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Abstract. Let G be a group and K be a complete ultrametric valued field. Let
AP(G, K) be the algebra of the generalized almost periodic functions of G in K. We have
shown in a previous paper that when AP(G, K) has an invariant mean, then any almost
periodic linear representation is quasi-reducible. Here, we show that with the same
hypothesis, any topologically irreducible almost periodic linear representation is finite
dimensional; also, any almost periodic linear representation is the topological sum of
irreducible representations. Furthermore, we obtain a Peter-Weyl theorem for the algebra
AP(G,K).

We use the technical tools of Hopf algebra theory.

I. Notations and definitions.

L1. Almost periodic functions; almost periodic linear representations. Let G be a
group and K be a complete ultrametric valued field. The Banach algebra of bounded
functions f:G — K with the supremum norm | f|| =sup |f(s)} is denoted by B(G, K). If

seG

f e B(G,K) we write v, f(t) =f(s7"1), §,f(t) =f(ts) and n(f)(s)=f(s"") the left (resp.
right) translation operator and the inversion operator.

Let us recall the extension of the notion of almost periodic functions given by
Schikhof [8], [9]. A function f € B(G, K) is called almost periodic if the set I'y ={y,f,
s € G} is a compactoid of B(G, K): that is for € >0, there exist fi,...,f, in B(G, K) and

Ysf — i )\jﬁ”<£. The space
j=1

AP(G, K) of almost periodic functions is a closed subalgebra of #B(G, K) and is invariant
with respect to the left (right) translation and the inversion.

If E and F are ultrametric Banach spaces over K, we denote by EQ F the complete
tensor product; that is the completion of E®F with respect to the norm |z| =

if s € G, there exist Ay,...,A, e K, |\]=1, such that

Inf (max (BAN y,-ll). In the sequel, all Banach spaces are ultrametric.
=3 x;®y; i

One defines as above, the space AP(G, E) of almost periodic functions of G with
values in the Banach space E. Furthermore, AP(G, K)® E is isometrically isomorphic to
AP(G, E) via the linear map Il defined by IIz(f ® x)(s) = f(s) - x (cf. [3]).

We say that a linear representation U:G — #(E) is almost periodic if

(@) Sup || Us || <+,

(ii) for any x e E, the function T,:G — E defined by T,(s) = U;(x) is almost periodic.

L2. Complete Hopf algebras: Banach comodules. Let (H,m,c, 7, o) be a complete
ultrametric Hopf algebra over K, e the unit of H and k the canonical map of K in H. In
other words, H is a Banach algebra with multiplication m:H&® H— H; coproduct
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c:H®H— H a continuous algebra homomorphism; inversion or antipode n:H— H a

continuous linear map and the counit o:H— K a continuous algebra homomorphism.

The coassociativity and counitary axioms hold, andm (1, ® n)ec =keco=mo(nQ1y)ec.
One sees that 7 is an anti-endomorphism of the algebra (resp. coalgebra) H.

ExampLE. The algebra AP(G, K) is a complete Hopf algebra with coproduct ¢ such
that Ilec(f) (s, ) = f(st); inversion n defined by n(f) (s) =f(s~") and counit o defined
by o(f) = f(e), where e is-thé neutral element of G. In fact, AP(G, K) is a complete dual
Hopf algebra (cf. [2]). O

Let H' be the Banach space dual of H; if we set for u, ve H', u*v=(u®v)eoc,
then H' becomes a complete normed algebra with unit o.

A Banach space E is said a left Banach H-comodule if there exists a continuous linear
map A:E— H®E, called a coproduct, such that (c®1z)cA=(1,®A)°A and (¢ ®1)°
A =1;. A closed linear subspace M of E is a Banach subcomodule if A(M)<c HQ M.

Notice that ||x|| = [AX) ]| = [|A) ||x|l, x € E.

ExampLE. Let E be a left Banach AP(G, K)-comodule of coproduct A. If we set
&(f) =f(s) the evaluation map at s e G, then U2=(g-1®1g)°A defines an almost
periodic (a.p.) linear representation of G in E. Conversely, let U:G — Z(F) be an a.p.
linear representation. If d, denotes the linear map of E in AP(G, E) defined by
dy(x)(s) = Uy-(x), then Ay=1Iz'°d, is a coproduct of E and E is a left Banach
AP(G, K)-comodule. These correspondences are reciprocical (cf. [3]). O

If E is a left Banach H-comodule, and we set u-x=(u®1g)°A(x), for u e H',
x € E, one induces on E a complete normed right H'-module structure.

Let us recall that a Banach space V over K is pseudo-reflexive if the canonical map of
V into its bidual space V" is isometric. It is well known that any linear subspace of a
pseudo-reflexive space is pseudo-reflexive.

Also, any Banach space which is a dual space is pseudo-reflexive. It follows that
RB(G,K), AP(G, K) and its linear subspaces are pseudo-reflexive. Furthermore let D be a
finite dimensional subspace of the pseudo-reflexive space V and 0 < a <1; then for every

1
d' e D' there exists v' eV’ such that vjp=d’ and [[v'|<—|d'| (cf. [5] or [7]).
o

THEOREM 1. Let H be a complete ultrametric Hopf algebra that is a pseudo-reflexive
Banach space and let E be a left Banach H-comodule of coproduct A.

(i) A closed linear subspace M of E is a left Banach H-subcomodule of E if and only
if M is a complete right H'-submodule of E.

(i) Let x € E; the closure M, of H' - x in E is a Banach H-subcomodule of E that
contains x and is a Banach space of countable type.

Proof. (i) If M is a left Banach subcomodule of E, then for x e M, A(x) e HOM,

and if u € H', then u-x=(u®1g)°A(x) e KOM =M.
On the other hand, if M is a complete right H'-submodule of E, then u-x=
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(u®1g)oA(x)e M for all weH' and xe M. Since A(x)e HROE, we can write
A(x) = 2 a;®x; where (4;);=; is an a-orthogonal set of H, (x;)=1<E and
@ Sup ||a,H il = A =sup la;ll llx;ll. Hence p - x = 2 (m,apx;e Mforall pe H'

Let £ be an integer =1; for n =/ + 1 the subspace of H of dimension n, H, = GB Ka;

j=1
contains a,. Let a,, be the linear form on H, defined by {(a,.a;) = 84, 1 =j=<n; then

_1 1 : . . .
2] = llapl = STl Since H is a pseudo-reflexive Banach space, there exists w,, e H'
a A X
such that the restriction of u,,to H, is a,, and |, || =— §a. = -Eﬂ Therefore, for

o

eVEry N= €+ 1, pyp X = 2 (nes @)X = Xp+ 2 {ne, apx; € M. However
j=1 j=n+1

2 </‘Ln(’, a])-x]
]_

= jSup, lttnell gl llx;ll =— sup lla; It 1lx;

a’llacl =

and 11m sup lla;ll llx;]| = 0. It follows that x,= lLim p,,-x € M and A(x) = 2 a,Qx,

n— +oc

€ H®M. That is M is a Banach subcomodule of E.

(ii) Let x € E; it is clear that H' - x contains x, furthermore u - (v-x)=(v*pu) -x e
H'-x for all u, v e H'; hence the closure H' - x = M, is a complete right H'-submodule of
E.

With the same notations as in (i) we have A(x)= X a;®x; Let E,=
j=1

E[xy,...,x;,...] be the closed linear subspace of E spanned by (x;);=1. First, it is clear
that E, is a Banach space of countable type. On the other hand, if u € H', we have
p-x=23(u,a)x; e Ey hence H -x<Eyand M, =H' - xc E,,.

j=1

Since M, is a closed right H'-submodule of E, we deduce from (i) that M, is a left
Banach H-subcomodule of E and that x; e M,, j = 1. Hence M, = E, is a Banach space of
countable type. 0

Note. The theorem, applied to an a.p. linear representation U of G in E, shows that
if x € E, the closed linear subspace of E spanned by C, = {U,(x), s € G} is of countable
type. As observed in [3], this also follows from the fact that C, is a compactoid of E.

II. Banach comodule morphisms.

IL1. Definition. Let E and F be two left Banach H-comodules of coproducts Ag

and A respectively. A continuous linear map u: E — F is a Banach comodule morphism if
AF°u = (1H®u)°AE.

Lemma 1. Let u:E — F be a Banach comodule morphism.

(i) If V is a Banach subcomodule of F, then u™'(V') is a Banach subcomodule of E.
(ii) The closure u(E) of u(E) is a Banach subcomodule of F.
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Proof. (i) Indeed, for x e u™'(V), Ap(x) = 2 a;®x; where (a;);=, is an a-orthogonal
j=1

set of H and (x;);=; = E. Since Ar(V)cH®YV and u(x)eV, we have Ap(u(x))=
g be®y,, where (bs)e=) < H and (ye)=1 < V.
1

Let Hy=E[a,,...,a;,...;by,...,b,,...] be the closed subspace of H spanned by
{a;,j = 1; b,, €=1}. This Banach space is of countable type. If H,= E[a;,...,a;,...] is the
closed subspace of H spanned by (a;);=;, then there exists a continuous linear projection p

of Hy onto H, such that | p|| Si (cf. [7]). Let a; e H; be defined by (a},a,) = §;,t=1 and
put d;=ajep e Ho Then (4;®@1r)°Ap(u(x)) = 322:1 (@, baye=(a;®1r)° (1 @u)oAp(x)
= El @j,adu(x,) = gl 8;u(x,) = u(x;). Therefore u(x;)= g} (@j,belyseV; hence x; e
u'(V)and Ag(x)= T 4;®x; e HOu™'(V). '

(i) For z=u(o) in u(E), Ar(e)=Ar(u(x))=(ly®u)eAs(x) - % 4 ®u() <

H®u(E). Therefore Ar(u(E))c H ®u(§ ). However A is a homeomorphism of F onto
Ap(F); hence Ap(u(E)) = Ar(u(E))c HOu(E).

CoroLLARY. Let V and W be Banach subcomodules of the left Banach H-comodule
E; then V N W is a Banach subcomodule of E.

Proof. (a)- Although a direct proof of this corollary is easy, we have the opportunity
to define the direct sum of a finite family (E;, A)=i=n Of left Banach H-comodules as

n
E X
i=1

Put A= EnB A; le. A(i x,-) = i A;(x;). It is readily seen that (E,A) is a left Banach
i=1 i=1 i=1

H-comodule.

(b)- Put F=E®E and Ap = A @D Ag; then V @ W is a Banach subcomodule of Fif V
and W are Banach subcomodules of E. The continuous linear injective map u of E into F
defined by u(x) =x®x is a Banach comodule morphism. ThusV "W =u"" (VB W) is a
Banach subcomodule of E.

= max |lx;].

1si=n

follows. Let E = G") E,, equipped with a norm equivalent to the norm
i=1

I1.2. Spaces of Banach comodule morphisms. Let us recall that a continuous linear
operator u:E— F is completely continuous if u= lim u,, where u,:E— F is linear

n—+o
continuous of finite rank. Furthermore, the space C(E,F) of completely continuous
operators is closed in £(E, F) and is isometrically isomorphic to E' ® F.
If E and F are left Banach H-comodules we denote by Hom,,,(E, F) the set of
Banach comodule morphisms. We set Cm(E, F)=C(E, F)NHomn(E,F) and
Endcon(E) = HoMeon(E, E); Ceom(E) = Coom(E, E).

ProrosiTioN 1. Let E, F and L be three left Banach H-comodules.
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(i) Ifu:E— F and v:F — L are Banach comodule morphisms, then vou:E— L is a
Banach comodule morphism.

(ii) Homg,m(E, F) [resp. Endeom(E)] is a Banach space [resp. a unitary Banach
algebra). Furthermore C.o(E, F) [resp. C.om(E)] is a closed linear subspace [resp. a closed
two-sided ideal] of Homon(E, F) [resp. Endeom(F)]

Proof. It is easy. For instance A, o(vou)= (A ov)cu=(13Qv)eArou=(1,Qv)°
1y Qu)eAp=[14® (wou)]eAg. Also, if u= lim u, with u, e Hom,,(E, F), then
n—+x
AF°U=AF°< lim u,,>= lim AF°u,,= lim (1H®u,,)°AE=(1H®u)°AE.

n—+x n—s+x n—+x

CoroLLARY. Let u € Endeon(E) [resp. Ceom(E)] if S= 2 A, X" is a formal power

series with coefficients in K [resp. and Ay = 0] such that S(u) = 2 A.u" is converging in
H(E), then S(u) € Endcom(E) [resp. Ceom(E)}:

II. 3. When H admits a left integral.

I1.3.1. Banach comodule morphism associated with a linear map. By definition, a
left integral for the complete Hopf algebra is an element v of H' such that u *v ={(u,e)v,
forall u e H'.

Assume that the duality (H', H) is separated; then v € H' is a left integral for H if
and only if (15 ® v)ec=kow

In the sequel, we suppose that H admits a left integral v such that (v,e) =1. Hence
the continuous linear form ¢ = vomo(1,®n):H® H— K satisfies: (i) ¢oc = o and (ii)
(¢®@14)°o(14Rc)= 1R @)o(c®1,). Furthermore ¢p(a®e)=v(a) and |v| = || =
vl inll

Let E and F be two left Banach H-comodules of coproducts Az and Ag. If u:E— Fis
a continuous linear map, we put as in group representations theory

u® = (¢®1F)°(1H®AF)°(1H®M)°AE;
hence u®: E — F is linear and continuous.

ProrosiTioN 2. Let E and F be two left Banach comodules and u:E— F be a
continuous linear map.
(i) u® is a Banach comodule morphism.
(i) The map u —u® of Y(E,F) into Hom(E,F) is linear and continuous.
Moreover, u®* = u® and u is a Banach comodule morphism if and only if u® = u.
Proof: (i) One verifies that
O(e®1r)e(1y®AF)o(14yQu)°Ag] =

(1H®<P®1F)°(1H®1H®AF)°(1H®1H®U)°(1H®A5)
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Hence, one sees that
(1 ®u™)eAr = 1u®[(¢®1r)°(1y®Ar)o (14 Bu)oAg])oAp =
=(lh®e®1p) (14 ®1y®Ar) (1B 15 Ou)o(1y®Ag)oAr =
=(1gQe®1p)e (151, QA7) (14 ®15Ru)o(c®1g)oAr =
=(1y®¢e®1p)o(c®1y®1p)(1y®Ar)e(1n®u)oAg =
= (p®1y®1p)o[14® (c®1p)oAr]o(1y Bu)oly =
=(e®1y®1r)°(1y @1y @AF)°(1y @A) (1 Qu)°Ag.

However (¢®@1,®17)o(1y®1,®Af)=Aro(¢®1,). Therefore, (1, ®u*)eAy =
Aro(@®15)e (1 ®Ar)o(1yQu)oAr = Apou®; ie. u™ is a comodule morphism.
(i) It is readily seen that wu—>u® is linear and continuous with norm

=llell 1Al IAFI.
If u is a comodule morphism, one sees that

u® = (e®1p)o(1n®Ar)° (14 Qu)oAr = (¢®1r)o(1n®Ar)°Arou
=((P®1F)°(C®1F)°AF°U=(§D°C®1F)°Ap°u=[(U®1p)°AF]°u=u.

Conversely, if u =u®, from (i) it follows that u is a comodule morphism. Hence, for any

continuous linear map u: E — F, one has u®* = u*.

Lemma 2. Let E, F and L be three left Banach H-comodules, u:E— F and v:F— L

be continuous linear maps. Then (vou™)* = v*oy®

Proof. Obviously, (veou®)? =(¢®1,)e(1z QA ) (1yQvou®)eAr=(¢®1,)°
(14®AL) (1 ®V)e(15@u*)eAp = (¢®1,)° (15 ®48.) o (1y®v)oApou® =vFou®.

CoroLLARY. Let E be a left Banach H-comodule. If p:E — E is a continuous linear
projection of E onto M =p(E) and if M is a Banach subcomodule of E; then p* is a
projection of E onto M and E=M®@N, a direct sum of Banach comodules, where
N =kerp*®.

Proof. Put Ap=A. By hypothesis, for any y e M, A(y)= 2 b,Qy,c HOM. Let
R =1
x € E; setting A(x) = X a;Qx; € H®E, it follows that
j=1
PT(x)=(¢®1)°(1y®A)° (15 ®p)oAlx)

= (¢>'®ls)<2 a,-®A°p(xj)> =2 2 ¢(a;®bgyg
j=1 ) j=1 =1
with y, € M. Since y, = p(x,), we have
P*6)=p(Z T ela@b)x) =p(2) e p(E) = M;
]E

ie. p*(E) e M.
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On the other hand, since for any y e M, p(y) =y, one has

P = (681( 3 b BAG) = (6810 (1 @A) A()

=(@®1g)o(c®1g)°A(y) =(¢°c®1)oA(y) = (0 ®1g)A(y)=y.

Therefore M < p*(M) < p*(E). We have proved that M = p*(E).

Since for any x € E, p*(x)=p(z), one has pep®(x)=pep(z)=p(z)=p*(); in
other words, pep®=p® Hence p*=p** =(pop®)*=pFep¥ ie. p® is a linear
projection as well as a comodule morphism of E onto M. The corollary is proved.

Nore. This corollary gives a proof of the implication (iv) = (i) of the Theorem 3 in
3].

ProrosiTiON 3. Let E and F be two left Banach H-comodules and let u:E— F be a
completely continuous operator. Then u® is completely continuous.

Proof. (i) Since the map u—u® is linear and continuous, if u= 3 x,®z, €
nx=l

C(E,F)=E'®F, one has, u*= 3 (x,®z,)" in Hom,n(E,F). But C(E,F) is a
nzl

Banach space; hence, it suffices to prove that for any x' € £’ and any z € F, one has
(x'®z)* e C(E,F).
(ii) Put u=x'®z. First, Ap(z)= 2 b,Q7z,, where (bp)e=;c H and (2,)e=; is an
. =1
a-orthogonal set of F, with

asup 1bell lizel < 1A#(2)1 <5Up b . ©

Also, for x € E, Ag(x) = X a;®x;, where (a,);=1 < H, (x;);=; is an a-orthogonal set
j=1
of E and one has an inequality similar to (0). On the other hand,
u¥(x)=(e®@1p)o(1x®Ar)o(1y ®u)oAg(x)

=(e®15)e(ly ®AF)(2 a,®u(xj)) =(¢® 1F)<2 a,®(x’,x,-)AF(z)>

j=1 j=1

= E 2 (x’axj>¢'(aj®b¢’)z("

j=1 =1
However [[(x',x)¢(a;®@be)zell < X[l @l lla;ll 1) 1bell izl with jlirjlx la;ll x; 1l =0=
lim [|b,|l lizc|l. Hence, the family ({x', x;)¢(a; @ b¢)zs);,c is summable. Therefore
=+

uF(x)=> > ', x)p(a;®b,)ze. 1)

6=1 j=1

Let Riy= E[z1,...,2¢-..] be the closed subspace of F spanned by the a-orthogonal

1 1
set (2g)p=1. Uf z,e Fy is defined by (znz)=08a, then — =z j<——".
lzell a [z
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It is clear that for any x € E, u®(x) € F, and we obtain the adjoint map ‘u®: Fo— E’
with ‘u®(z,) € E' and for any x € E, we have

(U2, x) =@ u?(x)) = 2 (', x)e(a; @ by). )

j=1
Moreover,

Ku®(ze), x)l < sup Kx", xM lp(a; @ b = lix"|| llell lIbell sup [l ]l 1x;l
= j=

1 1
= Il oA 1Al =—lx"l el HAN 161l llx ).

Hence, we have

<L
I'u®(z o) = X" el 1Azl 15l 3)

It follows that

: L.,
'™ (2 0)® z| = Il el 1Azl 1Dl lzel-

Since lim ||b,| ||lz¢] =0, we have lim |'u®*(z)®z/ =0 and I u*(zH)®z, €
f—r+ 0 f—+x =1
E'®F = C(E, F). However for any x € E,

(E 'u#(ZQ’)@’Ze)(X) = 2 <lu#(zlt’)’x)Z(’= > 2 (x’,x,»)<p(a,-®bg)zf=u#(x),
£=1 =1 j=1

=1
by (1). It follows that u® = (Z u*(z)Q®z,€ C(E,F).
=1

Remark 1. Recall that v is a left integral for AP(G, K) such that (v,1)#0 iff v#0
and (v, y,f) = (v, f)=(v, §f) for all s € G. Moreover, if (v, 1) =1, v is called an invariant
mean. If F is a Banach space, we have an extension v/ =v® 1, of v on AP(G,F)=
AP(G, K)® F with values in F and vr(y,¢) = vr(@) = ve(8,¢), s € G.

For the a.p. linear representations U:G — £(E), V:G — %(F) and the continuous
linear map u: E — F, the intertwining operator (as well as comodule morphism) u® can be
written in the classical form u®(x) = fg V,ou o Us-1(x)dve(s).

I1.3.2. Comodules which are free Banach spaces. Let E be a free Banach space; that
is to say, E is isomorphic to a space cy(/, K) = {()tj)je 1€ K/limi; = O}. In other words,
i

there exists (¢;);c; < E, called a base of E, two real numbers e, and @, >0, such that any
x € E can be written in the form x =j§l Ae;, A; e K and aq S}l:? Al =lxl=e S}lé]l) ;. For

, . , 1 , 1
the continuous linear form e; e E’, defined by (e;, e,) = 8;¢, one has — =< |le/{| = —.
(231 Qg
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Let F be another Banach space. The complete tensor product F® E is isomorphic to
co(l,F) = {()’i)jaCF/li]m Iyl = O}. In fact, each z € F®E is in the form z =j§E:’y,®e,»,
where y; € F and Ii};n [ly;ll = 0. Furthermore a, 51:113 Iyll=lzl=ea; ?l:;l) Iyl
Assume that the free Banach space E is a left Banach H-comodule with coproduct
A:E— H&E. For x € E, one has A(x) = ZlAj(x)®ej. Hence one defines, for each j e I,
a continuous linear map A;: E — H and a;}l:;l) 1A <= Al = oy SJLEIII) A

Put, for ¢ e I, A;(e;) = a; € H; one has

Ae) =2 a;Qe;,  lima,=0. (4)
jel J
NoTE. A;=(14®e€;)°A and () ker A; = (0).
jeil

More generally, if x' € E’, we put A, = (15®x")°A. Obviously, H is a left Banach
H-comoduie with respect to its coproduct c.

LemMma 3. For any x' € E’, the linear map A, = (13®x")eA:E— H is a comodule
morphism.

Proof. 1t is easy to see that co(1,®x")=c®x'=(1,81,Rx")e(c®1z), So
ceA, =co(1,Qx ) A=(1,01,x)o(c®1g)°A=(1481,Bx)e (1, ®A)° A
=[1y®(1y®x')eA)cA=(1,8A,)A.

LeEMMA 4. For all ¢, ] € I, one has
(i) clag) =2 am®ay,

(i) ola) =35,

(ii) g] at’nn(anj) =64€= 21 ﬂ(am)anj-

Proof. (i) Since A;=(1,®e/)°A is a comodule morphism, we have c(ag)=
coAjle)=(14®A))cA(e,) =(1y ®Aj)(n§e:I g, ®e,,) = nEEI am®@A(e,) = ’EI an,Qay,.

(i1) Obviously, from (e ®1)cA=1; we get, for x e E, x= E o(Aj(x))e;.. Hence
e, = 2 o(Aj(es))e; = 2 o(ag)e; and a(ag) = 84

(m) This follows readlly from (i), (ii) and me (1 ®n)ec=keo=me(1,&n)ec.

LEMMA 5. Assume that H admits a left integral v such that (v,e)=1 Put ¢=
vomo(1y®m). Forall ¢, € I, one has nEEI o(as,®a,) =3,

Proof. Since goc =0, from Lemma 4 one deduces that &4 = o(ag) = ¢°clag) =
EI o(ap®a,). O
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Now assume that the duality (H', H) is separated and that H admits a left integral v
such that (v, e) = 1. By Proposition 3, we know that (¢,®¢;)* € C(E), for all ¢, j e L.
With (4) and by definition of (e,®e¢;)* one verifies that

(e:®e)(e) = 2 e(@ie®ay)e, (i,), € ). (5)
nel
ReMARK 2. One deduces from (5) and Lemma 5 that there exists € e / such that
(e,®e,)” is different from the null operator.
By a previous result, we know that the space C(E)=E'®E is isomorphic to
co(I,E'). Let u e C(E); then u = ; Y, Qep with ype E', li(m Y,=0 and ag s(up el =
el i ‘el
llu] < a, sup ||| Furthermore one has u = X ‘u(ey)®e,.
[4:=3) tel

It is well known that one has the trace form Tr:E'®FE— K defined by
Tr(x' ®x) ={x', x), which is linear and continuous with [Tr(u)| =< |ju|. Here one obtains
foru= eE: y,Qe, e C(EY=E'®FE, Tr(u) = (2[((//;, e, = ?‘"1 {e) u(e,)).

Hence, for u = (e,®¢;)*; ¢, j € I; one has

Tr{(e:®e)*1 = 2, ¢(a..®a,)  (j,tel). (6)

nel
DeriNiTION. A complete Hopf algebra H is called supple if H is a pseudo-reflexive
Banach space and if nen =1,.

Exampies. (1) AP(G, K) and its complete sub-Hopf-algebras are supple.
(2) Any commutative (resp. cocommutative) complete Hopf algebra which is a
pseudo-reflexive Banach space is supple.

LeEMMA 6. Let H be a supple complete Hopf algebra. If H admits a left integral v such
that {v,e)=1, then the map ¢ =vome(1,;®n) satisfies o(a®@b)= @b ®a), for all a,
beH.

Proof. Since 7 is an anti-endomorphism of the algebra H and since n°n =1, implies
ven=v, one has for a, beH, ¢a®b)=vemeo(1,8n)(a®b)=v(an(b))=
ven(an(b)) = v(bn(a)) = ¢(b ®a).

The following proposition strengthens Remark 2.

ProrosiTioN 4. Let H be a supple complete Hopf algebra that admits a left integral v
such that (v,e)=1. Let E be a left Banach H-comodule which is a free Banach space with
base (e;);cr. Then for each ¢ el, the comodule endomorphism (e,®e.)* of E is a
completely continuous operator such that Tr[(e,®e,)*] =1.

Proof. Indeed, one deduces from (6), Lemmas 5 and 6 that Tr[(e,®@e,)*]=
21 P(a,eQae) = 21 Plap Rane) = 1.

Remark 3. In the same way, if £#j, then Tr[(e,®¢)*]= 3 ¢(a,,®a;,)=
S #(an®a,) = 0.

Let Eq=Elej,j € I] be the closed subspace of E' spanned by (e;);;. The space
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E{®F is a closed subspace of E'®E = C(E). Since (¢/)jcs is a base of Eg, each
ueE,QE can be written u= 3 3 Age; ®e, with Ay e K, hm sup A4/ =0 and for any

Celjel

¢el,lim{A,=0. One has Tr(u) = I A,
j fel

CoROLLARY 1. For each u € E,Q E, one has Tr(u®) = Tr(u). In particular, if dim E is
finite, for each u € L(E), one has Tr(u®) = Tr(u).

Proof. Obviously, Tr(u®) = (E ZI A Tr[(e;®e)*]= 2 3 A48, =Tr(u).
‘el je teljel

CoroLLARY 2. Let x e E, x#0; there exists x' e E' such thar {(x',x)=1 and
Tr[(x' ®x)*] = 1.

Let us recall that if v € C(F) then the Fredholm determinant of u is det(1p — tu) =
1+ 3 (=1)? Tr(A%)* and det(lz—~m) is a power series of infinite radius of
g=1

convergence; (cf. {4] and (10]). Furthermore det(1z ~ ) 1p = (1g — w)P(t,u), where
Py(¢, u) is the Fredholm resolvent of u. Hence for A € K, 1z ~ A u 1s invertible in £(F) if
and only if det(1z — Au) #0.

With the operators as above, for instance for u, = (e,®e,)*, € € I, one has

det(lg —tuy)=1-1+ >, (1) Tr(A%u). (7)

9=2

1I. Reducibility of Banach comodules.

1I1.1.1. Simple Banach comodules.

DermNvimion, A left Banach H-comodule E is called simple or topologically irreducible

if E is not the null space and does not contain any closed subcomodule different from (0)
and E.

It follows immediately from Theorem 1 that, when H is a pseudo-reflexive Banach
space, any simple left Banach H-comodule is a vector space of countable type.

THEOREM 2. Let H be a supple complete Hopf algebra that admits a left integral v such
that {v,e) = 1. Then any left Banach H-comodule that is not the null space contains at least
a finite dimensional subcomodule different from (0).

Proof. For this proof, we apply Riesz’s decomposition theorem.

(a) Let E be a left Banach comodule over the supple complete Hopf algebra H with
E #(0). By Theorem 1, if x € £, x #0, then x e M = H' - x; hence M is different from (0).
Furthermore M is a Banach subcomodule of E and is a Banach space of countable type.
Therefore M is a free Banach space (cf. [7]).

(b) Assume that H admits a left integral v such that (v, e¢) = 1. Hence by Proposition
4, there exists a completely continuous operator # which is an endomorphism of the
comodule M and such that Tr(u)=1. It follows that det(l,, —m)=1-1t+ 22 (-1

(/2
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Tr(A%) 17 is a non constant power series with infinite radius of convergence. According to
the p-adic Weierstrass® factorization theorem, one has det(1,, — tu) = H P,, where P, is a

polynomical such that P,(0) =1, d = F, =1 (see for example [1]). That is det(1,, — tu) has
its zeros in a subfield of the algebraic closure K of K. Following [10] one has the following
results.

(b)) First, det(1, — tu) has a zero A € K*.

Let h =1 be the multiplicity of A; one has M = N(A)® F(A) (Riesz’s decomposition),
where N(A)=ker(ly — Au)" and dim N(A)=h. However (1, —Au)" is a comodule
endomorphism of M; therefore N(A) is a subcomodule of M of finite dimension 4 =1 and
N(A) is a non-null finite dimensional subcomodule of E.

(b.) Second, det(1,, — tu) has no zero in K*.

Let { e K be a zero of det(l,, — ). Let R(t)=1- E y;# be the polynomial of
minimal degree such that R({™') =0 and R(0) =1. Setting R(u) 1y — 2 yiuw =1y~

7

we see that v= E yu’ is a comodule endomorphism of M as well as a completely
j=

contlnuous operator.

Let (@, ..., {9 be the conjugates of { in K. The field L=K[{,{?,...,{ 9] is a
finite extensmn of K. Put M, =L&® M =L®;M: hence u; =1, Qu is a completely
continuous operator on M,. Moreover, { € L is a zero of det(1,,, — tu;) = det(1y — tu);
hence 1y, — {u, is not invertible in &£, (M,).

4

Since R(t) = (1 - )] (1 = ¢9) and R(u) =1, — v, one has
j=2

¢ ¢ ¢
R(u), = 1y, — 2 7j1L®uJ = 1ML - 2 'YjuJL = 1M,_ -y = (1ML - {uL)H (1M,_ - g(j)ul.)-
j=1 j=1 j=2

It follows that the completely continuous operator v, is such that 1,, — v, = R(u,) is not
invertible in % (M_,). Consequently 1,, — v is not invertible in £(M); i.e. 1 is a zero of
det(ly —tv) with muitiplicity h'=1. Therefore we have the Riesz decomposition
M = N(R)® F(R), where N(R) =ker(l,, — v)" =ker(R(u)") and dimN(R)=h'=1.

But R(u)" is a comodule endomorphism of M; hence N(R)=ker(R(u)") is a
subcomodule of M of finite dimension A’ =1. Therefore N(R) is a non-null finite
dimensional subcomodule of E.

RemaRk 4. The subspace F(A) (resp. F(R)) of M is also a Banach subcomodule of E.

THEOREM 3. Let H be a supple complete Hopf algebra that admits a left integral v such
that (v,e) = 1. Then any simple left Banach H-comodule E is finite dimensional.

Proof. This is obvious from Theorem 2. Indeed, let x € E, x #0; one has H x=
M #(0); hence M = E and by Theorem 1, E is a free Banach space. With the notations in
the proof of Theorem 2, one has in the first case E=N(A)={x € E/u(x)=A""x},
dimE=h and u=A""1; In the second case, one has E=N(R)={x e E/v(x)=x},
dim E=h' and R(u)=0.
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CoroLLARY. (Schur’s Lemma.) Under the above hypothesis on H, if E is a simple left
Banach H-comodule, then End.,n(E) is a (skew) field of finite dimension < (dim E)>
Moreover, if K is algebraically closed, then End on(E) = K - 1¢ and if K is of characteristic
p#0, then (p,dimE) =1.

Proof. 1t suffices to observe that there exist 4 € End.om(E) such that Tr(u)=1. If K
is algebraically closed, one has u = Alg, hence Tr(u)=1=AdimE

I11.1.2. Reducibility of Banach comodules.

ProposITION 5. Let H be a supple complete Hopf algebra that admits a left integral v
such that (v,e)=1. Then any left Banach H-comodule E that is a Banach space of
countable type is a topological direct sum of simple comodules.

Proof. Indeed, by Theorem 2, E contains finite subcomodules different from the null

space. Hence E contains a simple subcomodule. Let W = ¥ V, be the sum of all simple
feS

subcomodules of E. As in semi-simple module theory, there exists a subset T of § such

that W= @ V,. Put E,=W = @ V,, the closure of W in E. It is clear that E; is a
€eT €eT

Banach subcomodule of E.
On the other hand, since E is a Banach space of countable type and E, is a closed
subspace of E, for 0 < & <1, there exists a linear projection of E onto Ey such that || p]| =

1
— (cf. [7]). Therefore by the Corollary of Lemma 2 or Theorem 3 of [3] one has the direct
43

sum of Banach comodules E = E,® F,. If F, is different from (0), F, must contain a simple
subcomodule V. Clearly V is not contained in Ey; that contradicts the definition of Ej.
Consequently Fy=(0) and E=E,= P V..

€eT

THEOREM 4. Let H be a supple complete Hopf algebra that admits a left integral v such
that (v,e)=1. Then any left Banach H-module E is a topological direct sum of simple
comodules.

Proof. As above, put W =3 V,, the sum of all simple subcomodules of E. There

exists J </ such that W =@ V, (jz;]ly simple subcomodule of E is isomorphic to one of the
Vijed) .

Let x € E, x #0; the Banach subcomodule M, = H' - x of E being a Banach space of
countable type, one has, by Proposition 5, x e M, = (E;BT Ve, where V, is a simple
subcomodule of M, and obviously of E. Hence for € >0, there exists a finite subset F of

<e Since I x,€ @ V,cW,one hasx e W
€eF ¢eF

T,x,eV,for £ e F, such that
and E=W=@V,-.
jelJ

X — 2 X ¢
¢eF

ReEMARK 5. Let Q be the family of the isomorphic classes of simple left Banach
H-comodules. Let E(w) be the isotypical component of E for w € Q, i.e. the sum of
all simple subcomodules of E belonging to w. It may happen that E(w) = (0). One has
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E(w)=8(V,V,ew), W= @ E(w) and if H satisfies the hypothesis of Theorem 4, then
N wel)
E= P E(w)

weld

I1.2. Application to H = AP(G,K). Let us recall that the complete Hopf algebra
AP(G, K) (as well as any of its complete Hopf subalgebras) is a supple Hopf algebra. A
left integral v over AP(G, K), if it exists, such that (v, 1) =1 is called an invariant mean.

From [3] we know that the category of left Banach AP(G, K)-comodules is in a
bijective correspondence with the category of almost periodic linear representations of G.

The following theorem is a direct application of Theorems 3 and 4. One has an
equivalent theorem for any complete Hopf subalgebra of AP(G,K) as APy(G,K),
PP(G,K) and PPHG, K): the algebra PP(G, K) is the subalgebra of the elements f in
AP(G,K) such that {y,f,s € G} is relatively compact in %B(G,K); if T is a group
topology on G, AP+ G, K)[resp. #P5(G, K)] is the subalgebra of the functions f in
AP(G,K) [resp. PP(G, K)] such that fis T-continuous.

THEOREM 5. Assume that AP(G, K) admits an invariant mean.

(i) Any topologically irreducible almost periodic linear representation is finite
dimensional.

(i) Let U:G — Z(E) be an almost periodic linear representation of G. The Banach
space E is a topological direct sum of irreducible U-invariant subspaces of E.

Note. Let Q be the family of the classes of topologically irreducible almost linear
representations. With the above hypothesis, one has E = @ E(w) (cf. Remark 95).
we

CoroirLary 1. (Peter-Weyl Theorem). Assume thar AP(G, K) admits an invariant
mean. Then the space R,(G,K) of the bounded representative functions of G in K is a
dense subspace of AP(G, K).

Proof. The left regular representation y of G in AP(G,K) is almost periodic
[ysf(t) =f(s™'1)]. It is clear that any y-invariant finite dimensional subspace of AP(G, K)
is contained in R,(G, K).

Let fe AP(G,K), f##0 and M, = AP(G,K) -f. One has M, = @ V,, where V, is
4 f €eT

v-invariant and topologically irreducible. Hence dim V., is finite and V,c R,(G, K) for all
¢ e T. Moreover, as in the proof of Theorem 4, there exist a finite subset F of T and

teF, f, eV, such that Lf— 2 fd <e Since ¥ f,e B V,c R,(G,K), we have shown
¢eF feF feF
that R,(G, K) is dense in AP(G,K). O

Let w e Q be the class of the topologically irreducible almost periodic linear
representation (V, p) of G. With the hypothesis of Theorem 5, one has dim V = n finite.
Let R(p) be the subspace of AP(G, K) spanned by the coefficient functions of p; i.e. the
functions s — (x', p(s) - x), where x' € V' and x € V. One has dim R(p)<n® and it is
readily seen that R(w)= R(p) depends only on w. Let & be the class of (V', §), where
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p(s) ="'p(s™"); then (V', p) is irreducible and R(&) = n(R(w)). Fix a base (¢;);<j<n of V
and let (ej))sj=n< V' be its dual base. Let us consider for 1<j=n the linear map
A;:V - AP(G, K) defined by A;(x)(s) ={ej,p(s™") - x). One has y,°A; = A;°p(s) (dir-
ectly or see Lemma 3). Since A(e;)(e)=1, one has ker4;#V and since (V,p) is
irreducible, ker A; = (0), i.e. A; is injective. Put H;= A;(V); the linear representations
(V,p) and (H;, y) are equivalent. Hence (H;, y) € w, for 1 =j<n. It is readily seen that

n(R(w))=éH, and there exists J<[l,n] such that n(R(w))= @ H. Moreover
n(R(w)) isl—the isotypical component of AP(G, K) corresponding to]eaj). Therefore, if
(wy,...,0,) is a finite subset of Q, then i N{R(w,)) = E':él N(R(w.)). It follows that
3 Rw)= 8 Rw) ) )

Since any finite dimensional almost periodic linear representation is reducible, we
have proved the following resuit.

CoOROLLARY 2. Assume that AP(G, K) admits an invariant mean. Then

R,(G,K)= @ R(w) and AP(G,K)= @QR(w).

weQ
Note. R(w) is a subcogebra of AP(G, K) for w € Q.

CoOROLLARY 3. Assume that the group G is commutative and that AP(G, K) admits an
invariant mean. If the field K is algebraically closed, then Q can be identified with

Hom, (G, K*) = G, the bounded character group of G and AP(G,K) = EE K-y
xeG

Proof. The proof runs as in the classical case. Indeed, with the hypothesis on
AP(G,K), if (V,p) is irreducible and K is algebraically closed then End, (V)=K - 1,.
Since G is commutative, for s € G, one has p(s) € End,(V), hence p(s) = x(s) - 1y and x
is a bounded character of G (which implies |y (s)| =1, s € G). It follows that Q = G. Since

R(x)=K - x, we have AP(G,K) = XQ}G K - y (compare with [8], [9]).

More generally one can prove the following result.

CoroLLARY 4. Let CAP(G,K) be the closed subalgebra of the central functions
f e AP(G,K); ie. f(sts™)=f(t), s, t € G. Assume that AP(G, K) admits an invariant
mean. Set for (V,p) e w, xu(s)=Tr(p(s)ou), where u e End, (V). Hence {y%, w € Q,
u € End, (V) for a fixed (V,p) € w} is a total subset of the Banach space CAP(G, K).
Moreover, if K is algebraically closed, setting y.(s) = Tr(p(s)) for a fixed (V,p) € w, one

has CAP(G,K)= @ K - x..
wel)

Nortks. (i) Let us say that (G, K) is a.p.i.m. if AP(G, K) admits an invariant mean v.
Schikhof has given in [8], [9] the characterization of the a.p.i.m. pairs (G, K) when G is
commutative and with the extra condition ||v| =1. It remains to characterize all the
a.p.i.m. pairs (G, K).

(i1) If there exists an invariant mean v on AP(G,K), and putting for f, ge
AP(G,K), (f*g)(s)=(v,f - vs(n(g))), then AP(G, K) is equipped with a new structure
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of Banach algebra, non unitary if G is infinite. Can one use this algebra structure in the
aim to establish the above results? In the case of PP(G, K) see [6].

Remark 6. For any complete Hopf algebra H, one can define the representative
subalgebra &(H) of H similar to R,(G, K). If H is supple and admits a left integral v such
that (v, e) =1, then one has a translation of Theorem 5 and its Corollaries 1 and 2.
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