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Abstract. Several suggestions are made concerning Fabry-Perot data 
acquisition and reduction, in order to improve the quality of imaging 
SDectroscoDV. spectroscopy 

1. Introduction 

I describe several methods of data acquisition and reduction of Fabry-Perot 
scans. Although some of these have been used with old-fashioned photoelectric 
FP scanners, others were in fact developed with imaging FPs in mind. Some of 
the methods have been implemented whereas others are purely speculative. 

2. The Airy Function and its Shortcomings 

The transmittance profile of an ideal FP as a function of the order of interference, 
x, is given by the Airy function A(x). It is convenient to express this function 
as a replicated Lorentzian (cf. Connes 1961, Steel 1983): 

A(x) = {A)L(x)*m{x) (1) 

where (A) is the average of A(x) over one order of interference, and 

is the normalized Lorentzian profile, F = -x/ lniZ being the finesse, where R is 
the intensity reflectance of each of the two semi-reflecting mirrors. Equation 2 
states that the Airy function is equal to the sum of overlapping Lorentzians, 
each of FWHM exactly 1/F, centered at every integral order of interference. 

It is unfortunate that the peaks are not Gaussians. Compare the Lorentzian 
with the normalized Gaussian function of the same FWHM, 

G{x) = 2 F v / l n 2 / i r l 6 - F ' 1 ' . (3) 

The wings of the Lorentzian fall off much more slowly than those of the Gaussian, 
and "pollute" the data cube. 

85 

https://doi.org/10.1017/S0252921100022703 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100022703


86 CAPLAN 

Now consider their Fourier transforms. The Lorentzian's transform is an 
exponential, 

/ ( , ) = fll'l = e—I'l/F ? ( 4 ) 

whereas that of the Gaussian G(x) is another Gaussian, 

( — ) 
\AF2ln2) 

M = «P i^^ • (5) 

So we see that the wings of l(s) also fall off more slowly than g(s); i.e. high 
frequency components are present, and closer sampling is required. 

3 . Interpolat ion 

Sine interpolation, i.e. convolution of a scan sampled N times per FSR (free 
spectral range—here equal to unity) with the function 

. /»r \ sin(2xiV:r) 
smc(Nx) = —±—rz—-, (6 v ' 2vNx K ' 

is frequently used in F P work. Since the scan is periodic, one gets the same 
result by convolving just one F P scan with the function sinc(JVr) * III(x), if 
N is an integer. Sine convolution of an Airy function will recover intermediate 
values with a maximum error of ± 1 % of the peak if N > 3.4.F. This is more 
stringent than the generally assumed N = 2F. 

4. T w o reduct ion m e t h o d s 

4 . 1 . D e c o m p o s i t i o n by least squares 

This method assumes that the source spectrum is the sum of a continuum plus a 
certain number of Gaussian spectral lines. The scan is therefore represented by 

Signal = Continuum + Linei + Line2 + . . . , (7) 

where each observed line is a Gaussian convolved with an Airy function. The 
continuum is either a constant (for filter FWHM 3> FSR), or can be fitted by 
a Fourier series. It is convenient to express each such line as an infinite Fourier 
series (cf. Hernandez 1966, Caplan 1972, Caplan fe Deharveng 1985): 

Line,- = Ai l + 2 p " e x p ( ^ g n ^ c o s ( 2 . n ^ i i ) ] . (8) 

We solve for the unknown parameters by least squares. The reflectivity R and 
the FSR At (in "etalon code units") are characteristic of the F P and are best 
determined from calibration spectra, while the observed scans on the sky are 
used to find, for each line, the average line signal A,, the F W H M of Gaussian 
broadening w,, and the line center t,. This method, although requiring assump
tions about the form of the spectrum, gives us the quantitative information we 
want—line strengths, positions, and widths. Note that there is no "Nyquist 
criterion"; it is sufficient that the number of observed points be at least as great 
as the number of unknowns, although obviously the accuracy will be greater if 
the observed points are judiciously located. 
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4.2. Deconvo lut ion 

Knowing the instrumental profile, (A) L(x)*IIl(x), we can remove its effect from 
the observed scan—to a certain extent. The effect of III(a:) cannot be removed. 
We suggest replacing L[x) by G(x)—i.e. changing the effective instrument profile 
from an Airy function to a replicated Gaussian. 

In the transform domain, this means multiplying the transform of our scan 
by q(s) = g(a)/l(s). Or we can work in the function domain and simply convolve 
our scan with Q{x), the transform of q{»). Equivalently, we convolve just one 
free spectral range of the scan (which must be sampled or re-sampled at an 
integral number of points N per FSR) with our "deconvolution function" 

Q'[x) = Q(x) * m ( « ) = 1 + 2 f > P f T ^ n
T

2
2 t ' 2 ) c o s ^ x z t ) , (9) 

where F is the Airy function finesse and Fg is the desired "Gaussian finesse" of 
the end result. With a replicated Gaussian as the effective profile, a maximum 
interpolation error of 1% only requires N > 2.1Fg. 

5. B inning ( W i t h a P h o t o n - C o u n t i n g C a m e r a ) 

5 .1 . S imple Binning 

This method of data acquisition and reduction for imaging F P observations was 
used by Caplan et al. (1985). Thanks to the absence of readout noise with a 
photon-counting camera, very small F P steps ( ^ 1/2000 FSR) are possible. The 
position in the field a , 6 and the etalon code unit t are recorded for each photon. 
During reduction, the "phase correction" is applied to each photon to find its 
a,S,x. But the data cube contains only N possible values of x; we choose the z; 
nearest to x. Then the cell a, 5, SE,- of the data cube is incremented by one. This 
method avoids interpolation, but is equivalent to convolution with a rectangle 
function. 

5.2. Deconvo lut ion Binning 

A variant of this method consists of replacing the "increment by one" step by 
the following: add Q'{x — x,-) to each cell ( a , S, Xi)... ( a , S, x.v) at t h e position 
a, S in the data cube. The result, again, is to change to instrument profile's 
Lorentzian to a Gaussian. 

6. Pre -Deconvo lut ion of C C D Observat ions 

If we wish to sample more sparsely, we must filter out the higher frequency 
components from our observed scan before sampling. Can a servo-controlled 
FP, capable of rapid tuning, be used to solve this problem? A simple example 
suggests this may be possible. Suppose that , in a given pixel, we wish to sample 
at x. Normally we would tune our FP to x and integrate. But if we want to 
measure what would have been measured at x with a "Gaussian-profile F P " , 
we can, during the integration of a single frame, "j i t ter" the F P to ~ 2000 
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different values of * + Ax, where — .5 < Ax < .5, and stay at each Ax for a 
length of time proportional to Q'( Ax) plus a constant (needed to avoid negative 
values). Subtracting the constant times the average signal, we have convolved 
with Q', and the Lorentzian has been replaced by a Gaussian, so fewer points are 
required for proper sampling. (We have not yet done the "phase correction", 
so for imaging observations interpolation will still be necessary.) The signal 
to noise ratio will be degraded. However, I suspect that a less brutal form of 
jittering, over a smaller range of Ax, can be concocted so as to remove just the 
high-frequency components of the Lorentzian, the rest being done numerically. 

7. Photometric Calibration 

I wholeheartedly agree with J. Bland that the FP is suitable for photometry. 
Here is a simple, photometrically rigorous way of analyzing FP scans (Caplan & 
Deharveng 1983, 1985). First consider an ordinary photometer without an FP. 
Observing a standard star of spectrum 5A(A), we measure (ignoring extinction) 

Signal(star) = A j SA(A)T.t„(A)dA, (10) 

where Tstar(A) is the filter transmittance. Now we solve this equation for A, 
which is in units of area, and in which all the parameters except the filter curve 
are mixed together: telescope collecting area, reflectivities, quantum efficiency 
of the detector, etc. Next we observe the signal from a nebular emission line, 

Signal(line) = AF^T^X) (11) 

where Ti;ne(A) refers to the (usually different) filter used for the nebula. Knowing 
A, we can solve for Fi;ne, the line flux. 

Let us add an FP and repeat this procedure. Now what we call "signal" 
is the average signal measured after scanning over one FSR; i.e. the FP's trans
mittance averaged over one FSR gets incorporated into A (which will be ~ F 
times smaller). So of what use is the FP? It allows us to distinguish (e.g. by least 
squares) between the desired line and the unwanted spectral lines and continuum, 
so we can average only the desired signal to get Signal(line). The FP parallelism 
adjustment does not affect A. But filter calibration is critical (Tijne(A) is not 
given by the white light cube, except approximately, under certain conditions). 

Placing the filters near the pupil eliminates problems of non-uniformity. An 
angle between the filters and the FP avoids reflections. 
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