
ON REDUCIBILITY OF ULTRAMETRIC ALMOST PERIODIC
LINEAR REPRESENTATIONS

by BERTIN DIARRA

(Received 28 June, 1993)

Abstract. Let G be a group and K be a complete ultrametric valued field. Let
AP(G, K) be the algebra of the generalized almost periodic functions of G in K. We have
shown in a previous paper that when AP(G,K) has an invariant mean, then any almost
periodic linear representation is quasi-reducible. Here, we show that with the same
hypothesis, any topologically irreducible almost periodic linear representation is finite
dimensional; also, any almost periodic linear representation is the topological sum of
irreducible representations. Furthermore, we obtain a Peter-Weyl theorem for the algebra
AP(G,K).

We use the technical tools of Hopf algebra theory.

I. Notations and definitions.

I.I. Almost periodic functions; almost periodic linear representations. Let G be a
group and K be a complete ultrametric valued field. The Banach algebra of bounded
functions f:G^*K with the supremum norm ||/|| =sup|/(s)| is denoted by 0H{G,K). If

seC

f e &(G,K) we write ysf(t)=f(s'lt), S,f(t)=f(ts) and rj(/)(s)=/(s"1) the left (resp.
right) translation operator and the inversion operator.

Let us recall the extension of the notion of almost periodic functions given by
Schikhof [8], [9]. A function / e 53(G, K) is called almost periodic if the set Tf = {ysf,
s e G} is a compactoid of S8(G, K): that is for £ > 0, there exist / , , . . . ,/„ in S8(G, K) and

if s e G, there exist A1(... , An e K, |Ay| < 1, such that ysf ~ 2 A;J$ < £• The space

AP(G, K) of almost periodic functions is a closed subalgebra of S8(G, K) and is invariant
with respect to the left (right) translation and the inversion.

If E and F are ultrametric Banach spaces over K, we denote by E®F the complete
tensor product; that is the completion of E®F with respect to the norm ||z|| =

Inf (max ||x.|| ||)>;|| I. In the sequel, all Banach spaces are ultrametric.

One defines as above, the space AP(G,E) of almost periodic functions of G with
values in the Banach space E. Furthermore, AP(G,K)&E is isometrically isomorphic to
AP(G, E) via the linear map II£ defined by UE(f <S>x)(s) =f(s) • x (cf. [3]).

We say that a linear representation U: G -» S£(E) is almost periodic if
(i) sup||L/J<+°o,

seC

(ii) for any x e E, the function TX:G^E defined by Tx(s) = Us(x) is almost periodic.

1.2. Complete Hopf algebras: Banach comodules. Let (H, m, c, TJ, a) be a complete
ultrametric Hopf algebra over K, e the unit of H and k the canonical map of K in H. In
other words, H is a Banach algebra with multiplication m:H&H^>H; coproduct
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c://<8>//—>// a continuous algebra homomorphism; inversion or antipode 17://—»// a
continuous linear map and the counit a.H^K a continuous algebra homomorphism.
The coassociativity and counitary axioms hold, and m°(lH®ri)°c = k°cr = m°(ri® iH)°c.

One sees that 17 is an anti-endomorphism of the algebra (resp. coalgebra) H.

EXAMPLE. The algebra AP(G,K) is a complete Hopf algebra with coproduct c such
that n°c( / ) (s,t)= f(st); inversion 77 defined by r](f) (s)=f(s~l) and counit a defined
by a-(f) = /(e), where e is the neutral element of G. In fact, AP(G, K) is a complete dual
Hopf algebra (cf. [2]). •

Let H' be the Banach space dual of H; if we set for /x, v e / / ' , /X*V = (JU,®V)»C,
then H' becomes a complete normed algebra with unit a.

A Banach space E is said a left Banach H-comodule if there exists a continuous linear
map A:E —>H®E, called a coproduct, such that (c ® 1£) ° A = (1 w <8> A) ° A and (a<8> 1E)°
A = 1E. A closed linear subspace M of E is a Banach subcomodule if A(A/) czH®M.

Notice that ||x|| s ||A(x)|| == ||A|| ||x||, x e £.

EXAMPLE. Let £ be a left Banach j4P(G,/Q-comodule of coproduct A. If we set
es(f)=f(s) the evaluation map at s e G, then t/f = (ei-i®l£-)°A defines an almost
periodic (a.p.) linear representation of G in E. Conversely, let t/:G—»i?(£) be an a.p.
linear representation. If du denotes the linear map of E in AP(G, E) defined by
du(x)(s) = Us-i(x), then Au = UE

l°du is a coproduct of E and £ is a left Banach
AP(G, /Q-comodule. These correspondences are reciprocical (cf. [3]). •

If E is a left Banach //-comodule, and we set /J. • x = (fi®lE)°A(x), for /x e H',
x e E, one induces on £ a complete normed right H'-module structure.

Let us recall that a Banach space V over K is pseudo-reflexive if the canonical map of
V into its bidual space V" is isometric. It is well known that any linear subspace of a
pseudo-reflexive space is pseudo-reflexive.

Also, any Banach space which is a dual space is pseudo-reflexive. It follows that
S8(G, K), AP(G, K) and its linear subspaces are pseudo-reflexive. Furthermore let D be a
finite dimensional subspace of the pseudo-reflexive space V and 0< a < 1; then for every

d'eD' there exists v'eV such that v\D = d' and ||w'|| < - ||rf'|| (cf. [5] or [7]).

THEOREM 1. Let H be a complete ultrametric Hopf algebra that is a pseudo-reflexive
Banach space and let E be a left Banach H-comodule of coproduct A.

(i) A closed linear subspace M of E is a left Banach H-subcomodule of E if and only
if M is a complete right H'-submodule of E.

(ii) Let x E E; the closure Mx of H' • x in E is a Banach H-subcomodule of E that
contains x and is a Banach space of countable type.

Proof, (i) If M is a left Banach subcomodule of E, then for x e M, A(x) e H&M,
and if/i EH', then y, x = (ix®lE)°A(x) e K®M = M.

On the other hand, if M is a complete right //'-submodule of E, then \i • x -
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(n®lE)°A(x) £ M for all fj. e H' and x e M. Since A(x) e H<S>E, we can write
A(JC)= 2 a,-®*/ where (fly);ai is an a-orthogonal set of H, (xj)j^<zE and

a sup |ffl/|| ||jcy|| < || A(JC)|| <sup ||a;-1| ||Jt,||. Hence M • x = 2 <M,«>; e M for all /i E // ' .
;al ;£l /al

Let / be an integer >1; for n > / + 1 the subspace of H of dimension n, //„ = © Ka.
7 = 1

contains a .̂ Let a ^ be the linear form on //„ defined by (a'ne,aj) = 8fJ, l < j < n ; then

— ll<Wll — Since H is a pseudo-reflexive Banach space, there exists y.n( e H'
\We\\ a \\<*A\ 1 ii
such that the restriction of fj.nfto Hn is fl^and ||un/-|| ^— ||fl^|| ==—̂  :. Therefore, for

a ' a^ | |a| |every n > ^ + l , /in(? • x = S ( ^ ^ fly)^ = xf + 2 </u,n̂ , fly)^ e M. However

< sup ll/wH ||a;.|| | | ^ | |< -^ - i - sup
+] a ||fl|| a +

and lim sup ||fly|| ||x;|| =0. It follows that x(= lim n.n(-x e M and A(x) = 2

E / / ® A/. That is M is a Banach subcomodule of £.
(ii) Let x e E; it is clear that H' • x contains x, furthermore /u, • (v • x) = (v * /A) • x e

/ / ' • x for all pt, v e // ' ; hence the closure H' • x = Mx is a complete right //'-submodule of
£.

With the same notations as in (i) we have A(*)= 2 a,-®*.-. Let Eo =
7 = 1

E[x1,... ,Xj,...] be the closed linear subspace of E spanned by (Xj)jSli. First, it is clear
that Eo is a Banach space of countable type. On the other hand, if /x e // ' , we have
fx • x = 2 <M,fl/)*/ e Eo; hence H' • x cE0 and MX = H' • xc Eo.

7 = 1

Since Mx is a closed right //'-submodule of £ , we deduce from (i) that Mx is a left
Banach //-subcomodule of E and that JC, e Mx, j s 1. Hence Mx = £0 is a Banach space of
countable type. •

NOTE. The theorem, applied to an a.p. linear representation U of G in £, shows that
if x E £ , the closed linear subspace of £ spanned by Cx = {Us(x), s e G} is of countable
type. As observed in [3], this also follows from the fact that Cx is a compactoid of E.

II. Banach comodule morphisms.

n.l. Definition. Let £ and F be two left Banach //-comodules of coproducts A£

and Af respectively. A continuous linear map u:E-*Fis a Banach comodule morphism if

LEMMA 1. Let u:E-+F be a Banach comodule morphism.
(i) / / V is a Banach subcomodule of F, then u^CV) is a Banach subcomodule of E.
(ii) The closure u(E) ofu{E) is a Banach subcomodule of F.
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Proof, (i) Indeed, for JC E u~l{V), AE(x) - 2 fl,<8>x, where (fl.Wi is an a-orthogonal

set of H and (x;),a]ci£. Since AF(V)aH®V and u(x) E V, we have AF(w(x)) =
2 £v®)V, where ( f c ^ i c / / and (y,),^ c V.

Let //0 = £ [ « ] , . . . ,cij,.. .\bi,... ,be,...] be the closed subspace of H spanned by
{fly,; s i ; be, <?^1}. This Banach space is of countable type. If Hx = E[ax,... ,ah...] is the
closed subspace of H spanned by (fly)yai, then there exists a continuous linear projection p

of HQ onto //] such that \\p|| < - (cf. [7]). Let a- e H[ be defined by (aj,a,) = 5;<) t > 1 and

put flj = a'j °p e H'Q. Then {a] ® lF) ° A/T(U(JC)) = 2 <fl7
:, 6 ^ = (a} ® 1F)»(1H ® M) »A£(jf)

= 2 (fl,',fl,)u(x,) = 2 Sj,u(x,) = u(xj). Therefore u(xj) = 2 {a'j,be)ye e V; hence x,• e.
(si r£:l /al

u~\V) and A£(JC) = 2 ay®xy e H ^ u - ^ V ) .

(ii) For z = « ( i ) in u(£), A, (Z) = A , ( H ( X ) ) = ( 1 I / ® B ) « A £ ( X ) = 2 a

H&u(E). Therefore AF(u(E)) c H&u(E). However AF is a homeomorphism of F onto
); hence Af («(£)) = AF(u(E))czH®u(E). '

COROLLARY. Le? V and W be Banach subcomodules of the left Banach H-comodule
E; then V D W is a Banach subcomodule of E.

Proof, (a)- Although a direct proof of this corollary is easy, we have the opportunity
to define the direct sum of a finite family (£,, A,)is,sn of left Banach H-comodules as

follows. Let E = 0 Eh equipped with a norm equivalent to the norm = max \\x,\\.
I ls/sn

Put A= 0 A,; i.e. A( 2 x,) = 2 A,(x,)- It is readily seen that (£, A) is a left Banach
/=i \i=i / ;=i

//-comodule.
(b)- Put F = £ © E and AF = A£ © A£; then V © W is a Banach subcomodule of F if V

and W are Banach subcomodules of E. The continuous linear injective map u of E into £
defined by u(x) - x ©x is a Banach comodule morphism. ThusK HW = u~\V ffi W) is a
Banach subcomodule of £.

II.2. Spaces of Banach comodule morphisms. Let us recall that a continuous linear
operator u\E-*F is completely continuous if u = lim «„, where un:E-*F is linear

continuous of finite rank. Furthermore, the space C(£, £) of completely continuous
operators is closed in i?(£, F) and is isometrically isomorphic to £'(§>£.

If £ and F are left Banach //-comodules we denote by Hoiricon,^, F) the set of
Banach comodule morphisms. We set Ccom(E, F) = C(£, £) D Homcom(£, £) and
Endcom(£) = H o n w ^ , E); Ccom(£) = Ccom(£, £).

PROPOSITION 1. Let E, F and L be three left Banach H-comodules.
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(i) //u:E^>Fand u: F —»L are Banach comodule morphisms, then v°u:E—>Lisa
Banach comodule morphism.

(ii) Homcom(£, F) [resp. Endcom(£)] is a Banach space [resp. a unitary Banach
algebra]. Furthermore Ccom(E, F) [resp. Ccom(£)] is a closed linear subspace [resp. a closed
two-sided ideal] o/Homcom(£', F) [resp. Endcom(£)].

Proof. It is easy. For instance AL°(v°u) = (AL°v)°u = (lw®u)°AF°u = (lH<g>v)°
(lw®w)°A£ = [lw®(v°u)]°AE. Also, if M= lim un with un e Homcom(£, F), then

+
l lim un I = lim LF°un = lim
\n—»+oo / n—» + =c «_» + :*

COROLLARY. Lef u e Endcom(£) [resp. Ccom(£)] if S = 2 A,,^" ij a formal power

series with coefficients in K [resp. and \Q = 0] such that S(u) = 2 An«" is converging in
<%E), then S(u) e Endcom(£) [resp. Ccom(£)].

II. 3. When H admits a left integral.

II.3.1. Banach comodule morphism associated with a linear map. By definition, a
left integral for the complete Hopf algebra is an element v of H' such that fi * v = (/x, e)v,
for all fi £ H'.

Assume that the duality (H',H) is separated; then v e H' is a left integral for / / if
and only if (lw<8> v)°c = k°v.

In the sequel, we suppose that H admits a left integral v such that (v,e) = 1. Hence
the continuous linear form <p = v°m°(lH<8)Ti):H<&H—>K satisfies: (i) <p°c = cr and (ii)
(<p<8>lw)°(l//<8>c) = (l//®<p)°(c<g>lw). Furthermore <p(a®e) = v(a) and ||v|| < ||ip|| <
Ml ||ij||.

Let E and Fbe two left Banach //-comodules of coproducts AE and AF. If w :£—> Fis
a continuous linear map, we put as in group representations theory

hence «*:£—»Fis linear and continuous.

PROPOSITION 2. Let £ and F be two left Banach comodules and u: £ —»F fee a
continuous linear map.

(i) uu is a Banach comodule morphism.
(ii) 77ie map u -*u # o/ ££{E,F) into Homcom(£,F) w /iwear and continuous.

Moreover, u # # = u* and u w a Banach comodule morphism if and only if un = u.

Proof: (i) One verifies that

A£] =
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Hence, one sees that

° A£ = (1H ® [(.p ® l f ) o (1H <g> Af) o (lw ® u) o A£]) ° A£ =

However (<p® l w ® 1/-)°(1//® l w ® Af) = A/ro((p®l/r). Therefore, (lH<8>u#)°A£ =
AF°((pl8)l,r)o(lw® A/-)°(1//®«)°A£ = A/r°u#; i.e. «* is a comodule morphism.

(ii) It is readily seen that M—»u# is linear and continuous with norm

If u is a comodule morphism, one sees that

l/r)°(c® lyr)°A/r°M = (f °C ® 1/r) ° A/-° M = [((7 <8> 1/r) ° AF] ° M = «.

Conversely, if M = M#, from (i) it follows that u is a comodule morphism. Hence, for any
continuous linear map u:E^>F, one has « # # = u*.

LEMMA 2. Ler E, Fand L be three left Banach H-comodules, u:E-+Fand v.F^L
be continuous linear maps. Then (u««*)* = u # o u #

Proof. Obviously, (u<>«*)* = (<p® 1J<>(1H®Az.)«(lw®uoM
#)oA£ = (<p®lJo

COROLLARY. Ler E be a left Banach H-comodule. If p:E-*E is a continuous linear
projection of E onto M =p(E) and if M is a Banach subcomodule of E; then pn is a
projection of E onto M and E = M(BN, a direct sum of Banach comodules, where

Proof Put A£ = A. By hypothesis, for any y e M, A(y)= 2 be®yeeH®M. Let

x e E; setting A(x) = £ fly®*,- E H&E, it follows that

with ŷ y E M. Since >7y = p{xej), we have

Le./(£)cM.
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On the other hand, since for any y e M, p(y) = y, one has

P*{y) = (<P® 1*)(X b,®A{ye)) = (<p®l£)°(lH® A)°A(y)

Therefore M c/?#(M) cp*(£) . We have proved that M=p*{E).
Since for any x e E, p*(x)= p(z), one has p°p**{x) = p°p(z) = p(z)= p**(x); in

other words, p°pu=pn. Hence p* = p**** = (p°p**)tt = pu °p"; i.e. pu is a linear
projection as well as a comodule morphism of E onto M. The corollary is proved.

NOTE. This corollary gives a proof of the implication (iv) ̂ > (i) of the Theorem 3 in
[3].

PROPOSITION 3. Let E and F be two left Banach H-comodules and let u:E-^F be a
completely continuous operator. Then u** is completely continuous.

Proof, (i) Since the map M - » H # is linear and continuous, if u = 2 x'n<S>zne

C(E,F) = E'&F, one has, « # = £ (x'n®zn)* in Homcom(£,F). But C(£,F) is a

Banach space; hence, it suffices to prove that for any x' e. £ ' and any z e F, one has
#

(ii) Put u=x'®z- First, A£(z) = 2 b(®z(, where (bf)es.}czH and (z^O^i is an
a-orthogonal set of F, with

a sup | |M ||2,|| < ||A£(z)|| < sup \\be\\ \\ze\\. (0)

Also, for x e £ , A£(x) = 2 a,<8>A:,-, where (a^i cH, (x^j^y is an a-orthogonal set

of £ and one has an inequality similar to (0). On the other hand,

u*{x) = (<p <g> lF) o (1H (2) AF) o (lw ® «) o &E(X)

However ||<x',x,Mfly®6,)z,|| ^ ||JC'|| ||<p|| \\aj\\ \\xj\\ \\bf\\ \\ze\\ with lim \\aj\\ \\xt\\ =0 =

lim ||fe |̂| ||z^||. Hence, the family ({x',Xj)(p(aj®bf)ze)j,eis summable. Therefore
/—»+oo

j j Z e . (1)

Let Fo = E[zu..., Ze, • • •] be the closed subspace of F spanned by the a-orthogonal

set (ze)e*i- M z'fsF'o is denned by (z'e,zk)= 8<k, then |M |
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It is clear that for any x e E, u*(x) e Fo and we obtain the adjoint map 'u*:F'o—* E'
with 'u*(z'e) e E' and for any x e E, we have

<'«*(*»,*> = <^, «*(x)> = 2 (x',XiMai®be). (2)

Moreover,

sup

^ - \ \ x ' \ \ \ \ < p \ \ \ \ b <a

Hence, we have

1
\\\\ IMIIIA£|| IIM- 0 )

a
It follows that

\\'u*(z'e)®zA^-\\x'\\\\<p\\\\AE\\\\bA\\zA-
a

Since lim \\be\\ \\zf\\ =0> we have lim \\'u*(z'e)®Ze\\ = 0

= C(E, F). However for any x e E,

by (1). It follows that M# = 2 'u*(z'e)® zf E C(£, F).

REMARK 1. Recall that v is a left integral for AP(G, K) such that <v, 1) # 0 iff v ^ 0
and (v, ysf) = (v,f) = (v, Ssf) for all s e G. Moreover, if {v, 1) = 1, v is called an invariant
mean. If F is a Banach space, we have an extension vF = v®lF of v on AP(G,F) =
AP(G,K)&F with values in Fand vF(y,<p) = vF(<p) = vF(8s<p), s eG.

For the a.p. linear representations U:G —>J£(E), V:G->Z£(F) and the continuous
linear map u :£—> F, the intertwining operator (as well as comodule morphism) un can be
written in the classical form uu(x) = /G V, °u ° f7s-i(;t)dvf(.s).

n.3.2. Comodules which are free Banach spaces. Let E be a free Banach space; that

is to say, E is isomorphic to a space co(/,/Q = j(A7)ye/c A71imA; = ol. In other words,

there exists (e;) ;e7c £, called a base of £, two real numbers a0 and aj > 0, such that any
x e E can be written in the form x = 2 Aye,-, Ay e /C and a0 sup |A;| s ||x || < aj sup |A;|. For

jel jel jel

the continuous linear form e\ e £ ' , defined by (e/,^) = 8;Y, one has — s lie! II ^ —.
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Let F be another Banach space. The complete tensor product F® E is isomorphic to

co(I,F) = \(yi)js,cF/\\m \\yj\\ = Of. In fact, each z e F<§>£ is in the form z = S yj®e},

where ^ e Fand lim Û H =0. Furthermore aosup ||_yy|| < ||z|| < a , sup ||y;||.
j /e/ jel

Assume that the free Banach space £ is a left Banach //-comodule with coproduct

A:E—*H®E. For x e E, one has A(x) = S Aj(x)®ej. Hence one defines, for each / e /,

a continuous linear map Af.E~*H and aosup \At\ < ||A|| < a] sup ||>1;||.
7'e/ jel

Put, for £ e I, Aj(e/) = aej e H\ one has
S ejt lim a4- = 0. (4)

iis i

NOTE. /4y = (1H ® e') ° A and P) ker ,4, = (0).
;e/

More generally, if x' e E', we put Ax, - (lH®x')°A. Obviously, H is a left Banach
//-comodule with respect to its coproduct c.

LEMMA 3. For any x' e £ ' , f/ie //nea/- map AX' = ( 1 H ® J C ' ) ° A : £ — » / / is a comodule
morphism.

Proof. It is easy to see that c°(lH®x') = c®x' = ( I ^ ^ I W ^ J C 1 ) 0 ^ ® ! ^ , So

LEMMA 4. For a// ^, ; ' e / , one has

(i) c{ae?) = Y, a(n®anj,
nel

(ii) o-{aej) = &ej,

(iii) 2 "enV(anj) = S^- e = S nifle^anj-

(i) Since y4; = (lH<8>e;')°A is a comodule morphism, we have c{a(j) =

a € n ® e n ) = S a j ( ) ,
/ie/ / fie/ ne/

(ii) Obviously, from (cr<g)l£)°A = 1^ we get, for jr e £, x = 2 o-(j4/(*))e/. Hence
1 a-(Aj(e€))ej = 2 cr(a€j)ej and o-(a^) = 5^.
jel jel

(iii) This follows readily from (i), (ii) and m°(lH®T])°c = /c°cr = m°(lw®TJ)°C.

LEMMA 5. Assume tfiar / / admits a left integral v sudi that (v, e) = 1. Pur <p =

v o m ° (1H ® rj). For a// / , ; £ /, one
n e /

Proo/. Since ^p°c = o-, from Lemma 4 one deduces that bfj-cr{aei) = (p°c{aej) =
2 ¥>(<!* ®fln;). D

/
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Now assume that the duality (H',H) is separated and that H admits a left integral v
such that (v, e) = 1. By Proposition 3, we know that (e'f® e;)

# e C(E), for all €, j e /.
With (4) and by definition of (e'€®ej)u one verifies that

% K (ij, € e I). (5)
nel

REMARK 2. One deduces from (5) and Lemma 5 that there exists £ e / such that
(e'e®e()

n is different from the null operator.

By a previous result, we know that the space C(E) = E'®E is isomorphic to
co(I,E'). Let u e C(£); then u = 2 i /v®^ with i /ve£ ' , limi/^ = 0 and a0 sup ||t/v|| ^

<*<=/ ( fel

\\u\\ < «] sup ||</v||. Furthermore one has « = 2 'u(
ti fi

It is well known that one has the trace form Tr:£ ' <S>£—»/C defined by
Tr(x'®x) = (x',x), which is linear and continuous with |Tr(«)|< ||u||. Here one obtains
for u = 2 \b(®e( e C(£) = E' ®E, Tr(u) = 2 (t/v, ee) = 2 (ek «(£,?))•

Hence, for u = (eJ.®e,-)#; €, j e /; one has

Tr[(e'e®ej)*) = £ <p{ane®ajn) (j, € e I). (6)
nel

DEFINITION. A complete Hopf algebra H is called supple if H is a pseudo-reflexive
Banach space and if 77 ° T7 = lw.

EXAMPLES. (1) AP(G,K) and its complete sub-Hopf-algebras are supple.
(2) Any commutative (resp. cocommutative) complete Hopf algebra which is a

pseudo-reflexive Banach space is supple.

LEMMA 6. Let H be a supple complete Hopf algebra. If H admits a left integral v such
that (v,e) = l, then the map <p = v°m°(lH®ri) satisfies <p(a®b) = (p(b®a), for all a,
bsH.

Proof. Since 17 is an anti-endomorphism of the algebra H and since 77 ° 77 = 1H implies
V°TJ = V, one has for a, beH, (p(a®b) = v°m°(lH®r))(a®b) = v(ar](b)) =
v° 77(077(6)) = v(bT)(a)) = <p(b ® a).

The following proposition strengthens Remark 2.

PROPOSITION 4. Let H be a supple complete Hopf algebra that admits a left integral v
such that {v, e) = 1. Let E be a left Banach H-comodule which is a free Banach space with
base {ej)jsI. Then for each £el, the comodule endomorphism (e'(®ee)

n of E is a
completely continuous operator such that Tr[(e't®e/)ff] = 1.

Proof. Indeed, one deduces from (6), Lemmas 5 and 6 that Tr[{e'e®ef)*] =

2 <p{anf®a(n) = 2 <p(aen®ane) = 1.
nel nel

REMARK 3. In the same way, if f^j, then Tr[(e^®e;-)
#] = 2 <p{ane®ajn) =

2 <p(ajn®an<) = Q.
nel

Let Eo = E[e'j,j e /] be the closed subspace of E' spanned by (e})JE,. The space
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£o<§>£ is a closed subspace of £'(§>£ = C(£). Since (e))jsl is a base of £Q, each
u e £ Q ® £ can be written u = 2 2 A«e! ® e^ with A* e /C, lim sup IA«| = 0 and for any

esijsi e je.i

£ e /, lim |A«| = 0. One has Tr(w) = 2 \ee.
i e^i

COROLLARY 1. For each u e £Q<§>£, one has Tr(«#) = Tr(«). In particular, if dim E is
finite, for each u e i?(£), one has Tr(w#) = Tr(«).

Proof. Obviously, Tr(u*) = 2 2 A«Tr[(e.' ®ef)*} = 2 2 A«Sfl = Tr(«).

COROLLARY 2. Ler J: e £, JTT^O; f/zere ejrwte x'e E' such that (x',x) = l and
Tr[(x'®x)*] = l.

Let us recall that if u e C(£) then the Fredholm determinant of u is det(l£ - tu) =
1 + 2 (-1)9 Tr(A*«)f9 and det(l£-rw) is a power series of infinite radius of

convergence; (cf. [4] and [10]). Furthermore det(l£ - tu) • 1E = {lE - tu)Pi(t, u), where
P\{t, u) is the Fredholm resolvent of u. Hence for A e K, 1E ~ A u is invertible in J£(£) if
and only if det(l£ - AM) ¥= 0.

With the operators as above, for instance for ue= (e^®e^>)#, ( e 1, one has

det(l£ -tuf) = l-t+2 (-1)" Tr(A'uf)fi. (7)

III. Reducibility of Banach comodules.

III.l.l. Simple Banach comodules.

DEFINITION. A left Banach //-comodule E is called simple or topologically irreducible
if E is not the null space and does not contain any closed subcomodule different from (0)
and £.

It follows immediately from Theorem 1 that, when H is a pseudo-reflexive Banach
space, any simple left Banach //-comodule is a vector space of countable type.

THEOREM 2. Let H be a supple complete Hopf algebra that admits a left integral v such
that (v, e) = 1. Then any left Banach H-comodule that is not the null space contains at least
a finite dimensional subcomodule different from (0).

Proof. For this proof, we apply Riesz's decomposition theorem.
(a) Let £ be a left Banach comodule over the supple complete Hopf algebra H with

£ T̂  (0). By Theorem 1, if x e £, x ¥= 0, then x e M = H' • x; hence M is different from (0).
Furthermore M is a Banach subcomodule of £ and is a Banach space of countable type.
Therefore M is a free Banach space (cf. [7]).

(b) Assume that H admits a left integral v such that (v, e) = 1. Hence by Proposition
4, there exists a completely continuous operator u which is an endomorphism of the
comodule M and such that Tr(w) = 1. It follows that det(lM - tu) = 1 - t + 2 (-1)"

2
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Tr(A*«) tq is a non constant power series with infinite radius of convergence. According to
the p-adic Weierstrass' factorization theorem, one has det(lM -tu) = U Pq, where Pq is a

•jal

polynomical such that Pq(0) = l,d-Pq>l (see for example [1]). That is det(lM - tu) has
its zeros in a subfield of the algebraic closure K of K. Following [10] one has the following
results.

(b]) First, det(lM - tu) has a zero A e K*.
Let h > 1 be the multiplicity of A; one has M = N(\)®F(\) (Riesz's decomposition),

where N(\) = ker(lM — \u)h and dimjV(A) = h. However (1M - \u)h is a comodule
endomorphism of M; therefore N(\) is a subcomodule of M of finite dimension h > 1 and
JV(A) is a non-null finite dimensional subcomodule of E.

(b2) Second, det(lM - tu) has no zero in K*.
e

Let I e K be a zero of det(lM - m). Let R(t) = 1 - 2 y/ ; be the polynomial of

minimal degree such that J?(£ ') = 0 and R(0) = 1. Setting /?(«) = 1M - 2 r,M; = 1M - w,

we see that v= 2 7/«;' is a comodule endomorphism of M as well as a completely

continuous operator.
Let £( 2 ) , . . . , Cw be the conjugates of £ in £. The field L = K[£, £(2),..., t,(€)] is a

finite extension of K. Put ML = L&KM = L®KM\ hence uL = \L®u is a completely
continuous operator on ML. Moreover, f e L is a zero of det(lM/ - tuL) = det(lw - tu)\
hence 1ML - t,uL is not invertible in Z£L{ML).

e
Since R(t) = (1 - £t)Y\ (1 - £U)t) and R(u) = lM-v, one has

; = 2

/?(«)i = W " 1 JAL®U< = 1ML-2 Jjui = 1UL ~VL = (1ML - £uL)f[ (1UL ~ C(i)uL).

It follows that the completely continuous operator vL is such that 1ML -VL = R(UL) is not
invertible in 3!L(ML). Consequently \M - v is not invertible in Z£(M); i.e. 1 is a zero of
det(lM-fu) with multiplicity / i ' ^ 1 . Therefore we have the Riesz decomposition
M = N(R)®F(R), where N(R) = ker(lM - v)h' = ker(/?(«)*') and &mN{R) = /J' > 1.

But i?(w)'1 is a comodule endomorphism of M; hence N(R) = ker(R(u)h) is a
subcomodule of M of finite dimension / i ' s l . Therefore N(^?) is a non-null finite
dimensional subcomodule of E.

REMARK 4. The subspace F(A) (resp. F(/?)) of M is also a Banach subcomodule of E.

THEOREM 3. Let H be a supple complete Hopf algebra that admits a left integral v such
that (v, e) - 1. Then any simple left Banach H-comodule E is finite dimensional.

Proof. This is obvious from Theorem 2. Indeed, let x e E, x ¥= 0; one has H' • x =
M ¥> (0); hence M = E and by Theorem 1, £ is a free Banach space. With the notations in
the proof of Theorem 2, one has in the first case E = JV(A) = {x e E/u(x) = A"1*},
dim£ = /i and M = A"11£ . In the second case, one has E = N(R) = {x e E/v(x)=x},
dim E = h'
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COROLLARY. (Schur's Lemma.) Under the above hypothesis on H, if E is a simple left
Banach H-comodule, then Endcom(£) is a (skew) field of finite dimension < (dim £)2.
Moreover, if K is algebraically closed, then EndCOm(£) = K • \E and if K is of characteristic
p^O, then (p,dim£) = l.

Proof. It suffices to observe that there exist u e Endcom(£) such that Tr(u) = 1. If AT
is algebraically closed, one has u = Al£, hence Tr(w) = 1 = A dim £

III.1.2. Reductibility of Banach comodules.

PROPOSITION 5. Let H be a supple complete Hopf algebra that admits a left integral v
such that (v, e) = 1. Then any left Banach H-comodule E that is a Banach space of
countable type is a topological direct sum of simple comodules.

Proof. Indeed, by Theorem 2, £ contains finite subcomodules different from the null

space. Hence E contains a simple subcomodule. Let W = 2 Ve be the sum of all simple

subcomodules of E. As in semi-simple module theory, there exists a subset T of 5 such
that W = 0 V,. Put Eo = W = 0 Ve, the closure of W in E. It is clear that £0 is a

€e.T feT

Banach subcomodule of £.
On the other hand, since £ is a Banach space of countable type and £0 is a closed

subspace of £, for 0 < a < 1, there exists a linear projection of £ onto £0 such that \\p || s

— (cf. [7]). Therefore by the Corollary of Lemma 2 or Theorem 3 of [31 one has the direct
a
sum of Banach comodules £ = E0(BF0. If Fo is different from (0), Fo must contain a simple
subcomodule V. Clearly V is not contained in £0; that contradicts the definition of £0.
Consequently Fo = (0) and £ = £0 = 0 Ve.

THEOREM 4. Let H be a supple complete Hopf algebra that admits a left integral v such
that (v,e) = 1. Then any left Banach H-module E is a topological direct sum of simple
comodules.

Proof As above, put W = 2 Vh the sum of all simple subcomodules of £. There

exists J c / such that W = @Vj (any simple subcomodule of £ is isomorphic to one of the
jsJ

V,,jeJ).

Let x e E, x ^ 0; the Banach subcomodule Mx = H' • x of £ being a Banach space of

countable type, one has, by Proposition 5, x e Mx = 0 V(, where Ve is a simple

subcomodule of Mx and obviously of £. Hence for e > 0, there exists a finite subset F of
- 2 x( <E. Since S ^ e 0 ^ c f f , one has x e WT, xe e. Vf for £ G F, such that

and£ = W = 0VJ,

REMARK 5. Let Q be the family of the isomorphic classes of simple left Banach
//-comodules. Let £(w) be the isotypical component of E for w G Q, i.e. the sum of
all simple subcomodules of £ belonging to co. It may happen that £(w) = (0). One has
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E(co) = © (Vj, Vj e a>), W = 0 £(«) and if // satisfies the hypothesis of Theorem 4, then

E = © £(<•>).

III.2. Application to H = AP(G,K). Let us recall that the complete Hopf algebra
AP(G, K) (as well as any of its complete Hopf subalgebras) is a supple Hopf algebra. A
left integral v over AP(G, K), if it exists, such that (v, 1) = 1 is called an invariant mean.

From [3] we know that the category of left Banach AP(G, /C)-comodules is in a
bijective correspondence with the category of almost periodic linear representations of G.

The following theorem is a direct application of Theorems 3 and 4. One has an
equivalent theorem for any complete Hopf subalgebra of AP(G,K) as AP&(G,K),
SP2P(G,K) and S ^ G . / Q : the algebra 3?>&>(G,K) is the subalgebra of the elements/in
AP(G,K) such that {ysf,s<=G} is relatively compact in 33(G, K)\ if ST is a group
topology on G, AP3{G,K)[resp.2P->P;r(G,K)] is the subalgebra of the functions / in
AP(G, K) [resp. SP3P(G,K)] such that/is ^"-continuous.

THEOREM 5. Assume that AP(G, K) admits an invariant mean.
(i) Any topologically irreducible almost periodic linear representation is finite

dimensional.
(ii) Let U:G —> if(£) be an almost periodic linear representation of G. The Banach

space E is a topological direct sum of irreducible U-invariant subspaces of E.

NOTE. Let Q be the family of the classes of topologically irreducible almost linear
representations. With the above hypothesis, one has E = 0 E(a>) (cf. Remark 5).

COROLLARY 1. (Peter-Weyl Theorem). Assume that AP(G,K) admits an invariant
mean. Then the space Rb(G,K) of the bounded representative functions of G in K is a
dense subspace of AP(G, K).

Proof. The left regular representation y of G in AP(G,K) is almost periodic
[ysf(t) =f(s~'lt)]. It is clear that any y-invariant finite dimensional subspace of AP(G,K)
is contained in Rh(G,K).

Let / E AP(G,K),f*0 and Mf=AP(G,K)' •/. One has Mf = 0 Ve, where V( is
esT

y-invariant and topologically irreducible. Hence dim V îs finite and Vea Rh(G,K) for all
£ tT. Moreover, as in the proof of Theorem 4, there exist a finite subset F of T and
€eF,f,e Vf, such that

f e f
<£. Since S / ^ E ® Vf<zRh(G,K), we have shown

that Rb(G, K) is dense in AP(G, K). D

Let u> E Q be the class of the topologically irreducible almost periodic linear
representation (V,p) of G. With the hypothesis of Theorem 5, one has dim V = « finite.
Let R(p) be the subspace of AP(G, K) spanned by the coefficient functions of p; i.e. the
functions s-*(x',p(s) • x), where x' e V and x e V. One has dim R(p)<n2 and it is
readily seen that R(w) = R(p) depends only on w. Let w be the class of (V',p), where
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p(s) = 'p(s~1)\ then (V',p) is irreducible and R(w) = r}(R(w)). Fix a base (e;)is ;sn of V
and let (e; ')]S;SncV" be its dual base. Let us consider for l < j < n the linear map
Aj-.V-*AP(G,K) denned by Aj(x)(s) = <e;,p(5"1) • x). One has y5°Aj = Aj°p(s) (dir-
ectly or see Lemma 3). Since y4;(e;)(e) = 1, one has kerAj¥=V and since (V,p) is
irreducible, ker,4; = (0), i.e. Aj is injective. Put HJ = AJ(V); the linear representations
(V,p) and (Hj, y) are equivalent. Hence (Hh y) e w, for 1 < j < n . It is readily seen that

n

r)(R(cj)) = ~Z Hj and there exists 7 c [ l , n ] such that r](R(a>)) = © //•. Moreover

TJ(/?(W)) is the isotypical component of AP(G,K) corresponding to w. Therefore, if
m m

(a)],.. . , wm) is a finite subset of Q., then £ T)(/?(cor)) = © rj(R((oz)). It follows that
m m r = 1 r = 1

S R(wz) = © /?(wT).
T = l T = l

Since any finite dimensional almost periodic linear representation is reducible, we
have proved the following result.

COROLLARY 2. Assume that AP(G, K) admits an invariant mean. Then

Rb(G,K)= © R(u>) and AP(G,K)= © R(w).

NOTE. R(a>) is a subcogebra of AP(G, K) for w e Q.

COROLLARY 3. Assume that the group G is commutative and that AP{G, K) admits an
invariant mean. If the field K is algebraically closed, then Q. can be identified with
Homfc(G, K*) = G, the bounded character group of G and AP(G, K)= © K • %.

Proof. The proof runs as in the classical case. Indeed, with the hypothesis on
AP(G,K), if (V ,p ) is irreducible and K is algebraically closed then Endp(V) = /C- V
Since G is commutative, for s e G, one has p(s) e Endp(K), hence p(s) = x(s)" lv and %
is a bounded character of G (which implies \%(s)\ = 1 , J E G). It follows that Q. = G. Since

= K • x, we have AP{G, K)= © K • x (compare with [8], [9]).
<5

More generally one can prove the following result.

COROLLARY 4. Let CAP(G,K) be the closed subalgebra of the central functions
f sAP(G,K); i.e. f(sts~l)=f(t), s, t e G. Assume that AP(G,K) admits an invariant
mean. Set for (V,p)eo>, x^>(s) = Tr(p(s)°u), where u e Endp(V). Hence K , O I E Q ,
u e Endp(V) for a fixed (V, p) E W} is a total subset of the Banach space CAP(G, K).
Moreover, if K is algebraically closed, setting x*(s) = Tr(p(s)) for a fixed (V, p) e w, one

hasCAP(G,K)= & K-x»-
DEQ

NOTES, (i) Let us say that (G,K) is a.p.i.m. if AP(G,K) admits an invariant mean v.
Schikhof has given in [8], [9] the characterization of the a.p.i.m. pairs (G, K) when G is
commutative and with the extra condition ||v|| = l. It remains to characterize all the
a.p.i.m. pairs (G, K).

(ii) If there exists an invariant mean v on AP(G, K), and putting for / , g e
AP(G, K), (f*g)(s) = (v,f • y,(Tj(g))), then AP(G, K) is equipped with a new structure
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of Banach algebra, non unitary if G is infinite. Can one use this algebra structure in the
aim to establish the above results? In the case of ^^{G, K) see [6].

REMARK 6. For any complete Hopf algebra H, one can define the representative
subalgebra $1{H) of H similar to Rb(G, K). If H is supple and admits a left integral v such
that (v, e) = 1, then one has a translation of Theorem 5 and its Corollaries 1 and 2.
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