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Abstract

We show theoretically that the usual estimated investment strategies will not achieve the
optimal Sharpe ratio when the dimensionality is high relative to sample size, and the 1=N
rule is optimal in a 1-factor model with diversifiable risks as dimensionality increases, which
explains why it is difficult to beat the 1=N rule in practice. We also explore conditions under
which it can be beaten, and find that we can outperform it by combining it with the estimated
rules when N is small, and by combining it with anomalies or machine learning portfolios,
conditional on the profitability of the latter, when N is large.

I. Introduction

Portfolio choice is one of the most important aspects of investment theory, and
the mean–variance framework pioneered by Markowitz (1952) is the major model
used in asset allocation and active portfolio management.1 However, to implement
the mean–variance optimal portfolio, both the asset expected returns and covari-
ance matrix must be estimated, introducing the well-known parameter uncertainty
or estimation risk problem. Brown (1976), Bawa, Brown, and Klein (1979), Jorion
(1986), MacKinlay and Pástor (2000), Jagannathan and Ma (2003), Ledoit and
Wolf (2004), and Kan and Zhou (2007) are examples of early studies that provide
various strategies to mitigate the estimation risk, but the performances of these
strategies is sample size dependent. In their highly influential study, DeMiguel,
Garlappi, and Uppal (2009) compare these advanced strategies with the naive 1=N
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investment strategy that invests equally among N risky assets.2 They find, aston-
ishingly, that

…the estimationwindow needed for the sample-basedmean-variance strategy
and its extensions to outperform the 1=N benchmark is around 3000 months
for a portfolio with 25 assets and about 6000 months for a portfolio with
50 assets. (p. 1915)

Their finding raises a serious issue on the value of investment theory as the
sample size required is too large for the theory to be reliably applied in practice. To
overcome the estimation risk, DeMiguel, Garlappi, Nogales, and Uppal (2009),
Duchin and Levy (2009), Tu and Zhou (2011), Kirby and Ostdiek (2012),
DeMiguel, Martín-Utrera, and Nogales (2015), Ledoit andWolf (2017), DeMiguel,
Martn-Utrera, Nogales, and Uppal (2020), Shi, Shu, Yang, and He (2020), Kan,
Wang, and Zhou (2022), and Lassance, Martn-Utrera, and Simaan (2022), among
others, propose additional portfolio strategies that improve performances. How-
ever, it is still puzzling why those strategies can beat the 1=N rule in some data sets
but not in others.

In this article, we provide a deep theoretical understanding of both the 1=N
rule and some of the major related portfolio strategies, which yields insights onwhy
the estimated rules often cannot beat the 1=N rule.We also explore conditions under
which we can beat the 1=N rule conditionally. Specifically, we make 3 major
contributions to the literature. First, we obtain an asymptotic distribution of the
Sharpe ratio of the three-fund rule proposed by Kan and Zhou (2007), which
combines the popular plug-in rule with the widely used estimated global minimum
variance (GMV) portfolio. The asymptotic distribution, extendingAo, Li, and Zhen
(2019), concerns the case when N is large, but N < T and N=T approaches a
constant as the sample size T increases to infinity. This large dimension case is
quite relevant in practice. We show that the three-fund rule does not achieve the
optimal Sharpe ratio in this largeN case as T approaches infinity, providing insights
on why usual estimated rules perform poorly in high dimensions.

The second contribution of our article is to show that the 1=N rule is optimal
when N is large enough (irrespective of sample size), under the condition that the
asset returns are governed by a 1-factor model with diversifiable risks. This result
seems surprising and powerful. If there is 1 factor that prices all the assets with
diversifiable risks, then the 1=N portfolio must be equivalent to the factor plus
idiosyncratic risks. Since the risks are diversifiable, they will not alter the Sharpe
ratio of the 1=N portfolio in the limit as N approaches infinity. Hence, the Sharpe
ratio of the 1=N portfolio must approach that of the factor, and thusmust be optimal.

We also illustrate the above theoretical finding on the 1=N by using 2 exam-
ples: One of which is a calibrated economy and the other is applying the 1=N rule to
a set of randomly selected stocks from the S&P 500. The calibrated economy shows
that the 1=N converges fast to the optimal portfolio. In the second example,
although the 1-factor assumption is not necessarily true, the 1=N rule performs
almost as well as the value-weighted index. However, when we compare it with an

2Their article has over 3,809Google citations. The 1=N strategy was known as the Talmud rule more
than 1,500 years ago (Duchin and Levy (2009)).
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in-sample proxy of the unknown optimal portfolio of the S&P 500, the 1=N rule
underperforms, suggesting that the 1-factor assumption is unlikely perfect for the
stocks in the S&P 500. But the in-sample proxy is infeasible in practice, consistent
with the fact that the S&P 500 is difficult to beat in the real world, so is the 1=N rule
since its performance is similar to that of the S&P 500.

Our third contribution is to propose tractable rules that can beat the 1=N rule
under certain conditions.We consider 2 cases that require 2 fundamentally different
solutions. First, when N < T , we consider combinations of the 1=N rule with either
the plug-in rule or the GMVportfolio. In contrast to early studies such as Frahm and
Memmel (2010) and Tu and Zhou (2011), we focus onmaximizing the Sharpe ratio,
which is a popular criterion in practice, instead of maximizing the expected mean–
variance utility.We obtain both the exact and asymptotic distributions of the Sharpe
ratios in the high-dimensional case. We also solve explicitly the combination
coefficients that maximize the asymptotic Sharpe ratios. We find that the combi-
nations perform better than the 1=N rule whenN is small relative to T , but fail to do
so when N is relatively large.

In the case when N > T , since the sample covariance matrix is not invertible,
existing studies focus on obtaining a suitable invertible matrix under various
assumptions (e.g., Ledoit and Wolf (2003), Chen and Yuan (2016), and Bodnar,
Okhrin, and Parolya (2023)). In contrast to these studies, we consider how to beat
the 1=N rule with the use of conditional information that goes beyond the usual
assumption of independent and identically distributed (IID) return data. In partic-
ular, we study the combination of the 1=N rule with an alpha portfolio measured
against it. We examine 2 approaches. First, we combine it with anomalies, of which
there is a large literature (e.g., Chen and Zimmermann (2024) and the references
therein). Second, we combine it with the long–short portfolios from recent machine
learning (ML) studies such as Gu, Kelly, and Xiu (2020), among others. We find
that the combinations improve the performance of the 1=N rule substantially,
conditional on the availability of significant anomalies or profitable ML portfolios.
However, we caution with a caveat that there is theoretically no guarantee that the
strong performance can persist in the future as the performance of the anomalies or
ML portfolios is likely to change over time.

We next discuss the differences between our article and existing studies, along
with its limitations.We focus here on Sharpe ratios, whilemany studies focus on the
expected mean–variance utility, which Lassance, Martín-Utrera, and Simaan
(2024) extend into a more robust framework by considering the uncertainty asso-
ciated with utility maximization. Without estimation errors, both Sharpe ratio and
utility maximization are equivalent. However, with estimation errors, the objectives
are mathematically different, and the difference is analyzed by Lassance (2021). By
contrast, we focus on the Sharpe ratio because it is widely used by both practitioners
and researchers in comparing trading strategies and models. The Sharpe ratio is
simpler and it does not require information on the risk aversion parameter (see, e.g.,
Barillas, Kan, Robotti, and Shanken (2020)). An additional reason is that it is
analytically tractable in our context. We note that we have shown only the opti-
mality of the 1=N rule in a restricted 1-factor model, which is not true in a general
multi-factor APT model as otherwise the APTwill be reduced to a 1-factor model
with the 1=N portfolio as the factor. In the APTcase, Raponi, Uppal, and Zaffaroni
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(2021), not studying the 1=N rule, provide alternative portfolio strategies using
alpha and beta portfolios. Interestingly, their strategy achieves the same Sharpe ratio
as that of the 1=N rule under certain conditions. Finally, Ao et al. (2019) propose
a new method to approach the unconditional efficient frontier portfolio when N is
large. By contrast, we add anomaly orML portfolios, with conditional information,
to obtain approximately conditional efficient portfolio to outperform the uncondi-
tional 1=N rule.

Our article is also closely related to Pflug, Pichler, and Wozabal (2012) and
Yan and Zhang (2017).3 Pflug et al. (2012) show that the 1=N rule is nearly optimal
under high model ambiguity. Their result suggests that, if the estimation risk of an
estimated rule is high enough, then the optimal combination of this rule with the
1=N rule will consist of almost entirely the 1=N rule (which is easy to show). Yan
and Zhang (2017) find importantly that the 1=N rule is optimal in the absence of
mispricing in the CAPMwith diagonal idiosyncratic errors. Our 1-factor optimality
result, though developed independently, can be viewed as an extension of their
work to the case of any asset returns as long as they can be well modeled by a
1-factor model with diversifiable risks.

The rest of the article is organized as follows: In Section II, we discuss
properties of the common estimated rules. In Section III, we provide conditions
under which the 1=N rule is optimal. In Section IV, we explore ways to outperform
the 1=N rule, and we conclude in Section V.

II. Asymptotic Sharpe Ratios of Estimated Rules

Consider the standard mean–variance portfolio choice problem in which an
investor chooses his optimal portfolio among N risky assets and a risk-free asset.
Denote the returns of the N risky assets at time t by rt, and rf the return on the risk-
free asset. Let Rt ¼ rt� rf be an N -vector of the excess returns, with mean μ and
covariance matrix Σ.

In the absence of estimation errors, the optimal portfolio weights are well-
known:

w¼ 1

γ
Σ�1μ,(1)

where γ is a risk aversion parameter, and the optimized Sharpe ratio is

SR¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ⊤Σ�1μ

q
:(2)

However, the parameters μ and Σ are unknown, and are usually have to be
estimated from data.

Suppose there are T periods of observed excess returns, then the common
sample estimates are

3We are grateful to an anonymous referee who informed us about these two important and related
articles.
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bμ¼ 1

T

XT
t¼1

Rt,(3)

bΣ¼ 1

T �1

XT
t¼1

Rt�bμð Þ Rt�bμð Þ⊤:(4)

The data are usually assumed IID. In order to obtain exact distributional
results, they are further assumed to be normal, that is, Rt �N μ,Σð Þ.

The popular plug-in rule is the estimated optimal portfolio rule, obtained by
replacing the unknown parameters by their sample estimates:

bw¼ 1

γ
bΣ�1bμ:(5)

Since it is the estimates, rather than the true parameters, that are used, this
introduces estimation errors in bw, making the resulting portfolio not necessarily
achieve the optimal Sharpe ratio.

The estimated global minimum portfolio (GMV) is also very popular in
practice. Without estimation errors, the GMV portfolio weights are

wg ¼ Σ�11N
1⊤NΣ

�11N
,(6)

and so the sample version is

bwg ¼
bΣ�1

1N

1⊤NbΣ�1
1N

:(7)

The analytical expression states that bwg is affected by errors in estimating Σ�1

only, and not by errors in estimating μ unlike the plug-in rule.
Kan and Zhou (2007), to improve the plug-in rule, propose the following

three-fund rule:

bwλ ¼ 1� λð Þ1
γ
bΣ�1bμ+ λbΣ�1

1N , λ∈ 0,1½ �,(8)

which is a combination of the plug-in, estimated GMV, and the risk-free asset. Note
that the scalar of the GMV, the inverse of 1⊤NbΣ�1

1N , is absorbed into λ so that the
formula for the optimal λ looks simpler. Unlike Kan and Zhou (2007), who use
2 different combination coefficients, we scale them to make the presentation easier
to understand. The scaling will not affect the Sharpe ratio and the optimal combi-
nation strategy. However, as discussed at the end of this section, it will have
implications on risk control.

Let SRλ be the Sharpe ratio of the three-fund rule bwλ. We are now interested in
the exact distribution of SRλ, andwill analyze its asymptotic distribution later. To do
so, let SRg be the Sharpe ratio of the GMV portfolio:
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SRg ¼
μg
σg

¼ μ⊤Σ�11N

1⊤NΣ
�11N

� �1=2 ,(9)

where

μg ¼
μ⊤Σ�11N
1⊤NΣ

�11N
and σ2g ¼

1

1⊤NΣ
�11N

,

which are the expected excess return and variance of the GMV portfolio.
Then the exact distribution is given by the following proposition:

Proposition 1. Assume that T >N + 2. Then the exact distribution of SRλ is

SRλ¼d
A

B1=2
,(10)

where

A¼ 1� λð ÞSR2 + λγσ�1
g SRg

� �
× e⊤1W

�1e1
� �

+ λγσ�1
g SR2�SR2

g

� �1=2
× e⊤2W

�1e1
� �

+
1� λð Þ 1� λð ÞSR2 + λγσ�1

g SRg

� �
1� λð Þ2SR2 + λ2γ2σ�2

g + 2 1� λð Þλγσ�1
g SRg

� �1=2
× e⊤1W

�1X
� Þ

+ 1� λð Þλγσ�1
g

SR2�SR2
g

1� λð Þ2SR2 + λ2γ2σ�2
g + 2 1� λð Þλγσ�1

g SRg

 !1=2

× e⊤2W
�1X

� �

and

B¼ 1� λð Þ2SR2 + λ2γ2σ�2
g + 2 1� λð Þλγσ�1

g SRg

� �
e1W

�2e1
� �

+ 1� λð Þ2 X ⊤W�2X
� �

+ 2 1� λð Þ 1� λð Þ2SR2 + λ2γ2σ�2
g + 2 1� λð Þλγσ�1

g SRg

� �1=2
e⊤1W

�2X
� �

,

withW �WISHART IN= T �1ð Þ,T �1ð Þ andX �N 0, IN=Tð Þ, which are indepen-
dent of each other, IN being the identity matrix of order N, and e1 and e2 being the
first 2 canonical basis of ℝN .

Proposition 1 shows that the exact distribution of the three-fund rule is
determined by the 3 usual mean–variance frontier parameters (all proofs are pro-
vided in the Appendix). The role played by N and T are not explicit, but implicit in
the definitions of W and Z, which are independent of any parameters involving μ
andΣ. As a result,W andZ are easily simulated. Hence, the exact distribution can be
computed with arbitrary accuracy via Monte Carlo integration for any given value
of the mean–variance frontier parameters.

Let us examine some special cases.When λ¼ 0 or for the plug-in portfolio, we
have the following corollary:
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Corollary 1. For any T >N + 2, the exact distribution of the Sharpe ratio of the
plug-in rule is

SRbw¼d
SR2 e⊤1W

�1e1
� �

+SR e⊤1W
�1X

� �
SR2 e⊤1W

�2e1
� �

+X ⊤W�2X + 2SR e⊤1W
�2X

� �� �1=2 :(11)

In particular, if N=T approaches η, 0 < η < 1, when T approaches infinity, then

SRbw ¼ τSR+Op
1ffiffiffiffi
T

p
� �

,(12)

where τ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ηð Þ= 1 + η=SR2

� �q
< 1, and Op �ð Þ denotes a bounded function in

probability.

Kan, Wang, and Zheng (2020) provide the first explicit expression for the
exact distribution of SRbw. Equation (11) provides a complementary expression. It is
interesting that, given the true Sharpe ratio, SR, the Sharpe ratio performance of the
plug-in rule has nothing to do with the expected returns or the covariance matrix.
Both N and T play important roles and they matter only through their impact onW
and X , which summarize the effects of estimation errors. On the asymptotic limit,
Ao et al. (2019) is the first, to the best of our knowledge, to obtain equation (12);
however, their focus is different from ours.

Graph A of Figure 1 illustrates Corollary 1, where we set SR¼ 1 and compute
the distribution of SRbw with 1million simulated samples so that the distributions are
little different from the exact ones.4 We consider 2 cases, N ¼ 0:3T and 0:8T ,
respectively. In the first case, even as sample size goes from 120, 240, 480 to
approach 960, the mean is clearly below 0.8, biased away from 1. The bias in the
second case, as suggested by the theory, becomes greater, with a mean below 0.4.
The vertical line is the asymptotic limit from equation (11). The plots clearly show
that, as T andN both increase, the plug-in rule is still biased. That is, the plug-in rule
is asymptotically biased in the large N case.

Note that equation (12) provides a simple and quick comparison between the
plug-in and the 1=N rules. To see this, let SR1=N be theSharpe ratio of the 1=N rule, and
δ¼ SR1=N=SR be the fraction of the Sharpe ratio the 1=N rule can achieve. Then, if

η>
1�δ2

1 + δ2=SR2 ,(13)

we have

SRbw <SR1=N +Op
1ffiffiffiffi
T

p
� �

,

i.e., the naive diversification is asymptotically superior to the plug-in portfolio.

4The exact distribution is an integral multiplied by the density functions of the normal and Wishart,
which is numerically difficult to evaluate via a grid method, but easy by using the Monte Carlo
integration which approximates the exact value with the average of the integrand computed over the
simulated samples of the random variables.
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In light of equation (13), we can understand the earlier quoted statement of
DeMiguel et al. (2009) theoretically. Assume that δ¼ 85% (which is quite possible
given the results in Section III) and assume that the Sharpe ratio of the optimal
portfolio is 0:5=

ffiffiffiffiffi
12

p
per month (close to that of the S&P 500). ThenN=T ¼ η needs

to be smaller than 0.78% in order for SRbw to be greater than SR1=N , implying a
sample size of T > 3,205 if N ¼ 25, and T > 6,410 if N ¼ 50. This provides a
theoretical confirmation of their empirical results.

When λ¼ 1 or for the GMV portfolio, we have the following corollary:

FIGURE 1
Figure 1plots the densities of SRbw andSRbg estimated from1,000,000 simulations for different values of ηand T . In eachgraph,
the vertical gray line corresponds to the limiting value of SRbw and SRbg as T !∞.
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Corollary 2. For any T >N + 2, the exact distribution of the Sharpe ratio of the
GMV rule is

SRbg¼d
SR

e1W�2e1
� �1=2 ρ e⊤1W

�1e1
� �

+ 1�ρ2
� �1=2

e⊤2W
�1e1

� �� �
,(14)

where ρ� SRg=SR, the fraction of the population Sharpe ratio of the GMVrelative
to the true Sharpe ratio, which is assumed to be less than 1. In particular, if N=T
approaches η, 0 < η < 1, when T approaches infinity, then

SRbg ¼ τgSR+Op
1ffiffiffiffi
T

p
� �

,(15)

where τg ¼ ρ 1�ηð Þ1=2 < 1:

Kempf and Memmel (2006) and Basak, Jagannathan, and Ma (2009), among
others, study various properties of the GMV. The exact distribution, equation (14),
complements their studies. Bodnar, Parolya, and Schmid (2018) provide estimation
approaches for the GMV in the high-dimensional case. In contrast, we compare the
Sharpe ratios of bwg with that of the optimal one. Equation (15) shows that the effect
of the estimation errors is captured solely by the term 1�ηð Þ1=2. It is interesting that
the distribution of the GMV depends not only on SR, but also on ρ. In contrast to
SRbw, it requires 1 more parameter. Nevertheless, the exact distribution of SRbg is the
simplest, and that of SRbw is the next simplest. In contrast, the distribution of SRλ is

complex, where the complexity is introduced by the correlation between bw and bwg.
Graph B of Figure 1 illustrates Corollary 2, where the distributions are com-

puted similarly to SRbw. Interestingly, the mean of SRbg is more biased away from
1 than SRbw for the same T andN . Intuitively, this is expected. For a fixedN , SRbw is
asymptotically unbiased but SRbg is always biased as T approaches infinity. Now,N
grows too, so the bias of SRbg gets worse. However, SRbg has less volatility. This is
expected too because it does not involve the expected returns, whereas SRbw has to
estimate both the expected returns and the covariance matrix of the asset returns.

There are many studies on the GMVas it is very popular in practice due to its
simplicity (and less volatility) as well as the fact that it does not require estimating
the means. Hafner and Wang (2023), for example, impose sector restriction on the
GMV to enhance its performance. In light of the asymptotic expression, equation
(15), we can see that the GMV is better asymptotically than the plug-in rule if and
only if

ρ >
SRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η+ SR2

p :(16)

For example, if η¼ 0:20 and SR¼ 0:1443, then SR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η +SR2

p
¼ 0:3071.As it

is quite likely that the population GMV should be able to achieve more than 30% of
the true Sharpe ratio, then the GMV is preferred. However, this is not always the
case. When η is very small, say, η¼ 0:01, then the right hand will be 82.19%,
making the GMV unlikely to beat the plug-in rule asymptotically.
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Next, we examine the limiting behavior of the general three-fund rule.While it
is well-known that, for a fixedN , as the sample size increases to infinity, the Sharpe
ratio of the three-fund rule converges to the optimal one. But when N is not fixed
and grows with T at a constant rate η, then there is no longer the convergence, as
shown below in Proposition 2.

Proposition 2. If N=T approaches η, 0 < η < 1, when T approaches infinity, then

SRλ ¼ τλSR+Op
1ffiffiffiffi
T

p
� �

,(17)

where

τλ ¼
1� λð ÞSR+ λγσ�1

g SRg=SR
� �

× 1�ηð Þ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λð Þ2SR2 + λ2γ2σ�2

g + 2 1� λð Þλγσ�1
g SRg + 1� λð Þ2η

q < 1:

In contrast to the exact distribution in equation (10) with complex terms of A
and B, equation (17) is much simplified with only a simple scalar τλ. For any given
η> 0, τλ is always less than 1, implying that the three-fund rule will never converge
to the true optimal Sharpe ratio as T approaches infinity. Therefore, as far as the
Sharpe ratio is concerned, new methods are needed to improve the performance of
the three-fund rule.

The asymptotic distribution allows us to choose λ to maximize the Sharpe
ratio. If μ is not proportional to a constant vector, then the optimal λ is given by

λ∗ ¼ ημg

γ SR2�SR2
g

� �
+ ημg

:(18)

Given an estimate of the 3 mean–variance frontier parameters, λ is straight-
forwardly solved from the above. Note that the optimized λ is strictly greater than
0 whenever GMVhas a nontrivial expected return, that is, μg ≠ 0, indicating that the
combination is always beneficial.

Finally, we consider the general form of the three-fund rule of Kan and Zhou
(2007):

bwλ1,λ2 ¼ λ1
1

γ
bΣ�1bμ+ λ2bΣ�1

1N ,(19)

where λ1 and λ2 are free parameters. It is easy to show that their optimal choice does
not matter to our earlier results, which impose constraints on their sum being
1. However, the choice does affect the leverage of the resulting portfolio. To see
this, note that the Sharpe ratio is invariant to scaling, so it is only a function of λ1=λ2:

SRbwλ1,λ2
¼

λ1
λ2

1
γ μ

⊤bΣ�1bμ+ μ⊤bΣ�1
1Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ21
λ22

1
γ2 μ

⊤bΣ�1
ΣbΣ�1bμ+ 1⊤NbΣ�1

ΣbΣ�1
1N + 2 λ1

λ2
1
γ μ

⊤bΣ�1
ΣbΣ�1

1N

r :
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Now, observe that the optimal ratio of λ1=λ2 that maximizes the asymptotic
Sharpe ratio can accommodate at the same time a risk constraint,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibw⊤

λ1,λ2Σbwλ1,λ2

q
¼ σ0,

where σ0 is a prior risk level of the portfolio chosen by an investor. In other words,
an investor can, in fact, achieve a double objective of maximizing the Sharpe ratio
and meeting a risk constraint. This is a useful property of the three-fund rule.5

In summary, in this section, we provide a thorough analysis on the three-fund
rule, which is shown by a number of studies better than its special cases, the plug-in
rule and the estimated GMV. Our message is that the three-fund rule and all of the
common estimated rules are asymptotically not optimal even when the sample size
is large, as long asN is also large enough. On the other hand, as we show below, the
1=N rule can be optimal under certain conditions regardless of the sample size as
long as N is large enough. Then, combining these 2 observations, it is no wonder
why the 1=N rule is generally hard to beat in practice when the N is large.

III. Optimality of 1=N Rule

The well-known naive 1=N investment strategy, which invests equally among
N risky assets, has the following constant portfolio weights:

w1=N ¼ 1

N
1N :(20)

Since there are no parameters involved, there will be no estimation errors.
However, because the 1=N rule generally differs from the true and usually unknown
portfolio weights w¼ 1

γΣ
�1μ, it will not be optimal unless it happens to be equal

to w.
It is a common belief that the 1=N rule is close to be optimal only when it is

close to the true weightsw, which is very rare. In fact, as we show below, the Sharpe
ratio of the 1=N rule can, in fact, converge to the optimal Sharpe ratio as N
increases, under some seemingly general conditions.

Assume that we have the following 1-factor model for all the assets:

Ri ¼ βiRq + εi, i¼ 1,2,…,N ,(21)

where Rq is the excess return on the tangency portfolio in the mean–variance
frontier, and is uncorrelated with the εi’s. Under the standard assumptions of the
mean–variance portfolio theory, the two-fund separation theorem implies the above
(e.g., Huang and Litzenberger (1988), p. 80). The key additional assumption we
make is that the idiosyncratic risks, εi’s, are diversifiable enough such that

1⊤NΣε1N
� �

=N 2 ! 0, as N !∞,(22)

5We are grateful to an anonymous referee for pointing this out.
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where Σε is the covariance matrix of ε¼ ε1,ε2,…,εNð Þ⊤. Consider a special case. If
the idiosyncratic risks are uncorrelated and have an upper bound, σ2max, on their
variances, then it is clear that

1⊤NΣε1N
� �

=N 2 ≤ σ2max=N ! 0:

Wewill make this simple assumption here, although it can be relaxed to certain
structural forms.

Interestingly, in their testing of beta-pricing models, Raponi, Robotti, and
Zaffaroni (2020) impose a very similar condition, their equation (22), thatX

i ≠ j

∣E εiεj
	 


∣¼ o Nð Þ,

and they note that it is a condition of sufficient weak correlation and a condition
weaker than the one behind the arbitrage pricing theory (APT) of Ross (1976). The
above condition together with the bounded variance assumption will clearly imply
our condition in equation (22).

Assume further that the average beta converges,

β¼ β1 +⋯ + βNð Þ=N ! β0 > 0,(23)

and the cross-sectional variation in the betas has a finite variance. Then, we have the
following proposition:

Proposition 3. Under the assumptions in equations (21)–(23), the 1=N rule is
asymptotically optimal when N is large, that is,

SR1=N ¼SR+O
1ffiffiffiffi
N

p
� �

,(24)

where SR1=N is the Sharpe ratio of the 1=N rule.

We next examine some special cases. Consider first the case in which the
CAPM is true so that Rq ¼Rm� rf . Then the excess return of holding an equal-
weighted portfolio of the assets will be the same as holding a portion of the market
excess return plus an equal-weighted portfolio of the idiosyncratic risks,

1

N
1⊤NR� rf ¼ β Rm� rf

� �
+
1

N
1⊤N ε:

Since the idiosyncratic component is uncorrelated with the market and its
variance approaches 0 due to sufficient diversification, holding the 1=N portfolio
will be equivalent to holding a proportion of themarket portfolio, but the proportion
constant will not affect the Sharpe ratio. Hence, the 1=N rule converges to the
optimal one when N approaches infinity.

The intuition is that, if there is 1 factor that prices all the assets, the 1=N
portfolio will be a portfolio of that factor and idiosyncratic noise. As long as the
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idiosyncratic risks are diversified away with large N , the 1=N rule is equivalent to
the efficient portfolio, and so it achieves optimality.

Empirically, it is known that it is very difficult to beat the market (e.g., Harvey
and Liu (2021)). Consistent with this, He and Zhou (2024) find that well-known
factor models, such as the 3-factor model of Fama and French (1993), provide little
reduction in pricing errors for individual stocks. Also the CAPM is the factor model
that investors and fund managers care the most (Berk and van Binsbergen (2016)).
Therefore, conditional on the fact that the CAPM is difficult to beat, Proposition 3
explains why the 1=N rule is hard to too in practice.6

In the case of applying the 1=N rule to a large set of representative assets, the
market portfolio is likely the main factor if it is not the only one. Then the above
argument will be approximately true. Another case is to apply the 1=N rule within a
sector. Typically, the sector index has most of the systematic risk. In the absence of
obvious alphas relative to the index, the 1=N rule is also difficult to beat.

Note that we have only shown the optimality of the 1=N rule in our simple
1-factor model that has no pricing errors. The optimality is clearly not true in a
general multi-factor APTmodel. This is because if it were, then the 1=N portfolio
would be an efficient portfolio pricing all the assets, reducing the model to a
1-factor one and the factor is the 1=N portfolio, which is not true in general.
Under the APT, Raponi et al. (2021) provide a related general robust framework
that decomposes portfolios into alpha and beta portfolios and exploits the dif-
ferent economic properties of each of the components. They show that, as N
increases, their strategy generates an economically substantial and statistically
significant improvement in out-of-sample portfolio performance over existing
methods.

We next provide a numerical example to see how fast the 1=N rule converges
to the optimal portfolio in a 1-factor model. To set the parameters to some realistic
values, we assume that the market portfolio is the single factor and use the 25 size
and book–market portfolios of Fama and French (1993) to calibrate the mean of
asset betas and their standard deviation, β and σβ; the mean of the residual volatility,
σ; and the volatility of volatility, σσ , which is the volatility of the residual volatilities
across assets. The calibration is based onmonthly data from July 1926 to Apr. 2022.
The sample mean of the market excess return and the volatility will be taken as
the true parameters, μm and σm. Then we consider a series of economies with
N ¼ 5,10,25,50,75, and 100, respectively. Given N , we simulate the true beta
parameters from

βj �N 1,σ2β

� �
, j¼ 1,2,…,N ,(25)

and then the N asset expected returns will be given by μ¼ βμm. Draw

z�N σ,σ2σ
� �

:(26)

6The same argument as in Proposition 3 shows that the CAPM is theoretically valid (themarket index
converges to the tangency portfolio) in a large economy if the value-weighted idiosyncratic risks are
diversifiable enough, without the usual market-clearing and representative agent assumptions.
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If z< σ=2,we re-draw, tomake it realistic that no asset will have a volatility that
is too small. Then we set

σi,i ¼ z2,

and for 1≤ i ≠ j≤N,

σi,j ¼ ffiffiffiffiffiffiffiffiffiffiffi
σi,iσj,j

p
= 2 i� jð Þ2
� �

:

Hence, the covariancematrix of the residuals is nowwell defined.We simulate
10,000 sets of the parameters.

Figure 2 provides the ratio of the Sharpe ratio of the 1=N investment strategy to
that of the optimal portfolio. The result is striking. WhenN is as small asN ¼ 5, the
1=N rule obtains about 90%of the true optional Sharpe ratio already. It obtainsmore
than 95% when N ¼ 20, and more than 99% when N is merely 100. The numerical
example shows that the 1=N rule converges very fast to the optimal rule in terms of
the Sharpe ratio in a true 1-factor model. Given that in vast applications, the first
factor often dominates, which is yet another reason why the 1=N rule is hard to beat
in practice.

Panel A of Table 1 provides the annualized Sharpe ratios from the simulations
in which the true optimal Sharpe ratio is scaled to be equal to 0.5, the rough value of
the U.S. stock market (see Table 2). Consistent with Figure 2, whenN ¼ 5, the 1=N
Sharpe ratio is already 0.4073.AsN increases to 50, the value is 0.4889, remarkably
close to 0.5. When N ¼ 100, the value is 0.4967, not much different from 0.5.

Now, we examine how the Sharpe ratio of the 1=N rule is affected as the
dispersion among the model parameters increases. Panel B of Table 1 reports that,
once we double the volatility of the betas while keeping all else the same, the
performance deteriorates. This is expected as more variations in the betas will make
the diversification more difficult. However, the deterioration is small. For example,
when N ¼ 5, it goes down only to 0.3835 from 0.4073. When N ¼ 50, it has a very
small drop to 0.4850 from 0.4889. For comparison, we also examine the results
when the volatility of the covariances of the residuals are doubled, with all else
being the same. Panel C shows that the performance deteriorates a bit more than the
beta case, but the changes are still very minor. Overall, we find that the rate of
convergence of the 1=N rule in a true 1-factor model is quite fast and robust. In
short, when the 1-factor model assumption is true, the 1=N rule seems to have a fast
rate of convergence to optimality.

Consider another example in which we compare the 1=N rule to the S&P 500
index. This comparison is of interest even if the 1-factor model assumption is not
true. In this case, if the 1=N rule performs well relative to the index, it will suggest
that it is difficult to beat the 1=N in practice, because the S&P 500 index is hard for
fund managers to beat in the real world (e.g., Harvey and Liu (2021)). Now, if the
1-factor model assumption is true, then the optimal portfolio, or the maximum
Sharpe ratio portfolio, will be the benchmark of interest for comparingwith the 1=N
rule. We analyze both cases below.

First, empirically, we apply the 1=N rule to the real data by investing into N
stocks randomly selected from the S&P 500 index, which are also randomly
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replaced if some of the stocks are merged or removed from the index. The data are
monthly, from Mar. 1957 to Dec. 2021, and there are 778 months in total.

Table 2 provides the results, which seem striking. When N ¼ 5, the monthly
return of the 1=N rule is 1.02% and the monthly volatility is 5.27, whose perfor-
mance is already quite comparable to that of the value-weighted S&P 500 index,
reported in the last column. Their annualized Sharpe ratios are 0.44 and 0.49,
respectively, which are remarkably close already. As the number of assets increases
to 10, the Sharpe ratio is even slightly greater at 0.54. But the Sharpe ratios are in the
close range asN further increases to 25, and up to 500. Overall, it seems that it takes
amuch smaller number of stocks to replicate the performance of the value-weighted
S&P 500 in a frictionless world without trading costs.

It is important to emphasize that, in the real world, the 1=N portfolio has to be
rebalanced each month, which incurs transaction costs. On the other hand, the

FIGURE 2

Comparison of Sharpe Ratios of 1=N with the Optimal

Figure 2 plots the ratio of the Sharpe ratio of the 1=N investment strategy to the Sharpe ratio of the mean–variance optimal
portfolio. The population parameters are from a 1-factor model with the number of assets N increases from 5 to 100.
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TABLE 1

1=N Portfolio in a 1-Factor Model

The first row of Table 1 reports the annualized Sharpe ratio of the 1=N portfolio when the asset returns follow a 1-factor model:

Ri ¼ βi Rq + εi , i ¼1,2,…,N,

whenN , the number of assets, equals to 5, 10, 25, 50, and 100, respectively. The beta parameters are randomly drawn from a
normal distributions:

βi �N 1,σ2β
� �

, i ¼ 1,2,…,N ,

with σβ calibrated from the 25 size and book–market portfolios of Fama and French (1993) with monthly data from July 1926 to
Apr. 2022 relative to the stock market index. The σ ij ’s, parameters of the residual covariance matrix, are drawn similarly. The
number of simulations is 10,000. The second row reports the resultswhen just the beta volatility σβ is doubled, and the third row
reports the results when just the volatility of the σij ’s is doubled. The true Sharp ratio, true in the table, is scaled to be 0.5.

5 10 25 50 100 True

Calibrated model 0.4073 0.4418 0.4750 0.4889 0.4967 0.5
Beta vol. doubled 0.3835 0.4286 0.4698 0.4850 0.4932 0.5
Sigma vol. doubled 0.3406 0.3855 0.4444 0.4752 0.4948 0.5
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value-weighted S&P 500 index has virtually no such costs except when reinvesting
dividends and when adjusting components due to occasional composition changes
in the index. Hence, when transaction costs are considered, the 1=N portfolio is
unlikely to have similar performance as the S&P 500 index. But our focus here is on
the comparison of the 1=N rule with the estimated portfolio rules which are subject
the transaction costs. The point is, then, since the S&P 500 index is hard to beat in
the real world and 1=N rule is close to it, the 1=N rulemust be hard to beat too by the
estimated portfolio rules when both ignore transaction costs. Proposition 3 states
that it is indeed difficult as the performance of the 1=N rule, which does not depend
on sample size, converges to optimality when N is large in the 1-factor case. In
contrast, the performance of any estimated rule depends on sample sizeT , and it will
not converge to the optimal Sharpe ratio for large N (Proposition 2) whether in a
1-factor model or not. As N=T is large in practice and a 1-factor structure is a good
proxy in many applications, both reasons help explain why the 1=N rule is hard to
beat by common estimated rules.

In the presence of transaction costs for both the 1=N rule and the estimated
portfolio rules, existing studies show that the 1=N rule has generally lower trading
costs (e.g., DeMiguel et al. (2009), Kan et al. (2022)). Hence, if both types of rules
are subtracted by roughly the same amount of trading fees, their ranking will be
unchanged. Once again, even with realistic transaction costs, the 1=N rule is still
hard to beat by common estimated rules.

Now, consider the hypothesis that the 1-factor model is true for the 500 stocks
in the S&P 500 index. Based on Proposition 3, the Sharpe ratio of the 1=N rule
should converge to that of the optimal portfolio or the maximum Sharpe ratio
portfolio under the null. However, the maximum Sharpe ratio portfolio is unknown
and has to be estimated. A proxy will be the in-sample optimal portfolio, the one
with the unknown plug-in weights estimated using all the data, and then used to

TABLE 2

1=N Portfolio of Random Stocks in the S&P 500

Panel A of Table 2 reports the monthly mean, standard deviation (both in percentage points), and annualized Sharpe ratio of
the equal-weighted portfolio of N stocks, with N ¼ 5,10,25,50,100,250, and 500, respectively. The stocks are selected
randomly from the S&P 500 index and are replaced randomly if any of them are removed from the index. The data aremonthly,
fromMar. 1957 to Dec. 2021, and there are 778months in total. The last column, VW, reports the sameperformancemeasures
for the value-weighted S&P 500 index. Panels B and C report the same results except that the random stocks were chosen 10
and 100 times, respectively.

5 10 25 50 100 250 500 VW

Panel A. 1 Set of Random Stocks

Mean 1.02 1.12 1.10 1.10 1.10 1.14 1.13 0.95
Std. dev. 5.27 4.93 4.71 4.70 4.61 4.60 4.86 4.22
Sharpe ratio 0.44 0.54 0.55 0.55 0.56 0.59 0.55 0.49

Panel B. 10 Sets of Random Stocks

Mean 1.16 1.12 1.12 1.11 1.12 1.13 1.13 0.95
Std. dev. 5.76 5.05 4.86 4.7 4.64 4.67 4.86 4.22
Sharpe ratio 0.49 0.53 0.55 0.56 0.58 0.58 0.55 0.49

Panel C. 100 Sets of Random Stocks

Mean 1.10 1.11 1.12 1.12 1.12 1.12 1.13 0.95
Std. dev. 5.73 5.19 4.83 4.71 4.63 4.66 4.86 4.22
Sharpe ratio 0.46 0.51 0.55 0.56 0.57 0.58 0.55 0.49
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invest in all the periods. This portfolio is infeasible in practice as one does not have
future data for the parameter estimation. But all the data are likely to provide a more
accurate estimate of the true and unknown parameters; and hence, the in-sample
optimal portfolio weights based on the 778 months of data should provide a good
estimate of the unknown optimal weights.

There is, however, one important complication. If the same stocks are in the
index all the time, then it is straightforward to compute the in-sample optional
portfolio and use it as a proxy for the true optimal portfolio. But stocks come in and
out of the S&P 500 index from time to time. For example, Tesla, Inc. entered the
S&P 500 on Dec. 21, 2020, making the covariance matrix difficult to estimate.
While ad hoc sparsity assumptions may be imposed to make the estimation and the
covariance matrix inversion possible, there are also issues in dealing with stocks
that are moved out of the index, which requires additional ad hoc assumptions.
Since the missing data problem is not the focus of our article, we provide a simple
solution by using the size-sorted portfolios of the 500 stocks as the underlying
assets, which is robust to the index composition changes.

Specifically, we sort the 500 stocks of the S&P 500 index intoN size portfolios
and rebalance them each month, then there will no missing data problem on their
sample mean and covariance matrix. Hence, the in-sample optimal portfolio is
easily computed. For N ¼ 10, 25, 50, and 100, the Sharpe ratios of the N size
portfolios are 0:97,1:07,1:24, and 1:63, respectively. They range from 2 to 3 times
over the Sharpe ratio of the 1=N rule reported in Table 2. If we impose no-short sells,
the Sharpe ratios become 0.87, 0.89, 0.92, and 0.98, respectively, still substantially
greater than that of the 1=N rule. We interpret the results as evidence that the S&P
500 stocks do not follow a 1-factor model. Because if it did, the Sharpe ratios would
be close to that of the 1=N rule based on Proposition 3.

However, despite the gap between the in-sample optimal portfolio (which is
infeasible) and the 1=N rule, it seems very difficult to beat the 1=N rule in real time
unconditionally (relying on the return data only) due to estimation risk (and perhaps
other risks too). If it were easy to beat the 1=N rule, and then it would be easy to beat
the market (as the market is close to the 1=N rule for the S&P 500 stocks). But
beating the market is difficult, a problem we leave as future research. In short, the
1=N is difficult to beat in general, when only the return data are available (without
conditional information).

IV. Beating the 1=N Rule in Special Cases or Conditionally

Although the 1=N rule is optimal in a 1-factor model when N is large, it is
possible to improve it whenN is small or when the 1-factor model is not true.When
N is small, existing rules may be combined with the 1=N rule. When N is large,
adding an alpha portfolio can be helpful in improving the performance.

A. Combinations When N < T

To improve the 1=N rule, we examine its combinations with the GMVand the
plug-in rules, respectively. Consider first the combination with the GMV:
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bwg,λ ¼ λbΣ�1
1 + 1� λð Þ1N=N ,(27)

where λ is the combination parameter. Frahm and Memmel (2010), among others,
provide properties of such a combination, although their objective is different from
ours. Note that the combination coefficients can be unconstrained, similar to
equation (19), to have a risk control target.

To present our results succinctly, we introduce 2 parameters:

θ1 ¼Nσ1=N δe1 + 1�δ2
� �1=2

× e2
� �

and

θ2 ¼ ρσg × e1 + σ
�1
1=N �σ�1

g ρδ 1�δ2
� �1=2

×e2+
1

σ2g
1�ρ2
� �� σ�1

1=N �σ�1
g ρδ

� �2
1�δ2
� �

0B@
1CA

1=2

× e3,

which will be useful later for characterizing distributions.
Now, we obtain the exact distribution of SRg,λ, the Sharpe ratio of the

combination.

Proposition 4. Assume that T >N + 2. Then

SRg,λ¼d
A

B1=2
,(28)

where

A¼ λ× SR× e⊤1W
�1θ2

� �
+ 1� λð Þμ1=N

and

B¼ λ2θ⊤2W
�2θ2 + 1� λð Þ2σ21=N +

2λ 1� λð Þ
N

θ⊤1W
�1θ2,

with W �WISHART IN= T �1ð Þ,T �1ð Þ:

Based on the exact distribution, we can then derive its behavior in large
sample.

Proposition 5. IfN=T approaches η, 0 < η < 1,when T approaches infinity, we have

SRg,λ ¼ τg,λ ×SR+Op
1ffiffiffiffi
T

p
� �

,

where

τg,λ ¼
λσ�1

g σ�1
1=NSRg= 1�ηð Þ+ 1� λð ÞSR1=N

λ2σ�2
g σ�2

1=N= 1�ηð Þ3 + 1� λð Þ2 + 2λ 1� λð Þσ�2
1=N= 1�ηð Þ

� �1=2 :
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FromProposition 5, we see that the fraction of the achievable Sharpe ratio, τg,λ,
is not a function of SR given SRg and SR1=N . This is an extension of such a relation
for τg of the GMV rule bwg, but is different from the plug-in rule bw.

To implement bwg,λ, we choose λ to maximize the asymptotic Sharpe ratio,
namely, τg,λ. Based on Proposition 5, if σgSR1=N ≠ σ1=NSRg, then τg,λ is uniquely
maximized at

λ∗ ¼ 1 +
1�ηð Þσ�1

1=NSRg�σ�1
g SR1=N

1�ηð Þ2 σgSR1=N �σ1=NSRg

� � !�1

,(29)

which is straightforward to compute in practice.
We next study the combination of the plug-in rule with the naive diversification:

bwλ ¼ λbw + 1� λð Þ1N=N ,(30)

where λ is a parameter between 0 and 1.7 Tu and Zhou (2011) are the first to
study the performance of such a combination. There are 2 major differences
between our focus and theirs. First, they focus on maximizing the expected utility,
and we focus on maximizing the expected Sharpe ratio. Second, they do not solve
λ in terms of a few key parameters and do not have analytical results on the
performance. In contrast, we characterize both the exact distribution and the
asymptotic one of the Sharpe ratio, and solve λ explicitly in the high-dimensional
case here.

Consider first the exact distribution of the Sharpe ratio of bwλ. We have the
following proposition:

Proposition 6. Assume that T >N + 2. Then

SRλ¼dAB
1=2,(31)

where

A¼ λSR2 e⊤1W
�1e1

� �
+ λSR e⊤1W

�1X
� �

+ 1� λð Þγμ1=N

and

B¼ λ2SR2 e⊤1W
�2e1

� �
+ λ2X ⊤W�2X + 2λ2SR e⊤1W

�2X
� �

+ 1� λð Þ2γ2σ21=N
+ 2λ 1� λð Þγδσ1=N e⊤1W

�1X
� �

+ 2λ 1� λð Þγσ1=N 1�δ2
� �1=2

e⊤2W
�1X

� �
+ 2λ 1� λð Þγμ1=N e⊤1W

�1e1
� �

+ 2λ 1� λð Þγσ1=N 1�δ2
� �1=2

× SR× e⊤2W
�1e1

� �
,

where W �WISHART IN= T �1ð Þ,T �1ð Þ and X �N 0, IN=Tð Þ, which are inde-
pendent of each other.

7Again, the combination coefficients can be unconstrained similar to (19) to have a risk control
target.
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Unlike the case for the three-fund rule, the exact distribution here depends
not only on the usual mean–variance frontier parameters, but also on the cross
section average expected asset returns, 1⊤μ=N . This is not surprising because
it matters to the 1=N rule. Nevertheless, similar to the three-fund case, the
exact distribution can be evaluated with arbitrary accuracy via Monte Carlo
integration.

Based on Proposition 6, we can derive further the asymptotic distribution in
the high-dimensional case.

Proposition 7. IfN=T approaches η, 0 < η < 1,when T approaches infinity, we have

SRλ ¼ τλSR+Op
1ffiffiffiffi
T

p
� �

,(32)

where

τλ ¼
λ× SR2= 1�ηð Þ+ 1� λð Þγμ1=N

1� λð Þ2γ2σ21=N + 2λ 1� λð Þγμ1=N= 1�ηð Þ + λ2SR2= 1�ηð Þ3 + λ2η= 1�ηð Þ3
� �1=2 :(33)

To implement bwλ, we choose λ tomaximize the asymptotic Sharpe ratio. Based
on Proposition 7, if the 1=N rule is not optimal, that is, SR1=N <SR, then τλ is
uniquely maximized at

λ∗ ¼ 1 +
1

γ
×

ηSR1=N 1 + SR2
� �

1�ηð Þ2σ1=N SR2�SR2
1=N

� �
0@ 1A�1

,(34)

which is straightforward to compute in practice.
There are interesting implications from the theoretically results. First, equa-

tions (29) and (34) make the implementation of the combination rules easy. Oth-
erwise, complex algorithms may have to be devised to find them. Second, they
provide insights on beating the 1=N rule. When the η is close to 1, λwill be close to
0, making it impossible to beat the 1=N rule. However, when η is close to 1, λwill be
close to 1. If the true Sharpe ratio or the population Sharpe ratio of the GMV is
greater than the population Sharpe ratio of the 1=N rule, then the combined
portfolio will beat the 1=N rule when T is sufficiently large.

Next, we illustrate the message of the propositions by using an example. To
deviate from a 1-factor model, we consider N portfolios sorted by firm size, which
adds effectively a size factor in additional to the usual market exposure of the
stocks. With monthly data from Jan. 1973 to Mar. 2022, we use an estimation
window of T ¼ 360,8 leaving an out-of-sample investment period from Jan. 2003 to
Mar. 2022. We examine the performance of the 2 combination portfolios in terms
of their annualized Sharpe ratios, along with the annualized Sharpe ratios of the
individual rules.

Table 3 reports the results. When N is small, N ¼ 5, both bwg,λ∗ and bwλ∗

outperform the 1=N rule, with annualized Sharpe ratios, 0.73 and 0.61, greater

8Smaller estimation window size is not sufficient for the superior performance reported below.
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than 0.54 of the 1=N rule. When N ¼ 20, both remain better. However, when
N ¼ 50, only the combination with the GMV can outperform the 1=N rule. This is
not surprising as the estimation errors grows with N , and the plug-in rule suffers
more than the GMV, because it has to estimate the means. Nevertheless, whenN is
equal to 100, all the estimated rules, including the combinations, are worse than
the 1=N rule as the estimation errors become large in the high-dimensional case,
consistent with what is shown theoretically by Proposition 2. Although not
reported, it is clear that the estimated rules will perform much worse when N
increases beyond 100 (but less than 300 for the invertibility of the sample
covariance matrix).

The asymptotic theory discussed in Section II can provide some insight on the
above results. Given Corollary 4, we have that SRbg >SR1=N asymptotically if

η< 1� SR1=N

SRg

� �2

:

Suppose, for example, that SR1=N=SRg ¼ 0:8 (which appears reasonable given
Table 3) andN ¼ 50, then only a sample size T > 138 is needed. This sample size is not
very large and the result seems to explain why the combination of the GMVand 1=N
rules outperforms the 1=N rule when N ¼ 50. It also suggests that the sample size
required by DeMiguel et al. (2009) may be lowered for the GMV. However, this will
depends critically onSR1=N=SRg, and it is possiblewhen the ratio is sufficientlybelow1.

Table 3 suggests that combing the GMVwith the 1=N rule does perform better
than combining the plug-in with it, when N is small. However, Lassance, Vander-
veken, and Vrins (2022) find that it is often preferable to combine the plug-in rule
with 1=N rule instead, to obtain greater diversification. Consistent with their
finding, the combination has another advantage in that it will converge to the
optimal portfolio if N is fixed and T is large. In contrast, there is no guarantee that
combining the GMVwith the 1=N rule will converge except for some special cases.

DeMiguel, Garlappi, and Uppal (2009) show the difficulties of estimated rules
in beating the 1=N rule. Arguing for the value of investment theory, Tu and Zhou
(2011) show that combining the 1=N rule with the plug-in rule can beat the 1=N for
T ¼ 240, but still not when N ¼ 120, in factor models with N ¼ 25 assets (their
Table 2). Recently, Kan et al. (2022) and Bodnar et al. (2023), among others,
consider alternative strategies that can improve upon the 1=N rule. Overall, the

TABLE 3

Combined Rules and Comparison

Table 3 reports the annualized Sharpe ratios of the estimated optimal combination of the GMV and plug-in rule with the 1=N
rule, and those of these rules individually. The asset returns are theN size portfolios of all the stocks. Thedata aremonthly, and
the rolling estimation window is fixed at 360months. The data starts from Jan. 1973, and the out-of-sample period is from Jan.
2003 to Mar. 2022.

N GMV + 1/N Plug-in + 1/N 1/N GMV Plug-in

5 0.73 0.61 0.54 0.73 0.72
10 0.84 0.67 0.60 0.84 0.72
20 0.92 0.77 0.72 0.81 0.77
50 0.71 0.55 0.68 0.72 0.39
100 0.73 0.66 0.73 0.70 0.44
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message is consistent with Table 3 that beating the 1=N rule is possible when N is
small and T is large, but it is generally difficult. Oneway tomitigate this difficulty is
to improve bwg,λ by using a sophisticated estimator of the covariance matrix instead
of the sample covariance,9 which is an interesting avenue for future research. But
for this rule, or any other estimated rule, the estimation error can be large when the
sample size is not large enough, and so it will still underperform the 1=N rule when
the latter is not too far away from the true optimal portfolio, which depends on the
choice of data sets.10 Theoretically, Proposition 3 tells us that if the data set admits
approximately a 1-factor structure, the 1=N rule should be close to being optimal,
making it almost impossible to beat by any estimated rule. Empirically, given that
the 1=N performs as well as the S&P 500 index as shown by Table 2, it appears
difficult to beat the 1=N rule in general, since fund managers typically fail to beat
the S&P 500 index.

B. The Case When N> T

When N > T , the sample covariance matrix is no longer invertible. Existing
studies focus on obtaining a suitable invertile matrix under various sparsity
assumptions, so that the plug-in rule and the like can still be used. For examples,
Ledoit and Wolf (2003), (2017) impose a factor model first and later a more
general condition. Chen and Yuan (2016) also impose a factor structure, while
Bodnar et al. (2023) use the pseudo-inverse. When T=N < 1 and T is sufficiently
large, thesemethods can potentially improve the 1=N rule, but the gain is typically
small.

In this article, we take a new direction. We consider how to beat the 1=N rule
using conditional information that goes beyond the usual unconditional set-up in
which only the return data are used. Ferson and Siegel (2001) showhow to construct
an optimal portfolio from the conditional mean based on a signal. Lassance and
Martín-Utrera (2022) propose a methodology that exploits investor sentiment. By
contrast, we simply combine an alpha portfolio with the 1=N one. We use 2 alpha
portfolios, respectively. The first is a portfolio of anomalies (e.g., Chen and Zim-
mermann (2024)) and the second is the long–short portfolio fromML studies (e.g.,
Gu et al. (2020)).

1. Adding Anomalies When N> T

Since anomalies usually have alphas relative to the market, which is highly
correlated with the 1=N portfolio, we expect they also have positive alphas relative
to 1=N rule (adjusting the sign if necessary).11 Let Rbαi be the estimated alpha of an
anomaly. Then

9We thank an anonymous referee for pointing out this idea to us.
10Alternatively, it can also be the case in which both the 1=N rule and the estimated rule are far away

from the true one, then the latter still cannot beat the 1=N rule if it does not converge to the true one fast
enough.

11In the stock market, for example, the 1=N portfolio of the 500 stocks in the S&P 500 has a
correlation of 95% with the value-weighted S&P 500 index for the data period used for Table 2.
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Rbφ ¼ 1

Nω

X
bαi ≥bαωRbαi(35)

is likely to have a positive alpha if bαω is the topω%of theN alphas. For example, if
ω¼ 5, Rbφ is simply an equal-weighted portfolio of those anomalies whose alphas
are in the top 5% percentile. The reason that we ignore other anomalies is to
minimize the estimation errors as the low alpha anomalies may have too small
alphas to be statistically different from zeros.

To combine Rbφ with the 1=N , we can use the plug-in rule. Since this is a 2 asset
case, the plug-in rule should work well as the estimation error now should be small.
Theoretically, as long as the 2 assets are not perfectly correlated, the combined
portfolio must outperform the 1=N rule.

Table 4 reports the results with the use of 151 anomalies from the Chen–
Zimmermann data set. The time period is from Jan. 1973 to Dec. 2021. We use a
typical 120 month rolling window to estimate the alphas. So the out-of-sample
portfolio performance is from Jan. 1983 to Dec. 2021. The time starts from Jan.
1973 because this is the time when CRSP has more than 3,000 stocks, so that N is
large enough. We have 151 anomalies because these anomalies have full history
from Jan. 1973 to Dec. 2021.

The (annualized) Sharpe ratio of the 1=N portfolio that invests in all stocks
is 0.73. If we consider the portfolio of only the top 5% anomalies, Rbφ, the Sharpe
ratio is 1.88, performing surprising well. The combination of the two has a
Sharpe ratio of 1.97, improving the individual Sharpe ratios as expected. The
gain is driven by the diversification benefit that reduces the risk to 2.81% per
month. Consider now the top 10% alpha portfolios. The corresponding Rbφ has
smaller risk, yielding a greater Sharpe ratio than before. As a result, the combi-
nation performs slightly better than the top 5% case. Overall, combining the 1=N
rule with the anomalies help the portfolio to outperform the 1=N rule substan-
tially.

However, there is one caveat. The performance depends critically on the
performance of the anomalies, which utilize information beyond the return data.
If we are restricted to the use of the realized return data only, it is unclear how to
outperform the 1=N rule when N is large. Another caveat is that, as shown by
McLean and Pontiff (2016), among others, the performance of the anomalies
deteriorates over time. As a result, theoretically, there is no guarantee that the above
combinations will perform as well in the future as they do now.

2. Adding Machine Learning Portfolios When N>T

There is a growing ML literature in finance, including Chinco, Clark-Joseph,
and Ye (2019), Freyberger, Neuhierl, and Weber (2020), Gu et al. (2020), Kozak,
Nagel, and Santosh (2020), Chen, Pelger, and Zhu (2024), and Han, He, Rapach,
and Zhou (2023).12 Typically, these studies obtain long–short portfolios from the

12Hutchinson, Lo, and Poggio (1994) and Rapach, Strauss, and Zhou (2013) are earlier studies that
apply learning networks and the elastic net into finance, respectively.
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information of large sets of firm characteristics. In particular, Gu et al. (2020) show
that gradient boosted regression trees, random forest, and neural networks provide
some of the most profitable long–short portfolios. We extend their out-of-sample
period from Jan. 1997 to Dec. 2020, and then combine the long–short portfolios
with the 1=N rule where we estimate the weights based on 120 months of data
recursively.

Table 5 reports the results. As Panel A shows, when all stocks are included, the
1=N rule has a Sharpe ratio of 0.52, but increases to 0.85 after combining with the
long–short portfolio from the gradient boosted regression trees, and rises further to
1.04 from the random forest method. The best Sharpe ratios are obtained by
combining the 1=N rule with those long–short portfolios from the neural networks.
The 1-layer network has the lowest Sharpe ratio value of 1.05, and the 3-layer one
has the greatest of 1.26.

Panel B of Table 5 reports the results excluding microcap stocks, which is to
address an important concern of Avramov, Cheng, and Metzker (2023), who find
that ML methods tend to pick up small and illiquid stocks. Interestingly, the
performance of the 1=N rule is only slightly weakened. Together with theweakened
performance of the ML methods, the combinations perform worse than before.

TABLE 4

Combining with Anomalies

Table 4 reports the monthly mean, standard deviation (both in percentage points), and annualized Sharpe ratio of the 1=N
portfolio of all stocks with prices greater than $5, the equal-weighted portfolio of anomaly alpha portfolios Rω and their equal
combinations, where ω equal 5% or 10%, respectively (i.e., of only those top 5% or 10% alpha anomalies). The data are
monthly, and the rolling estimation window is fixed at 120 months. The out-of-sample period is from Jan. 1983 to Dec.
2021.

Panel A. Top 5% Panel B. Top 10%

1/N Rω 1/N + Rω 1/N Rω 1/N + Rω

Mean 1.08 1.70 1.59 1.08 1.59 1.52
Std. dev. 5.10 3.14 2.81 5.10 2.64 2.49
Sharpe ratio 0.73 1.88 1.97 0.73 2.08 2.12

TABLE 5

Combining with Machine Learning Portfolios

Table 5 reports the monthly mean, standard deviation (both in percentage points), and annualized Sharpe ratio of the 1=N
portfolio of all stocks (with pricesgreater than$5), its optimal combinationwith amachine learningportfolio, which is computed
by using gradient boosted regression trees (GBR), random forest (RF), and neural networks (NNs, with 1 to 5 layers),
respectively. The data starts from Jan. 1957, and the out-of-sample period is from Jan. 1997 to Dec. 2020.

1
N

1
N + GBR 1

N + RF 1
N + NN1 1

N + NN2 1
N + NN3 1

N + NN4 1
N + NN5

Panel A. All Stocks

Mean 1.04 1.42 1.40 2.88 4.06 4.27 4.8 4.24
Std. dev. 5.82 5.78 4.68 9.47 12.11 11.75 13.28 12.24
Sharpe ratio 0.52 0.85 1.04 1.05 1.16 1.26 1.25 1.20

Panel B. All but Microcaps

Mean 0.96 1.26 1.40 2.09 2.25 2.88 2.66 2.66
Std. dev. 5.43 5.38 5.00 7.74 8.04 9.25 8.69 9.31
Sharpe ratio 0.51 0.81 0.97 0.93 0.97 1.08 1.06 0.99
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However, the Sharpe ratios decrease at most about 20%. Overall, the combinations
outperform the 1=N rule substantially.13

V. Conclusion

Themodern portfolio theory pioneered byMarkowitz (1952) is widely used in
practice and extensively taught in schools. Yet, the estimated Markowitz portfolio
rule and most of its extensions underperform the naive 1=N rule (that invests
equally acrossN risky assets) in many practical data sets. In this article, we provide
a number of analytical insights on why the estimated rules perform poorly and why
the 1=N rule is hard to beat.

First, as long as the dimensionality is high relative to sample size, we show that
the usual estimated rules are not approach to the maximum Sharpe ratio even
asymptotically due to estimation errors. Second, we show that the 1=N rule is
optimal in terms of the Sharpe ratio in a 1-factor model with diversifiable risks as
dimensionality (number of assets) increases, irrespective of the sample size, making
well-known investment theory-based rules inadequate as they suffer from estima-
tion errors.

Third, we explore strategies that can outperform the 1=N rule conditionally
(i.e., conditional on the availability of profitable anomalies or ML portfolios).
However, when N is large, we caution that the outperformance over the 1=N rule
is likely to decrease over time because the profitability of anomalies and the ML
portfolios shows a decreasing pattern. While our study offers new insights on the
1=N rule, much work remains to be done. To possibly outperform the 1=N rule, our
study indicates that a possible line of future research is to incorporate more condi-
tional information into the traditional portfolio optimization framework.

Appendix: Proofs

Proof of Proposition 1. Write α¼ 1� λð Þ=γ, then

bw¼ αbΣ�1bμ+ λbΣ�1
1:(A.1)

Now, we write

rt ¼Σ1=2X t + μ, t¼ 1,…,T :(A.2)

Then, we have

bμ¼ μ+Σ1=2X and bΣ¼Σ1=2SΣ1=2,(A.3)

where X and S are the sample mean and covariance matrix of X ts. Denoting by
μ∗ ¼Σ�1=2μ, the standardized mean, we get

13The earlier caveats apply here. The performance ofML portfolios can deteriorate over time, and so
there is no guarantee that the combinations will perform as well in the future.
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bw⊤μ¼ αμ⊤∗S
�1μ∗ + αμ

⊤
∗S

�1X + λμ⊤∗S
�1Σ�1=21(A.4)

and

bw⊤Σbw¼ λ21⊤Σ�1=2S�2Σ�1=21

+ 2αλμ⊤∗S
�2Σ�1=21 + 2αλX

⊤
S�2Σ�1=21

+ α2μ⊤∗ S
�2μ∗ + α

2X
⊤
S�2X + 2α2μ⊤∗ S

�2X :

(A.5)

Recall that T �1ð ÞS�WISHART I ,T �1ð Þ and X �N 0, I=Tð Þ, and the two are
mutually independent. Let U be a orthonormal matrix whose first column is

Σ�1=2 αμ + λ1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αμ+ λ1ð Þ⊤Σ�1 αμ+ λ1ð Þ

q
and second column is a=∥a∥ if λ ≠ 0, where

a¼ μ∗�
αμ⊤Σ�1μ+ λμ⊤Σ�11

αμ+ λ1ð Þ⊤Σ�1 αμ+ λ1ð Þ × Σ�1=2 αμ+ λ1ð Þ
� �

:

Observe that W ¼U⊤SU �WISHART I= T �1ð Þ,T �1ð Þ and X ¼ ffiffiffiffi
T

p
U⊤X �

N 0, INð Þ: Furthermore, we have

bw⊤Σbw¼ α2μ⊤Σ�1μ + λ21⊤Σ�11 + 2αλμ⊤Σ�11
� �

e1W
�2e1

� �
+
α2

T
X ⊤W�2X

+
2αffiffiffiffi
T

p α2μ⊤Σ�1μ + λ21⊤Σ�11 + 2αλμ⊤Σ�11
� �1=2

e⊤1W
�2X

(A.6)

and

bw⊤μ¼ αμ⊤Σ�1μ+ λμ⊤Σ�11
� �

× e⊤1W
�1e1

� �
+ λ μ⊤Σ�1μ

� �
1⊤Σ�11
� �� μ⊤Σ�11

� �2� �1=2
× e⊤2W

�1e1
� �

+
αffiffiffiffi
T

p αμ⊤Σ�1μ+ λμ⊤Σ�11

α2μ⊤Σ�1μ + λ21⊤Σ�11 + 2αλμ⊤Σ�11
� �1=2 × e⊤1W

�1X
� �

+
αλffiffiffiffi
T

p μ⊤Σ�1μ
� �

1⊤Σ�11
� �� μ⊤Σ�11

� �2
α2μ⊤Σ�1μ+ λ21⊤Σ�11 + 2αλμ⊤Σ�11

 !1=2

× e⊤2W
�1X

� �
:

(A.7)

This proves the exact distribution. Note that the limiting distributions in Corollar-
ies 1 and 2 follow from the next proof.

Proof of Proposition 2. Noting that

E e⊤1W
�1e2

� �¼ 0

and
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var e⊤1W
�1e2

� �¼ T �1ð Þ2
T �N �1ð Þ T �N �2ð Þ T �N �4ð Þ ,

we have

e⊤1W
�1e2 ¼Op T�1=2

� �
:(A.8)

Similarly, we have

e⊤1W
�1e1 ¼ 1

1�η
+Op T�1=2

� �
(A.9)

and

e⊤1W
�2e1 ¼ 1

1�ηð Þ3 +Op T�1=2
� �

:(A.10)

In light of (A.10), with probability tending to 1, we have

e⊤1W
�2e1 ≤

2

1�ηð Þ3 :(A.11)

On the other hand, if X �N 0, Ið Þ, then conditional on W ,
e⊤1W

�1X �N 0,e⊤1W
�2e1

� �
, and so we get

e⊤1W
�1X

e⊤1W
�2e1

� �1=2 ¼Op 1ð Þ:(A.12)

Together, we have

e⊤1W
�1X ¼Op 1ð Þ:(A.13)

Similarly, we have

e⊤1W
�2X ¼Op 1ð Þ and e⊤2W

�1X ¼Op 1ð Þ:(A.14)

We now consider the term X ⊤W�2X . Note that

1

T
E X ⊤W�2X
	 
¼ 1

T
E E X ⊤W�2X jW	 
	 
¼ 1

T
E tr W�2

� �	 
! η

1�ηð Þ3 :

On the other hand,

1

T
E X ⊤W�2X �E X ⊤W�2X

	 
	 
2 ¼ 2

T
E tr W�4

� �	 
! η

1�ηð Þ5 :

Together with (A.8) and (A.9), we derive that

A¼ 1� λð ÞSR2 + λγσ�1
g SRg

� �
× 1�ηð Þ�1 +Op T�1=2

� �
and
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B¼ 1� λð Þ2SR2 + λ2γ2σ�2
g + 2 1� λð Þλγσ�1

g SRg

� �
1�ηð Þ�3 + 1� λð Þ2η 1�ηð Þ�3 +Op T�1=2

� �
,

where A and B are defined in Proposition 1. This concludes the proof.

Proof of Proposition 3. Based on the factor model, we evaluate the expected return
and variance risk of the 1=N portfolio as

μ⊤1=N ¼ βμq and 1⊤Σ1=N 2 ¼ σ2qβ
2
+ 1⊤ Σεð Þ1=N2:(A.15)

In particular, if β0 > 0 and the betas has a finite variance σ2β, we have

β¼ β0 +O N�1=2
� �

and Nβ
2 ¼ μ2β +O N�1=2

� �
:

This implies that

SR1=N ¼ μq
σq

+O N�1=2
� �

:(A.16)

The proof of the statement then follows.

Proof of Proposition 4. Recall that there exist 2 independent random variables S�
WISHART I ,T �1ð Þ and X �N 0, I=Tð Þ such that

bΣ¼Σ1=2SΣ1=2 and bμ¼Σ1=2X + μ:

Then

bw¼ λΣ�1=2S�1Σ�1=21 + 1� λð Þ1=N :

It can be derived that

μ⊤bw¼ λμ⊤∗S
�1Σ�1=21 + 1� λð Þμ1=N ,

and

bw⊤Σbw¼ λ21⊤Σ�1=2S�2Σ�1=21 + 1� λð Þ2σ21=N + 2λ 1� λð Þ1⊤Σ1=2S�1Σ�1=21,

where μ∗ ¼Σ�1=2μ as before. Now, letU be an orthonormalmatrixwhose first column is
μ∗=∥μ∗∥, second column is a=∥a∥, where

a¼Σ1=21� μ⊤1

μ⊤Σ�1μ
× μ∗,(A.17)

and third column is b=∥b∥ with

b¼Σ�1=21� 1⊤Σ1ð Þ μ⊤Σ�11
� ��Nμ⊤1

� �
μ∗ + N μ⊤Σ�1μ

� �� μ⊤1ð Þ μ⊤Σ�11
� �� �

Σ1=21

μ⊤Σ�1μ
� �

1⊤Σ1ð Þ� μ⊤1ð Þ2

¼Σ�1=21�μ⊤Σ�11

μ⊤Σ�1μ
× μ∗�

N μ⊤Σ�1μ
� �� μ⊤Σ�11

� �
μ⊤1ð Þ

1⊤Σ1ð Þ μ⊤Σ�1μ
� �� μ⊤1ð Þ2 × a:
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It can be derived thatU⊤Σ�1=2μ¼ ∥μ∗∥e1,UΣ1=21¼ θ1, andUΣ�1=21¼ θ2. WriteW ¼
U⊤SU and X ¼ ffiffiffiffi

T
p

U⊤Z. Then

μ⊤bw¼ λSR e⊤1W
�1θ2

� �
+ 1� λð Þμ1=N ,(A.18)

and

bw⊤Σbw¼ λ2θ⊤2W
�2θ2 + 1� λð Þ2σ21=N + 2λ 1� λð Þθ⊤1W�1θ2=N ,(A.19)

which completes the proof. □

Proof of Proposition 5. With what is shown before, we have

e⊤1W
�1e1 ¼ 1

1�η
+Op T�1=2

� �
, e⊤1W

�2e1 ¼ 1

1�ηð Þ3 +Op T�1=2
� �

,

e⊤1W
�1e2 ¼Op T 1=2

� �
, e⊤1W

�1X ¼Op 1ð Þ, e⊤1W
�2X ¼Op 1ð Þ,

and

X ⊤W�2X ¼ η

1�ηð Þ3 +Op T�1=2
� �

,(A.20)

where X �N 0, Ið Þ and W �WISHART I= T �1ð Þ,T �1ð Þ are independent of each
other. The statement follows from these equalities.

Proof of Proposition 6. Note that SRλ is also the Sharpe ratio of

bw¼ bΣ�1bμ+ω1,(A.21)

where ω¼ 1� λð Þγ= Nλð Þ. As before, we write
rt ¼Σ1=2X t + μ, t¼ 1,…,T :

Then, we have

bw⊤μ¼ μ⊤∗ S
�1μ∗ + μ

⊤
∗ S

�1X +ωμ⊤1(A.22)

and

bw⊤Σbw¼ω21⊤Σ1 + 2ωμ⊤∗ S
�1Σ1=21 + 2ωX

⊤
S�1Σ1=21

+ μ⊤∗ S
�2μ∗ +X

⊤
S�2X + 2μ⊤∗S

�2X ,

(A.23)

where μ∗ ¼Σ�1=2μ:
Now, let U be an orthonormal matrix whose first column is μ∗=∥μ∗∥, and second

column is a=∥a∥, where

a¼Σ1=21� μ⊤1

μ⊤Σ�1μ
× μ∗:(A.24)

Let W ¼U⊤SU and X ¼ ffiffiffiffi
T

p
U⊤Z, then we have
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bw⊤μ¼ ∥μ∗∥
2e⊤1W

�1e1 +
∥μ∗∥ffiffiffiffi

T
p × e⊤1W

�1X +ωμ⊤1

andbw⊤Σbw¼ω21⊤Σ1 + 2ω μ⊤1
� �

e⊤1W
�1e1 + 2ω ∥μ∗∥

2 1⊤Σ1
� �� μ⊤1

� �2� �1=2
e⊤1W

�1e2

+
2ω μ⊤1ð Þffiffiffiffi
T

p
∥μ∗∥

× e⊤1W
�1X +

2ω ∥μ∗∥
2 1⊤Σ1ð Þ� μ⊤1ð Þ2

� �1=2
ffiffiffiffi
T

p
∥μ∗∥

× e⊤2W
�1X

+ ∥μ∗∥
2 × e⊤1W

�2e1 +
1

T
×X ⊤W�2X +

2∥μ∗∥ffiffiffiffi
T

p × e⊤1W
�2X :

The proof then follows from the facts that ∥μ∗∥¼SR and

δ¼ SR1=N

SR
¼ μ⊤1

μ⊤Σ�1μ
� �1=2

1⊤Σ1ð Þ1=2
:(A.25)

□

Proof of Proposition 7. The proof is similar to that of Propositions 2 and 5, and
therefore is omitted for brevity.
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