ing that the proton beam can be shaped into ring and dot forms
by appropriately tuning the EMP strength on the solenoid, which
is consistent with the experimental results. The proton beam
shapes tailored in our ps-laser-driven cascaded solenoid accel-
eration mechanism offer a convenient and controllable method
for creating structured proton beams for special applications. For
instance, the ring proton beam can enhance edge-imaging in pro-
ton radiography for expanding plasma and capsule implosions in
confined fusion, while the collimated proton beam can be used for
proton therapy.

Experimental setup

The experiment was conducted at the XingGuang-III laser facility
in the Laser Fusion Research Center (see Fig. 1a). An ∼8 J fs laser
with a wavelength of 800 nm and a duration of ∼50 fs irradiated
a 10 μm thick copper target, accelerating a proton beam via the
TNSA mechanism in the first stage. In the second stage, a ps laser
with∼30 J to∼120 J energy and∼800 fs duration (full width at half
maximum (FWHM)) was focused onto a 500 μm thick copper foil.
One side of a folded wire was connected to the foil back, and the
other side to the ground, generating an EMP towards the ground
when the ps laser irradiated the copper foil. The resulting longi-
tudinal and transverse electric fields in the solenoid centre moved
forward, continuously accelerating and concentrating the proton
beam. The radii of the fs and ps laser focal spots were ∼10 μm
and∼20 μm, respectively, with about 30% of laser energy enclosed
within the FWHM of the focal spots. This corresponds to intensi-
ties of ∼6.1 × 101⁹ W/cm2 for the fs laser and ∼3.6 × 1018 W/cm2

to ∼1.4 × 1019 W/cm2 for the ps laser.
To investigate the effects of the ps-laser-driven solenoid on

cascaded proton tailoring, a proton radiograph for the EMP was
conducted in Fig. 1b. An fs laser irradiated a separate 10 μm thick
copper foil to generate a proton beam to probe the EMP on the
folded wire. The 10 μm copper foil was placed at a distance of
L1 = 6 mm from the folded wire plane and L = 60 mm from

the radiochromic film (RCF) stack, providing a magnification of
M = 10 on the RCF stacks. The probing beam was oriented per-
pendicular to the folded wire plane and could be deflected mainly
by the electric field on the wire (Ref. 32). By analysing the redis-
tribution of the proton beam on the RCFs, the EMP strength was
calculated to understand its effects on proton beam shapes when
the folded wire was replaced with a solenoid.

Then, the cascaded solenoid acceleration was implemented by
replacing the folded wire with the solenoid in Fig. 1c. The ps-laser
energy was increased to ∼120 J to drive a stronger EMP on the
solenoid. By adjusting L2 (the distance between the 10 μm Cu foil
and the front of the solenoid) and Ld (the length of the 500 μm
Cu foil and the solenoid connection line), the simultaneous arrival
of the proton beam and EMP at the solenoid can be achieved.
The EMP propagating along the solenoid forms a helical electric
field, exerting a repulsive force on the proton beam and altering its
direction and speed.

Experimental results

Figure 2a shows the proton imaging of the copper wire without
EMP, where the copper wire width of 1 mm is obtained on RCF.
When a ∼37 J ps laser is introduced in the second stage, the width
of the copper wire increases significantly because the incident pro-
ton beam from the first stage is dispersed by the EMPmoving along
the copper wire, see Fig. 2b and c. By analysing the position of the
EMP, its propagating velocity (∼0.95 c) can be calculated, which is
consistent with previous research (Refs 33, 34).

According to the EMP velocity and position, we performed the
cascade acceleration experiment (see Fig. 1c). Initially, the solenoid
is imaged by a 3.4 MeV proton beam from the first stage driven
by the 7.7 J fs laser, while the ps laser does not work in Fig. 2d. It
can be found that the solenoid separates the incident proton beam
into inner and outer regions and the protons distribute uniformly
inside the solenoid. In contrast, the 1.6 MeV proton beam with a
ring structure was obtained by a ∼114 J ps laser irradiating on the
solenoid in the second stage in Fig. 2e, where the EMP is generated
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Figure 2. (a) Proton beam imaging result without EMP
and (b, c) with EMP. The fs laser energy is ∼7 J for both
shot 20 and shot 13. The ps laser energy was ∼37 J for
shot 13. The red arrow indicates the EMP propagation
direction. (d) Proton beam acceleration result without
EMP. (e, f) Proton bunching results of ring and dot with
EMP. The ps laser energy was ∼114 J for shot 9 and
∼37 J for shot 15. The red curve in (d–f) shows the
normalised greyscale distribution along the red dotted
line.

Figure 3. Comparison of the influence of EMP on the proton acceleration.

on the solenoid and manipulates the incident protons inside. It is
interesting that the proton structure can transform from ring to dot
by reducing the ps laser energy from114 J down to 37 J (see Fig. 2f).
It indicates that proton beam structure can be simply controlled by
the EMPs driven by ps lasers with different laser energies or inten-
sities (Refs 26, 29, 30, 35), which will be explained in the following
theoretical calculations.

It is important to note that during the preparation of the exper-
iment, we focused on imaging the proton beam on the RCF. We
can estimate the maximum cut-off energy of the proton beam by
counting the number of RCF pieces. Figure 3 presents a compari-
son of two proton acceleration results. Shot 9 was conducted with

a ps laser, while shot 10 utilised a separate fs laser. As shown in the
comparison, the introduction of the EMP not only enhances the
convergence of the proton beam but also leads to an increase in
the highest energy order of the proton beam. In future studies, we
will exploremethods tomeasure the energy spectrumof the proton
beam without compromising the imaging process.

Modelling and analysis

To calculate the intensity and pulse width of the EMP generated by
a ps laser, a proton deflection model was developed based on the
theory in reference (Ref. 32), as shown in Fig. 4a. The electrostatic
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Figure 4. (a) Proton deflection model. (b) Relationship between the
charge density and the deflection distance. Here, the solid red line
indicates 3.4 MeV, and the blue dotted line indicates 4.6 MeV. (c) Charge
density and the relative time calculated from the experimental results.
The measured value is the width of the wire at different locations on
the RCF. The red squares are the measured values. The solid black line
is the fitting curve. The black arrow indicates the direction of EMP
propagation.

field ⃗E in the x–y plane (z = 0 μm) is expressed as

⃗E(0, 0, z) = ∫
+∞

−∞

𝜆(z) ⃗r
4𝜋𝜀0r3

dz (x2 + y2 > R2
Cu), (1)

where ε0 is the permittivity constant of vacuum,
⇀
r is the radius

away from the wire centre (0, 0, z).Then, a single proton is incident
from the position (−L1, 0, 0) and is influenced by the electrostatic
field from the wire, described by a dynamic equation as

d
dt ( 𝜈

√1 − 𝛽2
) = e

mi
⃗E(0, 0, z), (2)

where e is the electron charge,mi is the ionmass, and β= v/c is the
dimensionless velocity vector. It is assumed that the protons reach
the RCF stacks in the experiment when x = L − L1 is obtained.
The deflection distance (wp) is proportional to the charge density,
with lower-energy protons deflecting a greater distance at the same
charge density, as shown in Fig. 4b. A ∼20 ps temporal profile of
the charge pulse can be reconstructed in Fig. 4c by calculating wp
at different positions along the solenoid in Fig. 2b and c), which is
roughly consistent with previous parameters under similar experi-
mental conditions (Ref. 26). It should be noted that the shape of the
EMP pulse excited by the ps laser differs slightly from that excited
by the fs laser, and there remains a high charge density at the tail.
However, the peak charge density of∼4.9μC/m ismuch lower, pos-
sibly because a thicker Cu foil (500 μm) and lower ps laser energy
(∼37 J) are used in our case.

We establish a simple electrodynamic model to analyse the spe-
cific process of proton beam converging into different structures
under the action of EMP, as shown in Fig. 5a. In this model, two-
point charges, spaced 0.7 mm apart, simulate the two-dimensional

electric field distribution when the EMP moves in the solenoid.
The quantity of the point charge Q is ∼1.4 × 10⁻11 C, which is
calculated by themodel in Fig. 4a.The x-direction velocity compo-
nent of the EMP moving through the solenoid VEMP is ∼3.4 × 10⁷
m/s, which can be calculated by the velocity of the EMP propagat-
ing through the wire, the inner diameter of the solenoid and the
pitch of the solenoid. Between the two-point charges is a group
of evenly distributed protons, and according to the experimental
results, the proton divergence is approximately ∼14°. In our case,
we simulate 9 protons and do not take into account the repul-
sion between protons. The protons start at the same position as
the two-point charges and move forward in the x-direction with
different speeds. Since the clearest results obtained from the exper-
iment correspond to a 1.6 MeV proton beam, we set Vp in the
model to ∼1.75 × 10⁷ m/s to match the speed of the 1.6 MeV pro-
ton beam. Figure 5b presents the results of the dot proton beam
obtained throughmodel simulation, whereQ is set to∼1.4 × 10⁻11
C. As seen in Fig. 5b, the edge of the proton beam is influenced
by the electric field and converges towards the centre, eventually
forming a dot density distribution at 60 mm, similar to the experi-
mental result in Fig. 2f. Furthermore, a ring density distribution is
observed in the proton beam in Fig. 5c, where Q is set to 2 × 10⁻11
C, resembling the experimental results in Fig. 2e. It should be
noted that, due to computational limitations, our simulation used
only 9 protons to model the distribution trend, which is signifi-
cantly different from experimental conditions. Furthermore, our
simplified electrodynamic model did not account for the repul-
sive forces between protons or the magnetic field produced by
the EMP. The simulation results primarily highlight the impact of
EMP intensity on the spatial distribution of proton beams. Both
experimental and simulation results show that the spatial distribu-
tion of proton beams can be modulated by controlling the EMP
intensity. In the follow-up research work, we will further improve
the model to make it more realistic to explain the experimental
results.
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Figure 5. (a) Electrodynamic model. (b, c) The simulation results of the ring and dot proton beams in a 60 mm simulated domain are similar to the experimental results.

Summary

In this article, we propose an active-controllable cascaded pro-
ton acceleration mechanism to modulate fs laser proton beams
by directing the EMP generated by a ps laser via a solenoid. In
the experiment, EMP was initially captured using proton imaging.
Subsequent measurements and calculations revealed that the EMP
had an FWHM of ∼20 ps, with a peak intensity of ∼4.9 μC/m.
The solenoid then directed an EMP to effectively shape the pro-
ton beam, resulting in the successful generation of both ring and
dot configurations of the proton beam. Based on the experimental
setup, we established a simple electrodynamics model to analyse
the experimental results. Our experimental results and simulations
have shown that the shape of the proton beam is closely related to
the EMP emission.This active-controllable cascaded proton accel-
erationmechanism can independently adjust the proton beam and
EMP, providing a wider adjustment range than the single-beam
laser drive method. It offers a solution to produce special-shaped
proton beams required in various applications. For example, the
ring proton beam has the potential to enhance edge-enhanced pro-
ton radiography, such as in expanding plasma studies, while the dot
proton beam with lower divergence is of great interest in proton
therapy and other fields.
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are available within the article.
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