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1. Introduction. Let <€ be the classical Cayley algebra defined over the reals with
basis {is}

7
0 where {is}l gives a quaternion algebra $f4 with io = l, ixi2h = - \ , i\i* = is,

'2«4 = '6 ar |d J3J4 = h- The multiplication table of the imaginary basic units follows:
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For ^ = E xsis, £ = 2x0— § is called the conjugate of £. The real part R(£) of the

octant § is JC0. For § = £0 + £, i4 and TJ = r/0 + »?ii4 where ^, and rj, belong to $f4 for t - 0
and 1, multiplication is given in % by

%i\ = §ofo - *h§i + (i?ilo + ii»?o)'4- (1.1)

The norm Nt- of § is | | . Hence for any § of ^

| 2 - 2 R ( | ) | + ^ = 0. (1.2)

The multiplicative property

N(aP) = N(a)N(fi) (1.3)

holds for all octants o- and /J in <#.
Let / be any arithmetic or order of c€. Let a code / be defined using a subset of

elements, of possibly fixed norm, of a possibly fixed / as codewords. Then / is a mapping
from an alphabet

A = {wu. .. ,wm}

into 2* where 2* denotes the collection of finite strings of symbols from an alphabet 2.
Here 2 can be regarded as the union of the integers Z and the half odd integers. The
elements f(ws) are in J. Examples are to be found in Section 5.

A frame is a set of codewords that is encrypted together as a single octant and
decrypted without causing difficulty on the available machinery. An important aspect of
the codes in data transmission may be that frames of codewords admit encryption using
Cayley multiplication and decryption using the algorithm to be explained. The codewords
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268 P. J. C. LAMONT

/(Wj) and their characteristic units may be varied according to their position in a frame.
The unique factorization properties of Cayley arithmetics J are of importance for the
algorithm and theory.

2. The maximal arithmetics Ja. An arithmetic (order) J of •# is a subset which
contains 1, is closed under addition and multiplication, and is such that for any £ eJ, (1.2)
has rational integral coefficients (has coefficients belonging to a ring of integers of an
algebraic number field or other field). An arithmetic (order) /„ is called maximal if it is
not a proper subset of an arithmetic (order defined over the same field).

Let Jo be the arithmetic spanned by {4}o over Z. Let a, u, v, w be distinct elements
of {is}\ such that a = u{vw). The mapping %—> p£p~^ where

p = \(\ + u + v + w)

applied to {is}l gives a new basis {es}l of <g that reproduces the multiplication table of the
first basis. Let Ja be the arithmetic obtained by adjoining {es}l to Jo. h >s independent of
the choice of u, v, w for which u(vw) = a and is one of seven isomorphic maximal
arithmetics. Arithmetics are obtained by letting a take any value from the set {t,}].
Intersections, consisting of all elements common to two or more orders, also yield useful
orders. 4

Each Ja contains fourteen distinct sets of elements of the form £ xrvr where the xr
r=l

are half odd integers. The vr take fourteen sets of values from {̂ Jo-
Suppose that, for some / ,

| = §! (mod 2 in J)

and that £, = Jlxsps where the ps are spanning units of J. Define the characteristic unit of
§ to be

where |±ar| is always a for a a member of the spanning units with leading coefficient
positive.

THEOREM 2.1. For | , JJ e/0,

and for f, t] both of odd norm,

Proof. The proof is by linearization from the corresponding results for the spanning
units.

3. Divisibility. Let £ and | be elements of order / of %.

THEOREM 3.1. Suppose that £ = §(modm) where N^ = m. Then § divides £ on the
left and on the right.

Proof. Since t, = £ + mo for some a e J, we have t, = £(1 + fa) by the alternative
law in <€. The proof of right divisibility is similar.
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THEOREM 3.2. Suppose that t, = ^,a (mod m) where N% = m and a eJ. Then § divides
£ on the left.

Proof, £ = £a + mp = §(a + §p).

Similarly we can prove the following result.

THEOREM 3.3. Suppose that

£ = a§ (mod m) where Nf; = m and a eJ.

Then § divides £ on the right.

Next we have

THEOREM 3.4. For any £ eJa of odd norm,

| = T (mod 2 m Ja)

where r is, apart from sign, a unique unit of Ja.

4

Proof. The existence of fourteen distinct sets of elements of the form X xrvr

where the xr are half odd integers ensures that the theorem holds. r=1

We state the following results on arithmetics proved in Lamont [8]. Theorem 3.4 and
results similar to results in Rankin [13] are used to satisfy the axioms in [8] for Ja.

THEOREM 3.5. Any element £ eJ with 7V£ = mn has precisely r different factorizations
%r\ in J with Nt; = m and Nr] = n, if (m, n) = 1 and r is the number of distinct units in J.
Moreover, for m odd, the factorization is unique apart from signs if a unit is prescribed to
which £ is congruent modulo 2 in some Ja.

For £ eJ and N£, = mn, sy(£, m, n) denotes the number of distinct factorizations by
of £ in / with Nd = m and Ny = n. When no confusion can arise we omit the subscript J.

THEOREM 3.6. For a any unit in J,

We define o(m) to be the number of distinct elements of norm m in J. Any element
£ e / of odd norm is called primitive in J if £ ̂  0 (mod/?) for any rational prime p.

THEOREM 3.7. Any element £ e / , with N£=p ' + 1 , where p is an odd rational prime
and t is a positive integer, has precisely

(i) r(p) distinct factorizations £17 with N% = p and Nrf =p', if ^ = 0 (mod p);
(ii) r such factorizations, if £ is primitive in J. Moreover, for £ primitive, unique

factorization holds in the sense explained in Theorem 3.5.

4. Unique factorization algorithm. Let a Cayley integer a e Ja be given of compos-
ite (i.e. not prime and not unit) odd norm. Suppose that we are always going to divide out
on the left to obtain a factorization. For example, for five factors, the parentheses pattern
is assumed to be
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Suppose that

Na = fl m,

where the m,, the norms of codewords, are all equal or, for example purposes, relatively
prime in pairs. If the m, are equal, a is assumed to be primitive. If the m, are relatively
prime in pairs, they are assumed ordered. Suppose that the ordered residues modulo 2 in
Ja of the factors are kx, k2, • • • , ks.

The steps of the algorithm are as follows.
(i) Calculate and factorize Na into rational integers so that the factors conform to

the norms of codewords.
(ii) Reduce a moduli m, for each i = 1,. . . , s.

Reductions may be carried out in an arithmetic that contains all of the codewords and
that gives a decrease in the norm. As the arithmetics are partially ordered, start with an
arithmetic contained in Ja with the least number of units.

Suppose that
a = a, (modulo m,). (4.1)

Let N<Xi = /i,7n,. If n, = 1, then a( divides a, by Theorem 3.1. Suppose a = ar,-/3. If further
%(ai) = kl, then or, is the required factor and we can branch to (ii) with a replaced by

(iii) Suppose that n, > 1. By recomputing the congruence (4.1), since m, is odd, we can
ensure that «, is odd. Suppose that

oil = Pi (modulo «,). (4.2)

Let NPi = rjrij. If r, = 1, then j8, divides or,-. Hence, from (4.1) and Theorem 3.2, we can
find a y, of norm m, that divides a on the left. If x(Yi) = /̂> then y, is the required factor
and we can branch to step (ii) with a replaced by (l//n(-)y,-ar.

(iv) If r, > 1, we continue with reduction modulo r, in a suitable /. We can ensure that
r, is odd by modifying the congruence (4.2) if required. The process of taking moduli will
necessarily terminate.

(v) At each final reduction by moduli we ensure that the residue modulo 2 in Ja of
the corresponding divisor of a will be correct by multiplying by a suitable characteristic
unit when advisable.

5. Examples, (i) Suppose that the word KEY is encrypted by the Cayley integers

K: 1 + i2 + i3

E: 2 + i2

Y: 2i4 + i5 + i6 + i7.

Then *(K) = î , *(E) = i2, ^(Y) = i4, and a = K{EY} = -4/ 4 + 2i5 + 6/6 + 7i7 of charac-
teristic unit i7.

Transmitted characteristic units or residues of codewords modulo 2 in a maximal
arithmetic are called control characters. Here the choice of maximal arithmetic is known
to the writer of the code. The list of codewords, the alphabet and, if they are used, the
control characters in order are perhaps best hidden in the implementation (i.e.
transparent to the user).
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Assume that a, control characters, parentheses patterns, and the fact that all
codewords have all components nonnegative are known to a cryptanalyst. Here he knows
that the decryption consists of three letters with control characters iu i2 and i4 in that
order and can deduce the norms of codewords. He also knows that only characteristic
units were used as control characters. A cryptanalyst can try to break (i.e. decrypt) the
code by finding factorizations of the norm 105 octant. Suppose that we are in the position
of a cryptanalyst who also knows that the word KEY is being transmitted and who
decides to apply the unique factorization algorithm. To break the code, one must show
that a does not factorize with first element of norm 5 nor 7 as a member of the code, but
does factorize with first element of norm 3 as a member of the code.

Clearly,

a = — i4 —15 + i7 (mod 3 in /0)-

The right-hand side of the congruence has norm 3 and characteristic unit i6. Characteristic
unit i*! is required. Therefore, multiply by i7 on the right to obtain —l — i2 — i3. Hence

a = K(3iA + i5 + 4i6 + 3i7).

Reducing a mod 5 and then mod 3 we obtain in turn

£ = t 4 - 3t5 +16 + 2i7, p = i4 + i6-i7, x(p) = is-

Characteristic unit it is wanted. Therefore, multiply p by i3 on the right to obtain
Pi = U + is + h. Hence § = (ix — 2i*2)pi. Although the factor ix — 2i2 of norm 5 has
characteristic unit ix and, by Theorem 3.2, must divide a on the left, it is not a codeword
since it contains a negative coefficient. Now reduce a mod 7 and mod 5 in turn to obtain

£ = 3t4 - 5i5 - i6, p = 2i4 + i6.
Then

| p = 5 ( - l + 2i1 + i2 + i3).
Hence

a = (1 - 2i, - i2 - i3)(3i4 + i5 - 2i6 + i7).

Again the element of norm 7 and of characteristic unit ir is not an element of the code
since it contains some negative components.

Now
p = 3i4 + is + 4i6 + 3i7

represents EY. To apply the algorithm, reduce /3 mod 5 to obtain

| = 3i4 + is - i6 - 2i7.

% is of norm 15 and characteristic unit i7. Reduce mod 3 to obtain is - i6 + i7 of
characteristic unit i4. Characteristic unit i2 is needed in the second position of the
factorization of a. Multiply by ij on the left to obtain

Then
§ P l = 3(2 + /2).

Thus 2 + i2 represents E. This completes our outline of the Example (i).
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(ii) Here we give an example of a code defined using fixed norm Cayley integers.
Suppose that the word KEY is encrypted by Cayley integers as follows

K: 1 + ii + i2

E: 1 + ij + i3

Y: 1 + i t + iA.

Then *(K) = i3, *(E) = i2, and X(Y) = i5, and

a = K{EY} = - 3 + 3/, + is + 2i6 + 2i7

of characteristic unit i4. We again adopt the role of cryptanalyst with assumptions as
before. Clearly,

a = i5- i6 - h (mod 3 in /0).

Characteristic unit i3 is needed. Multiply by i7 on the right to obtain £ = 1 + il + i2. Now

a = (1 + /, + i2)(2i, + i2 + i3 + i4 + i5 +17) = K)3

where
P = 13 + '5 + K'l ~ h ~ U ~ h) = Pi

modulo 3 in Jh, Jh or 7,6. Now

Characteristic unit i2 is required. Multiply x(Pi) o n the right by i2 to obtain, apart from
sign,

y = 1(1 - »3 ~ h ~ is)-

Now, /3jy = 1 + ij +13 = E completes the example.

6. Conclusions. Care should be exercised with arithmetics if a residue modulo 2
and characteristic unit do not coincide. Nonprinting fill characters may be inserted to split
nonprimitive codeword combinations before transmission. By Theorem 3.7, nonprimitive
codeword combinations are to be avoided, if possible. Further investigation is being
made.
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