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Abstract
Quantum interactions exchanging different types of particles play a pivotal rôle in quantum many-body theory, but
they are not sufficiently investigated from a mathematical perspective. Here, we consider a system made of two
fermions and one boson, in order to study the effect of such an off-diagonal interaction term, having in mind the
physics of cuprate superconductors. Additionally, our model also includes a generalized Hubbard interaction (i.e.,
a general local repulsion term for the fermions). Regarding pairing, exponentially localized dressed bound fermion
pairs are shown to exist, and their effective dispersion relation is studied in detail. Scattering properties of the system
are derived for two channels: the unbound and bound pair channels. We give particular attention to the regime of
very large on-site (Hubbard) repulsions because this situation is relevant for cuprate superconductors.
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1. Introduction

1.1. Exchange interactions and high-Tc superconductivity

Exchange interactions in Mathematical Physics. Off-diagonal interaction terms of the form

𝐵∗𝐴 + 𝐴∗𝐵, (1)

with 𝐴, 𝐵 being two monomials of annihilation operators of two species (a) and (b) of quantum particles,
play a pivotal rôle in the rigorous understanding of quantum many-body systems at low temperatures.
Such terms are also named ‘exchange’ terms because they encode (quantum) processes destroying a set
of particles of one specie to create another kind of particles.

For instance, for the Bogoliubov model, an off-diagonal term of the form∑
𝑘

𝑓1(𝑘)
(
𝑏∗𝑘𝑏

∗
−𝑘𝑎

2 + (𝑎∗)2𝑏𝑘𝑏−𝑘
)
, 𝑓1 (𝑘) ≥ 0, (2)

exchanging two bosons (𝑎 = 𝑏0) having zero momentum (𝑘 = 0) with a pair of boson having nonzero
momentum of opposite sign (𝑏𝑘≠0), is shown in [1] to imply a nonconventional Bose condensation. Made
of dressed bound pairs of (zero-momentum) bosons, the nonconventional condensate is structurally
different from the Bose-Einstein condensate of the ideal Bose gas. In particular, it must be depleted
to take advantage of the effective attraction induced by the exchange interaction (2). See [2]. This is
reminiscent of liquid helium physics, where 100% superfluid helium occurs at zero temperature with
only 9% Bose condensate [3, 4, 5, 6, 7]. Off-diagonal interaction terms (2) are conjectured in [8] to be
relevant to explain the macroscopic behavior of weakly interacting Bose gases.

Another example from quantum statistical mechanics is given by the spin-boson model within the
so-called ‘rotating wave approximation’. In this approximation, the model has terms of the form
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𝑘

𝑓2(𝑘)
(
𝑏∗𝑘𝜎− + 𝜎+𝑏𝑘

)
, 𝑓2 (𝑘) ≥ 0,

with 𝜎± = 𝜎𝑥 ± 𝜎𝑦 (𝜎𝑥 , 𝜎𝑦 being Pauli matrices) and 𝑏𝑘 being the annihilation operator of a boson.
Note that 𝜎− (𝜎+) can be related to the annihilation (creation) operator a (𝑎∗) of a fermion, via a so-
called Jordan-Wigner transformation. Such off-diagonal terms make impossible the diagonalization of
the quantum Hamiltonian with usual methods. In particular, the impact of these interaction terms on the
properties of the model is expected to be major. For a general presentation of spin-boson models, see,
for example, (9, Introduction and Section 2.3).

More recently, using the Hubbard model with nearest neighbor interaction near its Hartree-Fock
ground state, Bach and Rauch demonstrate [10] that interaction terms of the form∑

𝑥,𝑦

∑
s,t∈{↑,↓}

𝑓3 (𝑥 − 𝑦)
(
𝑏∗𝑥,s𝑏

∗
𝑦,t𝑎𝑦,t𝑎𝑥,s + 𝑎∗𝑥,s𝑎∗𝑦,t𝑏𝑦,t𝑏𝑥,s

)
, 𝑓2(𝑥 − 𝑦) ≥ 0, (3)

exchanging fermions inside (a) and outside (b) of the Fermi surface are the only ones that can prevent
from getting uniform1 relative bounds of the effective interaction with respect to the effective kinetic
energy. See [10, Theorems III.1, III.2 and III.3] for more details. In other words, (3) should again have
a drastic impact on the corresponding quantum many-body system.

Three-body fermion-boson exchange interactions. In the present paper, for a fairly general function
𝜐 : Z2 → R, we study the effect of the off-diagonal interaction term∑

𝑥,𝑦

𝜐(𝑥 − 𝑦)
(
𝑐∗𝑦 𝑏𝑥 + 𝑏∗𝑥𝑐𝑦

)
, (4)

where 𝑏𝑥 is the annihilation operator of a spinless boson on the site 𝑥 of the two-dimensional (square)
lattice Z2, while 𝑐𝑦 represents the annihilation of a fermion pair of zero total spin, the two components
of which are spread around the lattice position 𝑦 ∈ Z2. See Figure 1.

Note that the opposite combination can also be made: a boson b is destroyed to create two fermions
f, which annihilate to recreate a boson 𝑏. This does not really create an interaction as such, but a kinetic
term, or seen another way, a self-interaction. The combination of two diagrams refers to a perturbative
approach of second order, but we can also combine several of the same diagrams (perturbative approach
of order n).

The purely fermionic part of the considered model corresponds to the extended Hubbard Hamiltonian,
as used in the context of ultracold atoms, ions and molecules [11], while the purely bosonic component
refers to an ideal gas; that is, it has only a kinetic part (or ‘hopping term’), without interbosonic
interactions. Because of the fermionic part, which is not exactly diagonalizable, the behavior of the full
quantum many-body system, outside perturbative regimes, is almost inaccessible with the mathematical
tools at our disposal.

We thus consider only a three-body problem, by restricting the model to the sector of one boson and
two fermions of opposite spins. In fact, the system restricted to this particular sector is very interesting,
both mathematically and physically. Note that such sector restrictions in Fock spaces are also performed
for the study of the Pauli-Fierz and Nelson models [26, 28, 27] in nonrelativistic Quantum Field Theory
(QFT).

Physical context: High-𝑇𝑐 superconductivity of cuprates. Physically, the model is related to cuprate
superconductors,2 like, for instance, La2−𝑥Sr𝑥CuO4 (LaSr 214 or LSCO) and La2−𝑥Ba𝑥CuO4. It is

1We mean a relative bound that is uniform with respect to the length of the discrete d-dimensional torus where the Hubbard
model is defined.

2You can take, for instance, the cuprate La2CuO4, which is a Mott insulator with an antiferromagnetic phase at low temperature.
As with semiconductors, it is doped with atoms like Sr or Ba, which add a few charge carriers (in this case, holes). Then, with
moderate doping x, the material becomes superconducting at low temperatures. This is the meaning of the chemical formulae
La2−𝑥Sr𝑥CuO4 and La2−𝑥Ba𝑥CuO4, x being a small number characterizing the cuprate doping. See also Section A.1.

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


4 J.-B. Bru, W. de Siqueira Pedra and A. Ramer dos Santos

𝑓

𝑓

𝑏 𝑏

𝑓

𝑓

𝜐 𝜐

Figure 1. Illustration of fermion-boson exchange interactions in the form of two Feynman diagrams. In
theoretical physics, a Feynman diagram visually represents the mathematical expressions that describe
the behavior and interactions of quantum particles. In the example on the left, the two arrows indicate
that two fermions, named ( 𝑓 ), ‘collide’ to create a new particle, the boson (𝑏). The oscillating line
is generally used to describe an interaction with a mediator, which can be seen by combining the
two diagrams: two fermions ( 𝑓 ) interact to produce a boson, which annihilates again to produce two
fermions ( 𝑓 ). This can lead to an effective interaction between fermions. In particular, this process
could produce a pair of fermions ( 𝑓 − 𝑓 ) bonded by the exchange of a bosonic field (b), according to
the coupling function 𝜐. This is typically what we are going to show. Note that the opposite combination
can also be made: a boson (𝑏) is destroyed to create two fermions ( 𝑓 ), which annihilate to recreate a
boson (𝑏). This does not really create an interaction as such, but a kinetic term, or seen another way,
a self-interaction on the boson (𝑏). The combination of two diagrams refers to a perturbative approach
of second order, but we can also combine several of the same diagrams (perturbative approach of order
n). Note, however, that no such perturbative argument is used here.

known [12, 13, 14] that in such crystals, charge transport occurs within two-dimensional isotropic layers
of copper oxides. This is why we consider here quantum particles on 2-dimensional lattices Z2.

A convincing microscopic mechanism behind superconductivity at high critical temperature is still
lacking even after almost four decades of intensive theoretical and experimental studies. See Section A.1
for more details. Many physicists believe that the celebrated Hubbard model could be pivotal, one way or
another, in order to get a microscopic theory of high-temperature superconductivity, but many alternative
explanations or research directions have also been considered in theoretical physics. For some of the
more popular models for cuprate superconductors, see, for example, [13, Chap. 7].

In many theoretical approaches to this problem, the existence of polaronic quasiparticles in relation
with the very strong Jahn-Teller (JT) effect associated with copper ions is neglected, as stressed in
(15, Part VII). The role of polarons is, however, highlighted in [16], since the JT effect actually led to
the discovery of superconductivity in cuprates in 1986. See [17, p. 2] or [18, 19].

Our theoretical approach differs from most popular ones, being based on the existence of JT bipolarons
in copper oxides, as is discussed in the literature [20] at least as early as 1990. The physics behind
this approach is explained in detail in [21], where a simplified version of the model studied here is
considered. In our microscopic model for cuprate superconductors, as presented in [22, 21], the bosonic
operator 𝑏𝑥 (𝑏∗𝑥) in (4) refers to the annihilation (creation) of a JT bipolaron, whereas the fermionic
one 𝑐𝑦 (𝑐∗𝑦) annihilates (creates) a fermion pair, which is reminiscent of Cooper pairs in conventional
superconductivity.

Bipolaronic pairing mechanisms and cuprate superconductivity. As in the present paper, no ad hoc
assumptions, in particular concerning anisotropy, are made in [21]. In fact, [21] proves that unconven-
tional pairing may occur, breaking spontaneously discrete symmetries of the model, like the d-wave
pairing, whose wave function is antisymmetric with respect to 90◦ -rotations. It turns out that electro-
static (screened Coulomb) repulsion is crucial for such unconventional pairings, which are meanwhile
shown to be concomitant with a strong depletion of superconducting pairs.

Notice that the results of [21] are coherent with experimental observations on the cuprate LaSr
214: The coherence length at optimal doping and the d-wave pair formation in the pseudogap regime
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(i.e., at temperatures much higher than the superconducting transition temperature) are predicted in
good accordance with experimental data. In addition to the 𝑑-wave pairing and the high-temperature
pseudogap regime, the model considered here also captures another very special feature of high-Tc
cuprate superconductors – namely, the density waves [23]. For more details, see also Section A.1.

In fact, it is shown in [22, Section 4.1] that three-body fermion-boson exchange interactions, like
the one studied in this paper, imply an effective fermion-fermion interaction. Then, by considering the
mean-field limit of it, which corresponds to taking couplings (4) that are very localized in momentum
space (22, Section 4.2), it was rigorously proven [24] that, below the critical temperature, the equilibrium
states of the (purely fermionic) associated many-body Hamiltonian exhibit periodic modulation in space
of the charge density, even incommensurate with respect to the lattice spacing.

1.2. Mathematical results

Previous results. To our knowledge, the model considered here has not been studied mathematically,
apart from our own articles [21, 22] published in recent years. See also the Ph.D. thesis [24]. Mathemat-
ical studies for explicit exchange interaction terms are mainly those presented above. As far as we know,
concerning its physical interpretation regarding cuprate superconductivity, our approach has also never
been considered by other physicists, and we therefore doubt that any theoretical results in this direction
exist in the literature. For more details, see the introductory discussions in [21], which give a concise
overview of theories of high-temperature superconductivity.

Mathematically, the present paper improves [21, 22] to get more complete and general rigorous
results, including, among other things, extended Hubbard interactions and scattering properties. While
[21, 22] focus only on the ground state energy and the unconventional pairings in the limit of large
Hubbard interactions, here we provide the full spectral properties of the corresponding Hamiltonian.
In particular, we study in depth the effective dispersion relation associated with dressed bound fermion
pairs. It confirms that off-diagonal interactions of the form (1) produce bounded states by reducing the
energy of the system, similar to [2], possibly with a spectral gap.

This was already done in [21, 22], but only for usual ( non-extended) Hubbard interactions and one-
range creation / annihilation operators of fermion pairs. Even in this specific case, the dispersion relation
of dressed bound fermion pairs was analyzed only to a level of detail enough to deduce unconventional
pairings near the ground state. By contrast, in the present paper, other important properties of the
dispersion relation, like its regularity, are studied for the first time and in a more general framework.

Last but not least, the localization of dressed bound fermion pairs or the scattering properties of the
model have not been studied before.

Localized dressed bound fermion pairs. Using Combes-Thomas estimates, we show, among other
things, that the dressed bound fermion pairs are localized, in the sense that the fermion-fermion corre-
lation decays very fast in space. Group velocities and tensor masses of dressed bound fermion pairs are
also shown to exist under very natural conditions on the (absolutely summable function) 𝜐 : Z2 → R
appearing in (4).

In fact, our analysis allows one to accurately understand which features of the exchange strength
function 𝜐 can strengthen the stability of the dressed bound fermion pairs. For instance, 𝜐 has to be
sufficiently strong and localized in Fourier space in order to get a sufficiently strong ‘gluing effect’.
Additionally, the boson should be heavier than two fermions.

Notice that this second condition is consistent with the physical interpretation that the boson is a
bipolaron, which is known to be (effectively) much heavier than the fermions (electrons or holes), in
superconducting cuprates. Observe additionally that the very large mass of bipolarons (and polarons,
in general) is one of the main arguments used to discredit theoretical approaches based on bipolarons
because it is known from experiments that the charge carriers in superconducting cuprates have an
effective mass comparable to that of electrons and holes.

In fact, we prove that the effective mass of bound pairs mainly depends on the properties of the
function 𝜐, that encodes the fermion-boson exchange processes, but not much on the mass of the boson
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itself. This issue is discussed in [21], in detail. See also the discussion at the end of Section 3.2. That
is why we are interested in results concerning the mass tensor for bound pairs and we think we provide
here a convincing solution for the ‘mass paradox’ related to bipolaronic pairing mechanisms in the
microscopic theory of cuprate superconductors.

Relationship with the enhanced binding of QFT. The formation of dressed bonded fermion pairs as
described above is reminiscent of what is known as enhanced binding in Quantum Field Theory (QFT).
For more details on this phenomenon, we recommend the lecture notes [25], where it is well explained
in the context of nonrelativistic QFT. See also the references therein.

For example, the Pauli-Fierz model, which refers to nonrelativistic quantum charge particles inter-
acting with a massless quantized radiation field (photons), can have at low energies a dressed particle
with an effective mass bigger than the noninteracting one, leading to the existence of a ground state for
the model. A similar fact occurs in the Nelson model, in which N quantum particles interact linearly
with a field of photons (or mesons). The formation of such dressed particles is a direct consequence of
the bosonic field acting as mediator of a force.

Indeed, in both cases, the model involves a sum of interaction terms of the form𝜓𝑘⊗𝑏𝑘+𝜓̄𝑘⊗𝑏∗𝑘 , cou-
pling the N-body quantum system with a spinless boson field of momentum k via annihilation/creation
operators 𝑏𝑘 , 𝑏∗𝑘 . Note that in this case, there is no transformation of particles of one type into another,
as in the exchange interactions described above, but both cases are still similar, especially as we are car-
rying out our analysis in the sector with only two fermions and one boson. This makes the comparison
quite relevant, even if the model and mathematical methods considered here have essential differences
as compared to the previous ones.

Scattering properties of the model. We also study here scattering properties of the three-body model
in two channels, the unbound and bound pair channels:

◦ The unbound pair (scattering) channel corresponds to the wave and scattering operators with respect
to fermionic part, respectively defined via the strong limits

𝑊± � 𝑠 − lim
𝑡→±∞

e𝑖𝑡He−𝑖𝑡H 𝑓 𝑃ac
(
H 𝑓

)
and 𝑆 �

(
𝑊+)∗𝑊−,

where H 𝑓 is a generic, purely fermionic Hamiltonian representing free fermions that do not interact
with any bosonic field, H is the Hamiltonian of the full model and 𝑃ac (H 𝑓 ) is the orthogonal
projection onto the absolutely continuous space of H 𝑓 . It refers to the case in which two fermions
start far apart from each other and only experience a very weak repulsion force due to the extended
Hubbard interaction, while the probability that they bind together to form a boson is very small. In
this situation, we show that two (almost) freely propagating fermions in the distant past can come
together and interact with one another, either via the repulsive electrostatic force or by exchanging
a boson, and then propagate away, again freely in the distant future. In this channel, the scattering
matrix can be explicitly computed via convergent (Dyson) series, making in particular the study of
the scattering effect of the fermion-boson-exchange interaction ( 1) technically uncomplicated.

◦ The bound pair (scattering) channel corresponds to the time evolution e𝑖𝑡H𝔓, 𝑡 ∈ R, where H is again
the Hamiltonian of the full model and 𝔓 is an isometry from the 𝐿2-functions on the Brillouin zone
to the subspace associated with the fiber bound states of H. We show in particular that

e𝑖𝑡H𝔓 = 𝔓e𝑖𝑡𝑀E(·) , 𝑡 ∈ R,

with 𝑀E( ·) being some multiplication operator given by the dispersion relation 𝑘 ↦→ E(𝑘) characteriz-
ing the (fiber) bound states at fixed quasi-momentum in the normalized Brillouin zone T2 � [−𝜋, 𝜋)2.
In terms of wave operators, it follows that

𝑊± � 𝑠 − lim
𝑡→±∞

e𝑖𝑡H𝔓e−𝑖𝑡𝑀E(·) 𝑃ac
(
𝑀E( ·)

)
= 𝔓𝑃ac

(
𝑀E( ·)

)
,
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which gives a scattering operator equal to

𝑆 �
(
𝑊+)∗𝑊− = 𝑃ac

(
𝑀E( ·)

)
.

It refers to the case in which dressed bound fermion pairs are formed. In contrast with the first
channel, now there is a non-negligible bosonic component related with the exchanged boson that
‘glues’ the two fermions together. We prove that those (spatially localized) dressed bound fermion
pairs effectively move like a free (quantum spinless) particle. In this case, strictly speaking in the
physical sense, there is no scattering, and the pairs evolve freely in space, governed by an effective
dispersion relation, the Fourier transform of which is the effective hopping strength for the (spatially
localized) dressed bound pairs.

Composite system at strong on-site Hubbard repulsions. We additionally prove that all these proper-
ties hold also true in the limit of large on-site fermionic repulsions, provided that two fermions on two
different lattice sites can interact via the fermion-boson exchange interaction. It refers to a hard core
limit, preventing two fermions from occupying the same lattice site.

For cuprate superconductors, it is an important issue addressed and answered here, because of the
undeniable experimental evidence of very strong on-site Coulomb repulsions in cuprates, leading to the
universally observed Mott transition at zero doping [29, 30].

1.3. Concluding remarks and structure of the paper

To conclude, the mathematical properties of the model studied in the present work are well understood,
and as a consequence, the model can serve as a prototypical example of a quantum system including
exchange interaction terms of the form (1). From a physics viewpoint, it is also interesting, since dressed
bound fermion pairs are good candidates for superconducting charge carriers in cuprate superconductors,
as advocated in [21].

More specifically, our main results are Theorems 3.1, 3.5, 3.6, 3.9, 3.11 and 3.14. The paper is
organized as follows: Section 2 explains in detail the model, while Section 3 gives the main results.
Technical outcomes, along with all their proofs, are gathered in Section 4. Section A is an appendix
that gathers important standard mathematical results used here, an overview of cuprate physics for non-
physicists, as well as the Fock-space formalism, in order to make the article self-contained and accessible
to a wide audience.

Remark 1.1 (d-dimensional lattices). Our study focuses on two-dimensional lattice systems because
of their application to the superconductivity of cuprates and, in particular, their 𝑑-wave symmetry.
However, it can also be done at arbitrary dimension 𝑑 ≥ 1 provided the coupling functions used (i.e.,
u,𝔭1,𝔭2, 𝜐 : Z𝑑 → R+0 below) stays absolutely summable. It is also important that the Fourier transforms
𝜐̂, 𝔭̂1 and 𝔭̂2 of the functions 𝜐,𝔭1 and𝔭2 remain real-valued3 continuous functions on the d-dimensional
torus T𝑑 .

Remark 1.2 (Notation). For any normed vector space X over C, we omit the subscript X to denote
its norm ‖ · ‖ ≡ ‖ · ‖X , unless there is any risk of confusion. Mutatis mutandis for the scalar product
〈·, ·〉 ≡ 〈·, ·〉X in Hilbert spaces. As is usual, B(X ,Y) denotes the set of bounded (linear) operators
X → Y between two normed spaces X to Y . If X = Y , B(X ) ≡ B(X ,X ) and its (operator) norm and
its identity are respectively denoted by ‖ · ‖op ≡ ‖ · ‖B (X ) and 1X ≡ 1. R+0 denotes the set of positive
real numbers including zero, whereas R+ � R+0\{0} is the set of strictly positive real numbers.

3A real-valued absolutely summble function f on Z𝑑 has a real-valued Fourier transform iff 𝑓 (−𝑧) = 𝑓 (𝑧) . Considering
two-dimensional systems that are invariant under 90◦-degree rotations (like we did, because of cuprates), this property is always
true and has not to be additionally imposed.
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2. Setup of the problem

2.1. Background Lattice

Copper oxide superconductors have a relatively complex three-dimensional lattice structure. However,
they always contain parallel two-dimensional layers of copper (Cu++) and oxygen (O−−) ions. These
CuO2 layers are essential to understanding low-temperature superconducting properties because the
(superconducting) charge transport takes place within the layers. This is explained in [12, 13, 14].
Considering a weak inter-layer interaction might also help to increase prediction accuracy, but charge
transport between each CuO2 layer or, more generally, in the direction orthogonal to each layer remains
negligible.4 Each CuO2 layer generally has the symmetries of the square. In other words, it is invariant
under the group {0, 𝜋/2, 𝜋, 3𝜋/2} generated by 90◦-degree rotations. See, for example, (31, Section
9.1.2), [12, Section 2.3] and (14, Section 6.3.1). This is an important symmetry property that we keep
in mind throughout our study.

Having in mind these physical observations on cuprates, we consider here quantum particles on
latticesZ2. It means in particular that (disregarding internal degrees of freedom of the quantum particles,
like their spin) the (separable) Hilbert space ℓ2(Z2) is the ‘one-particle space’ associated with the
physical system we are interested in. Its canonical orthonormal basis is {𝔢𝑥}𝑥∈Z2 :

𝔢𝑥 (𝑦) � 𝛿𝑥,𝑦 , 𝑥, 𝑦 ∈ Z2, (5)

where 𝛿𝔦,𝔧 is the Kronecker delta.

2.2. Composite of two fermions and one boson

We consider a system of two fermions (electrons or holes in cuprates) with opposite spins interacting
via the exchange of one boson in a two-dimensional square lattice. Physically, the boson that we have
in mind in cuprate superconductors is a spinless bipolaron, since the very strong Jahn-Teller (JT) effect
associated with copper ions is an important property of such cuprates [16, 15]. See Section A.1 for
more details. However, the exchanged spinless boson could be of any type, like a phonon or a spin wave,
depending on the physical system and mechanism one has in mind.

Hilbert Spaces. All quantum particles possess an intrinsic form of angular momentum known as spin,
which is characterized by a quantum number 𝔰 ∈ N/2 and a finite spin set5 S � {−𝔰,−𝔰+1, . . . 𝔰−1, 𝔰} ⊆
N. If 𝔰 ∉ N is half-integer, then the corresponding particles are named fermions while 𝔰 ∈ N means by
definition that we have bosons. For example, photons or spinless bipolarons (𝔰 = 0) are bosons, while
electrons (𝔰 = 1/2) are fermions. In the latter case, S � {−1/2, 1/2}, and in physics, the spin set is
always written as S ≡ {↑, ↓}, and we thus use this completely standard notation. By the celebrated spin-
statistics theorem, fermionic wave functions are antisymmetric with respect to permutations of particles,
whereas the bosonic ones are symmetric.

Therefore, the one-particle Hilbert space for the fermions is ℓ2(Z2 × {↑, ↓}), {↑, ↓} being the usual
spin set for electrons or holes, and for two fermions, we hence use the Hilbert space

𝔥 𝑓 �
∧2

ℓ2(Z2 × {↑, ↓}) ⊆ 𝔉− ≡ 𝔉
(
ℓ2(Z2 × {↑, ↓})

)
of antisymmetric functions,6 which is a subspace of the fermionic (−) Fock space7 𝔉− associated with
the one-particle Hilbert space ℓ2(Z2 × {↑, ↓}). See Equation (A.4) below for the precise definition of

4The superconducting coherence length is much smaller in this orthogonal direction than in the parallel planes made of copper
and oxygen ions.

5S represents the spectrum of the spin observable.
6
∧2 ℓ2 (Z2 × {↑, ↓}) denotes the 2-fold antisymmetric tensor product of ℓ2 (Z2 × {↑, ↓}) .

7I.e., 𝔉− �
⊕∞

𝑛=0
∧𝑛 ℓ2 (Z2 × {↑, ↓}) .
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𝔉−. The one-particle Hilbert space of the spinless boson is ℓ2(Z2), which can also be seen as a subspace
of the bosonic (+) Fock space

𝔉+ ≡ 𝔉
(
ℓ2(Z2)

)
associated with ℓ2(Z2). See Equation (A.5) below for the precise definition of 𝔉+. For a concise review
of bosonic and fermionic Fock spaces, as well as the corresponding annihilation and creation operators,
see Section A.2.

We study here the effect of processes of annihilation of two fermions of opposite spins to create a
boson, which can conversely be annihilated to create two new fermions. The Hilbert space associated
with this composite system, made of two fermions and one boson, is the direct sum 𝔥 𝑓 ⊕ ℓ2(Z2), and
not the tensor product 𝔥 𝑓 ⊗ ℓ2(Z2). Note indeed that 𝔥 𝑓 ⊕ ℓ2(Z2) can naturally be identified8 with a
subspace of 𝔉− ⊗𝔉+. This fact already unveils the strong interdependence of the bosonic and fermionic
parts. For this reason, from now on, we rather use the term ‘composite of two fermions and one boson
instead of ‘three-body system’, in order to avoid any misinterpretation.

Fermionic Hamiltonian. The fermionic part of the (infinite volume) Hamiltonian of the composite is
defined to be the restriction 𝐻 𝑓 ∈ B(𝔥 𝑓 ) of the formal expression

− 𝜖
2

∑
𝑠∈{↑,↓}, 𝑥,𝑦∈Z2: |𝑥−𝑦 |=1

𝑎∗𝑥,𝑠𝑎𝑦,𝑠 + 2𝜖
∑

𝑠∈{↑,↓}, 𝑥∈Z2

𝑎∗𝑥,𝑠𝑎𝑥,𝑠 + U
∑
𝑥∈Z2

𝑛𝑥,↑𝑛𝑥,↓ +
∑
𝑥,𝑧∈Z2

u(𝑧)𝑛𝑥,↑𝑛𝑥+𝑧,↓

(6)

to the Hilbert space 𝔥 𝑓 . Here, 𝑎𝑥,𝑠 (𝑎∗𝑥,𝑠) denotes the annihilation (creation) operator acting on the
fermionic Fock space 𝔉− of a fermion at lattice position 𝑥 ∈ Z2, the spin of which is 𝑠 ∈ {↑, ↓}. As is
usual, 𝑛𝑥,𝑠 � 𝑎∗𝑥,𝑠𝑎𝑥,𝑠 stands for the number operator of fermions at lattice position 𝑥 ∈ Z2 and spin
𝑠 ∈ {↑, ↓}.

The parameter 𝜖 ∈ R+0 quantifies the hopping amplitude of fermions. In high-𝑇𝑐 superconductors
[29, 30], 𝜖 is expected to be much smaller than the fermion-fermion interaction energy – more precisely
the on-site repulsion strength U ∈ R+0 . The function u : Z2 → R+0 , which represents the fermion-fermion
repulsion at all distances, is absolutely summable and invariant with respect to 90◦-rotations, that is,∑

𝑧∈Z2

|u(𝑧) | < ∞ and u(𝑥, 𝑦) = u(−𝑦, 𝑥), 𝑥, 𝑦 ∈ Z. (7)

Clearly, one could set U = 0, by redefining the coupling function u : Z2 → R+0 . It is, however, convenient
to have a separate parameter U ∈ R+0 for the on-site repulsion because we shall later on consider the
‘hard-core limit’ U →∞ for some fixed coupling function u.

Extended Hubbard interactions. The above fermion-fermion interactions have been extensively stud-
ied in condensed matter physics during the last decade, in particular for two-dimensional systems. For
nonzero functions u, they are named extended Hubbard interactions and they can drastically change the
behavior of the system, as compared to the zero-range case (usual Hubbard interaction, u = 0). As one
example, they are used in the context of ultracold atoms, ions and molecules [11]. Its bosonic version is
also experimentally investigated. See, for example, [32] published in 2022.

In theoretical studies, frequently, only nearest-neighbor interactions added to the on-site (zero-range)
Hubbard interactions are considered. Here, we do not need the restriction to one-range (nearest-neighbor)
interactions. We only assume that u is absolutely summable (see (7)), which is physically a very mild
restriction, since the effective two-particle repulsive electrostatic potential in crystals is expected to
decay exponentially fast in space, because of screening effects.

8Denote the vacuum of the Fock space 𝔉± by Ω± and define the mapping 𝜍 from 𝔥 𝑓 ⊕ ℓ2 (Z2) to 𝔉− ⊗ 𝔉+ by 𝜍 (𝜑 ⊕ 𝜓) =
𝜑 ⊗ Ω− +Ω+ ⊗ 𝜓. Then, observe that 𝜍 is an isometric linear transformation from 𝔥 𝑓 ⊕ ℓ2 (Z2) to 𝔉− ⊗𝔉.

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


10 J.-B. Bru, W. de Siqueira Pedra and A. Ramer dos Santos

The rotation invariance in Equation (7) refers to the isotropy of the system under consideration.
However, as shown in [22, 21], the system has low energy states that spontaneously break the isotropy.
This refers to unconventional parings, typically of d -wave type, of electrons one experimentally observes
in many high-𝑇𝑐 superconductors [33, 30, 13]. In fact, to derive the existence of d- and p-wave pairings
starting from a physically sound microscopic model was the aim of [22, 21]. Here, instead, we keep a
broader perspective and do not study this particular question.

Bosonic Hamiltonian. Similar to the fermionic part, the bosonic part of the (infinite volume) Hamil-
tonian of the system is defined to be the restriction 𝐻𝑏 ∈ B(ℓ2(Z2)) to the one-boson Hilbert space
ℓ2(Z2) of the formal expression

𝜖

��− ℎ𝑏2

∑
𝑥,𝑦∈Z2 : |𝑥−𝑦 |=1

𝑏∗𝑥 𝑏𝑦 + 2ℎ𝑏
∑
𝑥∈Z2

𝑏∗𝑥 𝑏𝑥

�� . (8)

Here, 𝑏𝑥 (𝑏∗𝑥) denotes the annihilation (creation) operator acting on the bosonic Fock space𝔉+ of a boson
at lattice position 𝑥 ∈ Z2. Observe that the bosonic part only contains a kinetic term. The parameter
ℎ𝑏 ∈ R+0 quantifies the ratio of the effective masses of fermions and bosons: Taking ℎ𝑏 smaller than
one physically means that the bosons are heavier than the fermions. As experimentally found [34, 35,
36, 37] for cuprate superconductors, bipolarons should be much more massive than electrons or holes,
and, thus, in the physically relevant regime, ℎ𝑏 is to be taken very small (or even zero, in an idealized
situation). See (21, Section 3.1). In the sequel, we take ℎ𝑏 ∈ [0, 1/2], meaning that the boson mass is
at least as big as the mass of two fermions, as discussed in Section 3.

Exchange interactions. The term of the Hamiltonian that encodes the decay of a boson into two
fermions (i.e., one of the two-electron(hole)-bipolaron-exchange interaction of the Hamiltonian) refers
to the bounded operator

𝑊b→f : ℓ2
(
Z

2
)
→ 𝔥 𝑓 , (9)

which is defined to be the restriction of the formal expression

2−1/2
∑
𝑥,𝑦∈Z2

𝜐(𝑥 − 𝑦)𝑐∗𝑦 𝑏𝑥 (10)

to ℓ2(Z2), where

𝑐∗𝑦 �
∑
𝑧∈Z2

(
𝔭1(𝑧)𝑎∗𝑦+𝑧,↑ 𝑎

∗
𝑦,↓ + 𝔭2(2𝑧)𝑎∗𝑦+𝑧,↑ 𝑎

∗
𝑦−𝑧,↓

)
(11)

for some fixed functions 𝔭1,𝔭2 : Z2 → R that are invariant under 90◦-rotations and exponentially decay
in space, that is,∑

𝑧∈Z2

e𝛼0 |𝑧 |
��𝔭♯ (𝑧)�� < ∞ and 𝔭♯ (𝑥, 𝑦) = 𝔭♯ (−𝑦, 𝑥), 𝑥, 𝑦 ∈ Z, ♯ ∈ {1, 2}, (12)

for some 𝛼0 > 0. In particular, the functions 𝔭1,𝔭2 are absolutely summable in space.
By definition, we take 𝔭2 (𝑧) � 0 if 𝑧 ∈ Z2\(2Z)2 and we also assume that

𝔭1 + 𝔭2 ≠ 0 and 𝔭2 (𝑥) ≠ −e𝑖
𝑘
2 ·𝑥𝔭1(𝑥), 𝑥 ∈ Z, 𝑘 ∈ [−𝜋, 𝜋)2. (13)

The condition 𝔭1 + 𝔭2 ≠ 0 only ensures the nontriviality of the exchange interaction, while the second
condition avoids the singular case of a quasi-momentum 𝑘0 ∈ [−𝜋, 𝜋)2 at which the exchange interaction
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trivially vanishes; see below (36). This case can easily be analyzed, but it makes the argumentation
cumbersome. So, we omit it here, as it is a highly unusual and irrelevant situation. For example, (13) is
already satisfied as soon as 𝔭1 (𝑧) ≠ 0 for some 𝑧 ∈ Z2\(2Z)2, since 𝔭2 (𝑧) � 0 for any 𝑧 ∉ (2Z)2. In (22,
Eq. (6)), 𝔭2 = 0 and, given 𝜅 > 0, 𝔭1(𝑧) = e−𝜅 |𝑧 | for |𝑧 | ≤ 1 and 𝔭1 (𝑧) = 0 otherwise, while in [21, Eq.
(4)], 𝔭2(2𝑧) = 𝔭1(𝑧) = 1 when |𝑧 | ≤ 1 and 𝔭1 (𝑧) = 𝔭2(𝑧) = 0 otherwise. This are the typical examples
we have in mind, the point here being the fact two fermions on different lattice sites can interact by
exchanging a boson. See also Section A.1.

Physically, 𝑐∗𝑦 represents the creation of a fermion pair of zero total spin, the two components of
which are slightly spread around the lattice position 𝑦 ∈ Z2. Such pairs have finite size, because of (12).
In fact,

𝑟𝔭 �
1
2
(
𝑟𝔭1 + 𝑟𝔭2

)
, (14)

where, for any ♯ ∈ {1, 2}, 𝑟𝔭♯ � 0 if 𝔭♯ = 0, otherwise it is equal to

𝑟𝔭♯ �

∑
𝑧∈Z2 |𝑧 |

��𝔭♯ (𝑧)��∑
𝑧∈Z2

��𝔭♯ (𝑧)�� ≤ inf
𝛼0>0

𝛼−1
0

√√∑
𝑧∈Z2 e𝛼0 |𝑧 |

��𝔭♯ (𝑧)��∑
𝑧∈Z2

��𝔭♯ (𝑧)�� < ∞, (15)

is naturally seen as being the actual size of such pairs. Note that the last inequality is a consequence of
the Cauchy-Schwarz inequality, along with the bound

|𝑧 |2e−𝛼0 |𝑧 | ≤ 𝛼−2
0 , 𝛼0 > 0.

Allowing two fermions in different lattice site to interact by exchanging a boson simply means that
𝑟𝔭 > 0. For the physical significance of this property for cuprates, see [22, 21].

Recall that the exchange strength function 𝜐 : Z2 → R is only absolutely summable, not necessarily
exponentially decaying as 𝔭1 and 𝔭2, and invariant under 90◦-rotations, that is,∑

𝑧∈Z2

|𝜐(𝑧) | < ∞ and 𝜐(𝑥, 𝑦) = 𝜐(−𝑦, 𝑥), 𝑥, 𝑦 ∈ Z. (16)

Note that the Fourier transforms 𝜐̂,𝔭̂1 and 𝔭̂2 of 𝜐, 𝔭1 and 𝔭2 are real-valued continuous functions (on
the two-dimensional torus T2) that are again invariant under 90◦-rotations. Additionally, 𝔭̂1 and 𝔭̂2 are
real analytic, for 𝔭1 and 𝔭2 are exponentially decaying. The reverse process – that is, the annihilation of
two unbound fermions to form a boson – is represented by the adjoint operator

𝑊f→b � 𝑊∗
b→f : 𝔥 𝑓 → ℓ2

(
Z

2
)
. (17)

Mathematical remarks. The infinite sums (6), (8) and (10) defining formally 𝐻 𝑓 ∈ B
(
𝔥 𝑓

)
, 𝐻𝑏 ∈

B(ℓ2(Z2)) and 𝑊b→f ∈ B(ℓ2(Z2), 𝔥 𝑓 ) (9) are to be understood as follows: If 𝜓 ∈ 𝔥 𝑓 or 𝜓 ∈ ℓ2(Z2)
is a finitely supported function, then the sum corresponding to 𝐻 𝑓 𝜓, 𝐻𝑏𝜓 or 𝑊b→f𝜓 is absolutely
convergent. Thus, 𝐻 𝑓 , 𝐻𝑏 and 𝑊b→f are well-defined linear operators acting on the dense subspace of
such functions. One checks that 𝐻 𝑓 , 𝐻𝑏 and𝑊b→f are all bounded on this subspace, and they thus have
a unique bounded linear extension to the whole Hilbert space where they are defined – namely, 𝔥 𝑓 for
𝐻 𝑓 , and ℓ2(Z2) for 𝐻𝑏 and 𝑊b→f . We denote the extensions again by 𝐻 𝑓 , 𝐻𝑏 and 𝑊b→f . Note that,
being a bounded operator, 𝑊b→f has an adjoint (17), while 𝐻 𝑓 and 𝐻𝑏 are clearly symmetric and so,
self-adjoint, for they are also bounded.

Full model. Finally, the full Hamiltonian for the fermion-boson composite is defined, in matrix notation
for the direct sum 𝔥 𝑓 ⊕ ℓ2(Z2), as follows:
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𝐻 𝑓 𝑊b→f

𝑊f→b 𝐻𝑏

)
∈ B

(
𝔥 𝑓 ⊕ ℓ2

(
Z

2
))
. (18)

Observe that this Hamiltonian is invariant under translations, as well as 90◦-rotations.
Using the canonical orthonormal basis9{

𝔢(𝑥,𝑠) : 𝑥 ∈ Z2, 𝑠 ∈ {↑, ↓}
}
⊆ ℓ2

(
Z

2 × {↑, ↓}
)

to define the closed subspace

𝔥0 � span
{
𝔢(𝑥,↑) ∧ 𝔢(𝑦,↓) : 𝑥, 𝑦 ∈ Z2} ⊆ 𝔥 𝑓 , (19)

we remark that the zero-spin subspace

ℌ � 𝔥0 ⊕ ℓ2
(
Z

2
)
⊆ 𝔥 𝑓 ⊕ ℓ2

(
Z

2
)

(20)

is invariant under the action of the (full) Hamiltonian (18). We can thus consider its restriction

𝐻 �

(
𝐻 𝑓 𝑊b→f

𝑊f→b 𝐻𝑏

)�����
ℌ

∈ B(ℌ) (21)

to this particular subspace ℌ ⊆ 𝔥 𝑓 ⊕ ℓ2(Z2).
In fact, as the boson is assumed to be spinless, by the conservation of angular momentum, we have

that the total spin of the fermion pair resulting from a bosonic decay must be zero. In other words, the
physically relevant (vector) states of the fermion-boson compound system always lie in ℌ. Note finally
that H inherits the symmetries of the Hamiltonian (18) (i.e., H is invariant under translations and 90◦-
rotations). Note that this last symmetry (i.e., the rotation invariance) is mainly relevant for the study of
unconventional pairings, which is not done here.

2.3. The model in spaces of quasi-momenta

We have a composite of two fermions and one boson whose Hamiltonian is translation invariant. In
this case, it is a standard procedure (see, for example, [38, Chapter XIII.16]) to use the direct integral
decomposition of the Hamiltonian in Fourier space in order to study its spectral properties.

For the two-dimensional lattice Z2, the (Fourier) space of quasi-momenta is nothing else than the
torus

T
2 � [−𝜋, 𝜋)2 ⊆ R2.

This set is endowed with the metric 𝑑T2 defined by

𝑑T2 (𝑘, 𝑝) � min
{
|𝑘 − 𝑝 − 𝑞 | : 𝑞 ∈ 2𝜋Z2}, (22)

where |𝑘 − 𝑝 − 𝑞 | is the Euclidean distance between k and 𝑝 + 𝑞 in R2. This defines a compact metric
space (T2, 𝑑T2). Observe also that the usual group operation in T2 (i.e., the sum in R2 modulo (2𝜋, 2𝜋))
is a continuous operation, while any Borel set in T2 is also a Borel set inR2 (endowed with the Euclidean
metric).

We also need the normalized Haar measure 𝜈 on T2 defined for any Borel set 𝐵 ⊆ T2 by

𝜈(𝐵) = (2𝜋)−2𝝀(𝐵), (23)

9I.e., for any 𝑥, 𝑦 ∈ Z2 and 𝑠, 𝑡 ∈ {↑, ↓}, 𝔢(𝑥,𝑠) (𝑦, 𝑠) = 𝛿𝑠,𝑡 𝛿𝑥,𝑦 , where 𝛿𝑥,𝑦 is the Kronecker delta.
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where 𝝀 is the Lebesgue measure inR2. This measure appears in relation with direct integrals of constant
Hilbert spaces on the two-dimensional torus T2, like the Hilbert space

𝐿2
(
T

2
)
≡ 𝐿2

(
T

2,C
)
≡ 𝐿2

(
T

2,C, 𝜈
)
�

∫ ⊕

T2
C 𝜈(d𝑘)

of square-integrable, complex-valued functions on T2. Since the Haar measure 𝜈 is used in all our direct
integrals on T2, for simplicity, we often remove the symbol 𝜈 from the notation of 𝐿2-spaces, unless this
information is important to recall.

The Fourier transform can be applied in the fermionic and bosonic sectors. In the fermionic one,
there is more than one natural way of implementing the transform, as the corresponding functions have
two arguments in Z2. It turns out that to be very useful to extract the total quasi-momentum of fermionic
pairs. In fact, we consider the direct integral

𝐿2
(
T

2,H
)
≡ 𝐿2

(
T

2,H, 𝜈
)
�

∫ ⊕

T2
𝐿2

(
T

2,C, 𝜈
)
⊕ C 𝜈(d𝑘) (24)

of the (constant fiber) Hilbert space

H � 𝐿2
(
T

2
)
⊕ C ≡ 𝐿2

(
T

2,C, 𝜈
)
⊕ C (25)

over the torus T2, and choose a unitary transformation

U : ℌ −→ 𝐿2
(
T

2,H
)

in such a way that 𝑘 ∈ T2, the fiber quasi-momentum, is exactly the total quasi-momentum of the
fermion pair.

Recall that ℌ defined in (20) is the Hilbert space on which H is originally defined. More precisely,

U � 𝑈 𝑓 ⊕ F , (26)

where

F : ℓ2
(
Z

2
)
→ 𝐿2

(
T

2
)

(27)

is the Fourier transform on ℓ2(Z2), while the fermionic part

𝑈 𝑓 � 𝑈2𝑈1 : 𝔥0 →
∫ ⊕

T2
𝐿2

(
T

2
)
𝜈(d𝑘) (28)

is the composition of two unitary (linear) transformations𝑈1 and𝑈2, whose exact definitions are given
as follows:

𝑈1 : 𝔥0 → ℓ2 (
Z

2 × Z2) → ℓ2 (
Z

2 × Z2) → ℓ2 (
Z

2) ⊗ ℓ2 (
Z

2)
𝔢(𝑥,↑) ∧ 𝔢(𝑦,↓) ↦→ 𝔢(𝑥,𝑦) ↦→ 𝔢(𝑥,𝑥−𝑦) ↦→ 𝔢𝑥 ⊗ 𝔢𝑥−𝑦

(29)

and

𝑈2 : ℓ2 (
Z

2) ⊗ ℓ2 (
Z

2) → 𝐿2 (
T

2) ⊗ 𝐿2 (
T

2) → ∫ ⊕
T2 𝐿

2 (
T

2)𝜈(d𝑘)
𝔢𝑥 ⊗ 𝔢𝑥−𝑦 ↦→ 𝔢̂𝑥 ⊗ 𝔢̂𝑥−𝑦 ↦→ 𝔢̂𝑥 (·)𝔢̂𝑥−𝑦

. (30)

Because {𝔢(𝑥,↑) ∧ 𝔢(𝑦,↓) }𝑥,𝑦∈Z2 , {𝔢(𝑥,𝑦) }𝑥,𝑦∈Z2 and {𝔢𝑥 ⊗ 𝔢𝑦}𝑥,𝑦∈Z2 are orthonormal bases and (𝑥, 𝑦) ↦→
(𝑥, 𝑥 − 𝑦) is a bijection on Z2 × Z2, 𝑈1 is well-defined as a composition of three unitary linear
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transformations. Note also that the last unitary linear transformation defining𝑈2 is defined as in Propo-
sition A.8, while the first one defining 𝑈2 is the tensor product F ⊗ F of the Fourier transform F on
ℓ2(Z2), defined for any 𝑓 ∈ ℓ1(Z2) ⊆ ℓ2(Z2) by

𝑓 (𝑘) ≡ F 𝑓 (𝑘) =
∑
𝑥∈Z2

e𝑖𝑘 ·𝑥 𝑓 (𝑥), 𝑘 ∈ T2, (31)

𝑘 · 𝑥 being the usual scalar product of 𝑘 ∈ T2 and 𝑥 ∈ Z2, seen as vectors of R2. Here, we use the symbol
(̂·) to shorten the notation of the Fourier transform. For instance, for any 𝑥 ∈ Z2, we write above 𝔢̂𝑥 to
denote the function e𝑖 ( ·) ·𝑥 on the torus T2. That is, {𝔢̂𝑥}𝑥∈Z2 is the image under the Fourier transform of
the canonical orthonormal basis{𝔢𝑥}𝑥∈Z2 (5) of ℓ2(Z2).

For the reader’s convenience and completeness, in Section A.4, we gather key results from the
theory of direct integrals with constant fiber Hilbert spaces. In the next subsection, we explain how the
properties of the Hamiltonian 𝐻 ∈ B(ℌ) defined by (21) can be studied on the direct integral (24) over
total quasi-momenta.

2.4. Fiber decomposition of the Hamiltonian

By explicit computations, exactly like in [22, 21], we show that the conjugation of the Hamiltonian
𝐻 ∈ B(ℌ) with the unitary transformation U of Equation (26) is a decomposable operator on the direct
integral 𝐿2 (T2,H). To state this result precisely, we need preliminary definitions allowing to define
the so-called ‘fiber Hamiltonians’, or ‘fibers’ for short, 𝐴(𝑘) ∈ B(H) of U𝐻U∗ at total quasi-momenta
𝑘 ∈ T2. In fact, the mapping 𝑘 ↦→ 𝐴(𝑘) defines an element of the von Neumann algebra10

𝐿∞
(
T

2,B(H)
)
≡ 𝐿∞

(
T

2,B(H), 𝜈
)

of (equivalence classes of) strongly measurable functions T2 → B(H). See Section A.4 for more details.
Given a total quasi-momentum 𝑘 ∈ T2 and the parameters 𝜖, ℎ𝑏 ∈ R+0 tuning the strengths of the

two (fermionic and bosonic) kinetic parts of the model, we define continuous, real-valued functions
𝔣(𝑘), 𝔡(𝑘), 𝔟 ∈ 𝐶

(
T

2) on the torus T2 by

𝔟(𝑝) � ℎ𝑏𝜖 (2 − cos(𝑝)), (32)
𝔣(𝑘)(𝑝) � 𝜖{4 − cos(𝑝 + 𝑘) − cos(𝑝)}, (33)
𝔡(𝑘)(𝑝) � 𝔭̂1 (𝑘 + 𝑝) + 𝔭̂2 (𝑘/2 + 𝑝), (34)

for all 𝑝 = (𝑝1, 𝑝2) ∈ T2, where

cos(𝑞) � cos(𝑞1) + cos(𝑞2), 𝑞 = (𝑞1, 𝑞2) ∈ R2. (35)

Recall that (the (2𝜋, 2𝜋)-periodic function) 𝔭̂1 and 𝔭̂2 are the Fourier transform of 𝔭1 and 𝔭2, which are
the functions defining the operator 𝑐∗𝑦 in (11), representing the creation of fermion pairs in the model.
Note also from (13) that 𝔡(𝑘) ≠ 0 for all 𝑘 ∈ T2. Indeed, using 𝔭2 (𝑧) � 0 for 𝑧 ∉ 2Z as well as (31)
and (34),

𝔡(𝑘) = F
[
e𝑖𝑘 ·𝑥𝔭1(𝑥) + e𝑖

𝑘
2 ·𝑥𝔭2 (𝑥)

]
, (36)

where e𝑖𝑘 ·𝑥𝔭♯ (𝑥) stands for the function 𝑥 ↦→ e𝑖𝑘 ·𝑥𝔭♯ (𝑥) with ♯ ∈ {1, 2}.

10The (unique) norm of this 𝐶∗-algebra is the essential supremum with respect to the measure 𝜈 on the torus; see (A.14).
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Then, at any quasi-momentum 𝑘 ∈ T2 and on-site repulsion strength U ∈ R+0 , we define the bounded
operators 𝐵1,1 (𝑘) and 𝐴1,1(U, 𝑘) acting on the Hilbert space 𝐿2 (

T
2) by

𝐵1,1 (𝑘) � 𝑀𝔣 (𝑘) +
∑
𝑥∈Z2

u(𝑥)𝑃𝑥 , (37)

𝐴1,1 (U, 𝑘) � 𝐵1,1(𝑘) + U𝑃0, (38)

where 𝑀𝔣 (𝑘) stands for the multiplication operator by 𝔣(𝑘) ∈ 𝐶 (T2) and 𝑃𝑥 is the orthogonal projection
onto the one-dimensional subspace C𝔢̂𝑥 ⊆ 𝐿2 (T2). Note that the infinite sum defining the bounded
operator 𝐵1,1 (𝑘) is absolutely convergent, for the function u : Z2 → R is, by assumption, absolutely
summable. See (7).

We define next

𝐴2,1 (𝑘) : 𝐿2 (
T

2) → C
𝜑 ↦→ 𝜐̂(𝑘)〈𝔡(𝑘), 𝜑〉, (39)

𝐴1,2 (𝑘) : C → 𝐿2 (
T

2)
𝑧 ↦→ 𝜐̂(𝑘)𝔡(𝑘)𝑧 (40)

as well as

𝐴2,2 (𝑘) : C → C
𝑧 ↦→ 𝔟(𝑘)𝑧 (41)

for any fixed 𝑘 ∈ T2. By compactness of T2 and continuity (in operator norm) of the mappings
𝑘 ↦→ 𝐴𝑖, 𝑗 (𝑘) for all 𝑖, 𝑗 ∈ {1, 2}, we have

𝐴(·) ≡ 𝐴(U, ·) �
(
𝐴1,1 (U, ·) 𝐴1,2(·)
𝐴2,1(·) 𝐴2,2(·)

)
∈ 𝐿∞

(
T

2,B(H)
)

(42)

(see Lemma 4.1), which is meanwhile the fiber decomposition of the operator U𝐻U∗:

Proposition 2.1 (Fiber decomposition of the quantum model). The conjugation of H by U (26) is
decomposable and has 𝐴(·) as its fibers; that is,

U𝐻U∗ =
∫ ⊕

T2
𝐴(𝑘) 𝜈(d𝑘).

Proof. This is proven from explicit computations which are almost the same as those done in [22, 21].
We postpone the details of this calculation to Section 4.2. �

The fiber decomposition given by Proposition 2.1 is useful because it gives access to spectral
properties of H. In fact, for an operator that is decomposable on 𝐿2 (

T
2,H

)
, that is, an operator unitarily

equivalent to an element of the von Neumann algebra 𝐿2 (
T

2,B(H)
)
, like the Hamiltonian H, the fibers

𝐴(𝑘) of which are all self-adjoint, it is known that 𝜆 ∈ 𝜎(𝐻) if, and only if, for all 𝜀 > 0,

𝜈
({
𝑘 ∈ T2 : 𝜎(𝐴(𝑘)) ∩ (𝜆 − 𝜀, 𝜆 + 𝜀) ≠ ∅

})
> 0.

See Theorem A.3. As is usual, here, 𝜎(𝑋) denotes the spectrum of any operator X acting on some
Hilbert space.
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3. Main results

In this section, we state our main results, starting with general spectral properties of the Hamiltonian H
to finish with results related with scattering.

Recall that the model has parameters 𝜖,U, ℎ𝑏 ∈ R+0 and 𝛼0 ∈ R+, and it depends on the choice of
functions

u : Z2 → R+0 , 𝔭1 : Z2 → R , 𝔭2 : Z2 → R and 𝜐 : Z2 → R

(with 𝔭2 (𝑧) � 0 for 𝑧 ∉ 2Z) that are absolutely summable and invariant with respect to 90◦-rotations.
Observe additionally that the functions 𝔭1 and 𝔭2 are required to be exponentially decaying; that is,
e𝛼0 | · |𝔭1 and e𝛼0 | · |𝔭2 are absolutely summable for some 𝛼0 > 0. See Equations (7), (12) and (16). All
details of the Hamiltonian, like the precise choice of its parameters and functions, are not explicitly
mentioned in our discussions or statements below, unless it is important for clearness. There is however
one important condition to clarify:

While some of our results can be obtained without any other restriction, frequently we fix the
parameter ℎ𝑏 in the interval [0, 1/2]. This choice physically means that the boson is heavier than two
fermions. As already discussed above, the assumption is perfectly justified when one views the two
fermions and the boson of the model as being electrons or holes and a bipolaron, respectively, in a
cuprate. In fact, polarons (and thus bipolarons) are charge carriers that are self-trapped inside a strong
and local lattice deformation that surrounds them, caused by electrostatic interactions between the
carriers and the lattice. A priori, such (strong and local) lattice deformations can barely move; that is,
their effective mass is huge. See, for example, [34, 35, 36]. This is coherent with the assumption of a
large mass of JT bipolarons in copper oxides [37], similar to JT polarons [39]. See also Section A.1 for
more details.

We show that the condition ℎ𝑏 ∈ [0, 1/2] is crucial to obtain dressed bound fermion pairs, which are
expected to represent the charge carriers below the pseudogap temperature [21].

3.1. Spectral properties

Having in mind Proposition 2.1 and Theorem A.3, we start with the spectral properties of fiber Hamil-
tonians (42) at any quasi-momentum 𝑘 ∈ T2. This refers to the following theorem:

Theorem 3.1 (Spectral properties of fiber Hamiltonians). Fix 𝜖,U ∈ R+0 , ℎ𝑏 ∈ [0, 1/2] and 𝑘 ∈ T2.

i.) Essential spectrum 𝜎ess(·) of the fiber Hamiltonian:

𝜎ess(𝐴(U, 𝑘)) = 𝔣(𝑘)
(
T

2
)
= 2𝜖 cos(𝑘/2) [−1, 1] + 4𝜖 .

ii.) Ground state energy: There is a unique nondegenerate eigenvalue E(U, 𝑘) ≤ 𝔟(𝑘) of 𝐴(U, 𝑘) below
the essential spectrum, with associated eigenvector

Ψ(U, 𝑘) � (𝜓̂𝑘 (U),−1), where 𝜓̂U,𝑘 � 𝜐̂(𝑘)
(
𝐴1,1(U, 𝑘) − E(U, 𝑘)1

)−1𝔡(𝑘) ∈ 𝐿2
(
T

2
)
.

In addition, E(U, 𝑘) = 𝔟(𝑘) iff 𝜐̂(𝑘) = 0. Recall that 𝔟(𝑘) is defined by Equation (32).
iii.) Spectral gap and Anderson localization: If 𝜐̂(0) ≠ 0 and 𝑟𝔭 > 0, then

inf
U∈R+0

min
𝑘∈T2

{min𝜎ess(𝐴(U, 𝑘)) − E(U, 𝑘)} > 0

and there are 𝐶, 𝛼 ∈ R+ such that, for all 𝑘 ∈ T2 and U ∈ R+0 ,��F−1 [𝜓̂U,𝑘 ] (𝑥)
�� ≤ 𝐶e−𝛼 |𝑥 | , 𝑥 ∈ Z2.
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iv.) E(U, ·) : T2 → R is a continuous function, and if 𝜐̂ is of class11 𝐶𝑑 on (−𝜋, 𝜋)2\{0} ⊆ R2 with
𝑑 ∈ N ∪ {𝜔, 𝑎}, then so does E(U, ·) on (−𝜋, 𝜋)2\{0}.

Proof. The theorem is a combination of Theorems 4.8, 4.9, 4.18 and 4.20 together with Propositions
4.2, 4.19 and Corollary 4.6 (see (130)). �

Remark 3.2. Recall that if, for some natural number 𝑑 ≥ 1,∑
𝑥∈Z2

|𝑥 |𝑑 |𝜐(𝑥) | < ∞,

then the Fourier transform 𝜐̂ of the function 𝜐 : Z2 → R, as defined by (31), is of class 𝐶𝑑 on the whole
torus T2.

Remark 3.3. If 𝔭1 = 𝔭2 ∈ C𝔢0,i.e., 𝑟𝔭 = 0, then Theorem 3.1 (iii) remains true, but not uniformly in
U ∈ R+0 . That is, in this case, one only has

min
𝑘∈T2

{min𝜎ess(𝐴(U, 𝑘)) − E(U, 𝑘)} > 0,

and there are 𝐶U, 𝛼U ∈ R+ such that, for all 𝑘 ∈ T2,��F−1 [𝜓̂U,𝑘 ] (𝑥)
�� ≤ 𝐶Ue−𝛼U |𝑥 | , 𝑥 ∈ Z2.

Assertion (i) of Theorem 3.1 holds true for all ℎ𝑏 ∈ R+0 , but the other assertions need the restriction
ℎ𝑏 ∈ [0, 1/2] to ensure that the eigenvalues are below the essential spectrum, as stated in Assertion (ii).
In fact, ℎ𝑏 ∈ [0, 1/2] iff

𝔟(𝑘) ≤ 𝔷(𝑘) � 4𝜖 − 2𝜖 cos(𝑘/2) = min𝜎ess (𝐴(U, 𝑘)) (43)

for all 𝑘 ∈ T2, with equality only at 𝑘 = 0. See Equation (32). Therefore, by Assertion (ii), E(U, 𝑘)
belongs to the essential spectrum iff 𝑘 = 0 and 𝜐̂(0) = 0. Otherwise, we have a uniform spectral gap, as
stated in Assertion (iii).

As is explained in [22, 21], the eigenvalue E(U, 𝑘) given by Theorem 3.1 is associated with the
formation of dressed bound fermion pairs with total quasi-momentum 𝑘 ∈ T2. These pairs are generally
exponentially localized, thanks to Theorem 3.1 (iii), which basically implies that the two fermions move
together confined within some small ball; that is, they are tightly bound in space, provided 𝜐̂(0) ≠ 0.
When 𝔭1(𝑧) ≠ 0 or 𝔭2(𝑧) ≠ 0 for some 𝑧 ≠ 0, or, equivalently, 𝑟𝔭 > 0, the size of the small does not
depend upon the Hubbard coupling constant U and a very large U � 1 only prevents two fermions from
occupying the same lattice site. The condition 𝔭1 (𝑧) ≠ 0 or 𝔭2(𝑧) ≠ 0 for some 𝑧 ≠ 0, or equivalently,
𝑟𝔭 > 0, is therefore pivotal to get (Cooper) fermion pairs, the natural candidates for superconducting
charge carriers, in presence of strong on-site Coulomb repulsions, like in cuprates [29, 30].

For the usual (i.e., nonextended) Hubbard interaction (u = 0) and one-range12 creation operators 𝑐∗𝑦
of fermion pairs (in this case (12) holds true for all 𝛼0 ∈ R+0), note that a weak form of pair localization
was previously shown in the ground state. See, for instance, [22, Theorem 3 and Proposition 13]. In this
particular case, estimates of E(U, 𝑘) and Ψ(U, 𝑘) are known for large U � 1. See, for example, [22,
Theorem 4, Corollary 5, Theorem 16]. Recall that the aim in [22, 21] was to show the existence of d-
and p-wave pairings in the ground state for some physically sound model, and not the systematic study
of a general class of models. In [21], we conjecture that such dressed bound fermion pairs represent the
charge carriers below the pseudogap temperature in cuprates.

11Given 𝑛, 𝑑 ∈ N and an open set Ω ⊆ R𝑛, 𝐶𝑑 (Ω) denotes the set of d times continuously differentiable, complex-valued
functions on Ω, while 𝐶𝜔 (Ω) and 𝐶𝑎 (Ω) refer to the space of smooth and real analytic functions on Ω, respectively.

12It means here that 𝑐∗𝑦 �
∑
|𝑧 |≤1

(
𝔭1 (𝑧)𝑎∗𝑦+𝑧,↑ 𝑎

∗
𝑦,↓ + 𝔭2 (2𝑧)𝑎∗𝑦+𝑧,↑ 𝑎

∗
𝑦−𝑧,↓

)
.
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Theorem 3.1 combined with Proposition 2.1 and the theory of direct integrals (cf. Theorem A.3) has
direct consequences for the spectrum of the full Hamiltonian 𝐻 ∈ B(ℌ), which is defined by Equation
(21). Among other things, we obtain the following corollary:

Corollary 3.4 (Spectral properties of H). Fix 𝜖,U ∈ R+0 and ℎ𝑏 ∈ [0, 1/2]. Then,

𝜎(𝐻) ∩ (−∞, 8𝜖] =
{
E(U, 𝑘) : 𝑘 ∈ T2} ∪ (0, 8𝜖),

where 𝜎(𝐻) denotes, as is usual, the spectrum of H, and

min𝜎(𝐻) = 𝐸 (U) � min
𝑘∈T2

E(U, 𝑘) ≤ 0.

If additionally 𝜐̂(0) ≠ 0 and 𝑟𝔭 > 0, then

sup
U∈R+0

𝐸 (U) < 0.

Proof. To prove the first assertion, it suffices to combine Proposition 2.1 and Theorem 3.1 with Theo-
rem A.3. The second one can be proven like in [22] by using Kato’s perturbation theory [40]. In Propo-
sition 4.11, we give an alternative and more direct proof of it. Finally, the last assertion is a consequence
of the inequalities

min
𝑘∈T2

E(U, 𝑘) ≤ E(U, 0) = E(U, 0) −min𝜎ess(𝐴(U, 0))

and Theorem 3.1 (iii). �

Physically speaking, the spectral values of H represent the energy levels that are available to the
composite of two fermions and one boson – in particular, for a fermion pair exchanging a boson. As
expected, the minimum energy E, also well-known as the ground state energy, is given by minimizing
the eigenvalues E(U, 𝑘) over the torus T2.

We now study the model at very large on-site repulsion U � 1. In fact, quoting [21], ‘in all cuprates,
there is undeniable experimental evidence of strong on-site Coulomb repulsions, leading to the univer-
sally observed Mott transition at zero doping [29, 30]. This phase is characterized by a periodic distri-
bution of fermions (electrons or holes) with exactly one particle per lattice site. Doping copper oxides
with holes or electrons can prevent this situation. Instead, at sufficiently small temperatures a supercon-
ducting phase is achieved, as first discovered in 1986 for the copper oxide perovskite La2−𝑥Ba𝑥CuO4
[16]’. However, instead of the usual s-wave superconductivity, one experimentally observes d-wave su-
perconductivity [33, 30, 13]. The fact that only the s-wave pairing is suppressed also advocates for a
very local (i.e., on-site) and strong effective repulsion of fermions. For this reason, we consider the limit
U → ∞ in our model. It corresponds to a hard core limit because it prevents two fermions from being
on the same lattice site.

In the limit U → ∞, it is easy to see that the ground state energy 𝐸 (U) of Corollary 3.4 defines an
increasing function of U ∈ R+0 , which is bounded from above by 0. Hence,

𝐸 (∞) � lim
U→∞

𝐸 (U) = sup
U∈R+0

𝐸 (U) ≤ 0. (44)

For more details, see Lemma 4.14. The limit U → ∞ of the eigenvalue and eigenvector of each fiber,
given by Theorem 3.1, is less trivial to obtain and is the object of the next theorem:
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Theorem 3.5 (Spectral properties of fiber Hamiltonians – Hard-core limit). Fix 𝜖,U ∈ R+0 and
ℎ𝑏 ∈ [0, 1/2]. The following limits exist:

E(∞, 𝑘) � lim
U→∞

E(U, 𝑘) = sup
U∈R+0

E(U, 𝑘) ≤ 𝔟(𝑘), 𝑘 ∈ T2.

Ψ(∞, 𝑘) � lim
U→∞

Ψ(U, 𝑘) ∈ H\{0}, 𝑘 ∈ T2\{0}.

Assertion (iv) of Theorem 3.1 also holds true for U = ∞. In addition, when 𝑟𝔭 > 0, E(∞, 𝑘) = 𝔟(𝑘) iff
𝜐̂(𝑘) = 0. If 𝑟𝔭 > 0 and 𝜐̂(0) ≠ 0, then Ψ(∞, 0) exists.

Proof. See Theorems 4.15 and 4.18. �

Note that the eigenvalues given by Theorem 3.1 are not explicitly known. The same is of course true
in the hard-core limit U → ∞. For applications, it is important to have a sufficiently good control on
these objects to be able to compute them, either analytically or numerically. This is done in [22, 21] for
the special case of the usual Hubbard interaction (u = 0) and one-range creation operators 𝑐∗𝑦 of fermion
pairs, by providing estimates for E(U, 𝑘) and Ψ(U, 𝑘) at large U. See [22, Theorem 4, Corollary 5,
Theorem 16].

Recall that 𝜐̂ is the Fourier transform of 𝜐, which is the function appearing in Equation (10), encoding
the (exchange) interaction between fermion pairs and bosons. By Theorem 3.1, if 𝜐̂(𝑘) = 0, then E(U, 𝑘)
is nothing else than the explicit function 𝔟(𝑘) (32). Hence, we focus on the physically more relevant
case 𝜐̂(𝑘) ≠ 0. Using the Birman-Schwinger principle (Theorem A.10), we show in this case that the
eigenvalue E(U, 𝑘) is the unique solution to a relatively simple equation for real numbers, similar to the
characteristic equation used to compute eigenvalues of matrices.

To this end, we define a function 𝔗 : D → R on the set

D �
{
(U, 𝑘, 𝑥) ∈ [0,∞] × T2 × R : 𝑥 < 𝔷(𝑘)

}
⊆ R3

by

𝔗(U, 𝑘, 𝑥) �
〈
𝔡(𝑘),

(
𝐴1,1 (U, 𝑘) − 𝑥1

)−1𝔡(𝑘)
〉

(45)

for any finite U ∈ R+0 , 𝑘 ∈ T2 and 𝑥 ∈ (0, 𝔷(𝑘)), while for the infinite on-site repulsion, 𝑘 ∈ T2 and
𝑥 ∈ (0, 𝔷(𝑘)),

𝔗(∞, 𝑘, 𝑥) � lim
U→∞

𝔗(U, 𝑘, 𝑥),

the above limit existing by virtue of Corollary 4.13. Recall that 𝔷(𝑘) is defined by Equation (75). In fact,
for any 𝑘 ∈ T2 and 𝑥 ∈ (0, 𝔷(𝑘)),

𝔗(∞, 𝑘, 𝑥) = 𝑅−1
𝔰,𝔰

(
𝑅𝔡,𝔡𝑅𝔰,𝔰−

��𝑅𝔰,𝔡��2) > 0,

where 𝑅𝔰,𝔰 , 𝑅𝔰,𝔡, 𝑅𝔡,𝔰 and 𝑅𝔡,𝔡 are four constants defined by Equations (99)–(102) with 𝜆 = 𝑥. When
u = 0, these constants are given by explicit integrals on the torus T2 [22, 21]. Then, the eigenvalues, the
existence of which is stated in Theorem 3.1, as well as their limits (Theorem 3.5), can be studied via the
following characteristic equation:

Theorem 3.6 (Characteristic equation for the fiber ground states). Fix 𝜖 ∈ R+0 , ℎ𝑏 ∈ [0, 1/2] and 𝑘 ∈ T2

such that 𝜐̂(𝑘) ≠ 0. Then, for any U ∈ [0,∞], E(U, 𝑘) is the unique solution to the equation

𝜐̂(𝑘)2𝔗(U, 𝑘, 𝑥) + 𝑥 − 𝔟(𝑘) = 0, 𝑥 < 𝔷(𝑘).

Proof. For U ∈ R+0 , combine Theorem 4.5 with Theorem 4.8, while for U = ∞, use Theorem 4.15. �
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Notice that, more generally, for any fixed U ∈ R+0 , the same characteristic equation determines
all eigenvalues of the fiber lying in the resolvent set 𝜌(𝐴1,1(U, 𝑘)) of the operator 𝐴1,1 (U, 𝑘). See
Theorem 4.5. Also the associated eigenspaces can be explicitly characterized, thanks to Corollary 4.6.
In this context, Corollary 4.7 shows that, for any ℎ𝑏 ∈ [0, 1/2] and total quasi-momentum 𝑘 ∈ T2, there
is at most one eigenvalue of 𝐴(U, 𝑘) in each connected component of 𝜌(𝐴1,1 (U, 𝑘)) ∩ R.

3.2. Dispersion relation of dressed bound fermion pairs

By Theorem 3.1, E : T2 → R is a continuous family of nondegenerate eigenvalues, generally (at least for
𝑘 ≠ 0) associated with exponentially localized eigenvectors. Note that the case 𝑘 = 0 is particular when
𝜐̂(0) = 0, since E(0) is not an isolated eigenvalue of 𝐴(U, 0). However, the family (E(𝑘))𝑘∈T2 is still
continuous. The peculiar behavior at 𝑘 = 0 leads us to only consider total quasi-momenta in the subset

S
2 � (−𝜋, 𝜋)2\{0} ⊆ T2, (46)

as, for instance, in Theorem 3.1 (iv).
Because of Proposition 2.1, the family (E(𝑘))𝑘∈T2 can thus be seen as the effective dispersion relation

of dressed bound fermion pairs. It is expected to determine transport properties of the quantum system
at low temperatures. We now define in mathematical terms what a dispersion relation is.

First, a dispersion relation 𝜘 : T2 → R should be a functions mapping quasi-momenta 𝑘 ∈ T2

on the torus to spectral values of the corresponding fibers. More precisely, 𝜘(𝑘) should be an isolated
eingenvalue of the fiber associated with the total quasi-momentum k. Recall that the dispersion relation of
a (nonrelativistic) particle in the d-dimensional continuum (that is, the particle moves in the continuum
d-dimensional space R𝑑), whose (isotropic) mass is m, is 𝑘2/2𝑚 and velocity 𝑣(𝑘) = 𝑘/𝑚, 𝑘 ∈ R𝑑 .
Having this standard example in mind, we would like also to derive from a dispersion relation a group
velocity and a mass tensor, at any fixed quasi-momentum 𝑘 ∈ T2, as is usual. These are key objects,
for instance, in the study of transport properties. Notice that they require sufficient regularity of the
dispersion relation to be defined.

Keeping in mind that all our quantities are parametrized by the on-site repulsion U ∈ [0,∞], we
define a family of dispersion relations associated with the fiber Hamiltonians 𝐴(U, 𝑘) as follows:

Definition 3.7 (Family of dispersion relations). A function 𝜘 : [0,∞] × T2 → R is said to be a family
of dispersion relations 𝜘(U, ·) if the following properties are satisfied for all U ∈ [0,∞]:

i.) For any 𝑘 ∈ T2 and U ∈ R+0 , 𝜘(U, 𝑘) is an eigenvalue of 𝐴(U, 𝑘) and

𝜘(∞, 𝑘) = lim
U→∞

𝜘(U, 𝑘).

ii.) For all U ∈ [0,∞], 𝜘(U, ·) ∈ 𝐶 (T2) and is of class 𝐶2 on the open set S2 ⊆ R2.

The first property is a very natural property, having in mind Proposition 2.1 and the theory of direct
integrals (Theorem A.3). The second property of Definition 3.7 is needed to define group velocities and
mass tensors.

To explain these two concepts, we need the Hessian of functions 𝑓 ∈ 𝐶2(S2) at fixed k, which is
denoted by

Hess( 𝑓 )(𝑘) �
(

𝜕2
𝑘1
𝑓 𝜕𝑘1𝜕𝑘2 𝑓

𝜕𝑘2𝜕𝑘1 𝑓 𝜕2
𝑘2
𝑓

)
(𝑘) ∈ M2(R), 𝑘 ∈ S2, (47)

where M2(R) is the set of 2 × 2 matrices with real coefficients. It is a straightforward consequence of
the regularity of 𝑓 ∈ 𝐶2 (S2) that

Hess( 𝑓 ) : S2 −→ M2(R)
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is continuous. For any 𝑓 ∈ 𝐶2 (S2), we consider the set

𝔐 𝑓 �
{
𝑘 ∈ S2 : Hess( 𝑓 )(𝑘) ∈ GL2(R)

}
⊆ S2 (48)

with GL2 (R) ⊆ M2 (R) being the set of invertible 2 × 2 matrices with real coefficients. As GL2 (R) ⊆
M2 (R) is an open set (see [50, Theorem 1.4]), it then follows that

𝔐 𝑓 = Hess( 𝑓 )−1(GL2(R))

is also an open set.
We are now in a position to define group velocities and mass tensors of a family of dispersion relations.

Definition 3.8 (Group velocities and mass tensors). At any U ∈ [0,∞], the group velocity v𝜘,U : S2 → R
and the mass tensor m𝜘,U : 𝔐𝜘(U, ·) → M2(R) associated with a family 𝜘 : [0,∞]×T2 → R of dispersion
relations are respectively defined by

v𝜘,U(𝑘) � �∇𝑘𝜘(U, 𝑘) and m𝜘,U (𝑘) � Hess(𝜘(U, ·)) (𝑘)−1.

We deduce from Theorem 4.9 that E is a dispersion relation when the function 𝜐 : Z2 → R is at least
2 times continuously differentiable and, in this case, we can even compute the group velocity via the
characteristic equation (Theorem 3.6).

Theorem 3.9 (Dispersion relations of dressed bound fermion pairs). Fix 𝜖 ∈ R+0 and ℎ𝑏 ∈ [0, 1/2].
Assume that 𝜐̂ ∈ 𝐶2 (S2).

i.) Then, E : [0,∞] × T2 → R given by Theorems 3.1 and 3.5 is a family of dispersion relations.
ii.) The associated group velocities are equal to

vE,U (𝑘) =
(
𝜐̂(𝑘)2𝜕𝑥𝔗(U, 𝑘, 𝑥) + 1

)−1 �∇
(
𝜐̂(𝑘)2𝔗(U, 𝑘, 𝑥) − 𝔟(𝑘)

)����
𝑥=E(U,𝑘)

for any U ∈ [0,∞] and 𝑘 ∈ S2, with

vE,∞(𝑘) = lim
U→∞

vE,U (𝑘), 𝑘 ∈ S2.

iii.) If 𝜐̂ is real analytic on S2, then, for any U ∈ [0,∞], either 𝔐E(U, ·) has full measure or 𝔐E = ∅. In
particular, the tensor masses mE,U are either defined almost everywhere in S2 or not defined at all.

Proof. Use Corollaries 4.10 and 4.17. �

Similar to Remark 3.2, if for some strictly positive constant 𝛾 > 0,∑
𝑥∈Z2

e𝛾 |𝑥 | |𝜐(𝑥) | < ∞,

then the Fourier transform 𝜐̂ of the function 𝜐 : Z2 → R, as defined via (31), is real analytic on the whole
torusT2. It is very natural to expect a local interaction between fermion pairs and bosons in (10), meaning
here that the function 𝜐 should even have finite support. In particular, all conditions of Theorem 3.9,
including the ones of the third assertion, should hold true in the application to superconducting cuprates.

In fact, as shown in [21], the dispersion relation of Theorem 3.9 yields the formation of d-wave pairs
when one adjusts the parameters of the model (with u = 0) to fit those of cuprate superconductors – in
particular, the ones of the cuprate La2−𝑥Sr𝑥CuO4 (LaSr 214) near optimal doping. When considering
the usual Hubbard model – that is, the case where there is no other fermionic repulsion than the on-site
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one (i.e., u = 0) and no fermion-boson exchange (i.e., 𝜐 = 0) – E turns out to be the function 𝔟 : T2 → R,
defined by (32), which is nothing else than the dispersion relation

𝔟(𝑘) � ℎ𝑏𝜖 (2 − cos(𝑘)), 𝑘 ∈ T2,

of free bosons (bipolarons for cuprates).
By turning on the fermion-boson-exchange interaction, the dispersion relation of dressed bound

fermion pairs with lowest energy can strongly deviate from 𝔟, the unperturbed one. Recall, for instance,
that 𝔟 describes bosons with a very large mass as compared to the effective mass of electrons or holes in
cuprates. However, as shown in [21], for typical parameters of the cuprate LaSr 214, the effective mass
of the bound pair (with dispersion relation E) is comparable to the mass of electrons or holes. This is a
consequence of the mass of charge carriers calculated in [52], and the fact that a large effective mass of
dressed bound fermion pairs and a high fermion-pair depletion,13 close to 90% as measured in [53], is
not compatible with our model. This solves the so-called ‘large mass paradox’ of the microscopic theory
of cuprate superconductors, based on some kind mechanism involving bipolarons. For more details, see
[21] and references therein.

In fact, the effective mass of dressed bound fermion pairs, or more generally its (effective) mass
tensor, depends strongly on the coupling function 𝜐̂ near its maximum. Bearing in mind Definitions 3.7
and 3.8, one can therefore provide via Theorems 3.6 and 3.8 not only qualitative but also quantitative
information, which is important for describing the physical behavior of fermionic pairs formed in this
way by means of a bosonic field. A natural question is then to study its scattering properties and this is
precisely what we propose to do in the next section.

3.3. Quantum scattering

Scattering in quantum mechanics constitutes a well-established mathematical theory aiming at analyzing
the behavior of quantum systems at large times. To this end, a reference (or free) Hamiltonian Y is chosen
and the dynamics (e𝑖𝑡𝑋 )𝑡 ∈R of the quantum system driven by the (full) Hamiltonian X is compared at
large (negative and positive) times to (e𝑖𝑡𝑌 )𝑡 ∈R. In fact, scattering theory can be viewed as a kind of
perturbation theory for the absolutely continuous spectrum of X. See, for example, [40, Chapter X]. For
standard textbooks explaining in detail the scattering theory, we recommend [41, 42, 43]. Below, for the
reader’s convenience, we shortly recall definitions that are relevant here.

Take two bounded self-adjoint operators X and Y acting on two Hilbert spaces X and Y , respectively.
Let 𝑃ac (𝑌 ) be the orthogonal projection onto the absolutely continuous space of 𝑌 , which is defined as
follows:

ran(𝑃ac(𝑌 )) �
{
𝜓 ∈ Y :

〈
𝜓, 𝜒( ·) (𝑌 )𝜓

〉
Y is absolutely continuous

with respect to the Lebesgue measure
}
, (49)

where 𝜒Ω is its characteristic function14 of any Borel set Ω ⊆ R. The so-called wave operators for the
pair (𝑋,𝑌 ) with identification operator 𝐽 ∈ B(Y ,X ) is, by definition, the strong limit

𝑊±(𝑋,𝑌 ; 𝐽) � 𝑠 − lim
𝑡→±∞

e𝑖𝑡𝑋 𝐽e−𝑖𝑡𝑌 𝑃ac(𝑌 ), (50)

when it exists. See, for instance, [43, Definition 1.3]. When Y = X and 𝐽 = 1, like in (43, Definition
1.1), we use the shorter notation

𝑊±(𝑋,𝑌 ) ≡ 𝑊±(𝑋,𝑌 ; 1) � 𝑠 − lim
𝑡→±∞

e𝑖𝑡𝑋e−𝑖𝑡𝑌 𝑃ac (𝑌 ). (51)

13I.e., the fermionic component of the dressed bound fermion pairs is very small in comparison with the bipolaronic component.
14𝜒Ω (𝑥) = 1 for 𝑥 ∈ Ω and 𝜒Ω (0) = 1 otherwise.
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In case the above wave operators exist, they are partial isometries [41, Proposition 1, Sect. XI.3]. They
are said to be complete when

ran
(
𝑊+(𝑋,𝑌 )

)
= ran(𝑊−(𝑋,𝑌 )) = ran(𝑃ac(𝑋)).

See [41, p. 19, Sect. XI.3].
Similarly, in the general case, 𝑊±(𝑋,𝑌 ; 𝐽) are said to be complete whenever

ran(𝑊+(𝑋,𝑌 ; 𝐽)) = ran(𝑊−(𝑋,𝑌 ; 𝐽)) = ran(𝑃ac (𝑋)).

See [41, p. 35, Sect. XI.3]. The corresponding scattering operator is equal to

𝑆(𝑋,𝑌 ; 𝐽) � 𝑊+(𝑋,𝑌 ; 𝐽)∗𝑊−(𝑋,𝑌 ; 𝐽) ∈ B(Y). (52)

It leads to the scattering matrix (or simply S-matrix) in a representation where Y is diagonal, because
the scattering operator commutes with Y. See [43, Equation (1.12)].

Remark 3.10. For two bounded self-adjoint operators X and Y acting on two Hilbert spaces X and Y ,
note15 that

ran(𝑃ac(𝑋 ⊕ 𝑌 )) = ran(𝑃ac(𝑋)) ⊕ ran(𝑃ac (𝑌 )).

This is an elementary observation used to study the scattering channels in Section 4.6.

In our framework, the Hamiltonian X is the bounded self-adjoint operator

U𝐻U∗ =
∫ ⊕

T2
𝐴(𝑘) 𝜈(d𝑘)

of Proposition 2.1, which acts on the Hilbert space 𝐿2 (T2,H). Below, two different (reference) Hamil-
tonians Y are taken into account, corresponding to two scattering channels: the unbound and bound pair
channels. For cuprates, the first channel should be associated with the high temperature regime, while
the second one is related to sufficiently low temperatures.

3.3.1. Unbound pair scattering channel
Far apart from each other, two fermions only experience a very weak repulsion force due to the extended
Hubbard interaction while the probability that they bind together to form a boson is also very small.
Thus, in this situation, one expects that the dynamics of such a pair is governed by the fermionic part,
and even by the hopping term alone. During intermediate times, they could of course interact, as they
may get close to each other, and they could even be bound together via the effective attraction caused
by fermion-boson exchange processes. The lifetime of bound fermions should, however, be finite in this
situation, and they are expected to be released at some point and behave again as two free fermions that
go far apart from each other for large times. See Figure 2. We show below that this heuristics can be put
in precise mathematical terms.

To this end, define the Hilbert space

ℌ 𝑓 � 𝐿2
(
T

2, 𝐿2
(
T

2
)
, 𝜈

)
�

∫ ⊕

T2
𝐿2

(
T

2,C, 𝜈
)
𝜈(d𝑘) (53)

15To show this property, take any Borel set Ω ⊆ R and observe that 〈(𝜑, 𝜓) , 𝜒Ω (𝑋 ⊕ 𝑌 ) (𝜑, 𝜓) 〉X⊕Y = 〈𝜑, 𝜒Ω (𝑋 )𝜑〉X +
〈𝜓, 𝜒Ω (𝑌 )𝜓〉Y . Since 𝜒Ω (𝑋 ) and 𝜒Ω (𝑌 ) are positive operators, the left-hand side of the last expression is zero iff each term in
the right-hand side is zero.
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Figure 2. Illustration of the unbound pair scattering channel: Two free fermions of (quasi-) momentum
𝑘 − 𝑝 and q respectively (i.e., the full momentum of the fermionic pair is k) at time 𝑡 = −∞ interact in
finite time with the composite system – in particular with the bosonic field – to be asymptotically free
again at time 𝑡 = +∞, thanks to Theorem 3.11. Here, 𝑆𝑘 = 𝑆

(
𝐴(𝑘),

(
𝑀𝔣 (𝑘) + 𝑅(V, v)

)
⊕ 𝐴2,2 (𝑘)

)
is the

scattering operator of this process in each fiber k, which depends explicitly on 𝜐̂(𝑘). See Theorem 3.13
and the example given by Equations (63)–(64).

as well as the Hamiltonian

H 𝑓 ≡ H 𝑓 (V, v) �
∫ ⊕

T2

(
𝑀𝔣 (𝑘) + 𝑅(V, v)

)
𝜈(d𝑘) ∈ B

(
ℌ 𝑓

)
(54)

for any V ∈ R+0 and absolutely summable function v : Z2 → R+0 , where

𝑅(V, v) �
∑
𝑥∈Z2

v(𝑥)𝑃𝑥 + V𝑃0 ∈ B
(
𝐿2 (T2)

)
, (55)

𝑀𝔣 (𝑘) being the fiber Hamiltonian defined as the multiplication operator by 𝔣(𝑘) ∈ 𝐶 (T2) (see ( 33))
while 𝑃𝑥 is the orthogonal projection onto the one-dimensional subspace C𝔢̂𝑥 ⊆ 𝐿2 (T2). Observe then
that

U𝐻U∗ −
(
H 𝑓 0

0 0

)
=

∫ ⊕

T2

( ∑
𝑥∈Z2

(u(𝑥) − v(𝑥))𝑃𝑥 + (U − V)𝑃0 𝐴1,2 (𝑘)

𝐴2,1 (𝑘) 𝐴2,2 (𝑘)

)
𝜈(d𝑘).

Compare indeed (54) with Equations 42–37 and Proposition 2.1. By Lemma 4.21, note that 𝑃ac (H 𝑓 ) = 1.
Let us consider the identification operator 𝔘 : ℌ 𝑓 → 𝐿2 (

T
2,H

)
defined for any purely fermionic

state 𝜓 ∈ ℌ 𝑓 by

𝔘𝜓 : T2 → H � 𝐿2 (
T

2) ⊕ C
𝑘 ↦→ (𝜓(𝑘), 0) . (56)

See Equation (25). Note that 𝔘 is an isometry (i.e., a norm preserving linear transformation). In fact,
it is the canonical fiberwise inclusion of ℌ 𝑓 into 𝐿2 (

T
2,H

)
. Recall from Proposition 2.1 that 𝐴(U, ·),

defined by (37)–(42), is the fiber decomposition of the operator U𝐻U∗. Then, we obtain wave and
scattering operators with respect to fermionic parts:
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Theorem 3.11 (Unbound pair (scattering) channel). Let V ∈ R+0 and v : Z2 → R+0 be any absolutely
summable function.

i.) The wave operators, as defined by (50) for𝑋 = U𝐻U∗, 𝑌 = H 𝑓 and 𝐽 = 𝔘, satisfy

𝑊± (
U𝐻U∗,H 𝑓 ;𝔘

)
=

(∫ ⊕

T2
𝑊± (

𝐴(𝑘),
(
𝑀𝔣 (𝑘) + 𝑅(V, v)

)
⊕ 𝐴2,2 (𝑘)

)
𝜈(d𝑘)

)
𝔘 (57)

with range equal to

ran
(
𝑊± (
U𝐻U∗,H 𝑓 ;𝔘

) )
=

∫ ⊕

T2
𝐿2

(
T

2
)
⊕ {0} 𝜈(d𝑘). (58)

ii.) The scattering operator, as defined by (52) for𝑋 = U𝐻U∗, 𝑌 = H 𝑓 and 𝐽 = 𝔘, equals

𝑆
(
U𝐻U∗,H 𝑓 ;𝔘

)
= 𝔘∗

(∫ ⊕

T2
𝑆
(
𝐴(𝑘),

(
𝑀𝔣 (𝑘) + 𝑅(V, v)

)
⊕ 𝐴2,2 (𝑘)

)
𝜈(d𝑘)

)
𝔘.

Proof. Observe that the operator difference (U𝐻U∗ − H 𝑓 ) is not trace-class (it is not even compact)
and, thus, the existence of this scattering channel is not a direct consequence of the well-known Kato-
Rosenblum theorem [41, Theorem XI.8]. In fact, one of the main steps of the proof is to show that this
difference is the direct integral of a strongly measurable family of trace-class operators. By this means,
we are then able to apply the Kato-Rosenblum theorem ‘fiberwise’ to deduce the first assertion. See
Section 4.6.1 for more details – in particular, Theorem 4.23. Assertion (ii) is a direct consequence of
Assertion (i) together with the theory of direct integrals. �

Remark 3.12. If one would like to go back to the original Hilbert space 𝔥0 (19) for fermion pairs with
opposite spins – that is, if one wishes to use space coordinates, instead of the quasi-momenta – then one
employs Theorem 3.11, along with the observation that

𝑊±
(
𝐻,𝑈∗𝑓 H 𝑓 𝑈 𝑓 ;U∗𝔘𝑈 𝑓

)
= 𝑈∗𝑊± (

U𝐻U∗,H 𝑓 ;𝔘
)
𝑈 𝑓 ,

where 𝑈 𝑓 is defined by (28). See also Equation (26) and Proposition 2.1.

Theorem 3.11 refers to the unbound pair (scattering) channel. The subspace ℌ 𝑓 ⊆ ℌ corresponds
to the ‘incoming’ (+) and ‘outcoming’ (−) scattering states of the quantum system, in this particular
scattering channel. Physically, this theorem shows, among other things, that the bosonic component of
e𝑖𝑡𝐻 vanishes on this channel, as 𝑡 → ±∞. This is a direct consequence of Equation (58).

In addition, Equation (57) gives an explicit fiber decomposition of wave operators with respect to the
purely fermionic Hamiltonian in terms of 𝑘-dependent wave operators defined naturally from the fiber
decomposition of the operator U𝐻U∗. Mutatis mutandis for the scattering operator, thanks to Theorem
3.11 (ii). In other words, the knowledge of scattering properties of each fiber, almost everywhere, entirely
determines the scattering properties of the composite system, made of two fermions and one boson. We
can now use this property (i.e., Theorem 3.11) to obtain a more computable expression for the wave and
scattering operators in each given fiber. This can be done via infinite series (perturbative expansions),
thanks to Corollary A.2.

Below, we give an example of such a computation by taking U = V ∈ R+0 and v = u : Z2 → R+0 in
Theorem 3.11. With this particular choice, the unbound pair channel allows one to isolate the fermion-
boson exchange mechanism, which in terms of Hamiltonians refers to the use of off-diagonal operators

𝐵 (𝑡) (𝑘) � 
��
0 𝐵 (𝑡)1,2 (𝑘)

𝐵 (𝑡)2,1 (𝑘) 0

�� ∈ B(H), 𝑡 ∈ R, 𝑘 ∈ T2, (59)
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in the fibers, where, for any 𝑡 ∈ R and 𝑘 ∈ T2,

𝐵 (𝑡)1,2 (𝑘) � e𝑖𝑡 𝐴1,1 (U,𝑘) 𝐴1,2(𝑘)e−𝑖𝑡 𝐴2,2 (𝑘) and 𝐵 (𝑡)2,1 (𝑘) � e𝑖𝑡 𝐴2,2 (𝑘) 𝐴2,1(𝑘)e−𝑖𝑡 𝐴1,1 (U,𝑘) . (60)

Recall that, for 𝑚, 𝑛 ∈ {1, 2}, 𝐴𝑚,𝑛 (𝑘) is defined by (37)–( 41). Below, 𝐵𝑚,𝑛 (𝑘), 𝑚 ≠ 𝑛, stands for the
norm-continuous family of operators (𝐵 (𝑡)𝑚,𝑛 (𝑘))𝑡 ∈R.

To shorten the notation, for any 𝑠, 𝑡 ∈ R, as well as two norm-continuous families 𝑋 ≡ (𝑋𝑡 )𝑡 ∈R and
𝑌 ≡ (𝑌𝑡 )𝑡 ∈R of bounded operators 𝑋𝑡 : X → Y and 𝑌𝑡 : Y → X on two Hilbert spaces X and Y ,
respectively, we define the bounded operators:

cos�(𝑋𝑌 ; 𝑠, 𝑡) � 1 +
∞∑
𝑝=1
(−1) 𝑝

∫ 𝑡

𝑠
d𝜏1 · · ·

∫ 𝜏2𝑝−1

𝑠
d𝜏2𝑝 (𝑋𝜏1𝑌𝜏2 ) · · · (𝑋𝜏2𝑝−1𝑌𝜏2𝑝 ), (61)

sin�(𝑋𝑌 ; 𝑠, 𝑡) �
∫ 𝑡

𝑠
d𝜏𝑋𝜏 +

∞∑
𝑝=1
(−1) 𝑝

∫ 𝑡

𝑠
d𝜏1 · · ·

∫ 𝜏2𝑝

𝑠
d𝜏2𝑝+1𝑋𝜏1

(
(𝑌𝜏2𝑋𝜏3) · · · (𝑌𝜏2𝑝𝑋𝜏2𝑝+1 )

)
. (62)

The integrals above are Riemann ones, noting that (𝑋𝑡 )𝑡 ∈R and (𝑌𝑡 )𝑡 ∈R are continuous families in
Banach spaces – namely, B(X ;Y) and B(Y;X ), respectively. Note that cos�(𝑋𝑌 ; 𝑠, 𝑡) ∈ B(Y) and
sin�(𝑋𝑌 ; 𝑠, 𝑡) ∈ B(X ,Y) are always absolutely summable series in the operator norm. Then, we obtain
the following results:

Theorem 3.13 (Scattering operators as pertubative series). Let 𝜀 ∈ R+ and H 𝑓 ≡ H 𝑓 (U, u). Then, for
any 𝜑 ∈ ℌ 𝑓 , there is 𝑇 > 0 such that

𝑇 < 𝑡 =⇒
##(𝑊+ (

U𝐻U∗,H 𝑓 ;𝔘
)
−𝑉0,𝑡𝔘

)
𝜑
##
X ≤ 𝜀,

𝑡 < −𝑇 =⇒
##(𝑊− (

U𝐻U∗,H 𝑓 ;𝔘
)
−𝑉0,𝑡𝔘

)
𝜑
##
X ≤ 𝜀,

Moreover, for any 𝜑, 𝜓 ∈ ℌ 𝑓 , there is 𝑇 > 0 such that

𝑠 < −𝑇 < 𝑇 < 𝑡 =⇒
〈
𝜓, 𝑆

(
U𝐻U∗,H 𝑓 ;𝔘

)
𝜑
〉
X =

〈
𝔘𝜓,𝑉𝑡 ,𝑠𝔘𝜑

〉
X +O(𝜀),

where, for all 𝑠, 𝑡 ∈ R,

𝑉𝑡 ,𝑠 �
∫ ⊕

T2

(
cos�

(
𝐵1,2(𝑘)𝐵2,1 (𝑘); 𝑠, 𝑡

)
−𝑖 sin�

(
𝐵1,2 (𝑘)𝐵2,1 (𝑘); 𝑠, 𝑡

)
−𝑖 sin�

(
𝐵2,1 (𝑘)𝐵1,2 (𝑘); 𝑠, 𝑡

)
cos�

(
𝐵2,1 (𝑘)𝐵1,2 (𝑘); 𝑠, 𝑡

) )
𝜈(d𝑘).

Proof. It suffices to combine Lemma 4.24 with Equation (141) and Theorem 3.11, similar to Corol-
lary A.2. �

Theorem 3.13 provides a way to approximate the scattering matrix associated with the fermion-
boson-exchange interaction. Note for instance from (37)–(41) that the operator 𝐵 (𝑡)1,2 (𝑘)𝐵

(𝑠)
2,1 (𝑘) and

𝐵 (𝑡)2,1 (𝑘)𝐵
(𝑠)
1,2 (𝑘) have a relatively simple form for any 𝑠, 𝑡 ∈ R and 𝑘 ∈ T2:

𝐵 (𝑡)1,2 (𝑘)𝐵
(𝑠)
2,1 (𝑘) =

(
𝜐̂(𝑘)2e𝑖 (𝑠−𝑡)𝔟 (𝑘)

)
e𝑖𝑡 𝐴1,1 (U,𝑘)𝑃𝔡 (𝑘)e−𝑖𝑠𝑎:1,1(U,𝑘) , (63)

𝐵 (𝑡)2,1 (𝑘)𝐵
(𝑠)
1,2 (𝑘) =

(
𝜐̂(𝑘)2e𝑖 (𝑡−𝑠)𝔟 (𝑘)

) 〈
𝔡(𝑘), e𝑖 (𝑠−𝑡)𝐴1,1 (U,𝑘)𝔡(𝑘)

〉
, (64)

where 𝑃𝔡 (𝑘) is the orthogonal projection onto the one-dimensional subspace C𝔡(𝑘) ⊆ 𝐿2 (T2). Similar
computations can be done for other choices of V ∈ R+0 and v : Z2 → R+0 in Theorem 3.11, like V = 0 = v
(noninteracting fermion systems). See again Corollary A.2.
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𝑘 − 𝑞 𝑘 − 𝑝

𝑞 𝑝

𝜐̂(𝑘) 𝜐̂(𝑘)

Figure 3. Illustration of the bound pair scattering channel. Here, k is the full (quasi-)momentum of the
(exponentially localized) dressed bound fermion pairs. The oscillating vertical lines between the two
fermions (e.g., electrons) before the scattering process and afterwards characterize their bound via a
bosonic (e.g., bipolaronic) particle transfer with coupling function 𝜐̂(𝑘); see Figure 1. It illustrates the
stability of these pairs of fermions in time, as expressed by Theorem 3.14, that is, the pairs cannot decay
into an (even only asymptotically) unbound pair of fermions.

The understanding of this kind of scattering, regarding free fermion (electron) collisions, is relevant
in physics, because it can allow the exchange function 𝜐 of a real system to be studied. It is therefore
important to have a model from which not only qualitative, but also quantitative, information can be
obtained. This is the purpose of this section, in particular of Theorem 3.11, which gives the explicit
dependency of scattering in terms of 𝜐.

3.3.2. Bound pair scattering channel
Similarly, we also prove the existence of a scattering channel for dressed bound pairs. As dressed bound
pairs are space-localized objects (see, for example, Theorem 3.1 (iii)), the fermions forming the pair
efficiently exchange a boson, at a non-negligible rate, via the terms 𝑊b→f (9) and 𝑊f→b (17) in the
Hamiltonian H. In particular, such quantum states must have some non-negligible bosonic component
representing the exchanged boson that ‘glues’ the two fermions together. This dressed bound pair is
however expected to move like a free (quantum spinless) particle in the real space. See Figure 3. We
translate this physical heuristics in precise mathematical terms by considering the effective dispersion
relations

E : [0,∞] × T2 → R

given by Theorems 3.1, 3.5 and 3.9.
For any U ∈ R+0 ∪ {∞}, we consider the identification operator

𝔓U : 𝐿2
(
T

2
)
→ 𝐿2

(
T

2,H
)

defined for any 𝜑 ∈ 𝐿2 (
T

2) by16

𝔓U𝜑 : T2\{0} → H � 𝐿2 (
T

2) ⊕ C
𝑘 ↦→ 𝜑(𝑘)‖Ψ(U, 𝑘)‖−1Ψ(U, 𝑘) , (65)

where Ψ(U, 𝑘) is the eigenvector associated with the (nondegenerate) eigenvalue E(U, 𝑘), as given by
Theorems 3.1, 3.5 and 3.9. Note from Theorem 3.1 that the mapping

𝑘 ↦→ ‖Ψ(U, 𝑘)‖−1Ψ(U, 𝑘)

16Despite the fact that E(0) might not be in the resolvent set of 𝐴1,1 (U, 0) , we can simply ignore it for {𝑘 = 0} has null
Lebesgue measure.
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is continuous on T2 for any U ∈ R+0 , and its pointwise limit

𝑘 ↦→ ‖Ψ(∞, 𝑘)‖−1Ψ(∞, 𝑘)

(cf. Theorem 3.5) is therefore measurable. In particular, the linear transformation 𝔓U is well-defined for
any U ∈ R+0 ∪ {∞}. Moreover, one checks that it is norm-preserving.

Since E(U, ·) ∈ 𝐶 (T2;R) ⊆ 𝐿∞(T2, 𝜈) (see Theorems 3.1 (iv) and 3.5), we can consider the
multiplication operator by E(U, ·) on 𝐿2 (T2), which is denoted by

𝑀E(U, ·) �
∫ ⊕

T2
E(U, 𝑘) 𝜈(d𝑘), U ∈ R+0 ∪ {∞}. (66)

Remark also from Theorems 3.1 (iv) and 3.5 together with Corollary A.5 that 𝑃ac(𝑀E(U, ·) ) = 1 whenever
𝜐̂ is real analytic on S2. We then study now the (dressed) bound pair scattering channel, which is much
simpler than in the unbound pair channel:

Theorem 3.14 (Bound pair (scattering) channel). Let ℎ𝑏 ∈ [0, 1/2]. Then the following assertions hold
true:

i.) Dynamics and wave operators at finite U ∈ R+0:

e𝑖𝑡U𝐻U
∗
𝔓U = 𝔓Ue𝑖𝑡𝑀E(U,·) , 𝑡 ∈ R.

ii.) Dynamics in the hard-core limit U →∞:

𝑠 − lim
U→∞

𝔓U = 𝔓∞ and 𝑠 − lim
U→∞

e𝑖𝑡U𝐻U
∗
𝔓U = 𝔓∞e𝑖𝑡𝑀E(∞,·) , 𝑡 ∈ R.

Proof. Assertion (i) is Proposition 4.25. Assertion (ii) results from Proposition 4.26. �

From Theorem 3.14, (i) the scattering channel is time independent. For instance, for any U ∈ R+0 ,
one trivially checks that

𝑊± (
U𝐻U∗, 𝑀E(U, ·) ;𝔓U

)
= 𝔓U𝑃ac

(
𝑀E(U, ·)

)
,

and since 𝔓∗
U𝔓U = 1 and 𝑃ac is a projection, its scattering operator is equal to

𝑆
(
U𝐻U∗, 𝑀E(U, ·) ;𝔓U

)
= 𝑃ac

(
𝑀E(U, ·)

)
.

If 𝜐̂ is additionally real analytic on S2, then 𝑃ac (𝑀E(U, ·) ) = 1, thanks to Theorem 3.1 and Corollary A.5.
In this case, the wave and scattering operators are given by

𝑊± (
U𝐻U∗, 𝑀E(U, ·) ;𝔓U

)
= 𝔓U and 𝑆

(
U𝐻U∗, 𝑀E(U, ·) ;𝔓U

)
= 1

for any U ∈ R+0 . Their hard-core limit are then also trivial, thanks to Theorem 3.14 (ii).
This scattering channel is therefore easy to study. In particular, similar to Remark 3.12, we can

easily go back to the original Hilbert space 𝔥0 (19), referring to space coordinates instead of the quasi-
momenta. With this aim, we first observe that, for any U ∈ R+0 ,

e𝑖𝑡𝐻PU = PUe𝑖𝑡𝑈
∗
𝑓 𝑀E(U,·)𝑈 𝑓 , 𝑡 ∈ R, (67)

where PU ∈ B(𝔥0,ℌ) is the new identification operator

PU � U∗𝔓U𝑈 𝑓 , U ∈ R+0 ,

and 𝑈 𝑓 � 𝑈2𝑈1. See Equations (26)–(28) and Proposition 2.1.

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


Forum of Mathematics, Sigma 29

On the one hand, Equation (67) together with Theorem 3.9 shows that E(U, ·) defines (a family of)
dispersion relations, in the sense of Definition 3.7. The Fourier transform of E(U, ·) is the (effective)
hopping strength for the (spatially localized) dressed bound pairs. On the other hand, the new identifi-
cation operator PU is translation invariant, that is,

PU𝜃𝑥 = Θ𝑥PU, 𝑥 ∈ Z2,

where, for any fixed 𝑥 ∈ Z2, 𝜃𝑥 ∈ B(𝔥0) and Θ𝑥 ∈ B(ℌ) are the unique unitary operators respectively
satisfying

𝜃𝑥
(
𝔢(𝑦,↑) ∧ 𝔢(𝑧,↓)

)
= 𝔢(𝑦+𝑥,↑) ∧ 𝔢(𝑧+𝑥,↓) , 𝑦, 𝑧 ∈ Z2,

(see Equations (19)) and

Θ𝑥 (𝜓 ⊕ 𝜑) = (𝜃𝑥𝜓) ⊕ 𝜑(𝑥 + ·), 𝜓 ∈ 𝔥0, 𝜑 ∈ ℓ2
(
Z

2
)
.

See Equations (20). In addition, when 𝜐̂(0) ≠ 0, Theorem 3.1 (iii) shows that the (dressed) fermion
pair in the bound pair channel is exponentially localized in space; that is, the associate fermion-
fermion correlation function decays exponentially fast with respect to the distance between the fermions,
uniformly in time. Note that it is not required that the range of PU has a vanishing bosonic component,
because of the expected presence of ‘gluing bosons’ in the dressed bound fermionic pair.

As a consequence, the bound channel describes an effective system of free localized, spinless quasi-
particles which minimize the energy at any fixed total quasi-momentum. In particular, such quasi-
particles of lowest energy, or dressed fermion pairs, are stable in time; that is, they cannot decay into
an (even only asymptotically) unbound pair of fermions. Conversely, we also show in Section 3.3.1 that
a pair of fermions that is asymptotically unbound far in the past is not able to bind together to form a
stable bound pair in the distant future.

Nevertheless, these quasi-particles should only be stable with respect to external perturbations as
soon as their states are related to quasi-momenta k such that E(U, 𝑘) < 0. If the (dressed) quasi-particle
is in a state whose support contains fibers k such that E(U, 𝑘) ≥ 0, it is not in the most energetically
favorable state, since

min𝜎ess(𝐴(U, 0)) = 0

(see Theorem 3.1). In fact, if the component corresponding to quasi-momenta k such that E(U, 𝑘) ≥ 0
has nonvanishing Lebesgue measure, then the quasi-particle should be instable with respect to external
perturbations, by possibly creating unbounded fermions with small quasi-momenta to decrease its total
energy. This situation clearly appears for quasi-momenta 𝑘 ∈ T2 such that 𝜐̂(𝑘) = 0 or sufficiently small
|𝜐̂(𝑘) | � 1 when 𝑘 ≠ 0, since in these two cases, either E(U, 𝑘) = 𝔟(𝑘) (𝜐̂(𝑘) = 0) or E(U, 𝑘) � 𝔟(𝑘)
(|𝜐̂(𝑘) | � 1) with 𝔟(𝑘) � ℎ𝑏𝜖 (2 − cos(𝑘)) (see (32)). If such a decay process really occurs, one should
see critical quasi-momenta, like in physical superconductors.

To prevent from this situation, one needs sufficiently strong |𝜐̂(𝑘) | � 1 to have E(U, 𝑘) < 0 for all
𝑘 ∈ T2. In the position space, this means that the exchange strength between the two fermions and the
boson, represented by the function 𝜐 : Z2 → R appearing in (9)–(17), has to be sufficiently strong and
localized, like in Remark 3.2, in order to get a sufficiently strong ‘gluing effect’ for dressed pairs, at all
quasi-momenta. Recall also that the boson should be heavier than the two fermions (i.e., ℎ𝑏 ∈ [0, 1/2]).

Last but not least, all this discussion can be extended to the hard-core limit U → ∞, in view of
Theorems 3.9 and 3.14 (ii).
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4. Technical results

4.1. Notation

The purpose of this section is to fix (or recall) the notation and terminology that is used throughout the
rest of the article. Let X be any complex Hilbert space. We denote its scalar product by 〈·, ·〉X , with the
convention that it is antilinear in the first argument and linear in the second one. The norm of X is thus

‖𝜑‖X �
√
〈𝜑, 𝜑〉X , 𝜑 ∈ X .

When there is no danger of confusion, as already said in Remark 1.2, we usually omit the subscript
referring to the Hilbert space and write ‖ · ‖ for ‖ · ‖X and 〈·, ·〉 for 〈·, ·〉X .

Recall that B(X ) denotes the set of bounded (linear) operators on X . 1 ≡ 1X ∈ B(X ) is the identity
operator. Given 𝑇 ∈ B(X ), 𝑇∗ denotes its adjoint operator. The (full) spectrum, essential spectrum and
resolvent set of any 𝑇 ∈ B(X ) are denoted by 𝜎(𝑇), 𝜎ess (𝑇) and 𝜌(𝑇), respectively. The operator norm
of B(X ) is

‖𝑇 ‖op � sup{‖𝑇𝜑‖X : 𝜑 ∈ X with ‖𝜑‖X = 1}.

Given 𝑇 ∈ B(X ), E𝑇 (𝜆) stands for the eigenspace associated with an eigenvalue 𝜆 ∈ 𝜎(𝑇) of T.
In all the Section 4, we study properties of the Hamiltonian 𝐻 ∈ B(ℌ) defined by (21). As one

can see from (18)–(21) combined with (6), (8)–(11) and (17), it depends on several parameters. More
precisely, 𝜖,U, ℎ𝑏 ∈ R+0 and 𝛼0 ∈ R+, while

u : Z2 → R+0 , e𝛼0 | · |𝔭1 : Z2 → R , e𝛼0 | · |𝔭2 : Z2 → R and 𝜐 : Z2 → R

(with 𝔭2(𝑧) � 0 for 𝑧 ∉ 2Z) are all absolutely summable functions that are invariant with respect to
90◦-rotations. See Equations (7), (12) and (16). The parameters of the operator H are always fixed and
arbitrary, unless we need to specify them to clarify some particular statement. Recall that the invariance
under 90◦-rotation is not that important here. In fact, here, the only important point concerning this
symmetry is that it implies that the Fourier transforms 𝜐̂, 𝔭̂1 and 𝔭̂2 are real-valued, because

𝜐(−𝑥) = 𝜐(𝑥) = 𝜐(𝑥), 𝔭1(−𝑥) = 𝔭1 (𝑥) = 𝔭1 (𝑥) 𝑎𝑛𝑑 𝔭2 (−𝑥) = 𝔭2(𝑥) = 𝔭2 (𝑥),

that is, the real valued functions 𝜐, 𝔭1 and 𝔭2 are reflection invariant, as a consequence of their 90◦-
rotation invariance. Apart of this technical point, it is mainly relevant for the study of unconventional
pairings, which is not done in the present work.

Note additionally that the on-site repulsion U ∈ R+0 appears explicitly in all the quantities defined in
Sections 2–3. However, in Section 4, this parameter is only important for the Subsections 4.4 and 4.6.
Therefore, unless the parameter U is important for our discussions or statements, we omit it in order to
shorten the notation, by writing

𝑓 (𝑘) ≡ 𝑓 (U, 𝑘)

for any function 𝑓 (U, 𝑘) of the parameters U and k.

4.2. Computation of the fiber decomposition of the Hamiltonian

For completeness, we first proof in a simple lemma that the fiber Hamiltonians defined by (42) yield an
element of 𝐿∞

(
T

2,B(H)
)
. Then, we prove Proposition 2.1.

Lemma 4.1 (Elementary properties of fiber Hamiltonians). Fix ℎ𝑏 , 𝜖 ,U ∈ R+0 . Then, 𝐴 : T2 → B(H),
as defined by (42), is continuous and, in particular, 𝐴(·) ∈ 𝐿∞

(
T

2,B(H)
)
.
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Proof. Since cos : R2 → R, as defined by (35), is a nonexpansive mapping with period 2𝜋, given
𝑘, 𝑘 ′, 𝑝 ∈ T2, the quantity

𝔣(𝑘 ′) (𝑝) − 𝔣(𝑘) (𝑝) = 𝜖{cos(𝑝 + 𝑘) − cos(𝑝 + 𝑘 ′)} = 𝜖{cos(𝑝 + 𝑘) − cos(𝑝 + 𝑘 ′ + 2𝜋𝑞)}

(see (33)) is bounded for any 𝑞 ∈ Z2 by

|𝔣(𝑘 ′) (𝑝) − 𝔣(𝑘) (𝑝) | ≤ 𝜖 | (𝑝 + 𝑘) − (𝑝 + 𝑘 ′ + 2𝜋𝑞) | = 𝜖 |𝑘 − 𝑘 ′ + 2𝜋𝑞 |.

Hence, taking the minimum over all 𝑞 ∈ Z2 and the supremum over all 𝑝 ∈ T2, we obtain from (22) and
(38) that ##𝐴1,1 (𝑘 ′) − 𝐴1,1 (𝑘)

##
op =

##𝑀𝔣 (𝑘′) − 𝑀𝔣 (𝑘)
##

op = sup
𝑝∈T2

|𝔣(𝑘 ′) (𝑝) − 𝔣(𝑘) (𝑝) |

≤ 𝜖 min
𝑞∈Z2

|𝑘 − 𝑘 ′ + 2𝜋𝑞 | = 𝜖𝑑T2 (𝑘, 𝑘 ′)

for all 𝑘, 𝑘 ′ ∈ T2. In other words, the mapping

𝐴1,1 (·) : T2 → B
(
𝐿2

(
T

2
))

is (𝜖-Lipschitz) continuous with respect to the metric 𝑑T2 . Similarly, we see that 𝔟 : T2 → R, defined
by (32), is continuous with respect to 𝑑T2 , and hence, so is 𝐴2,2 : T2 → L(C) (see (41)). In addition, by
the triangle and Cauchy-Schwarz inequalities, for any 𝑘, 𝑘 ′ ∈ T2 and 𝜑 ∈ 𝐿2 (T2),

|𝜐̂(𝑘 ′)〈𝔡(𝑘 ′), 𝜑〉 − 𝜐̂(𝑘)〈𝔡(𝑘), 𝜑〉| ≤ |𝜐̂(𝑘 ′) − 𝜐̂(𝑘) |‖𝔡(𝑘 ′)‖‖𝜑‖ + |𝜐̂(𝑘) |‖𝔡(𝑘 ′) − 𝔡(𝑘)‖‖𝜑‖.

Because of (12) and (16), 𝔡(𝑘), 𝜐̂ ∈ 𝐶
(
T

2) . So, since T2 is ( 𝑑T2 -)compact and##𝐴2,1 (𝑘 ′) − 𝐴2,1(𝑘)
##

op = sup
𝜑∈𝐿2 (T2) , | |𝜑 | |2=1

|𝜐̂(𝑘 ′)〈𝔡(𝑘 ′), 𝜑〉 − 𝜐̂(𝑘)〈𝔡(𝑘), 𝜑〉|,

we deduce from the last inequality and (39) that 𝐴2,1 : T2 → 𝐿2 (T2)∗ is continuous. As 𝐴1,2(𝑘) =
𝐴2,1 (𝑘)∗ for all 𝑘 ∈ T2, we conclude that the mapping 𝐴 : T2 → B(H) is continuous, and hence
bounded on the 𝑑T2 -compact set T2. �

We now compute the following unitary transformation of the Hamiltonian H (see (18)):

U𝐻U∗ =

(
𝑈 𝑓 0
0 F

) (
𝐻 𝑓 𝑊b→f

𝑊f→b 𝐻𝑏

) (
𝑈∗𝑓 0
0 F∗

)
=

(
𝑈 𝑓 𝐻 𝑓 𝑈

∗
𝑓 𝑈 𝑓 𝑊b→fF∗

F𝑊f→b𝑈
∗
𝑓 F𝐻𝑏F∗

)
(68)

with U defined by (26)–(31). In fact, the remaining part of this section is devoted to the computations
leading to Proposition 2.1.

To begin with, we observe that, for any lattice site 𝑥 ∈ Z2 and spin 𝑠 ∈ {↑, ↓}, 𝑏𝑥 � 𝑏(𝔢𝑥) and
𝑎𝑥,𝑠 � 𝑎(𝔢(𝑥,𝑠) ), where {𝔢𝑥 � 𝛿𝑥, ·}𝑥∈Z2 is the canonical orthonormal basis (5) of ℓ2(Z2) and 𝑎𝑥,𝑠 (𝑏∗𝑥)
denotes the annihilation operator acting on the fermionic (bosonic) Fock space 𝔉− (𝔉+) of a fermion
(boson). In both cases, Ω denotes the vacuum state. We compute each term of the the right-hand side
(68) separately:

Computation of 𝑈 𝑓 𝐻 𝑓 𝑈∗𝑓 in relation to 𝐴1,1. We first note from (A.6) that, for any 𝑥, 𝑦, 𝑢 ∈ Z2 and
𝑠 ∈ {↑, ↓},

𝑎𝑥,𝑠
(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
=

1
√

2
(
〈𝔢(𝑥,𝑠) ,𝔢(𝑦,↑) 〉𝔢(𝑢,↓) − 〈𝔢(𝑥,𝑠) ,𝔢(𝑢,↓) 〉𝔢(𝑦,↑)

)
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vanishes whenever (𝑥, 𝑠) ∉ {(𝑦, ↑), (𝑢, ↓)}. Using this observation and (A.7), one concludes that, for
any 𝑦, 𝑢 ∈ Z2, ∑

𝑠∈{↑,↓}, 𝑥,𝑧∈Z2 : |𝑧 |=1

𝑎∗𝑥,𝑠𝑎𝑥+𝑧,𝑠
(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
=

∑
𝑧∈Z2 : |𝑧 |=1

(
𝑎∗𝑦+𝑧,↑𝑎𝑦,↑

(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
+ 𝑎∗𝑢+𝑧,↓𝑎𝑢,↓

(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

) )
=

1
√

2

∑
𝑧∈Z2 : |𝑧 |=1

(
𝑎∗𝑦+𝑧,↑

(
𝔢(𝑢,↓)

)
− 𝑎∗𝑢+𝑧,↓

(
𝔢(𝑦,↑)

) )
=

∑
𝑧∈Z2 : |𝑧 |=1

(
𝔢(𝑦+𝑧,↑) ∧ 𝔢(𝑢,↓) + 𝔢(𝑦,↑) ∧ 𝔢(𝑢+𝑧,↓)

)
. (69)

Likewise, we see that, for any 𝑦, 𝑢 ∈ Z2,∑
𝑠∈{↑,↓}, 𝑥∈Z2

𝑎∗𝑥,𝑠𝑎𝑥,𝑠
(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
= 2𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓) . (70)

Moreover, as u : Z2 → R is absolutely summable and invariant with respect to 180◦-rotations (cf. (7)),
we also get that∑

𝑥,𝑧∈Z2

u(𝑧)𝑛𝑥,↑𝑛𝑥+𝑧,↓
(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
=

∑
𝑧∈Z2

u(𝑧)𝑛𝑢−𝑧,↑
(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
= u(𝑢 − 𝑦)

(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
= u(𝑦 − 𝑢)

(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
, (71)

for any 𝑦, 𝑢 ∈ Z2, which, for u(𝑧) = 𝛿𝑧,0, is equal to∑
𝑥∈Z2

𝑛𝑥,↑𝑛𝑥,↓
(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
= 𝛿𝑦,𝑢

(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
. (72)

We thus infer from (6) combined with (69)–(72) that

𝐻 𝑓
(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
= − 𝜖

2

∑
𝑧∈Z2 : |𝑧 |=1

(
𝔢(𝑦+𝑧,↑) ∧ 𝔢(𝑢,↓) + 𝔢(𝑦,↑) ∧ 𝔢(𝑢+𝑧,↓)

)
+

(
4𝜖 + U𝛿𝑦,𝑢 + u(𝑦 − 𝑢)

) (
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
,

for any 𝑦, 𝑢 ∈ Z2. Then, conjugating 𝐻 𝑓 by the unitary operator 𝑈 𝑓 (28)–(31) gives the equality

𝑈 𝑓 𝐻 𝑓 𝑈
∗
𝑓

(
𝔢̂𝑦 (·)𝔢̂𝑦−𝑢

)
= 𝑈 𝑓 𝐻 𝑓

(
𝔢(𝑦,↑) ∧ 𝔢(𝑢,↓)

)
= − 𝜖

2

∑
𝑧∈Z2 : |𝑧 |=1

(
𝔢̂𝑦+𝑧 (·)𝔢̂𝑦+𝑧−𝑢 + 𝔢̂𝑦 (·)𝔢̂𝑦−(𝑢+𝑧)

)
+

(
4𝜖 + U𝛿𝑦,𝑢 + u(𝑦 − 𝑢)

)
𝔢̂𝑦 (·)𝔢̂𝑦−𝑢

for any 𝑦, 𝑢 ∈ Z2. By first evaluating the above expression at 𝑘 ∈ T2, and then at 𝑝 ∈ T2, and using (33)
and (35), we obtain that
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𝑈 𝑓 𝐻 𝑓 𝑈

∗
𝑓

(
𝔢̂𝑦 (·)𝔢̂𝑦−𝑢

)
(𝑘)

)
(𝑝) = 𝔢̂𝑦 (𝑘)𝔢̂𝑦−𝑢 (𝑝)

(
U𝛿𝑦,𝑢 + u(𝑦 − 𝑢)

)
+ 𝔢̂𝑦 (𝑘)𝔢̂𝑦−𝑢 (𝑝)𝜖


��4 − 1
2

∑
𝑧∈Z2 : |𝑧 |=1

(
e𝑖 (𝑘+𝑝) ·𝑧 + e𝑖 𝑝 ·𝑧

)
��
= 𝔢̂𝑦 (𝑘)𝔢̂𝑦−𝑢 (𝑝)

(
U𝛿𝑦,𝑢 + u(𝑦 − 𝑢) + 𝔣(𝑘)(𝑝)

)
= 𝔢̂𝑦 (𝑘)

(
U𝑃0 +

∑
𝑥∈Z2

u(𝑥)𝑃𝑥 + 𝑀𝔣 (𝑘) (𝑝)
) (
𝔢̂𝑦−𝑢

)
(𝑝),

for any 𝑦, 𝑢 ∈ Z2. By (37)–(38), it follows that

𝑈 𝑓 𝐻 𝑓 𝑈
∗
𝑓

(
𝔢̂𝑦 (·)𝔢̂𝑦−𝑢

)
=

(∫ ⊕

T2
𝐴1,1 (𝑝) 𝜈(d𝑝)

)
𝔢̂𝑦 (·)𝔢̂𝑦−𝑢 . (73)

As {𝔢̂𝑦 (·)𝔢̂𝑦−𝑢}𝑦,𝑢∈Z2 is an orthonormal basis for the Hilbert space∫ ⊕

T2
𝐿2

(
T

2
)
𝜈(d𝑘),

we deduce from (73) that

𝑈 𝑓 𝐻 𝑓 𝑈
∗
𝑓 =

∫ ⊕

T2
𝐴1,1 (𝑘) 𝜈(d𝑘).

Computation of F𝐻𝑏F∗ in relation to 𝐴2,2.Using (A.8) and (A.9), we conclude that, for any 𝑦 ∈ Z2,

𝐻𝑏
(
𝔢𝑦

)
= 𝜖ℎ𝑏


��2
∑
𝑥∈Z2

〈𝔢𝑥 ,𝔢𝑦〉𝑏∗𝑥Ω −
1
2

∑
𝑧∈Z2 : |𝑧 |=1

〈
𝔢𝑥+𝑧 ,𝔢𝑦

〉
𝑏∗𝑥Ω


�� = 𝜖ℎ𝑏

��2𝔢𝑦 −

1
2

∑
𝑧∈Z2 : |𝑧 |=1

𝔢𝑦+𝑧

��

so that

F𝐻𝑏
(
𝔢𝑦

)
= 𝜖ℎ𝑏


��2𝔢̂𝑦 −
1
2

∑
𝑧∈Z2 : |𝑧 |=1

𝔢̂𝑦+𝑧

��, 𝑦 ∈ Z2.

Therefore, using that 𝔢̂𝑦 ≡ F (𝔢𝑦) = e𝑖𝑘 ·𝑦 (see (31)) as well as (32), (35) and (41), we arrive at the result

F𝐻𝑏F∗(𝔢̂𝑦) (𝑘) = 𝜖ℎ𝑏e𝑖𝑘 ·𝑦
��2 − 1
2

∑
𝑧∈Z2 : |𝑧 |=1

e𝑖𝑘 ·𝑧
�� = 𝜖ℎ𝑏 (2 − cos(𝑘))e𝑖𝑘 ·𝑦

= 𝔟(𝑘)e𝑖𝑘 ·𝑦 = 𝐴2,2(𝑘)𝔢̂𝑦 (𝑘)

for all 𝑦 ∈ Z2 and 𝑘 ∈ T2. As {𝔢̂𝑦}𝑦∈Z2 is an orthonormal basis for 𝐿2 (T2), it follows that

F𝐻𝑏F∗ =
∫ ⊕

T2
𝐴2,2 (𝑘) 𝜈(d𝑘).

Computation of F𝑊f→b𝑈
∗
𝑓 and 𝑈 𝑓 𝑊b→fF∗ in relation to 𝐴2,1 and 𝐴1,2. Observe from (11) and (A.7)

that, for all 𝑦 ∈ Z2,
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𝑐∗𝑦Ω =
√

2
∑
𝑧∈Z2

(
𝔭1 (𝑧)𝔢(𝑦+𝑧,↑) ∧ 𝔢(𝑦,↓) + 𝔭2 (2𝑧)𝔢(𝑦+𝑧,↑) ∧ 𝔢(𝑦−𝑧,↓)

)
,

and as a consequence, using (9)–(10) as well as ( A.8), we get that, for any 𝑢 ∈ Z2,

𝑊b→f (𝔢𝑢) =
∑
𝑦∈Z2

𝜐(𝑢 − 𝑦)
∑
𝑧∈Z2

(
𝔭1 (𝑧)𝔢(𝑦+𝑧,↑) ∧ 𝔢(𝑦,↓) + 𝔭2 (2𝑧)𝔢(𝑦+𝑧,↑) ∧ 𝔢(𝑦−𝑧,↓)

)
.

Therefore, by (28)–(31), for any 𝑢 ∈ Z2,

𝑈 𝑓 𝑊b→fF∗(𝔢̂𝑢) =
∑
𝑦∈Z2

𝜐(𝑢 − 𝑦)
∑
𝑧∈Z2

(
𝔭1(𝑧)𝔢̂𝑦+𝑧 (·)𝔢̂𝑧 + 𝔭2(2𝑧)𝔢̂𝑦+𝑧 (·)𝔢̂2𝑧

)
.

In particular, as 𝜐,𝔭1,𝔭2 : Z2 → R are absolutely summable and invariant with respect to 180◦-rotations
(cf. (12) and (16)), we deduce from the last equality that, for any 𝑢 ∈ Z2 and 𝑘, 𝑝 ∈ T2,(

𝑈 𝑓 𝑊b→fF∗(𝔢̂𝑢)(𝑘)
)
(𝑝) =

∑
𝑦∈Z2

𝜐(𝑢 − 𝑦)
∑
𝑧∈Z2

(
𝔭1(𝑧)e𝑖𝑘 · (𝑦+𝑧)e𝑖 𝑝 ·𝑧 + 𝔭2 (2𝑧)e𝑖𝑘 · (𝑦+𝑧)e𝑖2𝑝 ·𝑧

)
=

∑
𝑧∈Z2

(
𝔭1 (𝑧)e𝑖 (𝑘+𝑝) ·𝑧 + 𝔭2 (2𝑧)e𝑖 (𝑘+2𝑝) ·𝑧)

)
e𝑖𝑘 ·𝑢

∑
𝑦∈Z2

𝜐(𝑦 − 𝑢)e𝑖𝑘 · (𝑦−𝑢) .

Using now that∑
𝑧∈Z2

𝔭1(𝑧)e𝑖 (𝑘+𝑝) ·𝑧 = 𝔭̂1 (𝑘 + 𝑝) and
∑
𝑧∈Z2

𝔭2 (2𝑧)e𝑖 (𝑘+2𝑝) ·𝑧) = 𝔭̂2 (𝑘/2 + 𝑝)

(𝔭2 (𝑧) � 0 for 𝑧 ∉ (2Z)2), we arrive at the equalities(
𝑈 𝑓 𝑊b→fF∗(𝔢̂𝑢)(𝑘)

)
(𝑝) = (𝔭̂1 (𝑘 + 𝑝) + 𝔭̂2(𝑘/2 + 𝑝))e𝑖𝑘 ·𝑢

∑
𝑧∈Z2

𝜐(𝑧)e𝑖𝑘 ·𝑧

= 𝜐̂(𝑘)𝔡(𝑘)(𝑝)𝔢̂𝑢 (𝑘) =
[
𝐴1,2 (𝑘)𝔢̂𝑢 (𝑘)

]
(𝑝),

with 𝔡(𝑘) (𝑝) and 𝐴1,2(𝑘) defined by (34) and (40), respectively. As 𝑢 ∈ Z2 and 𝑘, 𝑝 ∈ T2 are arbitrary
in the above equations, this shows that 𝑈 𝑓 𝑊b→fF∗ coincides with the bounded linear transformation

𝐽 : 𝐿2 (
T

2) → ∫ ⊕
T2 𝐿

2 (
T

2)𝜈(d𝑘)
𝜑 ↦→ 𝐴1,2 (·)𝔢̂𝑢 (·)

on the orthonormal basis {𝔢̂𝑢}𝑢∈Z2 and, therefore, 𝑈 𝑓 𝑊b→fF∗ = 𝐽. By taking adjoints on both sides,
we also obtain F𝑊f→b𝑈

∗
𝑓 = 𝐽∗. Finally, one can easily check from (39) that

(𝐽∗𝜓) (𝑘) = 𝐴2,1(𝑘)𝜓(𝑘), 𝑘 ∈ T2, 𝜓 ∈
∫ ⊕

T2
𝐿2

(
T

2
)
𝜈(d𝑘).

This completes the proof of Proposition 2.1.

4.3. Spectrum of the fiber Hamiltonians

We start with the study of the essential spectrum of fiber Hamiltonians (42) at any total quasi-momentum
𝑘 ∈ T2, before considering afterwards the discrete one in Section 4.3.2. Then, in Section 4.3.3, we study
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the bottom of the spectrum (𝑘 ∈ T2 being fixed). The whole study leads to important spectral properties
of H, as previously explained, via Proposition 2.1 combined with Theorem A.3.

4.3.1. Essential spectrum
The essential spectrum 𝜎ess(𝐴(𝑘)) of the fiber Hamiltonian

𝐴(𝑘) ≡ 𝐴(U, 𝑘),

defined by (42) at fixed U ∈ R+0 and total quasi-momentum 𝑘 ∈ T2, is completely determined by the
following proposition:

Proposition 4.2 (Essential spectrum of fiber Hamiltonians). For any 𝑘 ∈ T2 and ℎ𝑏 , 𝜖 ,U ∈ R+0 , one has

𝜎ess (𝐴(𝑘)) = 𝜎ess
(
𝐴1,1 (𝑘)

)
= 𝜎ess

(
𝐵1,1 (𝑘)

)
= 𝜎

(
𝑀𝔣 (𝑘)

)
= 2𝜖 cos(𝑘/2) [−1, 1] + 4𝜖,

where 𝑀𝔣 (𝑘) stands for the multiplication operator associated with the function 𝔣(𝑘) (33), while 𝐵1,1 (𝑘)
and 𝐴1,1(𝑘) ≡ 𝐴1,1 (U, 𝑘) are defined by (37) and (38), respectively.

Proof. Recall that 𝜈 is the normalized Haar measure defined by (23) on T2. Fix 𝑘 ∈ T2. If 𝜆 is an
eigenvalue of 𝑀𝔣 (𝑘) with associated eigenvector 𝜑 ∈ 𝐿2 (T2), then

𝑀𝔣 (𝑘)𝜑(𝑝) � 𝔣(𝑘) (𝑝)𝜑(𝑝) = 𝜆𝜑(𝑝)

for almost every 𝑝 ∈ T2. As 𝜑 ≠ 0, there exists Ω ⊆ T2 with strictly positive measure 𝜈(Ω) > 0 such that
the above equality holds true with 𝜑(𝑝) ≠ 0 for every 𝑝 ∈ Ω. Thus, 𝔣(𝑘) (𝑝) = 𝜆 for all 𝑝 ∈ Ω. Because

𝜈([−𝜋, 𝜋)2\(−𝜋, 𝜋)2) = 0,

we can assume without loss of generality that Ω ⊆ (−𝜋, 𝜋)2. Since 𝔣(𝑘) − 𝜆 is real analytic on the
open domain (−𝜋, 𝜋)2 in R2 and the zeros of any nonconstant real analytic function have null Lebesgue
measure [49], we would have 𝜈(Ω) = 0, which contradicts our choice of the set Ω. Recall indeed that
𝜈 is the Lebesgue measure, up to a normalization constant (see (23)). Hence, 𝑀𝔣 (𝑘) has no eigenvalues
and, thus,

𝜎ess
(
𝑀𝔣 (𝑘)

)
= 𝜎

(
𝑀𝔣 (𝑘)

)
= 𝔣(𝑘)(T2).

The last equality holds true, for 𝔣 is a continuous function on a compact domain – namely, the torus T2.
Clearly,

𝔣(𝑘) (T2) = 2𝜖 cos(𝑘/2) [−1, 1] + 4𝜖 .

Observing that 𝐴1,2(𝑘), 𝐴2,1 (𝑘), 𝐴2,2(𝑘) and 𝑃𝑥 are all rank-one linear transformations, we can apply
the stability of the essential spectrum under compact perturbations (see [95, Corollary 8.16]) to conclude
that

𝜎ess(𝐴(𝑘)) = 𝜎ess
(
𝑀𝔣 (𝑘)

)
= 𝔣(𝑘) (T2). (74)

In fact, from the absolute summability of the function u : Z2 → R+0 (see (7)), along with the closedness
of the subspace of compact operators in the Banach space of all bounded operators, the operator defined
by the infinite sum ∑

𝑥∈Z2

u(𝑥)𝑃𝑥
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is not only bounded, but even compact on the Hilbert space 𝐿2 (T2). Recall that 𝑃𝑥 denotes the orthogonal
projection onto the one-dimensional subspace C𝔢̂𝑥 ⊆ 𝐿2 (T2) for any 𝑥 ∈ Z2. For the same reasons,

𝜎ess
(
𝐴1,1 (𝑘)

)
= 𝜎ess

(
𝐵1,1(𝑘)

)
= 𝜎ess

(
𝑀𝔣 (𝑘) + U𝑃0

)
= 𝜎ess

(
𝑀𝔣 (𝑘)

)
. �

Corollary 4.3 (Bottom of the spectrum of 𝐴1,1 (𝑘) and 𝐵1,1 (𝑘)). For any 𝑘 ∈ T2, one has that

min𝜎
(
𝐴1,1 (𝑘)

)
= min𝜎

(
𝐵1,1 (𝑘)

)
= min𝜎

(
𝑀𝔣 (𝑘)

)
= 4𝜖 − 2𝜖 cos(𝑘/2) � 𝔷(𝑘).

Proof. Fix 𝑘 ∈ T2. Since U ∈ R+0 , one has the operator inequalities

𝑀𝔣 (𝑘) ≤ 𝑀𝔣 (𝑘) +
∑
𝑥∈Z2

u(𝑥)𝑃𝑥 � 𝐵1,1 (𝑘) ≤ 𝐵1,1(𝑘) + U𝑃0 � 𝐴1,1 (𝑘),

for the set of positive operators on a Hilbert space forms a norm-closed convex cone. By combining the
last inequalities with Proposition 4.2, one arrives at the assertion. �

4.3.2. Discrete spectrum
In the following, it is technically convenient to assume that 𝔟(𝑘), which is the kinetic energy of a boson
with quasi-momentum k, is below the bottom of the spectrum of 𝐴1,1 (𝑘) – that is, the minimum energy
of the fermion pair for the same total quasi-momentum. In other words, we assume from now on that

𝔟(𝑘) � ℎ𝑏𝜖 (2 − cos(𝑘)) ≤ 𝔷(𝑘) � 4𝜖 − 2𝜖 cos(𝑘/2) (75)

for all 𝑘 ∈ T2, with equality only at 𝑘 = 0. See Equation (32) and Corollary 4.3. By direct computations,17
one verifies that this amounts to take ℎ𝑏 in the interval [0, 1/2]. This means that we consider a regime
where the boson mass is at least the mass of the two fermions, as physically expected for cuprate
superconductors; see [21, Section 3.1].

Proposition 4.4 (Eigenvalues of fiber Hamiltonians – I). Take any 𝑘 ∈ T2 and ℎ𝑏 ∈ [0, 1/2].

i.) 𝜆 ≠ 𝔟(𝑘) is an eigenvalue of 𝐴(𝑘) iff there is a nonzero vector 𝜑 ∈ 𝐿2 (T2) in the kernel of the
bounded operator

𝐴1,1(𝑘) − 𝜆1 − (𝔟(𝑘) − 𝜆)−1𝐴1,2 (𝑘)𝐴2,1 (𝑘) ∈ B
(
𝐿2 (T2)

)
.

In this case, 𝜆 is an eigenvalue of 𝐴(𝑘) with associated eigenvector(
𝜑,−(𝔟(𝑘) − 𝜆)−1𝐴2,1 (𝑘)𝜑

)
∈ H � 𝐿2

(
T

2
)
⊕ C.

ii.) 𝔟(𝑘) is an eigenvalue of 𝐴(𝑘) iff 𝜐̂(𝑘) = 0.

Proof. Fix 𝑘 ∈ T2 and ℎ𝑏 ∈ [0, 1/2]. We start with the proof of Assertion (i): If 𝜆 ≠ 𝔟(𝑘) is an
eigenvalue of 𝐴(𝑘) with associated eigenvector (𝜑, 𝑧) ∈ H\{0}, then we directly deduce from (42) that(

𝐴1,1 (𝑘) − 𝜆1
)
𝜑 + 𝐴1,2(𝑘)𝑧 = 0, (76)

𝐴2,1 (𝑘)𝜑 + (𝔟(𝑘) − 𝜆)𝑧 = 0. (77)

17(75) is clearly true for ℎ𝑏 = 0. Take ℎ𝑏 > 0. Using cos(𝜃) = 2 cos2 (𝜃/2) − 1 and (35), one verifies that (75) is
equivalent to ℎ𝑏

(
4 − 2𝑥2 − 2𝑦2

)
≤ 4 − 2(𝑥 + 𝑦) for 𝑥, 𝑦 ∈ [0, 1]. Since inf𝑥∈[0,1]

{
ℎ𝑏𝑥

2 − 𝑥
}
= −1/(4ℎ𝑏) for ℎ𝑏 ≥ 1/2 and

inf𝑥∈[0,1]
{
ℎ𝑏𝑥

2 − 𝑥
}
= ℎ𝑏 − 1 for ℎ𝑏 ∈ (0, 1/2], we deduce that (75) holds true iff ℎ𝑏 ∈ [0, 1/2].

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


Forum of Mathematics, Sigma 37

By combining these two equations, we obtain

𝑧 = −(𝔟(𝑘) − 𝜆)−1𝐴2,1(𝑘)𝜑, (78)

and thus, [
𝐴1,1 (𝑘) − 𝜆1 − (𝔟(𝑘) − 𝜆)−1𝐴1,2 (𝑘)𝐴2,1(𝑘)

]
𝜑 = 0.

We have that 𝜑 ≠ 0, for otherwise z would also be zero, by (78), and this would contradict the fact that
(𝜑, 𝑧) is a nonzero vector. The converse is obvious and Assertion (i) holds true.

We now prove Assertion (ii): It is easy to check from (42) that 𝜐̂(𝑘) = 0 implies that

𝐴(𝑘) (0, 1) = 𝔟(𝑘) (0, 1). (79)

Conversely, suppose that 𝔟(𝑘) is an eigenvalue of 𝐴(𝑘) with associated eigenvector (𝜑, 𝑧) ∈ H\{0}, but
𝜐̂(𝑘) ≠ 0. Then, by (39) and (42),(

𝐴1,1 (𝑘) − 𝔟(𝑘)1
)
𝜑 + 𝐴1,2 (𝑘)𝑧 = 0 and 𝐴2,1 (𝑘)𝜑 � 𝜐̂(𝑘)〈𝔡(𝑘), 𝜑〉 = 0. (80)

Remark that the second equality says that 𝜑⊥𝔡(𝑘), since we assume 𝜐̂(𝑘) ≠ 0. Considering the scalar
product of 𝜑 with both sides of the first equation, we then get that〈

𝜑,
(
𝐴1,1(𝑘) − 𝔟(𝑘)1

)
𝜑
〉
+ 𝑧𝜐̂(𝑘)〈𝜑, 𝔡(𝑘)〉 =

〈
𝜑,

(
𝐴1,1(𝑘) − 𝔟(𝑘)1

)
𝜑
〉
= 0 ; (81)

see (40). Because ℎ𝑏 ∈ [0, 1/2], if 𝑘 ≠ 0, then (75) holds true with a strict inequality, and therefore,

𝔟(𝑘) < 4𝜖 − 2𝜖 cos(𝑘/2) = min𝜎
(
𝐴1,1(𝑘)

)
,

thanks to Corollary 4.3. Hence,

𝐴1,1(𝑘) − 𝔟(𝑘)1 ≥ 𝑐1,

for some constant 𝑐 > 0, which, combined with (81), in turn implies that 𝜑 = 0. If now 𝑘 = 0, then
𝔟(0) = 0 (see (32)) and we obtain from (81) that∫

T2
|𝜑(𝑝) |2𝔣(0) (𝑝) 𝜈(d𝑝) = 〈𝜑, 𝑀𝔣 (0)𝜑〉 ≤ 〈𝜑, 𝐴1,1(0)𝜑〉 = 0, (82)

since 𝑀𝔣 (0) ≤ 𝐴1,1 (U, 0) (see (37)–(38)). As

𝔣(0) (𝑝) � 𝜖{4 − 2 cos(𝑝)}, 𝑝 ∈ T2,

(see (33) and (35)) defines a positive and continuous function that vanishes at 𝑝 = 0 only, one deduces
from (82) that 𝜑 = 0 also when 𝑘 = 0. In any case, 𝜑 = 0 and so, (80) combined with (40) yields

𝐴1,2 (𝑘)𝑧 � 𝜐̂(𝑘)𝔡(𝑘)𝑧 = 0.

Since 𝔡(𝑘) ≠ 0 and 𝜐̂(𝑘) ≠ 0, we must have that 𝑧 = 0.Thus, we arrive at (𝜑, 𝑧) = (0, 0), which
contradicts the fact that (𝜑, 𝑧) is a nonzero vector. Therefore, if 𝔟(𝑘) is an eigenvalue of 𝐴(𝑘), then we
must have 𝜐̂(𝑘) = 0. �

The Birman-Schwinger principle (Theorem A.10) allows us to transform the eigenvalue problem for
the fiber Hamiltonian 𝐴(𝑘) into a nonlinear equation on the resolvent set 𝜌(𝐴1,1 (U, 𝑘)) of the operator
𝐴1,1 (U, 𝑘), which is the resolvent set for a fermion pair with total quasi-momentum 𝑘 ∈ T2:
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Theorem 4.5 (Characteristic equation for eigenvalues). Fix ℎ𝑏 ∈ [0, 1/2] and 𝑘 ∈ T2. Then,
𝜆 ∈ 𝜌(𝐴1,1 (𝑘)) is an eigenvalue of 𝐴(𝑘) iff it is a solution to the equation

𝜐̂(𝑘)2𝔗(𝑘, 𝑧) + 𝑧 − 𝔟(𝑘) = 0, 𝑧 ∈ 𝜌
(
𝐴1,1 (𝑘)

)
, (83)

where 𝔗 is the function defined by (45); that is,

𝔗(𝑘, 𝑧) ≡ 𝔗(U, 𝑘, 𝑧) �
〈
𝔡(𝑘),

(
𝐴1,1 (𝑘) − 𝑧1

)−1𝔡(𝑘)
〉
, (84)

Proof. Fix ℎ𝑏 ∈ [0, 1/2] and 𝑘 ∈ T2. We divide the proof in several cases:

Case 1: We first consider the case 𝜐̂(𝑘) = 0 and 𝑘 ≠ 0. In that situation, 𝔟(𝑘) is trivially the only solution
to (83). However, we already know from Proposition 4.4 (ii) that 𝔟(𝑘) is an eigenvalue of 𝐴(𝑘). We
must therefore prove that there is no other eigenvalue 𝜆 of 𝐴(𝑘) in 𝜌(𝐴1,1(𝑘)) but 𝔟(𝑘). In fact, if such a
𝜆 ∈ 𝜌(𝐴1,1 (𝑘)) exists, then, by Proposition 4.4 (i) with 𝜐̂(𝑘) = 0, 𝐴1,1(𝑘) − 𝜆1 would have a nontrivial
kernel, which is not possible, for 𝜆 is in the resolvent set of 𝐴1,1 (𝑘).

Case 2: Suppose that 𝑘 = 0 and 𝜐̂(0) = 0. We observe that (83) has no solution because

0 ∈ [0, 8𝜖] = 𝜎ess(𝐴1,1 (0)),

thanks to Proposition 4.2. In addition, by applying Proposition 4.4 (i) and noting that 𝔟(0) = 0, we see
that 𝐴(0) has no eigenvalues in 𝜌(𝐴1,1 (0)).

Case 3: Finally, assume that 𝜐̂(𝑘) ≠ 0 and take 𝜆 ∈ 𝜌(𝐴1,1(𝑘)). Observe from Proposition 4.4 (ii) that
𝔟(𝑘) cannot be an eigenvalue of 𝐴(𝑘). Additionally, 𝔟(𝑘) cannot be a solution to Equation ( 83). This
last observation is proven as follows: When 𝑘 = 0, this is clear because 𝔟(0) = 0 is not even in the
domain of the equation to be solved in (83). For 𝑘 ≠ 0, if 𝔟(𝑘) is a solution to (83), then 𝔗(𝑘, 𝔟(𝑘)) = 0,
but we know from Corollary 4.3 and ℎ𝑏 ∈ [0, 1/2] that

𝐴1,1 (𝑘) − 𝔟(𝑘)1 ≥ 𝑐1

for some constant 𝑐 > 0. Therefore, 𝔗(𝑘, 𝔟(𝑘)) = 0 would yield 𝔡(𝑘) = 0, which is obviously wrong,
by (34). Therefore, in all cases, 𝔟(𝑘) cannot be a solution to Equation ( 83), and we can assume that
𝜆 ≠ 𝔟(𝑘). Now, the remaining part of the proof is essentially the same as the one of [22, Proposition
10], but we reproduce it for completeness. By ( 39)–(40), the orthogonal projection S onto the subspace
C𝔡(𝑘) ⊆ 𝐿2 (T2) can be written as

𝑆𝜑 = ‖𝔡(𝑘)‖−2〈𝔡(𝑘), 𝜑〉𝔡(𝑘) = 𝜐̂(𝑘)−2‖𝔡(𝑘)‖−2𝐴1,2 (𝑘)𝐴2,1(𝑘)𝜑, 𝜑 ∈ 𝐿2
(
T

2
)
.

Then, observe from Proposition 4.4 (i) that 𝜆 is an eigenvalue of 𝐴(𝑘) iff 𝜆 is an eigenvalue of 𝑇 − 𝑉2

with

𝑉 � 𝜐̂(𝑘) (𝔟(𝑘) − 𝜆)−1/2‖𝔡(𝑘)‖𝑆, (85)
𝑇 � 𝐴1,1 (𝑘). (86)

Thus, by applying Theorem A.10, we deduce that 𝜆 is an eigenvalue of 𝐴(𝑘) iff 1 is an eigenvalue of
the corresponding Birman-Schwinger operator, which, with the above operators T and V, is equal to

B(𝜆) = 𝜐̂(𝑘)2(𝔟(𝑘) − 𝜆)−1‖𝔡(𝑘)‖2𝑆(𝐴1,1 (𝑘) − 𝜆1)−1𝑆.

Remark in this case that

EB(𝜆) (1) = C𝔡(𝑘) and dim E𝑇 −𝑉 2 (𝜆) = dim EB(𝜆) (1) = 1, (87)
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since, obviously,

B(𝜆)𝐿2
(
T

2
)
⊆ 𝑆𝐿2

(
T

2
)
= C𝔡(𝑘).

We thus conclude that 𝜆 is an eigenvalue of 𝐴(𝑘) iff

B(𝜆)𝔡(𝑘) = 𝔡(𝑘) ⇔ 〈𝔡(𝑘),B(𝜆)𝔡(𝑘) − 𝔡(𝑘)〉 = 0

⇔ 〈𝔡(𝑘),B(𝜆)𝔡(𝑘)〉 = ‖𝔡(𝑘)‖2

⇔ 𝜐̂(𝑘)2(𝔟(𝑘) − 𝜆)−1‖𝔡(𝑘)‖2〈𝔡(𝑘), 𝑆(𝐴1,1 (𝑘) − 𝜆1)−1𝑆𝔡(𝑘)〉 = ‖𝔡(𝑘)‖2

⇔ 𝜐̂(𝑘)2𝔗(𝑘, 𝜆) = 𝔟(𝑘) − 𝜆.

This completes the proof. �

Corollary 4.6 (Eigenspaces of fiber Hamiltonians). Fix ℎ𝑏 ∈ [0, 1/2] and 𝑘 ∈ T2. If 𝜆 ∈ 𝜌(𝐴1,1 (𝑘)) is
an eigenvalue of the fiber Hamiltonian 𝐴(𝑘), then the associated eigenspace is

E𝐴(𝑘) (𝜆) = C𝑔(𝑘, 𝜆),

where

𝑔(𝑘, 𝜆) �
(
𝜐̂(𝑘)

(
𝐴1,1 (𝑘) − 𝜆1

)−1𝔡(𝑘),−1
)
∈ H.

In particular, 𝜆 is a nondegenerated eigenvalue of 𝐴(𝑘).

Proof. Assume that 𝜐̂(𝑘) ≠ 0. Recall from the proof of Theorem 4.5 that in this case, 𝔟(𝑘) is not an
eigenvalue of 𝐴(𝑘), and so we assume without loss of generality that 𝜆 ≠ 𝔟(𝑘). In this case, observe
that we have (87) and a close look at the proof of Theorem A.10, in particular Lemma A.9, leads us to

E𝑇 −𝑉 2 (𝜆) � ker(𝑇 −𝑉2 − 𝜆1) = C𝜑0,

where

𝜑0 � (𝑇 − 𝜆1)−1𝑉𝔡(𝑘) = 𝜐̂(𝑘) (𝔟(𝑘) − 𝜆)−1/2‖𝔡(𝑘)‖(𝐴1,1 (𝑘) − 𝜆1)−1𝔡(𝑘), (88)

by (85) and (86). From Proposition 4.4 (i) (𝜐̂(𝑘) ≠ 0), one then obtains that

E𝐴(𝑘) (𝜆) =
{
(𝜑,−(𝔟(𝑘) − 𝜆)−1𝐴2,1 (𝑘)𝜑) ∈ H : 𝜑 ∈ ker(𝑇 −𝑉2 − 𝜆1)

}
= C (𝜑0,−(𝔟(𝑘) − 𝜆)−1𝐴2,1(𝑘)𝜑0).

In view of Equation (39), (88) and Theorem 4.5, the last vector can be rewritten as follows:

(𝜑0,−(𝔟(𝑘) − 𝜆)−1𝐴2,1 (𝑘)𝜑0) = (𝜑0,−(𝔟(𝑘) − 𝜆)−1𝜐̂(𝑘)〈𝔡(𝑘), 𝜑0〉)
= (𝜑0,−(𝔟(𝑘) − 𝜆)−3/2𝜐̂(𝑘)2‖𝔡(𝑘)‖𝔗(𝑘, 𝜆))
= (𝜑0,−(𝔟(𝑘) − 𝜆)−1/2‖𝔡(𝑘)‖)
= (𝔟(𝑘) − 𝜆)−1/2‖𝔡(𝑘)‖𝑔(𝑘, 𝜆),
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whenever 𝜐̂(𝑘) ≠ 0. Finally, if 𝜐̂(𝑘) = 0 and 𝜆 ∈ 𝜌(𝐴1,1(𝑘)) is an eigenvalue of 𝐴(𝑘), then it is
straightforward to check that 𝜆 = 𝔟(𝑘) with eigenspace generated by the vector (0, 1) ∈ H; see, for
instance, (76)–(77) and (79). �

Corollary 4.7 (Eigenvalues of fiber Hamiltonians – II). Fix ℎ𝑏 ∈ [0, 1/2] and 𝑘 ∈ T2. There is at most
one eigenvalue of 𝐴(𝑘) in each connected component of 𝜌(𝐴1,1(𝑘)) ∩ R.

Proof. In view of Theorem 4.5, it suffices to show that the derivative of the mapping

𝜌(𝐴1,1 (𝑘)) ∩ R " 𝑥 ↦−→ 𝜐̂(𝑘)2𝔗(𝑘, 𝑥) + 𝑥 − 𝔟(𝑘) ∈ R

is strictly positive. For any 𝑥0 ∈ 𝜌(𝐴1,1(𝑘)) ∩ R, we have that

𝜕𝑥
{
𝜐̂(𝑘)2𝔗(𝑘, 𝑥) + 𝑥 − 𝔟(𝑘)

}��
𝑥=𝑥0

= 𝜐̂(𝑘)2‖(𝐴1,1 (𝑘) − 𝑥01)−1𝔡(𝑘)‖2 + 1 > 1 . (89)

�

4.3.3. Bottom of the spectrum
As is well-known, physical properties of quantum systems at very low temperatures are essentially
determined by the bottom of the spectrum of the corresponding Hamiltonian. In our case, having in
mind the application to superconductivity in cuprates, we would like to study the bottom of the spectrum
of the Hamiltonian 𝐻 ∈ B(ℌ) defined by (21). By Proposition 2.1 and Theorem A.3, we thus study
the bottom of the spectrum of the fiber Hamiltonian 𝐴(𝑘) (42) at fixed total quasi-momentum 𝑘 ∈ T2,
similar to [22, 21].

Theorem 4.8 (Bottom of the spectrum of 𝐴(𝑘)). Fix ℎ𝑏 ∈ [0, 1/2]. If 𝑘 ≠ 0, then there is exactly
one eigenvalue E(𝑘) ≡ E(U, 𝑘) of the Hamiltonian 𝐴(𝑘) strictly below 𝜎ess (𝐴(𝑘)). In this case, the
eigenvalue is nondegenerated and E(𝑘) < 𝔟(𝑘) when 𝜐̂(𝑘) ≠ 0, whereas E(𝑘) = 𝔟(𝑘) if 𝜐̂(𝑘) = 0. This
statement remains valid for 𝑘 = 0 provided 𝜐̂(0) ≠ 0.

Proof. Assume that 𝑘 ≠ 0. Recall that 𝔷(𝑘) is defined in Corollary 4.3. From Corollaries 4.3 and 4.7,
the interval (−∞, 𝔷(𝑘)) contains at most one eigenvalue of 𝐴(𝑘). By Corollary 4.6, the eigenvalue is
nondegenerate, if it exists. If 𝜐̂(𝑘) = 0, we know from Proposition 4.4 (ii) that 𝔟(𝑘) is such an eigenvalue.
Recall that for 𝑘 ≠ 0, one has that 𝔟(𝑘) < 𝔷(𝑘), because ℎ𝑏 ∈ [0, 1/2]. Now, suppose that 𝜐̂(𝑘) ≠ 0.
When 𝔟(𝑘) ≤ 𝑥 < 𝔷(𝑘), we have (

𝐴1,1 (𝑘) − 𝑥1
)−1 ≥ 𝑐1

for some constant 𝑐 > 0, and hence, 𝔗(𝑘, 𝑥) > 0; see (84). Consequently,

𝜐̂(𝑘)2𝔗(𝑘, 𝑥) + 𝑥 − 𝔟(𝑘) > 0,

which means that 𝐴(𝑘) has no eigenvalues in the interval [𝔟(𝑘), 𝔷(𝑘)), by Theorem 4.5. We shall now
look for an eigenvalue in the interval (−∞, 𝔟(𝑘)). On the one hand, using Corollary 4.3, observe that

‖𝔡(𝑘)‖−2 |𝔗(𝑘, 𝑥) | ≤ ‖(𝐴1,1 (𝑘) − 𝑥1)−1‖op = (𝔷(𝑘) − 𝑥)−1 ≤ (𝔟(𝑘) − 𝑥)−1,

whenever 𝑥 < 𝔟(𝑘). Taking 𝑥 → −∞, 𝔗(𝑘, 𝑥) tends to zero, and hence,

lim
𝑥→−∞

{
𝜐̂(𝑘)2𝔗(𝑘, 𝑥) + 𝑥 − 𝔟(𝑘)

}
= −∞.

On the other hand, the continuity of the mapping

𝔗(𝑘, ·) : 𝜌(𝐴1,1 (𝑘)) → R

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


Forum of Mathematics, Sigma 41

on (−∞, 𝔟(𝑘)] gives us

lim
𝑥→𝔟 (𝑘)

{
𝜐̂(𝑘)2𝔗(𝑘, 𝑥) + 𝑥 − 𝔟(𝑘)

}
= 𝜐̂(𝑘)2𝔗(𝑘, 𝔟(𝑘)) > 0.

By the intermediate value theorem, there is E(𝑘) ∈ (−∞, 𝔟(𝑘)) such that

𝜐̂(𝑘)2𝔗(𝑘,E(𝑘)) + E(𝑘) − 𝔟(𝑘) = 0.

By Theorem 4.5, E(𝑘) must be an eigenvalue of 𝐴(𝑘).
The proof for 𝑘 = 0 is done in a similar way. Basically, the only difference is that, in this case,

𝔟(0) = 𝔷(0) = 0 and

lim
𝑥→0−

{
𝜐̂(0)2𝔗(0, 𝑥) + 𝑥

}
∈ (0,∞]

occurs due to other reasons. Indeed, from Corollary 4.3, we deduce that 𝔗(0, ·) is strictly positive on
the interval (−∞, 0). Because of (89), we also have that 𝜕𝑥𝔗(0, 𝑥) |𝑥=𝑥0 ≥ 0 whenever 𝑥0 < 0. Thus, the
limit of 𝔗(0, 𝑥) as 𝑥 → 0− exists, being possibly infinite. �

If 𝜐̂(0) = 0, then, by Theorem 4.5, the fiber Hamiltonian 𝐴(0) has no negative eigenvalues. In this
case, we set E(0) = 0, which is obviously an eigenvalue of 𝐴(0) with associated eigenvector (0, 1).
(Note that 𝜎ess (𝐴(0)) = [0, 8𝜖], by Proposition 4.2.) With this definition, observe that, for all 𝑘 ∈ T2,
E(𝑘) is the minimum spectral value of 𝐴(𝑘):

E(𝑘) = min𝜎(𝐴(𝑘)) ≤ 𝔷(𝑘) = min𝜎ess(𝐴(𝑘)). (90)

The lowest eigenvalue E(𝑘) of 𝐴(𝑘), when E(𝑘) < 0, is related to the formation of dressed bound
fermion pairs of fermions with total quasi-momentum 𝑘 ∈ T2. In Theorem 4.20, we make this claim
more precise and prove the spatial localization of such bounded pairs. Before doing that, we study the
regularity of the real-valued function

E ≡ E(U, ·) : T2 → R

on the two-dimensional torus.
To this end, we rewrite the characteristic equation given by Theorem 4.5 via the function Φ : O → R

defined by

Φ(𝑘, 𝑥) ≡ Φ(U, 𝑘, 𝑥) � 𝜐̂(𝑘)2𝔗(𝑘, 𝑥) + 𝑥 − 𝔟(𝑘), (91)

where O is the open set

O �
{
(𝑘, 𝑥) ∈ S2 × R : 𝑥 < 𝔷(𝑘)

}
⊆ R3. (92)

Observe from Equation (89) that 𝜕𝑥Φ > 0 over the whole domain of Φ.
We now study the continuity of the function E : T2 → R and give a sufficient condition for E to

be of class 𝐶𝑑 on S2 for every 𝑑 ∈ N ∪ {𝜔, 𝑎}, where 𝐶𝑑 (Ω), 𝑑 ∈ N, stands for the space of 𝑑 times
continuously differentiable functions on Ω, while 𝐶𝜔 (Ω) and 𝐶𝑎 (Ω) refer to the space of smooth and
real analytic functions on Ω, respectively.

Theorem 4.9 (Regularity of the function E). Let ℎ𝑏 ∈ [0, 1/2].
i.) The family {E(U, ·)}U∈R+0 of real-valued functions on T2 is equicontinuous with respect to the

metric18 𝑑T2 .

18Note that as 𝑑
T2 is smaller than the Euclidean metric for T2 as a subset of R2, the equicontinuity also holds true for the

Euclidean metric.
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ii.) If 𝜐̂ ∈ 𝐶𝑑 (S2) (S2 ⊆ R2) for some 𝑑 ∈ N ∪ {𝜔, 𝑎}, then E ≡ E(U, ·) ∈ 𝐶𝑑 (S2) for all U ∈ R+0 . In
this case,

𝜕𝑘 𝑗 E(𝑘) = −(𝜕𝑥Φ(𝑘,E(𝑘)))−1𝜕𝑘 𝑗Φ(𝑘,E(𝑘)), 𝑘 ∈ S2, 𝑗 ∈ {1, 2}. (93)

Proof. By the spectral theorem, we deduce from (90) that, for any U ∈ R+0 ,

E(U, 𝑘) = min𝜎(𝐴(U, 𝑘)) = inf
𝜓∈H, ‖𝜓 ‖=1

〈𝜓, 𝐴(U, 𝑘)𝜓〉, 𝑘 ∈ T2. (94)

Given any 𝜀 > 0 and 𝑘0 ∈ T2, by the (operator norm) continuity of the mapping 𝐴(0, ·) : T2 → B(H)
at the point 𝑘0, we can find 𝛿 > 0 such that

sup
U∈R+0

sup
𝜓∈H, ‖𝜓 ‖=1

|〈𝜓, 𝐴(U, 𝑘)𝜓〉 − 〈𝜓, 𝐴(U, 𝑘0)𝜓〉| ≤ sup
U∈R+0

‖𝐴(U, 𝑘) − 𝐴(U, 𝑘0)‖op

= sup
U∈R+0

‖𝐴(0, 𝑘) − 𝐴(0, 𝑘0)‖op < 𝜀

for every 𝑘 ∈ T2 with 𝑑T2 (𝑘, 𝑘0) < 𝛿. Recall that H stands for the (fiber) Hilbert space 𝐿2 (T2) ⊕ C
(see (25)), while 𝑑T2 is the metric (22) on the torus T2. Therefore, E : T2 → R can be expressed as the
infimum over the equicontinuous family {〈𝜓, 𝐴(U, ·)𝜓〉}U∈R+0 ,𝜓∈H, ‖𝜓 ‖=1 of (continuous) functions and
Assertion (i) follows.

Take again some 𝑘0 ∈ S2. Assume that 𝜐̂ is of class 𝐶𝑑 on S2 ⊆ R2 with 𝑑 ∈ N ∪ {𝜔, 𝑎}. Let
𝜗 = (𝑘0,E(𝑘0)) ∈ O. Using Theorems 4.5 and 4.8 as well as Equation (89) and the (operator norm)
continuity of the mapping

𝐴1,1 (·) : T2 → B
(
𝐿2 (T2)

)
, (95)

one checks that Φ ∈ 𝐶𝑑 (O) with 𝑑 ≥ 1, Φ(𝜗) = 0 and 𝜕𝑥Φ(𝜗) ≠ 0. See, for instance, (89). We can
thus apply the implicit function theorem (see, for example, [91] for an ordinary version and [92] for an
analytic version) to obtain open subsets𝑈 ⊆ R2 and 𝐽 ⊆ R such that 𝜗 ∈ 𝑈×𝐽 ⊆ O and, for each 𝑘 ∈ 𝑈,
there is a unique real number 𝜉 (𝑘) ∈ 𝐽 satisfying Φ(𝑘, 𝜉 (𝑘)) = 0. Moreover, the mapping 𝜉 : 𝑈 → 𝐽
defined in this way is of class 𝐶𝑑 and its partial derivatives are given by

𝜕𝑘 𝑗 𝜉 (𝑘) = −(𝜕𝑥Φ(𝑘, 𝜉 (𝑘)))−1𝜕𝑘 𝑗Φ(𝑘, 𝜉 (𝑘)), 𝑘 ∈ 𝑈, 𝑗 ∈ {1, 2}. (96)

As 𝜉 (𝑘0) = E(𝑘0) < 𝔷(𝑘0) (see (90)), by continuity, there exists a neighborhood 𝑉 ⊆ 𝑈 of 𝑘0 such that
𝜉 (𝑘) < 𝔷(𝑘) for every 𝑘 ∈ 𝑉 . It follows that, for all 𝑘 ∈ 𝑉 , 𝜉 (𝑘) and E(𝑘) are in the same connected
component (−∞, 𝔷(𝑘)), and from 𝜕𝑥Φ > 0, we conclude that E � 𝑉 = 𝜉 � 𝑉 . So, E is of class𝐶𝑑 near 𝑘0
and (96) yields (93) for any 𝑘 ∈ 𝑉 – in particular, for 𝑘 = 𝑘0. As 𝑘0 is arbitrary, Assertion (ii) follows. �

We can now deduce from Theorem 4.9 that E is a dispersion relation (see Definition 3.7) when
the function 𝜐̂ : S2 → R is at least 2 times continuously differentiable, and in this case, we can even
compute the group velocity. To see this, recall that, for any 𝑓 ∈ 𝐶2 (S2), we define in (48) the subset

𝔐 𝑓 �
{
𝑘 ∈ S2 : Hess( 𝑓 )(𝑘) ∈ GL2(R)

}
⊆ S2

with GL2 (R) being the set of invertible 2 × 2 matrices with real coefficients.

Corollary 4.10 (E as a dispersion relation and group velocity). Let ℎ𝑏 ∈ [0, 1/2] and U ∈ R+0 . Then,
E ≡ E(U, ·) ∈ 𝐶 (T2) and is of class 𝐶2 on the open set S2 ⊆ R2 whenever 𝜐̂ is of class 𝐶2 on S2. In this
case, the corresponding group velocity is

vE (𝑘) � �∇𝑘E(𝑘) = −(𝜕𝑥Φ(𝑘,E(𝑘)))−1 �∇𝑘Φ(𝑘,E(𝑘)), 𝑘 ∈ S2.
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Moreover, if 𝜐̂ is real analytic (i.e., of class 𝐶𝑎 in the above terminology) on S2, then either 𝔐E has full
measure or is empty.
Proof. The first part of the assertion is a direct application of Theorem 4.9. It remains to study the set
𝔐E. If 𝜐̂ is real analytic then, from Equation (47) and Theorem 4.9, the function 𝑓 : S2 −→ R defined by

𝑓 (𝑘) � det(Hess(E) (𝑘)), 𝑘 ∈ S2,

is real analytic and satisfies 𝑓 −1({0}) = S2\𝔐E. Since the zeros of any nonconstant real analytic function
have null Lebesgue measure (see, for example, [49]), either 𝔐E has full measure or is empty. �

It is natural to derive now the ground state energy of the Hamiltonian𝐻 ∈ B(ℌ) defined by (21), which
is related to the ground state energy of fiber Hamiltonians, thanks to Proposition 2.1 and Theorem A.3.
As expected, one has the following equality for the ground state energy

𝐸 (U) � min𝜎(𝐻) = min E
(
T

2
)
.

A proof can be done like [22, Lemma 8] by using Kato’s perturbation theory. In the sequel, we provide
an alternative way of proving the equality, which is much more direct.
Proposition 4.11 (Bottom of the spectrum of H). We have that

𝐸 (U) = min
𝑘∈T2

min𝜎(𝐴(𝑘)) = min E
(
T

2
)
≤ 0.

Proof. We first remark that the union

K �
⋃{

𝜎(𝐴(𝑘)) : 𝑘 ∈ T2} ⊆ R
of the spectra of all fiber Hamiltonians is closed. To see this, let (𝜆𝑛)𝑛∈N be a sequence of real numbers
converging to 𝜆 ∈ R with 𝜆𝑛 ∈ 𝜎(𝐴(𝑘𝑛)) for some 𝑘𝑛 ∈ T2 at 𝑛 ∈ N. By compactness of T2, we can
assume without loss of generality that (𝑘𝑛)𝑛∈N converges to some point 𝑘0 ∈ T2. By the (operator norm)
continuity of the mapping 𝐴 : T2 → B(H), it follows that

lim
𝑛→∞

(𝐴(𝑘𝑛) − 𝜆𝑛𝟞) = 𝐴(𝑘0) − 𝜆1

(in operator norm). Hence,𝜆 ∈ 𝜎(𝐴(𝑘0)), for otherwise 𝐴(𝑘𝑛)−𝜆𝑛1 would be invertible19 for sufficiently
large n. Thus, K is a closed set, and as a consequence, for any 𝑠 ∉ K, there is 𝜀 > 0 such that

(𝑠 − 𝜀, 𝑠 + 𝜀) ∩ 𝜎(𝐴(𝑘)) = ∅, 𝑘 ∈ T2.

With this property, we infer from Proposition 2.1 and Theorem A.3 that 𝜎(𝐻) ⊆ K, which yields the
inequality

𝐸 (U) ≥ min
𝑘∈T2

min𝜎(𝐴(𝑘)) = min E
(
T

2
)
. (97)

Note that the last equality results from (90). By Theorem 4.9 (i), E : T2 → R is continuous. From the
compactness of the torus T2 and the Weierstrass extreme value theorem, E has a minimizer in T2, say
𝑘0 ∈ T2. The continuity of E at 𝑘0 implies that, for every 𝜀 > 0, there is 𝛿 > 0 such that, for all 𝑘 ∈ T2

satisfying 𝑑T2 (𝑘, 𝑘0) < 𝛿,

E(𝑘) ∈ (E(𝑘0) − 𝜀,E(𝑘0) + 𝜀),

19Recall that the set of invertible operators on a Banach space X is an open subset of B (𝑋 ) , with respect to the operator norm.
See, for example, [50, Theorem 1.4].
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and as a consequence,

𝜈
({
𝑘 ∈ T2 : 𝜎(𝐴(𝑘)) ∩ (E(𝑘0) − 𝜀,E(𝑘0) + 𝜀) ≠ ∅

})
≥ 𝜈

(
T

2 ∩ 𝐵𝛿 (𝑘0)
)
> 0,

where 𝐵𝛿 (𝑘0) is the open ball (for the metric 𝑑T2 ) centered at 𝑘0 ∈ T2 of radius 𝛿 ∈ R+. By Theorem
A.3, this implies that E(𝑘0) ∈ 𝜎(𝐻), which, combined with (97), yields the equalities

𝐸 (U) = min
𝑘∈T2

min𝜎(𝐴(𝑘)) = min E
(
T

2
)
.

Using Equations (75) and (90), we note that

𝐸 (U) = min E
(
T

2
)
≤ min
𝑘∈T2

𝔷(𝑘) = 4𝜖 − 2𝜖 max
𝑘∈T2

cos(𝑘/2) = 𝔷(0) = 0. �

4.4. Spectral properties in the hard-core limit

We now study the spectral properties of fiber Hamiltonians 𝐴(𝑘) (42) in the hard-core limit. It refers to
the limit U → ∞. In fact, a very strong on-site repulsion U (see Equation (6)) prevents two fermions
of opposite spins from occupying the same lattice site. We study in particular the continuous function
E : T2 → R defined by Theorem 4.8, which corresponds to the continuous family of nondegenerate
eigenvalues at lowest energies in each fiber, in this limit.

An important result in this context is the characterization of such eigenvalues via the Birman-
Schwinger principle, given by Theorem 4.5. In particular, we need first to study the hard-core limit of
the characteristic equation, which amounts to determine the limit U →∞ of the quantity (84); that is,

𝔗(U, 𝑘, 𝜆) ≡ 𝔗(𝑘, 𝜆) �
〈
𝔡(𝑘),

(
𝐴1,1 (U, 𝑘) − 𝜆1

)−1𝔡(𝑘)
〉
, 𝜆 ∈ 𝜌

(
𝐴1,1 (U, 𝑘)

)
, (98)

for ℎ𝑏 ∈ [0, 1/2] and 𝑘 ∈ T2. We start with this point, which allows us to study afterwards the limit of
the lowest eigenvalues and all the derived quantities, like, for instance, the group velocity.

4.4.1. The characteristic equation in the hard-core limit
Let 𝔰 = 𝔢̂0 ∈ 𝐿2 (T2) denote the constant function 1 on the torus T2. For any fixed 𝑘 ∈ T2 and
𝜆 ∈ 𝜌(𝐵1,1 (𝑘)), define the following four constants:

𝑅𝔰,𝔰 ≡ 𝑅𝔰,𝔰 (𝑘, 𝜆) �
〈
𝔰,

(
𝐵1,1 (𝑘) − 𝜆1

)−1𝔰
〉
, (99)

𝑅𝔰,𝔡 ≡ 𝑅𝔰,𝔡 (𝑘, 𝜆) �
〈
𝔰,

(
𝐵1,1 (𝑘) − 𝜆1

)−1𝔡(𝑘)
〉
, (100)

𝑅𝔡,𝔰 ≡ 𝑅𝔡,𝔰 (𝑘, 𝜆) �
〈
𝔡(𝑘),

(
𝐵1,1 (𝑘) − 𝜆1

)−1𝔰
〉
, (101)

𝑅𝔡,𝔡 ≡ 𝑅𝔡,𝔡 (𝑘, 𝜆) �
〈
𝔡(𝑘),

(
𝐵1,1 (𝑘) − 𝜆1

)−1𝔡(𝑘)
〉
, (102)

where we recall that 𝐵1,1 (𝑘) is defined by (37). In the following lemma, we write 𝔗(U, 𝑘, 𝜆), which is
defined by (98), in terms of these four quantities.

In the following, it is technically convenient to assume that 𝔡(𝑘) ∉ C𝔰 for all 𝑘 ∈ T2. Notice that this
holds true iff 𝔭1 ∉ C𝔢0 or 𝔭2 ∉ C𝔢0 (i.e., 𝑟𝔭 > 0). Indeed, recall (36); that is,

𝔡(𝑘) = F
[
e𝑖𝑘 ·𝑥𝔭1(𝑥) + e𝑖

𝑘
2 ·𝑥𝔭2 (𝑥)

]
,

where e𝑖𝑘 ·𝑥𝔭♯ (𝑥) stands for the function 𝑥 ↦→ e𝑖𝑘 ·𝑥𝔭♯ (𝑥) with ♯ ∈ {1, 2}. See also discussions around
Equations 13–14.
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Lemma 4.12. Let 𝑘 ∈ T2, U ∈ R+0 and 𝜆 < 𝔷(𝑘), with 𝔷(𝑘) ∈ R defined in Corollary 4.3. Then,

𝔗(U, 𝑘, 𝜆) =
𝑅𝔡,𝔡

U𝑅𝔰,𝔰 + 1
+ U

𝑅𝔡,𝔡𝑅𝔰,𝔰 −
��𝑅𝔰,𝔡��2

U𝑅𝔰,𝔰 + 1
,

with 𝑅𝔡,𝔡𝑅𝔰,𝔰 −
��𝑅𝔰,𝔡��2 ≥ 0. Moreover, if 𝑟𝔭 > 0 (see (14)–(15)), then the inequality is strict.

Proof. The proof of the first part is a slightly more complicated version of the one of [22, Lemma 14].
Fix 𝑘 ∈ T2, U ∈ R+0 and 𝜆 < 𝔷(𝑘). Define the complex numbers

𝑄𝔰,𝔰 �
〈
𝔰,

(
𝐴1,1(U, 𝑘) − 𝜆1

)−1𝔰
〉
,

𝑄𝔰,𝔡 �
〈
𝔰,

(
𝐴1,1(U, 𝑘) − 𝜆1

)−1𝔡(𝑘)
〉
,

𝑄𝔡,𝔰 �
〈
𝔡(𝑘),

(
𝐴1,1 (U, 𝑘) − 𝜆1

)−1𝔰
〉
,

𝑄𝔡,𝔡 �
〈
𝔡(𝑘),

(
𝐴1,1 (U, 𝑘) − 𝜆1

)−1𝔡(𝑘)
〉
= 𝔗(U, 𝑘, 𝜆),

where we recall that

𝐴1,1 (U, 𝑘) � 𝐵1,1 (𝑘) + U𝑃0 ≥ 𝐵1,1 (𝑘), (103)

by Equation (38). Using Corollary 4.3, note at this point that

𝔷(𝑘) = min𝜎
(
𝐴1,1(U, 𝑘)

)
= min𝜎

(
𝐵1,1 (𝑘)

)
≥ 0. (104)

In particular,

𝜆 ∈ (−∞, 𝔷(𝑘)) ⊆ 𝜌
(
𝐴1,1(U, 𝑘)

)
∩ 𝜌

(
𝐵1,1 (𝑘)

)
, (105)

and the resolvent operators (𝐴1,1 (U, 𝑘) − 𝜆1)−1 and (𝐵1,1 (𝑘) − 𝜆1)−1 are strictly positive. By using the
second resolvent identity together with Equation (103), we compute that(

𝐴1,1 (U, 𝑘) − 𝜆1
)−1 =

(
𝐵1,1 (𝑘) − 𝜆1

)−1 − U
(
𝐴1,1 (U, 𝑘) − 𝜆1

)−1
𝑃0

(
𝐵1,1 (𝑘) − 𝜆1

)−1
.

Recalling that 𝑃0 is the orthogonal projection onto C𝔰 = C𝔢̂0, we have that

𝑄𝔰,𝔰 = 𝑅𝔰,𝔰 − U
〈
𝔰,

(
𝐴1,1 (U, 𝑘) − 𝜆1

)−1
𝑃0

(
𝐵1,1 (𝑘) − 𝜆1

)−1𝔰
〉

= 𝑅𝔰,𝔰 − U𝑄𝔰,𝔰𝑅𝔰,𝔰 ,

𝑄𝔡,𝔡 = 𝑅𝔡,𝔡 − U
〈
𝔡(𝑘),

(
𝐴1,1 (U, 𝑘) − 𝜆1

)−1
𝑃0

(
𝐵1,1 (𝑘) − 𝜆1

)−1𝔡(𝑘)
〉

= 𝑅𝔡,𝔡 − U𝑄𝔡,𝔰𝑅𝔰,𝔡,

𝑄𝔰,𝔡 = 𝑅𝔰,𝔡 − U
〈
𝔰,

(
𝐴1,1(U, 𝑘) − 𝜆1

)−1
𝑃0

(
𝐵1,1 (𝑘) − 𝜆1

)−1𝔡(𝑘)
〉

= 𝑅𝔰,𝔡 − U𝑄𝔰,𝔰𝑅𝔰,𝔡,

𝑄𝔡,𝔰 = 𝑅𝔡,𝔰 − U
〈
𝔡(𝑘),

(
𝐴1,1(U, 𝑘) − 𝜆1

)−1
𝑃0

(
𝐵1,1(𝑘) − 𝜆1

)−1𝔰
〉

= 𝑅𝔡,𝔰 − U𝑄𝔡,𝔰𝑅𝔰,𝔰 .
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In matrix notation, the above equations can be rewritten as(
𝑅𝔰,𝔰 𝑅𝔡,𝔰

𝑅𝔰,𝔡 𝑅𝔡,𝔡

)
= U

(
𝑄𝔰,𝔰𝑅𝔰,𝔰 𝑄𝔡,𝔰𝑅𝔰,𝔰
𝑄𝔰,𝔰𝑅𝔰,𝔡 𝑄𝔡,𝔰𝑅𝔰,𝔡

)
+

(
𝑄𝔰,𝔰 𝑄𝔡,𝔰

𝑄𝔰,𝔡 𝑄𝔡,𝔡

)
=

(
U𝑅𝔰,𝔰 + 1 0

U𝑅𝔰,𝔡 1

) (
𝑄𝔰,𝔰 𝑄𝔡,𝔰

𝑄𝔰,𝔡 𝑄𝔡,𝔡

)
.

As (𝐵1,1 (𝑘) − 𝜆1)−1 ≥ 0 (because of (105)) and U𝑅𝔰,𝔰 ≥ 0,

det

(
U𝑅𝔰,𝔰 + 1 0

U𝑅𝔰,𝔡 1

)
= U𝑅𝔰,𝔰 + 1 > 0,

which means that the matrix appearing in the above determinant is invertible. From this, we conclude
that (

𝑄𝔰,𝔰 𝑄𝔡,𝔰

𝑄𝔰,𝔡 𝑄𝔡,𝔡

)
=

1
U𝑅𝔰,𝔰 + 1

(
1 0

−U𝑅𝔰,𝔡 U𝑅𝔰,𝔰 + 1

) (
𝑅𝔰,𝔰 𝑅𝔡,𝔰

𝑅𝔰,𝔡 𝑅𝔡,𝔡

)
.

In particular, since 𝑅𝔰,𝔡 = 𝑅𝔡,𝔰 ,

𝔗(U, 𝑘, 𝜆) = 𝑄𝔡,𝔡 = 𝑅𝔡,𝔡 −
U

U𝑅𝔰,𝔰 + 1
��𝑅𝔰,𝔡��2 =

𝑅𝔡,𝔡
U𝑅𝔰,𝔰 + 1

+ U
𝑅𝔡,𝔡𝑅𝔰,𝔰 −

��𝑅𝔰,𝔡��2
U𝑅𝔰,𝔰 + 1

.

Because 𝜆 < 𝔷(𝑘) ≤ 0 and (𝐵1,1 (𝑘) − 𝜆𝟞)−1 ≥ |𝔷(𝑘) − 𝜆 |−11 (see (105)), the sesquilinear form

(𝜑, 𝜓) ↦→ 〈𝜑, (𝐵1,1 (𝑘) − 𝜆1)−1𝜓〉

is a scalar product, and using the Cauchy-Schwarz inequality,20 we deduce that

𝑅𝔡,𝔡𝑅𝔰,𝔰 −
��𝑅𝔰,𝔡��2 ≥ 0.

When 𝑟𝔭 > 0, the set {𝔡(𝑘), 𝔰} is linearly independent for every 𝑘 ∈ T2. �

The last lemma is useful to deduce the behavior of the quantity 𝔗(U, 𝑘, 𝜆) at large Hubbard coupling
constant U � 1:

Corollary 4.13 (𝔗(U0, 𝑘, 𝜆) at large on-site repulsions). Let 𝑘 ∈ T2 and 𝜆 < 𝔷(𝑘), with 𝔷(𝑘) ∈ R
defined in Corollary 4.3. Then, for all U ∈ R+0 ,

0 ≤ 𝔗(U, 𝑘, 𝜆) − 𝔗(∞, 𝑘, 𝜆) ≤
𝑅𝔡,𝔡

1 + U𝑅𝔰,𝔰
,

where

𝔗(∞, 𝑘, 𝜆) � 𝑅−1
𝔰,𝔰

(
𝑅𝔡,𝔡𝑅𝔰,𝔰−

��𝑅𝔰,𝔡��2) ≥ 0 . (106)

Proof. By Lemma 4.12, we have 𝑅𝔰,𝔰 > 0 and 𝑅𝔡,𝔡𝑅𝔰,𝔰 ≥
��𝑅𝔰,𝔡��2 while

𝔗(U, 𝑘, 𝜆) −
𝑅𝔡,𝔡𝑅𝔰,𝔰 −

��𝑅𝔰,𝔡��2
𝑅𝔰,𝔰

=

��𝑅𝔰,𝔡��2(
1 + U𝑅𝔰,𝔰

)
𝑅𝔰,𝔰

≤
𝑅𝔡,𝔡

1 + U𝑅𝔰,𝔰
. �

20Recall that the Cauchy-Schwarz inequality applied to a scalar product is an equality iff the vectors are linearly dependent.
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4.4.2. Hard-core dispersion relation of bound pairs of lowest energy
We are now in a position to study the spectral properties of the model 𝐻 ∈ B(ℌ) defined by (21) in the
hard-core limit. We study in particular its ground state energy 𝐸 (U) (see Corollary 3.4) and the limit
of the continuous function E : T2 → R defined by Theorem 4.8, which corresponds to the continuous
family of nondegenerate eigenvalues at lowest energies in the fibers.

We start with the hard-core ground state energy, which is a well-defined quantity that even stays
negative:

Lemma 4.14 (Existence of the hard-core ground state energy). In the hard-core limit U → ∞, the
hard-core ground state energy (44) is well-defined and is equal to

𝐸 (∞) = sup
U∈R+0

𝐸 (U) ≤ 0.

Proof. When 0 ≤ U ≤ V, one obviously has

𝐴(V, 𝑘) − 𝐴(U, 𝑘) = (V − U)
(
𝑃0 0
0 0

)
≥ 0

see Equation (42). In other words, 𝐴(U, 𝑘), U ∈ R+0 , defines an increasing family of bounded operators
and by Proposition 4.2 and Equation (75),

min𝜎(𝐴(U, 𝑘)) ≤ min𝜎(𝐴(V, 𝑘)) ≤ 𝔷(𝑘) (107)

whenever 0 ≤ U ≤ V. In particular, by taking the minimum over 𝑘 ∈ T2, if 0 ≤ U ≤ V then

𝐸 (U) ≤ 𝐸 (V) ≤ 0.

See Proposition 4.11. This shows that E is an increasing function of U ∈ R+0 , which is bounded from
above by 0. This yields the assertion, thanks to the monotone convergence theorem. �

We give in the next theorem a hard-core limit version of Theorems 4.5, 4.8 and 4.9. To this end,
recall that E(𝑘),𝑘 ∈ T2, are given by Theorem 4.8 as a family of nondegenerate eigenvalues. This family
depends upon the parameter U ∈ R+0 , and we thus use here the notation E(U, 𝑘) ≡ E(𝑘). This defines a
function E : R+0 × T

2 → R.

Theorem 4.15 (Dispersion relation in the hard-core limit). Let ℎ𝑏 ∈ [0, 1/2]. Recall that𝔗(∞, 𝑘, 𝜆) ≥ 0
is defined by (106).

i.) For every 𝑘 ∈ T2, the following limit exists:

E(∞, 𝑘) = lim
U→∞

E(U, 𝑘) = sup
U∈R+0

E(U, 𝑘)

ii.) E(∞, ·) : T2 → R is a continuous function;
iii.) For 𝑘 ≠ 0, E(∞, 𝑘) is the unique solution to the equation

𝜐̂(𝑘)2𝔗(∞, 𝑘, 𝑧) + 𝑧 − 𝔟(𝑘) = 0, 𝑧 < 𝔷(𝑘). (108)

iv.) If 𝜐̂ is of class 𝐶𝑑 on S2 ⊆ R2 with 𝑑 ∈ N ∪ {𝜔, 𝑎}, then so does E(∞, ·).

If, in addition, 𝑟𝔭 > 0, then

v.) For every 𝑘 ∈ T2, E(∞, 𝑘) ≤ 𝔟(𝑘) with equality iff 𝜐̂(𝑘) = 0.
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Proof. Fix ℎ𝑏 ∈ [0, 1/2]. By (90) and (107) together with Corollary 4.3 and Theorem 4.8,

E(U, 𝑘) ≤ E(V, 𝑘) ≤ 𝔟(𝑘) ≤ 𝔷(𝑘) = min𝜎
(
𝐵1,1 (𝑘)

)
, 𝑘 ∈ T2, (109)

whenever 0 ≤ U ≤ V. This shows that, at any fixed 𝑘 ∈ T2, the function U ↦→ E(U, 𝑘) from R+0 to R is
increasing and bounded. Therefore, for any 𝑘 ∈ T2,

E(∞, 𝑘) = lim
U→∞

E(U, 𝑘) = sup
U∈R+0

E(U, 𝑘) ≤ 𝔟(𝑘), (110)

thanks to the monotone convergence theorem. In particular, Assertion (i) holds true.
By Combining Equation (110) with (94), note that

E(∞, 𝑘) = sup
U∈R+0

inf
𝜓∈H, ‖𝜓 ‖=1

〈𝜓, 𝐴(U, 𝑘)𝜓〉, 𝑘 ∈ T2.

Meanwhile, for any 𝜀 > 0 and 𝑘0 ∈ T2, there is 𝛿 > 0 such that

‖𝐴(U, 𝑘) − 𝐴(U, 𝑘0)‖op = ‖𝐴(0, 𝑘) − 𝐴(0, 𝑘0)‖op ≤ 𝛿.

As a consequence, similar to what is done after (94), the set

{〈𝜓, 𝐴(U, ·)𝜓〉 : U ∈ R+0 , 𝜓 ∈ H with ‖𝜓‖ = 1}

is a family of equicontinuous functions on T2. Therefore, E(∞, ·) is continuous and Assertion (ii) holds
true.

Fix 𝑘 ≠ 0. If 𝜐̂(𝑘) ≠ 0 and U ∈ R+, then we deduce from Corollary 4.3, Theorem 4.5 and Equations
(109)–(110) that {

E(U, 𝑘) : U ∈ R+0 ∪ {∞}
}
⊆ 𝜌

(
𝐵1,1 (𝑘)

)
and

𝜐̂(𝑘)−2(𝔟(𝑘) − E(U, 𝑘)) − 𝔗(∞, 𝑘,E(U, 𝑘)) = 𝔗(𝑘,E(U, 𝑘)) − 𝔗(∞, 𝑘,E(U, 𝑘)).

Invoking next Corollary 4.13, we obtain the inequality��𝔟(𝑘) − E(U, 𝑘) − 𝜐̂(𝑘)2𝔗(∞, 𝑘,E(U, 𝑘))
�� < 𝜐̂(𝑘)2𝑅𝔡,𝔡

U𝑅𝔰,𝔰
.

We can take the limit U →∞ in this last inequality by using (110) and the continuity of the mapping

𝔗(∞, 𝑘, ·) : 𝜌
(
𝐵1,1 (𝑘)

)
→ R+

at the point E(∞, 𝑘), to arrive at the equality

𝜐̂(𝑘)2𝔗(∞, 𝑘,E(∞, 𝑘)) + E(∞, 𝑘) − 𝔟(𝑘) = 0. (111)

This proves that E(∞, 𝑘) is a solution to (108). There is no other solution below 𝔷(𝑘) because of the
following arguments: Given any U ∈ [0,∞], let

𝑓U(𝑥) � 𝜐̂(𝑘)2𝔗(U, 𝑘, 𝑥) + 𝑥, 𝑥 ∈ (−∞, 𝔷(𝑘)).

By Corollary 4.13, ( 𝑓U)U∈R+0 converges pointwise to 𝑓∞, as U → ∞. Since the pointwise limit of
monotonically increasing function is again monotonically increasing, it follows that 𝑓∞ is monotonically

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


Forum of Mathematics, Sigma 49

increasing. Given any 𝑥 < 𝑦 < 𝔷(𝑘), take any 𝑟 > 0 with 𝑟 ≥ 𝑓∞(𝑦) − 𝑓∞(𝑥) ≥ 0. Then, for some
U0 ∈ R+0 sufficiently large, one has

−𝑟 < 𝑓U0 (𝑦) − 𝑓∞(𝑦) < 𝑟 and − 𝑟 < 𝑓U0 (𝑥) − 𝑓∞(𝑥) < 𝑟,

so that

2𝑟 > ( 𝑓U0 (𝑦) − 𝑓∞(𝑦)) − ( 𝑓U0 (𝑥) − 𝑓∞(𝑥))
= ( 𝑓U0 (𝑦) − 𝑓U0 (𝑥)) − ( 𝑓∞(𝑦) − 𝑓∞(𝑥))
≥ 𝑓U0 (𝑦) − 𝑓U0 (𝑥) − 𝑟.

Then, the mean value theorem combined with (89) implies that

3𝑟 ≥ 𝑓U0 (𝑦) − 𝑓U0 (𝑥) = 𝑓 ′U0
(𝑐) (𝑦 − 𝑥) ≥ 𝑦 − 𝑥 > 0 (112)

for some 𝑐 ∈ (𝑥, 𝑦). This implies that the function 𝑓∞ is strictly increasing on (−∞, 𝔷(𝑘)), and hence,
there is a unique solution, E(∞, 𝑘), to (108). Meanwhile, if 𝜐̂(𝑘) = 0, then Theorem 4.8 implies that
E(U, 𝑘) = 𝔟(𝑘) for all U ∈ R+0 , and obviously, E(∞, 𝑘) = 𝔟(𝑘) is the unique solution to (108).

Consider now the open set O defined by (92). Let Φ(∞, ·) : O → R be defined by

Φ(∞, 𝑘, 𝑥) � 𝜐̂(𝑘)2𝔗(∞, 𝑘, 𝑥) + 𝑥 − 𝔟(𝑘), (𝑘, 𝑥) ∈ O. (113)

By Corollary 4.13, note that Φ(∞, ·) : O → R is nothing else than the pointwise limit of the function
Φ(U, ·) : O → R defined by (91):

lim
U→∞

Φ(U, 𝑘, 𝑥) = Φ(∞, 𝑘, 𝑥). (114)

The function Φ(∞, ·, ·) is a continuously differentiable function satisfying

𝜕𝑥Φ(∞, 𝑘, 𝑥) ≥ 1/3 > 0, (𝑘, 𝑥) ∈ O,

thanks to Inequality (112). Observe also that Φ(∞, ·) ∈ 𝐶𝑑 (O) if 𝜐̂ is of class 𝐶𝑑 on S2 ⊆ R2 with
𝑑 ∈ N ∪ {𝜔, 𝑎}. Therefore, by repeating essentially the same argument used in the proof of Theorem
4.9, one concludes that E(∞, ·) ∈ 𝐶𝑑 (S2) whenever 𝜐̂ is of class 𝐶𝑑 on S2 ⊆ R2 with 𝑑 ∈ N ∪ {𝜔, 𝑎}.

Finally, assume that 𝑟𝔭 > 0; that is, 𝔭1 ∉ C𝔢0 or 𝔭2 ∉ C𝔢0.For 𝑘 ≠ 0, we deduce from (111) and
Lemma 4.12 that

E(∞, 𝑘) = 𝔟(𝑘) ⇔ 𝜐̂(𝑘)2𝔗(∞, 𝑘,E(∞, 𝑘)) = 0 ⇔ 𝜐̂(𝑘) = 0.

To conclude the proof of Assertion (v), it remains to show that 𝜐̂(0) ≠ 0 implies E(∞, 0) < 𝔟(0).
Assume on the contrary that

lim
U→∞

E(U, 0) = 𝔟(0), (115)

keeping in mind that 𝔟(0) = 𝔷(0) = 0. Then, we infer from Theorems 4.5 and 4.8 that the following
equality must be true:

lim
U→∞

𝔗(U, 0,E(U, 0)) = lim
U→∞

𝜐̂(0)−2(𝔟(0) − E(U, 0)) = 0.

By Lemma 4.12, it follows that

lim
U→∞

𝑅𝔡,𝔡 (U)
U𝑅𝔰,𝔰 (U) + 1

= 0, (116)
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where, by a slight abuse of notation,

𝑅𝔰,𝔰 (U) � 𝑅𝔰,𝔰 (0,E(U, 0)),
𝑅𝔡,𝔡 (U) � 𝑅𝔡,𝔡 (0,E(U, 0)),
𝑅𝔰,𝔡 (U) � 𝑅𝔰,𝔡 (0,E(U, 0)).

Therefore, we deduce from Corollary 4.13 that

lim
U→∞

𝑅𝔡,𝔡 (U)𝑅𝔰,𝔰 (U) −
��𝑅𝔰,𝔡 (U)��2

𝑅𝔰,𝔰 (U)
= lim

U→∞
𝔗(∞, 0,E(U, 0)) = 0. (117)

Now, observe that

𝑅𝔡,𝔡 (U)𝑅𝔰,𝔰 (U) −
��𝑅𝔰,𝔡 (U)��2

𝑅𝔰,𝔰 (U)

=
1

𝑅𝔰,𝔰 (U)
〈(
𝑅𝔰,𝔰 (U)𝔡(0) − 𝑅𝔰,𝔡 (U)𝔰

)
, (𝐵1,1 (0) − E(U, 0)1)−1 (𝑅𝔰,𝔰 (U)𝔡(0) − 𝑅𝔰,𝔡 (U)𝔰)〉

=
〈
𝔡(0) − 𝛼(U)𝔰, (𝐵1,1 (0) − E(U, 0)1)−1(𝔡(0) − 𝛼(U)𝔰)

〉
(118)

where

𝛼(U) � 𝑅𝔰,𝔰 (U)−1𝑅𝔰,𝔡 (U).

Let 𝜑U = 𝔡(0) −𝛼(U)𝔰 ≠ 0 and𝑊U = 𝐵1,1(0) −E(U, 0)1. Since𝑊U is strictly positive, it has an unique
square root, which is also strictly positive. Then

| |𝜑U | |4 = |〈𝑊−1/2
U 𝜑U,𝑊

1/2
U 𝜑U〉|2 ≤ ||𝑊−1/2

U 𝜑U | |2 | |𝑊1/2
U 𝜑U | |2 ≤

≤ ||𝑊U | |op | |𝜑U | |2〈𝜑U,𝑊
−1
U 𝜑U〉 ≤ ||𝜑U | |2〈𝜑U,𝑊

−1
U 𝜑U〉

(
| |𝐵1,1 (0) | |op + |E(0, 0) |

)
.

As 〈𝜑U,𝑊
−1
U 𝜑U〉 tends to 0 when U →∞, it follows that also 𝜑U vanishes in this limit; that is,

lim
U→∞

𝛼(U)𝔰 = 𝔡(0). (119)

As C𝔰 is a closed subspace of 𝐿2 (T2), we get that 𝔡(0) ∈ C𝔰, which is a contradiction. Therefore,
Assertion (v) holds true. �

Remark 4.16. Under the additional conditions that 𝑟𝔭 > 0 (i.e., 𝔭1 ∉ C𝔢0 or 𝔭2 ∉ C𝔢0) and 𝜐̂(0) ≠ 0,
Assertion (iv) remains valid with (−𝜋, 𝜋)2 instead of S2 (i.e., by including the zero quasi-momentum
case 𝑘 = 0). Also, Assertion (iii) holds true for 𝑘 = 0. In fact, under these further conditions, we know
from Assertion (v) that E(∞, 0) < 𝔷(0) = 0.

Corollary 4.17 (Hard-core dispersion relation). Let ℎ𝑏 ∈ [0, 1/2] and 𝜐̂ be of class 𝐶2 on S2. Then,
E(∞, ·) ∈ 𝐶 (T2) and is of class 𝐶2 on S2. In this case, for any 𝑘 ∈ S2,

vE,∞(𝑘) � �∇𝑘E(∞, 𝑘) = −(𝜕𝑥Φ(∞, 𝑘,E(∞, 𝑘)))−1 �∇𝑘Φ(∞, 𝑘,E(∞, 𝑘)) = lim
U→∞

vE,U (𝑘).

Moreover, if 𝜐̂ is real analytic (of class 𝐶𝑎, in our terminology) on S2, then either 𝔐E(∞, ·) has full
measure or is empty.

Proof. Recall that O is the open set (92) and Φ(·, ·) : R+0 ×O → R is the real-valued function defined
by (91). Note that, for any U ∈ R+0 , the function Φ(U, ·) is a smooth function on O, and we estimate its
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derivatives with respect to the parameter k, at fixed U ∈ R+0 and x, where (𝑘, 𝑥) ∈ O: For any (𝑘, 𝑥) ∈ O
and U ∈ R+0 , Equations 37–38 together with the second resolvent formula yield the derivative

𝜕𝑘 𝑗
(
𝐴1,1(U, 𝑘) − 𝑥1

)−1 = −
(
𝐴1,1(U, 𝑘) − 𝑥1

)−1{
𝜕𝑘 𝑗𝑀𝔣 (𝑘)

} (
𝐴1,1 (U, 𝑘) − 𝑥1

)−1

for any 𝑗 ∈ {1, 2}, where 𝑘 = (𝑘1, 𝑘2) ∈ S2. Therefore, by (33) and (91), for any (𝑘, 𝑥) ∈ O and U ∈ R+0 ,��𝜕𝑘 𝑗Φ(U, 𝑘, 𝑥)�� ≤ 8𝜖𝜐̂(𝑘)2 |𝔷(𝑘) − 𝑥 |−2 (120)

for any 𝑗 ∈ {1, 2}, where 𝑘 = (𝑘1, 𝑘2) ∈ S2. Taking the second derivative, one can easily check that���𝜕2
𝑘 𝑗
Φ(U, 𝑘, 𝑥)

��� ≤ 8𝜖𝜐̂(𝑘)2 |𝔷(𝑘) − 𝑥 |−3 (121)

for 𝑗 ∈ {1, 2}, where 𝑘 = (𝑘1, 𝑘2) ∈ S2. In the same way, we deduce from the identities

𝜕𝑥Φ(U, 𝑘, 𝑥) = 𝜐̂(𝑘)2
〈
𝔡(𝑘),

(
𝐴1,1(U, 𝑘) − 𝑥1

)−2𝔡(𝑘)
〉
+ 1

𝜕2
𝑥Φ(U, 𝑘, 𝑥) = 2𝜐̂(𝑘)2

〈
𝔡(𝑘),

(
𝐴1,1 (U, 𝑘) − 𝑥1

)−3𝔡(𝑘)
〉

the following inequalities:

|𝜕𝑥Φ(U, 𝑘, 𝑥) | ≤ 𝜐̂(𝑘)2 |𝔷(𝑘) − 𝑥 |−2 + 1, (122)��𝜕2
𝑥Φ(U, 𝑘, 𝑥)

�� ≤ 2𝜐̂(𝑘)2 |𝔷(𝑘) − 𝑥 |−3, (123)

for any (𝑘, 𝑥) ∈ O and U ∈ R+0 .
Now, fix (𝑘0, 𝑥0) ∈ O. The function 𝔷 of Corollary 4.3 is continuous with respect to 𝑘1, 𝑘2, where

𝑘 = (𝑘1, 𝑘2) ∈ S2. Then, there is a closed cube centered at (𝑘0, 𝑥0) with side length 𝛿 ∈ R+ contained
in O. Suppose that 𝜕𝑥Φ(U, 𝑘0, 𝑥0) does not converge to 𝜕𝑥Φ(∞, 𝑘0, 𝑥0). Then we can find 𝑟0 ∈ R+ and
a sequence (U𝑛)𝑛∈N of positive numbers such that U𝑛 →∞ as 𝑛→∞ and, for every 𝑛 ∈ N,

|𝜕𝑥Φ(U𝑛, 𝑘0, 𝑥0) − 𝜕𝑥Φ(∞, 𝑘0, 𝑥0) | ≥ 𝑟0.

Let

𝔉 = {𝜕𝑥Φ(U𝑛, 𝑘0, ·) � [𝑥0 − 𝛿, 𝑥0 + 𝛿] : 𝑛 ∈ N}.

By combining Equation (123) with the mean value theorem, we see that𝔉 is Lipschitz equicontinuous. In
particular, this family of functions is equicontinuous. Moreover, it follows from (122) that𝔉 is bounded
in the supremum norm. We can hence apply the (Arzelà-) Ascoli theorem [44, Theorem A5], according
to which 𝜕𝑥Φ(U𝑛, 𝑘0, ·), when restricted to the compact interval [𝑥0 − 𝛿, 𝑥0 + 𝛿], converges uniformly
along some subsequence. Assume, for simplicity and without loss of generality, that the (full) sequence
of functions converges itself. By Equation (114), recall thatΦ(U, ·, ·) converges pointwise to the function
Φ(∞, ·, ·) on O, which is is the real-valued function defined by (113). Then, by [93, Theorem 7.17],

𝜕𝑥Φ(∞, 𝑘0, 𝑥) = lim
𝑛→∞

𝜕𝑥Φ(U𝑛, 𝑘0, 𝑥), 𝑥 ∈ [𝑥0 − 𝛿, 𝑥0 + 𝛿] .

For 𝑥 = 𝑥0, this lead us to a contradiction. Thus,

𝜕𝑥Φ(∞, 𝑘, 𝑥) = lim
U→∞

𝜕𝑥Φ(U, 𝑘, 𝑥)
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for every (𝑘, 𝑥) ∈ O. In the same way, we invoke Equations (120) and (121) together with the mean
value theorem and the (Arzelà-) Ascoli theorem [44, Theorem A5] to deduce that

𝜕𝑘 𝑗Φ(∞, 𝑘, 𝑥) = lim
U→∞

𝜕𝑘 𝑗Φ(U, 𝑘, 𝑥), 𝑗 = 1, 2.

for every (𝑘, 𝑥) ∈ O. To prove the corollary, we eventually use these observations together with Theorem
4.15 (i), Corollary 4.10 and the equicontinuity of

{𝜕𝜇Φ(U, 𝑘0, ·) � (−∞, 𝔟(𝑘0)] : U ∈ R+},

with 𝜇 standing for the variables 𝑘1, 𝑘2 or x. Note that the last assertion concerning 𝔐E(∞, ·) is a direct
consequence of the fact that the zeros of any nonconstant real analytic function have null Lebesgue
measure [49]; see the proof of the same assertion for U < ∞ in Corollary 4.10. �

Note that no additional condition is required for E to have a well-defined hard-core limit. Compare
Corollary 4.10 with Theorem 4.15. Moreover, by Corollary 4.17, E(∞, ·) can be viewed as the (effective)
dispersion relation of the dressed bound fermion pairs, with lowest energy, in the hard-core limit.

We close this section by showing the convergence of the low-energy eigenvector of 𝐴(U, 𝑘) for large
Hubbard couplings. This refers to the (hard-core) limit U →∞ of the vector

Ψ(U, 𝑘) ≡ Ψ(𝑘) �
(
𝜐̂(𝑘)

(
𝐴1,1 (U, 𝑘) − E(U, 𝑘)1

)−1𝔡(𝑘),−1
)
∈ H

see Equation (130).

Proposition 4.18 (Hard-core limit of eigenvectors). Let ℎ𝑏 ∈ [0, 1/2]. Fix 𝑘 ∈ T2\{0}. The following
limit exists:

Ψ(∞, 𝑘) � lim
U→∞

Ψ(U, 𝑘) ∈ H\{0}.

This statement remains valid for 𝑘 = 0 provided that 𝜐̂(0) ≠ 0 and 𝑟𝔭 > 0 (i.e., 𝔭1 ∉ C𝔢0 or 𝔭2 ∉ C𝔢0).

Proof. Fix 𝑘 ∈ T2 with 𝑘 ≠ 0. By using the first resolvent formula together with Theorem 4.8, Theorem
4.15 (i) and (v), we find that

‖(𝐴1,1 (U, 𝑘) − E(∞, 𝑘)1)−1 − (𝐴1,1 (U, 𝑘) − E(U, 𝑘)1)−1‖op ≤
|E(U, 𝑘) − E(∞, 𝑘) |
|𝔷(𝑘) − E(∞, 𝑘) |2

→ 0.

Note that E(∞, 𝑘) ≤ 𝔟(𝑘) < 𝔷(𝑘) for any 𝑘 ≠ 0. (When 𝜐̂(0) ≠ 0 and 𝔭1 ∉ C𝔢0 or 𝔭2 ∉ C𝔢0, we also
have that E(∞, 0) < 𝔟(0) = 𝔷(0).) However, by Proposition A.14, {(𝐴1,1(U, 𝑘) − E(∞, 𝑘)1)−1}U≥0 is
a decreasing family of positive operators, and by Proposition A.15, it converges strongly as U → ∞.
Consequently, (𝐴1,1 (U, 𝑘) − E(U, 𝑘)1)−1 also converges strongly. �

4.5. Spectral gap and Anderson localization

By Equation (90), the spectral gap of fiber Hamiltonians is equal to

𝔤(U, 𝑘) � min𝜎ess (𝐴(U, 𝑘)) − E(U, 𝑘) ≥ 0, 𝑘 ∈ T2, (124)

for any Hubbard coupling constant U ∈ R+0 . When 𝑟𝔭 > 0 (i.e., 𝔭1 ∉ C𝔢0 or 𝔭2 ∉ C𝔢0) and 𝜐̂(0) ≠ 0, this
quantity turns out to be strictly positive, uniformly with respect to the parameter U:
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Proposition 4.19 (Uniform spectral gap of fiber Hamiltonians). Fix ℎ𝑏 ∈ [0, 1/2]. If 𝑟𝔭 > 0 (i.e.,
𝔭1 ∉ C𝔢0 or 𝔭2 ∉ C𝔢0) and 𝜐̂(0) ≠ 0, then

inf
U∈R+0

min
𝑘∈T2

𝔤(U, 𝑘) > 0.

Proof. The family {E(U, ·)}U∈R+0 of real-valued functions on T2 is equicontinuous, thanks to Theorem
4.9 (i). Since Proposition 4.2 says that, for any 𝑘 ∈ T2,

min𝜎ess (𝐴(U, 𝑘)) = 𝔷(𝑘) � 4𝜖 − 2𝜖 cos(𝑘/2), (125)

we thus deduce from (124) that the family {𝔤(U, ·)}U∈R+0 of real-valued functions onT2 is equicontinuous.
It follows that the function

R
+
0 " U ↦−→ min

𝑘∈T2
𝔤(U, 𝑘) ∈ R (126)

is continuous. Moreover, from the compactness of T2, 𝔤(U, ·) has a global minimizer, say 𝑘U ∈ T2 for
all U ∈ R+0 . Since 𝜐̂(0) ≠ 0, by Theorem 4.8,

E(U, 𝑘U) < min𝜎ess (𝐴(U, 𝑘U)) = 0

when 𝑘U = 0, while in the case 𝑘U ≠ 0,

E(U, 𝑘U) ≤ 𝔟(𝑘U) < 𝔷(𝑘) = min𝜎ess(𝐴(U, 𝑘U)).

In particular,

min
𝑘∈T2

𝔤(U, 𝑘) = 𝔤(U, 𝑘U) > 0, U ∈ R+0 .

Using this together with the continuity of the function (126), we arrive at the inequality

inf
U∈[0,𝑐 ]

min
𝑘∈T2

𝔤(U, 𝑘) > 0 (127)

for any positive parameter 𝑐 ∈ R+0 . Now, we perform the limit U → ∞. Since T2 is compact, the
net (𝑘U)U∈R+0 converges along subnets (in fact, subsequences). Assume without loss of generality that
(𝑘U)U∈R+0 converges to some 𝑘∞ ∈ T2 (otherwise, one uses all the following arguments on subsequences).
If 𝑘∞ ≠ 0, then

lim
U→∞

min
𝑘∈T2

𝔤(U, 𝑘) ≥ lim
U→∞

𝔷(𝑘U) − 𝔟(𝑘U) = 𝔷(𝑘∞) − 𝔟(𝑘∞) > 0, (128)

thanks to Theorem 4.8 and the continuity of the functions 𝔷 and 𝔟. Assume now that 𝑘∞ = 0. Since, for
all U ∈ R+0 ,

|E(U, 𝑘U) − E(∞, 0) | ≤ |E(U, 𝑘U) − E(U, 0) | + |E(U, 0) − E(∞, 0) |,

we infer from the equicontinuity of the family {E(U, ·)}U∈R+0 (Theorem 4.9 (i)) and Theorem 4.15 (i) that

lim
U→∞

E(U, 𝑘U) = E(∞, 0).
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Combined with Theorem 4.15 (v) and 𝜐̂(0) ≠ 0, this last limit in turn implies that

lim
U→∞

min
𝑘∈T2

𝔤(U, 𝑘) = lim
U→∞

{𝔷(𝑘U) − E(U, 𝑘U)} = 𝔷(0) − E(∞, 0) = −E(∞, 0) > 0. (129)

The assertion is therefore a combination of Inequalities (127), (128) and (129). �

We study now the space localization of the (dressed) bound pair with total quasi-momentum 𝑘 ∈ T2

and energy E(U, 𝑘). Assume that 𝜐̂(0) ≠ 0. By Corollary 4.6, for any fixed 𝑘 ∈ T2, it corresponds to
study the fermionic part of the eigenvector

Ψ(U, 𝑘) � 𝑔(𝑘,E(U, 𝑘)) =
(
𝜐̂(𝑘)

(
𝐴1,1(U, 𝑘) − E(U, 𝑘)1

)−1𝔡(𝑘),−1
)
∈ H, (130)

written in the real space Z2 via the inverse Fourier transform F−1 (see (31)). This function is denoted by

𝜓U,𝑘 � F−1
[
𝜐̂(𝑘)

(
𝐴1,1 (U, 𝑘) − E(U, 𝑘)1

)−1𝔡(𝑘)
]
∈ ℓ2

(
Z

2
)

(131)

for any fixed 𝑘 ∈ T2. One should not be confused here by the parameter k. Recall, for instance, that,
given 𝑘 ∈ T2, 𝔡(𝑘) ∈ 𝐶

(
T

2) is itself a function on the torus T2, defined by

𝔡(𝑘)(𝑝) � 𝔭̂1 (𝑘 + 𝑝) + 𝔭̂2 (𝑘/2 + 𝑝), 𝑝 ∈ T2 (132)

see Equation (34). In particular, observe that

𝜓U,𝑘 = 𝜐̂(𝑘)F−1
[ (
𝐴1,1 (U, 𝑘) − E(U, 𝑘)1

)−1𝔡(𝑘)
]
. (133)

We now show that this function is exponentially localized in the real space:

Theorem 4.20 (Exponentially localized dressed bound fermion pairs). Fix ℎ𝑏 ∈ [0, 1/2], 𝑘 ∈ T2 and
suppose that 𝑟𝔭 > 0 (i.e., 𝔭 ∉ C𝔢0) and 𝜐̂(0) ≠ 0. There exist positive constants 𝐶, 𝛼 > 0 such that, for
all 𝑘 ∈ T2 and U ∈ R+0 , ��𝜓U,𝑘 (𝑥)

�� ≤ 𝐶e−𝛼 |𝑥 | , 𝑥 ∈ Z2.

Proof. By (36), we compute that

F−1 [(𝐴1,1 (U, 𝑘) − E(U, 𝑘)1)−1𝔡(𝑘)
]

= (F−1𝐴1,1 (U, 𝑘)F − E(U, 𝑘)1)−1F−1 [𝔡(𝑘)]

=
∑
𝑦∈Z2

(
e𝑖𝑘 ·𝑦𝔭1 (𝑦) + e𝑖

𝑘
2 ·𝑦𝔭2 (𝑦)

)
(F−1𝐴1,1(U, 𝑘)F − E(U, 𝑘)1)−1𝔢𝑦 . (134)

By Equation (133), it suffices to estimate the exponential decay of this particular function. This is done
by using the celebrated Combes-Thomas estimates, which correspond here to Theorem A.13. To this
end, several quantities, one of them being related to the spectral gap 𝔤(U, 𝑘) (124), have to be controlled
and, as in Section A.6, we use the notation (A.22), that is,

Δ (𝜆;𝑇) � min{|𝜆 − 𝑎 | : 𝑎 ∈ 𝜎(𝑇)} (135)

for the distance between a complex number 𝜆 ∈ C and the spectrum 𝜎(𝑇) of an operator 𝑇 ∈ B(ℓ2(Z2)),
as well as (A.20), which, in the present case, refers to the quantity

S(𝑇, 𝜇) � sup
𝑥∈Z2

∑
𝑦∈Z2

(
e𝜇 |𝑥−𝑦 | − 1

)��〈𝔢𝑥 , 𝑇𝔢𝑦〉�� ∈ [0,∞] (136)

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


Forum of Mathematics, Sigma 55

for any𝑇 ∈ B(ℓ2(Z2)) and 𝜇 ∈ R+0 . We do it in three steps: The first one controls the spectral gap 𝔤(U, 𝑘)
(124) and a quantity like (135) for 𝜆 = E(U, 𝑘), while the second step is an analysis of quantities like
(136). These two steps allow us to apply, in the last step, Theorem A.13 in order to get the desired result.

Step 1: Observe from Equation (124) and Proposition 4.19 that we can find 𝛼 > 0 such that, for all
𝑘 ∈ T2 and U ∈ R+0 ,

0 < 4𝜖 (e𝛼 − 1) < inf
U∈R+0

min
𝑘∈T2

𝔤(U, 𝑘) ≤ 𝔤(U, 𝑘) � min𝜎ess(𝐴(U, 𝑘)) − E(U, 𝑘).

Using now Proposition 4.2 and the fact that

min𝜎ess (𝐴1,1(U, 𝑘)) = min𝜎(𝐴1,1 (U, 𝑘)),

for all 𝑘 ∈ T2 and U ∈ R+0 , we deduce from the last inequalities that

0 < 4𝜖 (e𝛼 − 1) < inf
U∈R+0

min
𝑘∈T2

𝔤(U, 𝑘) ≤ Δ
(
E(U, 𝑘); 𝐴1,1 (U, 𝑘)

)
= min𝜎(𝐴1,1 (U, 𝑘)) − E(U, 𝑘)

see also Equation (135). Since F is a unitary transformation, 𝐴1,1 (U, 𝑘) and F∗𝐴1,1(U, 𝑘)F have the
same spectrum, and it follows that

0 < 4𝜖 (e𝛼 − 1) < inf
U∈R+0

min
𝑘∈T2

𝔤(U, 𝑘) ≤ Δ
(
E(U, 𝑘);F∗𝐴1,1(U, 𝑘)F

)
(137)

for all 𝑘 ∈ T2 and U ∈ R+0 .

Step 2: By Equations (5) and (31), one easily checks that

𝔢̂𝑦 (𝑝) �
∑
𝑥∈Z2

e𝑖 𝑝 ·𝑥𝔢𝑦 (𝑥) = e𝑖 𝑝 ·𝑦 , 𝑝 ∈ T2, 𝑦 ∈ Z2,

while, for any fixed 𝑘 ∈ T2, the real-valued functions 𝔣(𝑘), defined by (33) and (35) on the torus T2, can
be rewritten as

𝔣(𝑘)(𝑝) � 𝜖{4 − cos(𝑝 + 𝑘) − cos(𝑝)} = 4𝜖 − 𝜖

2

∑
𝑧∈Z2 , |𝑧 |=1

(
e𝑖 (𝑝+𝑘) ·𝑧 + e𝑖 𝑝 ·𝑧

)
, 𝑝 ∈ T2.

Therefore, since 𝑀𝔣 (𝑘) stands for the multiplication operator by 𝔣(𝑘) ∈ 𝐶 (T2), for every 𝑝, 𝑘 ∈ T2 and
𝑦 ∈ Z2,

𝑀𝔣 (𝑘)𝔢̂𝑦 (𝑝) = 4e𝑖 𝑝 ·𝑦𝜖 − 𝜖

2

∑
𝑧∈Z2 , |𝑧 |=1

(
e𝑖𝑘 ·𝑧 + 1

)
e𝑖 𝑝 · (𝑦+𝑧) = 4𝜖𝔢̂𝑦 (𝑝) −

𝜖

2

∑
𝑧∈Z2 , |𝑧 |=1

(
e𝑖𝑘 ·𝑧 + 1

)
𝔢̂𝑦+𝑧 (𝑝),

which, by (37)–(38), in turn implies that

F∗𝐴1,1 (U, 𝑘)F𝔢𝑦 = F∗
��𝑀𝔣 (𝑘)𝔢̂𝑦 + U𝑃0𝔢̂𝑦 +
∑
𝑧∈Z2

u(𝑧)𝑃𝑧𝔢̂𝑦

��

= F∗ (𝑀𝔣 (𝑘)𝔢̂𝑦 +
(
U𝛿𝑦,0 + u(𝑦)

)
𝔢̂𝑦

)
= 4𝜖𝔢𝑦 −

𝜖

2

∑
𝑧∈Z2 , |𝑧 |=1

(
e𝑖𝑘 ·𝑧 + 1

)
𝔢𝑦+𝑧 +

(
U𝛿𝑦,0 + u(𝑦)

)
𝔢𝑦 ,
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keeping in mind that 𝑃𝑥 is the orthogonal projection onto the one-dimensional subspace C𝔢̂𝑥 ⊆ 𝐿2 (T2).
Recall that F∗ = F−1, the Fourier transform being unitary. Thus, since 𝛼 > 0, for each 𝑥 ∈ Z2, we
obtain that∑

𝑦∈Z2

���e𝛼 |𝑥−𝑦 | − 1
�����〈𝔢𝑥 ,F∗𝐴1,1(U, 𝑘)F𝔢𝑦

〉�� = 𝜖

2
(e𝛼 − 1)

∑
𝑦∈Z2 , |𝑥−𝑦 |=1

���e𝑖𝑘 · (𝑥−𝑦) + 1
��� ≤ 4𝜖 (e𝛼 − 1).

Hence, taking the supremum over all 𝑥 ∈ Z2 in this equation and using the notation given by (136) as
well as (137), we arrive at

S
(
F∗𝐴1,1(U, 𝑘)F , 𝛼

)
≤ 4𝜖 (e𝛼 − 1) < inf

U∈R+0
min
𝑘∈T2

𝔤(U, 𝑘) ≤ Δ
(
E(U, 𝑘);F∗𝐴1,1 (U, 𝑘)F

)
(138)

for any fixed 𝑘 ∈ T2 and U ∈ R+0 .

Step 3: Thanks to (138), we are now in a position to apply Theorem A.13 for 𝐻 = F∗𝐴1,1 (U, 𝑘)F and
𝜇 = 𝛼 to obtain that, for any 𝑥, 𝑦 ∈ Z2,���〈𝔢𝑥 , (F∗𝐴1,1(U, 𝑘)F−E(U, 𝑘)1

)−1𝔢𝑦
〉���

≤ e−𝛼 |𝑥−𝑦 |

Δ
(
E(U, 𝑘);F∗𝐴1,1 (U, 𝑘)F

)
− S

(
F∗𝐴1,1(U, 𝑘)F , 𝛼

)
≤ e−𝛼 |𝑥−𝑦 |

infU∈R+0 min𝑘∈T2 𝔤(U, 𝑘) − 4𝜖 (e𝛼 − 1) .

Combined with Equations (133)–(134) and the triangle inequality as well as the reverse one |𝑥 − 𝑦 | ≥
|𝑥 | − |𝑦 |, we then arrive at��𝜓U,𝑘 (𝑥)

�� = ��〈𝔢𝑥 , 𝜓U,𝑘
〉��

≤ |𝜐̂(𝑘) |
∑
𝑦∈Z2

(|𝔭1 (𝑦) | + |𝔭2 (𝑦) |)
����〈𝔢𝑥 , (F−1𝐴1,1 (U, 𝑘)F − E(U, 𝑘)1

)−1
𝔢𝑦

〉����
≤ |𝜐̂(𝑘) |

infU∈R+0 min𝑘∈T2 𝔤(U, 𝑘) − 4𝜖 (e𝛼 − 1)
∑
𝑦∈Z2

(|𝔭1 (𝑦) | + |𝔭2 (𝑦) |)e−𝛼 |𝑥−𝑦 |

≤ |𝜐̂(𝑘) |e−𝛼 |𝑥 |
infU∈R+0 min𝑘∈T2 𝔤(U, 𝑘) − 4𝜖 (e𝛼 − 1)

∑
𝑦∈Z2

(|𝔭1 (𝑦) | + |𝔭2 (𝑦) |)e𝛼 |𝑦 | (139)

for all 𝑥 ∈ Z2, 𝑘 ∈ T2 and U ∈ R+0 . By choosing 𝛼 sufficiently small (more precisely 𝛼 ≤ 𝛼0), we
can assume, without loss of generality, that the above sum is finite; see (12). This completes the proof,
because the Fourier transform 𝜐̂ of 𝜐 is a continuous function on the torus T2, which is compact, and is
consequently bounded. �

4.6. Scattering channels

4.6.1. Unbound pair scattering channel
Recall that ℌ 𝑓 is defined by (53) and H 𝑓 is the operator defined by (54) for any V ∈ R+0 and absolutely
summable function v : Z2 → R+0 .

For any operator Y acting on a Hilbert space Y , 𝑃ac(𝑌 ) denotes the orthogonal projection on the
absolutely continuous space of Y, defined by (49). In order to show the existence of a unbound pair
scattering channel, we need the following technical lemma:
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Lemma 4.21 (Absolute continuous space of fermionic Hamiltonians). For any V ∈ R+0 and every
absolutely summable function v : Z2 → R

+
0 , the orthogonal projection 𝑃ac (H 𝑓 ) on the absolutely

continuous space of H 𝑓 , defined by (49), is equal to 1.

Proof. Take any 𝜓 ∈ ℌ 𝑓 and observe from Corollary A.5 that

𝜓(𝑘) ∈ ran
(
𝑃ac

(
𝑀𝔣 (𝑘)

) )
, 𝑘 ∈ T2,

where 𝑀𝔣 (𝑘) is the fiber Hamiltonian defined as the multiplication operator associated with the continu-
ous function 𝔣(𝑘) ∈ 𝐶 (T2) (see (33)). For any V ∈ R+0 and absolutely summable function v : Z2 → R+0 ,
the operator defined by (55); that is,

𝑅(V, v) �
∑
𝑥∈Z2

v(𝑥)𝑃𝑥 + V𝑃0 ∈ B
(
𝐿2 (T2)

)
is a trace-class operator, where we recall that 𝑃𝑥 is the orthogonal projection on the one-dimensional
subspace C𝔢̂𝑥 ⊆ 𝐿2 (T2). By [40, Theorem 4.4, Chapter X], it follows in this case that

𝜓(𝑘) ∈ ran
(
𝑃ac

(
𝑀𝔣 (𝑘) + 𝑅(V, v)

) )
, 𝑘 ∈ T2.

Let 𝐵 ⊆ R be an arbitrary Borel set with zero Lebesgue measure. By using (54), we deduce that〈
𝜓, 𝜒𝐵

(
𝑀𝔣

)
𝜓
〉
ℌ 𝑓

=

〈
𝜓,

(∫ ⊕

T2
𝜒𝐵

(
𝑀𝔣 (𝑘) + 𝑅(V, v)

)
𝜈(d𝑘)

)
𝜓

〉
ℌ 𝑓

=
∫
T2

〈
𝜓(𝑘), 𝜒𝐵

(
𝑀𝔣 (𝑘) + 𝑅(V, v)

)
𝜓(𝑘)

〉
𝐿2(T2) 𝜈(d𝑘) = 0.

For the first equality, note that we apply Theorem A.3 (iii). �

The following results imply that the dynamic generated by the Hamiltonian H (i.e., included the ex-
change interaction and extended Hubbard repulsions) asymptotically far in the past or future approaches
the purely fermionic dynamics for two unbound fermions. This is, of course, physically expected, since
all interaction strengths get weak as the distance between the fermions increases. This is a consequence
of the next assertions.

To shorten the notation, for any V ∈ R+0 and every absolutely summable function v : Z2 → R+0 , we
define the Hamiltonian

𝐻 (1) ≡ 𝐻 (1) (V, v) �
∫ ⊕

T2
𝐻 (1) (𝑘) ⊕ 𝐴2,2(𝑘)𝜈(d𝑘) ∈ B

(
𝐿2 (T2,H)

)
with

𝐻 (1) (𝑘) � 𝑀𝔣 (𝑘) + 𝑅(V, v) ∈ B(H), 𝑘 ∈ T2. (140)

Here, 𝑀𝔣 (𝑘) , 𝑅(V, v) and 𝐴2,2 (𝑘) are respectively the multiplication operator associated with the
continuous function 𝔣(𝑘) ∈ 𝐶 (T2) (see (33)), the trace-class operator (55) and the operator defined on
C by (41). We start with the unbounded pair scattering channel in each fiber:

Lemma 4.22 (Fiberwise unbound pair (scattering) channel). For any V ∈ R+0 , every absolutely
summable function v : Z2 → R+0 and all 𝑘 ∈ T2, the wave operators

𝑊±
(
𝐴(𝑘), 𝐻 (1) (𝑘) ⊕ 𝐴2,2 (𝑘)

)
= 𝑠 − lim

𝑡→±∞
e𝑖𝑡 𝐴(𝑘)e−𝑖𝑡𝐻

(1) (𝑘) ⊕𝐴2,2 (𝑘) ,
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as defined by Equation (51), exist and are complete with

ran
(
𝑊±

(
𝐴(𝑘), 𝐻 (1) (𝑘) ⊕ 𝐴2,2(𝑘)

))
= ran

(
𝑃ac

(
𝐻 (1) (𝑘) ⊕ 𝐴2,2(𝑘)

))
.

Proof. Note that 𝑃ac (H 𝑓 ) = 1, thanks to Lemma 4.21. By (51), it justifies the strong limit given in the
lemma. As we discuss in the proof of Proposition 4.2, for any 𝑘 ∈ T2, the operator 𝐴(𝑘) is the sum
of 𝑀𝔣 (𝑘) ⊕ 𝐴2,2(𝑘) and a compact operator T. In fact, as the function u : Z2 → R (defining the fiber
Hamiltonian 𝐴(𝑘)) is absolutely summable (see (7)), the operator difference T is even trace-class. As
explained in Lemma 4.21, 𝑅(V, v) is also a trace-class operator, because v : Z2 → R+0 is absolutely
summable, again by assumption. By using the Kato-Rosenblum theorem (41, Theorem XI.8), it thus
follows that the wave operators

𝑊±
(
𝐴(𝑘), 𝐻 (1) (𝑘) ⊕ 𝐴2,2(𝑘)

)
= 𝑊± (

𝐴(𝑘),
(
𝑀𝔣 (𝑘) + 𝑅(V, v)

)
⊕ 𝐴2,2 (𝑘)

)
exist and are complete for every 𝑘 ∈ T2. �

We are now in a position to prove Theorem 3.11. Recall that 𝔘 : ℌ 𝑓 → 𝐿2 (
T

2,H
)

is the operator
defined by (56), while 𝐴2,2(𝑘) and 𝐻 (1) (𝑘) are respectively defined by (41) and (140). The definition
of wave operators 𝑊± are given by Equations 50–51.

Theorem 4.23 (Unbound pair (scattering) channel). For any V ∈ R+0 and every absolutely summable
function v : Z2 → R+0 ,

𝑊± (
U𝐻U∗,H 𝑓 ;𝔘

)
=

(∫ ⊕

T2
𝑊±

(
𝐴(𝑘), 𝐻 (1) (𝑘) ⊕ 𝐴2,2(𝑘)

)
𝜈(d𝑘)

)
𝔘

with

ran
(
𝑊± (
U𝐻U∗,H 𝑓 ;𝔘

) )
=

∫ ⊕

T2
𝐿2

(
T

2
)
⊕ {0} 𝜈(d𝑘).

Proof. For almost every 𝑘 ∈ T2 and every 𝜓 ∈ ℌ 𝑓 ,(
𝐻 (1)𝔘𝜓

)
(𝑘) = 𝐻 (1) (𝑘) ⊕ 𝐴2,2(𝑘)(𝔘𝜓) (𝑘) = (𝐻 (1) (𝑘)𝜓(𝑘), 0) =

(
𝔘H 𝑓 𝜓

)
(𝑘).

In other words, 𝔘 is an intertwining operator for H 𝑓 and 𝐻 (1) , and hence, for their respective complex
exponential:

𝔘e−𝑖𝑡H 𝑓 = e−𝑖𝑡𝐻
(1)
𝔘, 𝑡 ∈ R. (141)

We also observe that, for any 𝑧 ∈ C and any Borel set 𝐵 ⊆ R containing 𝔟(𝑘) ∈ R (see (32)),〈
𝑧, 𝜒𝐵

(
𝐴2,2(𝑘)

)
𝑧
〉
C
= |𝑧 |2𝜒𝐵 (𝔟(𝑘)) ≠ 0

even if the Lebesgue measure of B is zero. This last observation, together with Remark 3.10 and
Lemma 4.21, yields

ran
(
𝑃ac

(
𝐻 (1) (𝑘) ⊕ 𝐴2,2 (𝑘)

))
= 𝐿2

(
T

2
)
⊕ {0}, 𝑘 ∈ T2. (142)

In particular, ∫ ⊕

T2
𝑃ac

(
𝐻 (1) (𝑘) ⊕ 𝐴2,2 (𝑘)

)
𝔘 = 𝔘. (143)
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We can then apply Proposition A.6 together with Lemmata 4.21, 4.22, Theorem A.3 and Equations (141)–
(143) to arrive at

𝑊± (
U𝐻U∗, 𝑀𝔣;𝔘

)
� 𝑠 − lim

𝑡→∓∞
e𝑖𝑡U𝐻U

∗
𝔘e−𝑖𝑡H 𝑓 𝑃ac

(
H 𝑓

)
= 𝑠 − lim

𝑡→∓∞
e𝑖𝑡U𝐻U

∗
𝔘e−𝑖𝑡H 𝑓

= 𝑠 − lim
𝑡→∓∞

e𝑖𝑡U𝐻U
∗
e−𝑖𝑡𝐻

(1)
𝔘

= 𝑠 − lim
𝑡→∓∞

(∫ ⊕

T2
e𝑖𝑡 𝐴(𝑘) 𝜈(d𝑘)

) (∫ ⊕

T2
e−𝑖𝑡 (𝐻 (1) (𝑘) ⊕ 𝐴2,2 (𝑘))𝜈(d𝑘)

)
𝔘

= 𝑠 − lim
𝑡→∓∞

(∫ ⊕

T2
e𝑖𝑡 𝐴(𝑘)e−𝑖𝑡 (𝐻

(1) (𝑘) ⊕ 𝐴2,2 (𝑘))𝑃ac

(
𝐻 (1) (𝑘) ⊕ 𝐴2,2(𝑘)

)
𝜈(d𝑘)

)
𝔘

=

(∫ ⊕

T2
𝑊±

(
𝐴(𝑘), 𝐻 (1) (𝑘) ⊕ 𝐴2,2 (𝑘)

)
𝜈(d𝑘)

)
𝔘.

Note that Lemma 4.22 combined with (142) implies that

ran
(
𝑊±

(
𝐴(𝑘), 𝐻 (1) (𝑘) ⊕ 𝐴2,2(𝑘)

))
= 𝐿2

(
T

2
)
⊕ {0}.

In particular,

ran
(
𝑊± (
U𝐻U∗,H 𝑓 ;𝔘

) )
=

∫ ⊕

T2
𝐿2

(
T

2
)
⊕ {0} 𝜈(d𝑘). �

Observe that Lemma A.1 allows one to write

e𝑖𝑡𝑋e𝑖 (𝑠−𝑡) (𝑋+𝑌 )e−𝑖𝑠𝑋 , 𝑠, 𝑡 ∈ R

as a Dyson series for all bounded operators 𝑋,𝑌 . This can be applied to 𝑋 = 𝐻 (1) and 𝑌 = U𝐻U∗ − 𝑋 ,
or in each fiber 𝑘 ∈ T2 to 𝑋 = 𝐻 (1) (𝑘) ⊕ 𝐴2,2 (𝑘) and 𝑌 = 𝐴(𝑘) − 𝑋 . When U = V ∈ R+0 and
v = u : Z2 → R+0 in 𝐻 (1) , this result is particularly advantageous because the operator family (𝑌𝑡 )𝑡 ∈R
appearing in Lemma A.1 can be represented in a relatively simple way in this situation:

Lemma 4.24 (Finite-time scattering and wave operators). For U ∈ R+0 and all 𝑠, 𝑡 ∈ R,

e𝑖𝑡𝐻
(1) (U,u)e𝑖 (𝑠−𝑡)U𝐻U

∗
e−𝑖𝑠𝐻

(1) (U,u)

=
∫ ⊕

T2

(
cos�

(
𝐵1,2 (𝑘)𝐵2,1 (𝑘); 𝑠, 𝑡

)
−𝑖 sin�

(
𝐵1,2(𝑘)𝐵2,1 (𝑘); 𝑠, 𝑡

)
−𝑖 sin�

(
𝐵2,1 (𝑘)𝐵1,2 (𝑘); 𝑠, 𝑡

)
cos�

(
𝐵2,1 (𝑘)𝐵1,2 (𝑘); 𝑠, 𝑡

) )
𝜈(d𝑘),

where 𝐵1,2 (𝑘) and 𝐵2,1 (𝑘) are the operator families defined by (60) for any 𝑘 ∈ T2, while cos� and
sin� are respectively defined by (61) and (62).

Proof. Let 𝐻 (1) ≡ 𝐻 (1) (U, u). We infer from Lemma A.1 applied to 𝑋 = 𝐻 (1) and 𝑌 = U𝐻U∗ − 𝑋 that

e𝑖𝑡𝐻
(1)

e𝑖 (𝑠−𝑡)U𝐻U
∗
e−𝑖𝑠𝐻

(1)
= 𝑉𝑡 ,𝑠 � 1 +

∞∑
𝑛=1
(−𝑖)𝑛

∫ 𝑡

𝑠
d𝜏1 · · ·

∫ 𝜏𝑛−1

𝑠
d𝜏𝑛𝐵 (𝜏1) · · · 𝐵 (𝜏𝑛) ,
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with (𝐵 (𝑡) )𝑡 ∈R ⊆ B(𝐿2 (T2,H)) being the norm-continuous family defined by

𝐵 (𝑡) = e𝑖𝑡𝐻
(1)

(
U𝐻U∗ − 𝐻 (1)

)
e−𝑖𝑡𝐻

(1)

=
∫ ⊕

T2

(
e𝑖𝑡 𝐴1,1 (U,𝑘) 0

0 e𝑖𝑡 𝐴2,2 (𝑘)

) (
0 𝐴1,2(𝑘)

𝐴2,1(𝑘) 0

) (
e−𝑖𝑡 𝐴1,1 (U,𝑘) 0

0 e−𝑖𝑡 𝐴2,2 (𝑘)

)
𝜈(d𝑘)

=
∫ ⊕

T2


��
0 𝐵 (𝑡)1,2 (𝑘)

𝐵 (𝑡)2,1 (𝑘) 0

��𝜈(d𝑘),

the operators 𝐵 (𝑡)2,1 (𝑘) and 𝐵 (𝑡)1,2 (𝑘) being defined by (60) for any 𝑡 ∈ R and 𝑘 ∈ T2. Then, one combines ex-
plicit computations together with Proposition A.6 and A.7 to arrive at the assertion. Notice that the above
integrals are Riemann ones, (𝐵 (𝑡) )𝑡 ∈R being a continuous family in the Banach space B(𝐿2 (T2,H)). �

4.6.2. Bound pair scattering channel
We start by studying the wave operator (50) with respect to the operators 𝑋 = U𝐻U∗ and 𝑌 = 𝑀E(U, ·)
(66), the identification operator J being 𝔓U (65) for any fixed Hubbard coupling constant U ∈ R+0 .

Proposition 4.25 (Wave operators in the bound pair channel). Let ℎ𝑏 ∈ [0, 1/2] and U ∈ R+0 . Then,
U𝐻U∗𝔓U = 𝔓U𝑀E(U, ·) , and for every bounded continuous function 𝑓 ∈ 𝐶𝑏 (R),

𝑓 (U𝐻U∗)𝔓U = 𝔓U

∫ ⊕

T2
𝑓 (E(U, 𝑘))𝜈(d𝑘).

Proof. Using Proposition 2.1 and Theorem 4.8, we note that, for any 𝜑 ∈ 𝐿2 (T2) and almost every
𝑘 ∈ T2,

(U𝐻U∗𝔓U𝜑)(𝑘) = 𝐴(𝑘) (𝔓U𝜑)(𝑘) = E(U, 𝑘)𝜑(𝑘)‖Ψ(U, 𝑘)‖−1Ψ(U, 𝑘) =
(
𝔓U𝑀E(U, ·)𝜑

)
(𝑘)

(i.e.,U𝐻U∗𝔓U = 𝔓U𝑀E(U, ·) ), keeping in mind Equations (65) and (66). We then obtain the last assertion
by using the Stone-Weierstrass theorem and the spectral theorem. �

We now study the (dressed) bound pair channel of lowest energy in the hard-core limit. This is a
consequence of the following assertion:

Proposition 4.26 (Bound pair channel in the hard-core limit). Fix ℎ𝑏 ∈ [0, 1/2]. Then,

𝑠 − lim
U→∞

𝔓(U) = 𝔓∞, (144)

and for every bounded continuous function 𝑓 ∈ 𝐶𝑏 (R),

𝑠 − lim
U→∞

𝑓 (U𝐻U∗)𝔓U = 𝔓∞

∫ ⊕

T2
𝑓 (E(∞, 𝑘))𝜈(d𝑘).

Proof. Fix 𝜑 ∈ 𝐿2 (T2). For any U ∈ R+0 and almost every 𝑘 ∈ T2, one has that

‖𝔓U𝜑(𝑘) −𝔓∞𝜑(𝑘)‖ ≤ 2‖Ψ(∞, 𝑘)‖−1‖Ψ(U, 𝑘) − Ψ(∞, 𝑘)‖ |𝜑(𝑘) |.

Thus, by Lebesgue’s dominated convergence theorem, we arrive at

lim
U→∞

‖𝔓U𝜑(𝑘) −𝔓∞𝜑‖2
𝐿2(T2 ,H) = lim

U→∞

∫
T2
‖𝔓U𝜑(𝑘) −𝔓∞𝜑(𝑘)‖2 𝜈(d𝑘) = 0.
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Take now a bounded continuous function 𝑓 ∈ 𝐶𝑏 (R). In particular, there exists 𝐿 ∈ R+ such that

sup
U∈R+0

sup
𝑘∈T2

| 𝑓 (E(U, 𝑘)) | ≤ 𝐿.

By Theorem 4.15 (i) and continuity of the function f, one has that

lim
U→∞

𝑓 (E(U, 𝑘)) = 𝑓 (E(∞, 𝑘)), 𝑘 ∈ T2.

Moreover,

T
2 " 𝑘 ↦−→ 𝑓 (E(U, 𝑘)) ∈ L(C) (= B(C))

is a composition of continuous functions and is in particular strongly measurable. Using Proposition
A.6 (or Lebesgue’s dominated convergence theorem), we arrive at the limit

𝑠 − lim
U→∞

∫ ⊕

T2
𝑓 (E(U, 𝑘))𝜈(d𝑘) =

∫ ⊕

T2
𝑓 (E(∞, 𝑘))𝜈(d𝑘). (145)

By using Equations (144), (145), Proposition 4.25, Theorem A.3 (iii) and the fact that ‖𝔓(U)‖op = 1
for all U ∈ R+0 , we find that

𝑠 − lim
U→∞

𝑓 (U𝐻U∗)𝔓U = 𝑠 − lim
U→∞

𝔓U 𝑓
(
𝑀E(U, ·)

)
= 𝑠 − lim

U→∞
𝔓U

∫ ⊕

T2
𝑓 (E(U, 𝑘))𝜈(d𝑘)

= 𝔓∞

∫ ⊕

T2
𝑓 (E(∞, 𝑘))𝜈(d𝑘). �

A. Appendix

A.1. Toward a microscopic theory for cuprate superconductivity

Superconductivity was discovered in 1911 through the study of the resistance of solid mercury at
very low temperatures, which was found to disappear below the critical temperature 𝑇𝑐 = 4.2 K. This
phenomenon was subsequently observed in several other materials, such as lead (in this case, 𝑇𝑐 = 7 K).
The first microscopic explanation of this unexpected, but very interesting physical behavior was given
in 1957 by J. Bardeen, L. Cooper and J. R. Schrieffer with what is now known as the BCS theory. They
were awarded the Nobel Prize in Physics in 1972. Their theory explained all the superconductors known
at the time, named today ‘conventional’ superconductors. For more details, see [51, Chapter 10].

These superconductors not only have zero resistivity (below some critical current value), but also repel
magnetic fields. This is the Meissner effect (or Meissner-Ochsenfeld effect). See, for example, the popular
images showing a superconducting piece levitating above a magnet. However, when the magnetic field
exceeds a critical value, superconductivity can be broken and the Meissner effect disappears abruptly.
This is referred to as type I superconductivity, while type II superconductors manisfests the appearance
of vortices beyond a first critical magnetic field and the disappearance of any Meissner effect beyond a
second critical field. The BCS theory refers to conventional superconductors but applies for both type I
and II superconductors.

Superconductors are characterized not only by the critical temperature but also their superconducting
coherence length, which quantifies the characteristic exponent that describes variations in the density
of the superconducting component. It is often several hundred nanometers for conventional supercon-
ductors. More precisely, from (51, Chapter 10, Table 5), we have the following coherence lengths 𝜉 and
critical temperatures 𝑇𝑐 for the following conventional superconductors:
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𝜉 in nm 𝑇𝑐 in K Type
Tin (Sn) 230 3.72 I
Aluminium (Al) 1600 1.2 I
Lead (Pb) 83 7.19 I
Cadmium (Cd) 760 0.52 I
Niobium (Nb) 38 9.26 II

(A.1)

Note that the superconducting coherence length of a Niobium superconductor is much smaller than
others, which is consistent with the type-II property, which requires shorter coherence lengths compared
to type I superconductors.

In 1986, there was a major breakthrough in physics with the discovery of a new class of supercon-
ductors by G. Bednorz and K. A. Müller [16]. They were awarded the Nobel Prize in Physics in 1987.
Physically, these materials are antiferromagnetic and insulating at low temperatures, but as with semi-
conductors, one dopes them with impurities that provide extra charge carriers and break the perfect
Mott insulator phase, which is characterized by an integer number of charge carriers on each lattice
site. As doping increases, the antiferromagnetic phase turns into a superconducting phase. This was the
discovery of high-𝑇𝑐 superconductors in ceramics materials (i.e., cuprates) for critical temperatures 𝑇𝑐
that today range in the interval [39, 164] K (approximately).

These superconductors are nonconventional, and the BCS theory fails to explain their properties.
Indeed, while the conventional superconductivity results from an effective attraction between fermions
(electrons or holes, depending on the charge carriers in each material) via phonons (i.e., lattice exci-
tations), it soon became apparent that this kind of explanation could not work for cuprates, and the
question of the mediator that could produce such an attraction has remained an open problem ever since.
In fact, even if a large amount of numerical and experimental data is available, there is no pairing mech-
anism firmly established (through, for instance, antiferromagnetic spin fluctuations, phonons, etc.). See,
for example, [13, Section 7.6]. The debate is strongly polarized [54] between researchers using a purely
electronic/magnetic microscopic mechanism and those using electron-phonon mechanisms.

This is undoubtedly one of the most important questions in condensed matter physics, even if current
research seems to have shown less interest in this fundamental issue in recent years. Quoting the Nobel
Prize winner Müller in 2007 [17]: “. . .It is a remarkable fact that in these 20 years since the discovery
of high temperature superconductivity no other class of materials has been found which exhibits this
property above the boiling point of liquid nitrogen. With a view to finding another class, it would be
rewarding to understand why these exceptional properties occur, which per se are regarded as among
the important unsolved problems in present day physics.”

Our theoretical approach differs from all others and stems from a microscopic model – first proposed
in 1985 by Ranninger-Robaszkiewicz [55] (see also [56, 57] or [13, Section 7.4.3]) and independently
by Ionov [58] – which, before our works, was never investigated in the presence of strong Coulomb
repulsions.

The cuprates are a class of compounds containing copper (Cu) atoms in an anion, and cuprate super-
conductors are oxide-based cuprates with two-dimensional CuO2 layers made of Cu++ (cf. ‘cuprate’)
and O−− (cf. ‘oxide’) ions, which generally possess the symmetries of the square, at least for the im-
portant family of tetragonal cuprates such as La2−𝑥Sr𝑥CuO4 (LaSr 214) and La2−𝑥Ba𝑥CuO4. See, for
example, [31, Section 9.1.2], [12, Section 2.3] and [14, Section 6.3.1].

As stressed in [15, Part VII], the very strong Jahn-Teller (JT) effect associated with copper ions (Cu++)
and its consequences for polaron formation are largely neglected in much of the physics literature, even
though it was the JT effect that led to the discovery of superconductivity in cuprates [16]. See also [17, 18,
19]. For nonexperts, let us explain that the JT effect (or JT distortion) is a spontaneous symmetry breaking
of molecules and ions that occurs via a geometrical distortion that suppresses the spatial degeneracy
of the electronic ground state and lowers the overall energy of the system. See [15]. In this context,
it can produce JT n-polarons. Polarons, bipolarons or more generally, n-polarons, 𝑛 ∈ N, are charge
carriers that are self-trapped inside a strong and local lattice deformation that surrounds them. They are
quasi-particle formed from fermions ‘dressed with phonons’. For example, a bipolaron involves two

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


Forum of Mathematics, Sigma 63

fermions dressed with phonons. A JT polaron is a polaron for which the local lattice deformation is
associated with the (geometrical) JT distortion. The existence of JT (bi)polarons in cuprates is attested
in numerous experiments on cuprate superconductors [59, 17, 18, 19], and we have the following
experimental facts:
◦ Superconducting transport in cuprates occurs in two-dimensional CuO2 layers and only on oxygen

atoms – a fact well established experimentally from 1987 by Bianconi and others [60, 61, 62, 63, 65,
64, 66] – while bipolarons are related to the strong JT effect of copper ions.

◦ Because of the presence of strong antiferromagnetic correlations of copper-oxides, experimentally
proven even outside the antiferromagnetic phase (see, for example, [68, 67] and (13, Chapter 3)), it can
be concluded that JT bipolarons have zero total spin and that other types of polaronic configuration
are disadvantaged. This is, for instance, stressed in [17, Sect. 5.2].

◦ There is also an experimental evidence of the short lifetime of polarons in cuprates [69], decaying
into fermions (pairs of holes or electrons). Expressed in terms of a length ℓ, one sees a lifetime
comparable to the lattice spacing [69]. Remarkably, near the critical temperature, ℓ is actually close
to the coherence length in cuprate superconductors.
The most straightforward approach would therefore be to consider the JT bipolarons as the charge

carriers of cuprate superconductors. That is exactly what Alexandrov and coauthors have done in
their bipolaron theory, based on light bipolarons [70] as charge carriers. Quoting [71, p. 4]: “cuprate
bipolarons are relatively light because they are intersite rather than on-site pairs due to the strong on-
site repulsion, and because mainly c-axis polarized optical phonons are responsible for the in-plane
mass renormalization.” See, for instance, [71, 72, 73, 74] and references therein. However, this approach
does not seem consistent with superconducting transport in cuprates occurring on oxygen ions in CuO2
layers:

In fact, a priori, (strong and local) lattice deformations (or JT distortions) attached to n-polarons
should barely move, and this is not in accordance with the known mobility of superconducting charge
carriers. This is confirmed in experiments:
◦ Experimental evidence (still controversial [52]) of a large mass (approx. 700 electronic masses) of

polarons in cuprates [37].
◦ Experimental evidence (apparently not controversial) of the small mass (approx. 3–4 electronic

masses) of superconducting carriers in cuprates [75, Fig. 2.].
For more recent discussions on the (im)mobility of (bi)polarons in cuprates, we recommend, for

instance, [34, 35, 36].
We bypass this problem by using the exchange interaction (10), while seeing the fermions as the true

charge carriers. In other words, we use exchange interactions like (10) to define a simplified model for
cuprates, taking into account a large mass of bipolarons but non-polaronic superconducting carriers.
Since the lifetime of bipolarons in terms of a length ℓ is comparable to the coherence length in cuprate
superconductors near the critical temperature, this suggests a strong exchange interaction between the
(Bose-like, zero-spin) bipolaronic state and fermion pairs (electrons or holes).

As shown in Figure A1, bipolarons are formed around an oxygen ion (x) binding an adjacent pair of
copper ions, because of the JT effect associated with Cu++. It leads to JT ‘intersite bipolarons’. That is
why we consider an annihilation (creation) operator 𝑐𝑥 (𝑐∗𝑥) of a fermion pair of zero total spin at 𝑥 ∈ Z2

as defined by Equation (11). One simple example of such an operator is

𝑐𝑥 �
∑

𝑧∈Z2 , |𝑧 | ≤1

(
𝑎𝑥+𝑧,↑𝑎𝑥,↓ + 𝑎𝑥+𝑧,↑𝑎𝑥−𝑧,↓

)
(A.2)

with 𝑎𝑧,𝑠 (𝑎∗𝑧,𝑠) being the annihilation (creation) operator of a single fermion of spin 𝑠 ∈ {↑, ↓} at lattice
site 𝑧 ∈ Z2. In this example, we set 𝔭2 (2𝑧) = 𝔭1 (𝑧) = 1 when |𝑧 | ≤ 1 and 𝔭1 (𝑧) = 𝔭2 (𝑧) = 0 otherwise.
Of course, one can also assign other weights to each space configuration of fermion pairs in Equation
(11), as soon as at least one intersite configuration has a nonzero weight.
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Figure A1. CuO2 layer.

There is also an undeniable experimental evidence of strong on-site Coulomb repulsions (cf. the
Mott insulator phase at zero doping), which forces us to consider terms like

U
∑
𝑥∈Z2

𝑛𝑥,↑𝑛𝑥,↓, U � 1,

in Equation (6), where we recall that 𝑛𝑥,𝑠 � 𝑎∗𝑥,𝑠𝑎𝑥,𝑠 is the number operator of fermions at 𝑥 ∈ Z2 and
spin 𝑠 ∈ {↑, ↓}. It justifies our strong interest in studying in this paper the hard-core limit U →∞. See,
for example, Theorem 3.5 and, more generally, related results that hold for U ∈ [0,∞].

The exchange interaction as formally given by (10); that is,

2−1/2
∑
𝑥,𝑦∈Z2

𝜐(𝑥 − 𝑦)𝑐∗𝑦 𝑏𝑥

with 𝑏𝑥 (𝑏∗𝑥) being the annihilation (creation) operator of a JT (intersite) bipolaron, is inspired by an
interband interaction proposed by Kondo in 1963 for superconducting transition metals. In [55, 58],
only an on-site version (i.e., 𝑐𝑦 = 𝑎𝑦,↑𝑎𝑦,↓) was proposed in 1985. Our version ( A.2) of 𝑐𝑦 captures
the ‘intersite’ character of the bipolarons present in cuprates, and in [21], we specify the form of the
coupling function 𝜐 in (11) based on the presence of large electron-phonon anomalies21 in cuprates at
optimum doping for the following points in the normalized Brillouin zone T2 � [−𝜋, 𝜋)2:

(0,−𝜋), (−𝜋, 0) [76, 77] and (0,±𝜋/2), (±𝜋/2, 0) [77, 78, 79] .

The anomalies at (0,±𝜋/2) and (±𝜋/2, 0) are correctly predicted by the Density Functional Theory
(DFT) involving electrons and phonons [80, Fig. 1 (a)], in contrast to those of (0,−𝜋), (−𝜋, 0). More-
over, when no superconducting phase appears, DFT works very well at all quasi-momenta, including
(0,−𝜋), (−𝜋, 0) [79, Fig. 18 (b)].

The above anomalies at quasi-momenta (0,−𝜋), (−𝜋, 0) in the superconducting phase, which cannot
be reproduced by the DFT, is expected to be a consequence of the existence of polaronic quasiparticles.
Indeed, the DFT used in [80, Fig. 1 (a)] does not take into account the formation of compound particles

21The so-called softening of phonon dispersion and the broadening of phonon lines.
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out of phonons and fermions like polaronic modes. In our theory, they are interpreted as being JT
(intersite) bipolarons which should then interact strongly with charge carriers only at quasi-momenta
(−𝜋, 0) and (0,−𝜋) (at moderate doping). The congruence between the DFT and experimental data
for phonon dispersions at (±𝜋/2, 0) and (0,±𝜋/2) indeed makes the formation of such quasiparticles
unlikely in this region of the (normalized) Brillouin zone T2, and more generally in any other region
relatively far from (−𝜋, 0) and (0,−𝜋). Consequently, the Fourier transform 𝜐̂ of 𝜐 is chosen to take its
maximum absolute value at the points (−𝜋, 0) and (0,−𝜋). This property is fundamental to explaining
the superconductivity of cuprates in our microscopic theory.

There is indeed one very important property of superconducting carriers (pairs) in cuprates that
differs from conventional superconductors, their d -wave symmetry. The (fiber) space of a fermion pair
at constant quasimomentum K is the Hilbert space 𝐿2 (

T
2,C, 𝜈

)
, see Section 2.3. Define by

[𝑅⊥|𝜑〉] (𝑘𝑥 , 𝑘𝑦) � 𝜑(𝑘𝑦 ,−𝑘𝑥), (𝑘𝑥 , 𝑘𝑦) ∈ T2

the unitary operator 𝑅⊥ implementing the 𝜋/2-rotation on 𝐿2 (
T

2,C, 𝜈
)
. Then define the mutually

orthogonal projectors

𝑃𝑠 �
𝑅4
⊥ + 𝑅3

⊥ + 𝑅2
⊥ + 𝑅⊥

4
,

𝑃𝑑 �
𝑅4
⊥ − 𝑅3

⊥ + 𝑅2
⊥ − 𝑅⊥

4
,

𝑃𝑝 �
𝑅4
⊥ − 𝑅2

⊥
2

.

Since 𝑃𝑠 + 𝑃𝑑 + 𝑃𝑝 = 1, any wave function Ψ 𝑓 ∈ 𝐿2 (
T

2,C, 𝜈
)

of a fermion pair can be uniquely
decomposed into orthogonal s-, d- and p-wave components as

Ψ 𝑓 = Ψ (𝑠)
𝑓 + Ψ (𝑑)

𝑓 + Ψ (𝑝)
𝑓 , Ψ (#)

𝑓 � 𝑃#Ψ 𝑓 .

In other words, an arbitrary (fermionic pair) function Ψ 𝑓 can be uniquely decomposed into ‘s-, d- and
p -wave’ components, denoted respectively by Ψ (𝑠)

𝑓 ,Ψ (𝑑)
𝑓 ,Ψ (𝑝)

𝑓 . Observe that

𝑅⊥Ψ
(𝑠)
𝑓 = Ψ (𝑠)

𝑓 , 𝑅⊥Ψ
(𝑑)
𝑓 = −Ψ (𝑑)

𝑓 , 𝑅2
⊥Ψ

(𝑝)
𝑓 = −Ψ (𝑝)

𝑓 . (A.3)

So, each component has a well-defined parity with respect to the group {0, 𝜋/2, 𝜋, 3𝜋/2} of rotations:
The s-wave component Ψ (𝑠)

𝑓 is invariant under these 4 rotations, the d-wave one Ψ (𝑑)
𝑓 is antisymmetric

with respect to the 𝜋/2-rotation and the 𝑝-wave one Ψ (𝑝)
𝑓 is antisymmetric with respect to the 𝜋 -rotation

(reflection over the origin), just like ‘s’ , ‘d’ and ‘p’ atomic orbitals.
In conventional superconductivity, one has s-wave symmetry. For superconducting cuprates, it is

more complex. It is firmly established that fermion pairs in cuprate superconductors have zero total spin
[33], which is believed to lead to s- or d-wave superconductivity only. The 𝑠-wave symmetry is expected
to correspond to fermion pairs on same lattice sites, which should be problematic in the presence of
the strong on-site Coulomb repulsion. Therefore, d-wave superconductivity is anticipated in cuprate
superconductors. This prediction is experimentally confirmed. See [33, 30, 13]. In cuprates, d-wave
pairing is therefore predominant, but experiments (involving bulk properties) still indicate the presence
of a non-negligible s-wave superconducting part; see [17, 59]. This is what our theory demonstrates,
using the fact that the Fourier transform 𝜐̂ of 𝜐 is maximal at the points (−𝜋, 0) and (0,−𝜋), but first
we need to say a few words about the quantitative choice of its parameters. For example, if we take the
hard-core limit U →∞, we get pure d-wave superconductivity, as shown in the first article [22].

In the second paper [21], we study the ground state Ψ(U, 𝑘) � (𝜓̂𝑘 (U),−1) of Theorem 3.1 to give
estimates on key features of cuprate superconductors by using real parameters taken from experiments
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on the prototypical cuprates based on hole-doped cuprates La2CuO4 (e.g., LaSr 214) and YBa2Cu3O7
(YBCO), near optimal doping:

◦ The hopping amplitude 𝜖 of charge carriers (here holes) in (6) is accessible using the lattice spacing
and the effective mass of charge carriers. Both quantities are known for cuprates: The lattice spacing is
a = 0.2672 nm (14, Section 6.3.1) of the oxygen ions and the effective mass of mobile holes𝑚∗ � 4𝑚𝑒
[75, Fig. 2.], where 𝑚𝑒 is the electron mass. This corresponds to 𝜖 = ℏ2/

(
𝑚∗a2) � 0.266 eV.

◦ In the same way, the hopping amplitude 𝜖ℎ𝑏 of JT bipolarons in (8) is accessible using the lattice
spacing and the effective mass of bipolarons. The former is known, and the latter is estimated [37]. It
leads to ℎ𝑏 � 0.00575 � 1. That is, JT bipolarons can barely move, compared to fermions.

◦ The coefficient U in (6) can be fixed by using the first electronic affinity of oxygen – that is, the energy
difference between the O− anion state (one hole added to the O−− anion) and the neutral state (two
holes added to O−−). These values are known with great precision: By [81], U � 1.461 eV. Note that
U𝜖−1 � 5.5, which refers to a strong coupling regime, but it is not the hard-core limit U → ∞ yet,
from the perspective of real physical estimates.

◦ The intersite repulsion represented by the function u : Z2 → R+0 in (6) results from the screening of the
Coulomb repulsion, usually estimated via the Thomas-Fermi screening length 𝝀TF. However, in two
dimensions, the decay of the screened Coulomb repulsion is not exponential but rather polynomial
[82, Eq. (5.41)]. In particular, even if 𝝀TF ≤ a, we consider the Coulomb repulsion for a few
neighboring sites, with, of course, decaying strengths (for 𝑧 ≠ 0). For example, u(𝑧) = 0 only when
|𝑧 | ≥ 𝑟 for some 𝑟 ≤ 2, with u(0) = 0 and u(𝑧) < U.

It remains to fix the exchange strength function 𝜐 : Z2 → R in (10), taking into account the special
choice (A.2) for the annihilation and creation operators of a fermion pair of zero total spin. We already
know that the absolute value of the Fourier transform 𝜐̂ of 𝜐 takes its maximum at the points (−𝜋, 0)
and (0,−𝜋), but its precise amplitude has to be still determined. This is performed indirectly through
a phenomenological relationship with the density of the superconducting charge carriers (also named
superfluid): From recent experimental data [53], for optimum doping, around 90% of the charge carriers
inserted via the doping do not form superfluid. If 𝜓̂𝐾 (U) and −1 are respectively the fermionic and
bosonic parts of the eigenvector Ψ(U, 𝑘) � (𝜓̂𝐾 (U),−1) associated with the eigenvalue E(U, 𝐾) and
𝐾 = (𝜋, 0), (0, 𝜋), then we can interpret

𝜚 =
100%

‖𝜓̂𝐾 (U)‖2
2 + 1

as the proportion of charge carriers forming JT bipolarons. Computing this quantity, we can identify the
unique value 𝜐̂(𝐾) � 0.11 eV making 𝜚 = 90%. Similar to [83, 84], note that we choose 𝑣̂ of the form[

𝛼
(
(𝑘𝑥 − 𝜋)2 + 𝑘2

𝑦

)
+ 1

]−1
(resp.

[
𝛼
(
𝑘2
𝑥 + (𝑘𝑦 − 𝜋)2

)
+ 1

]−1
)

for quasimomenta (𝑘𝑥 , 𝑘𝑦) ∈ T2 near (𝜋, 0) or (0, 𝜋), where 𝛼 > 0 determines the effective mass 𝑚∗∗∗
of (dressed) bound fermion pairs. Conversely, 𝛼 can be recovered from 𝑚∗∗∗.

Using our mathematical results and rigorous numerical computations, we show in [21] that the model
gives the following quantitative estimates in relation with properties of hole-doped cuprates La2CuO4
(LaSr 214 or LSCO) and YBa2Cu3O7 (YBCO):

◦ Pairing symmetry.
– Prediction: 16.5%𝑠-wave, 83.5%𝑑-wave, 0%𝑝-wave. See [21, p. 10 and Corollary 1.1].
– Experimental data: ∼ 20 − 25%𝑠-wave, ∼ 75 − 80%𝑑-wave, ∼ 0%𝑝-wave. Indirect measurement

with rough estimates for the s -wave/d-wave ratio, see [17, 59].
◦ Pseudogap temperature 𝑇∗ (i.e., pair dissociation energy).

– Prediction of the binding energy of (d-wave) pairs: E = 1250 K found for the quasi-momenta
(−𝜋, 0) and (0,−𝜋). See Theorem 3.1 (ii)–(iii) and [21, Fig. 6].
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Figure 5. Normalized density |F−1 [𝜓̂1.461, (0,−𝜋) ] |2 of the dressed bound fermion pair as a function of
the (relative) position space at total quasimomentum (0,−𝜋) for the prototypical parameters. It is a
reproduction of (21, Fig. 5).

– Experimental data:
* Experiments on cuprates demonstrates a pseudogap appears at (−𝜋, 0) and (0,−𝜋). See [30,

Fig. 4] and references therein.
* 𝑇∗ � 100 − 750 K, depending on the doping [85, Fig. 26]. For example, 𝑇∗ � 400 K around

optimal doping for La1.85Sr0.16CuO4 and 𝑇∗ � 200 K for La1.8Sr0.2CuO4. The ratio between
the theoretical bond energy (in K) and the dissociation temperature22 of dressed fermion pairs
should be between E/𝑇∗ and E/𝑇𝑐 . For La1.8Sr0.2CuO4, the coherence length of which perfectly
matches our prediction below, E/𝑇∗ � 6.2 and E/𝑇𝑐 = 34.247, with an average ratio of around 20.

* Binding energy of bipolarons [87, Fig. 2]: 1500 K at zero doping and 500 K at optimal doping
for LaSr 214.

* To compare with, for standard diatomic molecules, the ratio between the bond energy (in K) and
their dissociation temperatures ranges23 from 10 to 40, with an average of around 20.

◦ Superconducting coherence length 𝜉 (i.e., pair radius).
– Prediction: 𝜉𝑎 = 1.6 nm in one direction, 𝜉𝑏 = 2.1 nm in the orthogonal one at quasi-momenta
(−𝜋, 0) and (0,−𝜋). See Figure 5 (in lattice units), reproducing [21, Fig. 5]. It refers approximately
to 6 lattice sites in one direction and 8 lattice sites in the other one. Compare this result with
the exponential localization of the fermionic component F−1 [𝜓̂U,𝑘 ] of the eigenstate given by
Theorem 3.1 (iii).

22How to theoretically determine the dissociation temperature of a dressed fermionic pair is not entirely clear to us. Clearly,
this temperature must be higher than the critical temperature 𝑇𝑐 and lower than the pseudogap temperature 𝑇∗.

23For example, a quick internet search reveals that the dissociation temperatures 𝑇𝑑 (in K) and bond energies E (in K) of ten
common diatomic molecules are as follows: H2 : 𝑇𝑑 = 4000 K,𝐸 = 52438 K,𝐸/𝑇𝑑 � 13; N2 : 𝑇𝑑 = 9500 K,𝐸 = 1.133 0×105 K,
𝐸/𝑇𝑑 � 12; O2 : 𝑇𝑑 = 6000 K, 𝐸 = 59895 K, 𝐸/𝑇𝑑 � 10; F2 : 𝑇𝑑 = 1300 K, 𝐸 = 19003 K, 𝐸/𝑇𝑑 � 14.6; Cl2 : 𝑇𝑑 = 1200 K,
𝐸 = 29226 K, 𝐸/𝑇𝑑 � 24.3; Br2 : 𝑇𝑑 = 800 K, 𝐸 = 23212 K, 𝐸/𝑇𝑑 � 29; I2 : 𝑇𝑑 = 700 K, 𝐸 = 18161 K, 𝐸/𝑇𝑑 � 25.9;
CO : 𝑇𝑑 = 5000 K, 𝐸 = 51356 K, 𝐸/𝑇𝑑 � 10.3; NO : 𝑇𝑑 = 4100 K, 𝐸 = 75891 K, 𝐸/𝑇𝑑 � 18.5; HCl : 𝑇𝑑 = 3000 K,
𝐸 = 1.289 3 × 105 K, 𝐸/𝑇𝑑 � 43.
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◦ – Experimental data:
* 𝜉𝑎𝑏 = 1.6 nm is obtained for an optimally doped YBa2Cu3O6.9 for which 𝑇𝑐 = 95 K. See [89,

above the “Summary and conclusion”].
* 𝜉𝑎𝑏 = 2.1 nm is obtained for La1.8Sr0.2CuO4 for which 𝑇𝑐 = 36.5 K. See [86, Table II].
* 𝜉𝑎𝑏 = 3.8 nm is obtained for an optimally doped La1.85Sr0.16CuO4 for which 𝑇𝑐 = 38 K. See

[89, above the “Summary and conclusion”].
* More generally, 𝜉𝑎𝑏 is in the nanometer range, between 1 nm and 3.8 nm for various other

examples of La2CuO4 and YBa2Cu3O7. See, for example, [14, Table 9.1] and (88, Table 3.2 on
page 60). The coherence length is very small compared to conventional superconductors, for
which it is generally several tens or hundreds of nanometers. See, for example, the table in (A.1).

The pseudo-gap temperature is the temperature below which the Fermi surface of a material exhibits
a partial energy gap, in fact a gap in a particular direction, as in the quasi-momenta (−𝜋, 0) and (0,−𝜋).
Compare with Theorem 3.1 (iii). The 2-fermion 1-boson problem studied here and in [21] cannot a
priori explain the superconducting phase, which is a collective phenomenon, but only the pseudogap
regime which is expected to be related to the formation of fermion pairs (mainly for quasi-momenta
(−𝜋, 0) and (0,−𝜋)).

To conclude, this paper together with [22, 21] contributes a mathematically rigorous microscopic
model for cuprate superconductors that includes Jahn-Teller-type bipolarons with zero spin and local
repulsions. This model captures the following phenomenological aspects of these materials:

◦ d-wave pairing not based on anisotropy.
◦ Low density superconducting superfluid.
◦ Pseudogap temperature.
◦ Very accurate coherence lengths.
◦ Solution to the ‘large bipolaron mass vs. small mass of superconducting carrier pairs’.

In addition, as proven in the Ph.D. thesis [24], in a mean-field-like approximation, the many-body
version of the model considered here also explains another very special feature of cuprate superconduc-
tors – namely, the density waves [23]. We therefore think that the model we present here deserves to be
studied in much more detail, in view of a microscopic theory for cuprate superconductivity.

A.2. The Fock-space formalism

In quantum mechanics, one generally starts with a (one-particle) Hilbert space 𝔥, often realized as a space
𝐿2 (M) of square-integrable, complex-valued functions on a measure space (M, 𝔞). The states of a
quantum system of 𝑛 ∈ N quantum particles are then represented within the n-fold tensor product 𝔥⊗𝑛 of
𝔥. However, identical quantum particles are indistinguishable, meaning that they cannot be differentiated
from one another, not even in principle. In this situation, the states of these indistinguishable quantum
particles are only taken from a subspace of 𝔥⊗𝑛.

Recall meanwhile that all quantum particles possess an intrinsic form of angular momentum known
as spin, characterized by a quantum number 𝔰 ∈ N/2. If 𝔰 is half-integer, then the corresponding particles
are named fermions; otherwise, we have bosons. By the celebrated spin-statistics theorem, fermionic
wave functions are antisymmetric with respect to permutations of particles, whereas the bosonic ones
are symmetric. The states of a system of 𝑛 ∈ N fermions correspond then to vectors in the subspace ∧𝑛𝔥
of totally antisymmetric n-particle wave functions in 𝔥⊗𝑛, while the states of a system of 𝑛 ∈ N bosons
are vectors in the subspace ∨𝑛𝔥𝑛of totally symmetric n-particle wave functions in 𝔥⊗𝑛.

In most many-body quantum systems, the exact number of particles is not known. In quantum
statistical mechanics, physical properties are typically studied in the limit 𝑛→∞ of infinite number of
particles. Quantum field theory deals with situations where the particle number and species vary with
time. The so-called Fock spaces are used to encode both situations. For fermionic systems, the Fock
space is, by definition, the Hilbert space
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𝔉− ≡ 𝔉(𝔥) �
∞⊕
𝑛=0

∧𝑛𝔥, ∧0𝔥 � C, (A.4)

while, for bosonic systems,

𝔉+ ≡ 𝔉(𝔥) �
∞⊕
𝑛=0

∨𝑛𝔥, ∨0𝔥 � C. (A.5)

The respective scalar products are denoted by 〈·, ·〉𝔉± . The two scalar products are the sum over 𝑛 ∈ N
of each canonical scalar product on the sector ∧𝑛𝔥 and ∨𝑛𝔥, respectively. In both cases, we denote the
vacuum state by Ω � (1, 0, . . .).

The Fock space proved very useful, not least because it allows so-called creation and annihilation
operators:

Fermionic case. The annihilation operator 𝑎(𝜑) ∈ B(𝔉−) of a fermion with wave function 𝜑 ∈ 𝔥 is the
(linear) bounded operator uniquely defined by the conditions 𝑎(𝜑)Ω = 0 and

𝑎(𝜑)(𝜓1 ∧ · · · ∧ 𝜓𝑛) �
√
𝑛

𝑛!

∑
𝜋∈Π𝑛

sgn(𝜋)
〈
𝜑, 𝜓𝜋 (1)

〉
𝔥𝜓𝜋 (2) ∧ · · · ∧ 𝜓𝜋 (𝑛) (A.6)

for any 𝑛 ∈ N and 𝜓1, . . . , 𝜓𝑛 ∈ 𝔥, where Π𝑛 is the set of all permutations 𝜋 of n elements and
sgn : Π𝑛 → {−1, 1} denotes the sign of these permutations, while Ω = (1, 0, 0, . . .) is the vacuum state
and 𝜓1∧· · ·∧𝜓𝑛 is the orthogonal projection of 𝜓1⊗ · · · ⊗𝜓𝑛 ∈ 𝔥⊗𝑛 onto the subspace of antisymmetric
n–particle wave functions:

𝜓1 ∧ · · · ∧ 𝜓𝑛 �
1
𝑛!

∑
𝜋∈Π𝑛

sgn(𝜋)𝜓𝜋 (1) ⊗ · · · ⊗ 𝜓𝜋 (𝑛) ∈ ∧𝑛𝔥.

The creation operator of a fermion with wave function 𝜑 ∈ 𝔥 is the adjoint 𝑎∗(𝜑) � 𝑎(𝜑)∗ of 𝑎(𝜑) –
namely, 𝑎∗(𝜑)Ω = 𝜑 and

𝑎∗(𝜑) (𝜓1 ∧ · · · ∧ 𝜓𝑛) =
√
𝑛 + 1 𝜑 ∧ 𝜓1 ∧ · · · ∧ 𝜓𝑛. (A.7)

Such operators are known to satisfy the so-called Canonical Anticommutation Relations (CAR): For all
𝜑1, 𝜑2 ∈ 𝔥,

𝑎(𝜑1)𝑎(𝜑2) + 𝑎(𝜑2)𝑎(𝜑1) = 0, 𝑎(𝜑1)𝑎(𝜑2)∗ + 𝑎(𝜑2)∗𝑎(𝜑1) = 〈𝜑1, 𝜑2〉𝔥1.

See [90, p. 10]. Here, 1 stands for the identity operator on the Fock space 𝔉−.

Bosonic case. The annihilation operator 𝑏(𝜑) of a boson with wave function 𝜑 ∈ 𝔥 is the (linear)
unbounded operator acting on 𝔉+ and uniquely defined by the conditions 𝑏(𝜑)Ω = 0 and

𝑏(𝜑)(𝜓1 ∨ · · · ∨ 𝜓𝑛) �
√
𝑛

𝑛!

∑
𝜋∈Π𝑛

〈
𝜑, 𝜓𝜋 (1)

〉
𝔥𝜓𝜋 (2) ∨ · · · ∨ 𝜓𝜋 (𝑛) (A.8)

for any 𝑛 ∈ N and𝜓1, . . . , 𝜓𝑛 ∈ 𝔥, where𝜓1∨· · ·∨𝜓𝑛 is the orthogonal projection of𝜓1⊗· · ·⊗𝜓𝑛 ∈ 𝔥⊗𝑛

onto the subspace of symmetric n–particle wave functions:

𝜓1 ∨ · · · ∨ 𝜓𝑛 �
1
𝑛!

∑
𝜋∈Π𝑛

𝜓𝜋 (1) ⊗ · · · ⊗ 𝜓𝜋 (𝑛) ∈ ∨𝑛𝔥.

https://doi.org/10.1017/fms.2025.10083 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10083


70 J.-B. Bru, W. de Siqueira Pedra and A. Ramer dos Santos

As in the fermionic case, the creation operator of a boson with wave function 𝜑 ∈ 𝔥 is the adjoint
𝑏∗(𝜑) � 𝑏(𝜑)∗ of 𝑏(𝜑), where 𝑏∗(𝜑)Ω = 𝜑 and

𝑏∗(𝜑) (𝜓1 ∨ · · · ∨ 𝜓𝑛) =
√
𝑛 + 1 𝜑 ∨ 𝜓1 ∨ · · · ∨ 𝜓𝑛. (A.9)

Such operators are known to satisfy the so-called Canonical Commutation Relations (CCR): For all
𝜑1, 𝜑2 ∈ 𝔥,

𝑏(𝜑1)𝑏(𝜑2) − 𝑏(𝜑2)𝑏(𝜑1) = 0, 𝑏(𝜑1)𝑏(𝜑2)∗ − 𝑏(𝜑2)∗𝑏(𝜑1) = 〈𝜑1, 𝜑2〉𝔥1.

See [90, p. 10]. Here, 1 stands again for the identity operator on the Fock space 𝔉+.
The interest of Fock spaces lies in the use of creation and annihilation operators, which not only give

a mathematically rigorous definition for precesses of creation or annihilation of physical particles, but
also possess essential algebraic properties: the CAR and CCR relations given above. Although Fock
spaces and the creation and annihilation operators are not strictly necessary for our proofs, we use them
in this paper because they allow us to define the model in a very intuitive way, which makes its physical
meaning easy to understand once the Fock-space formulation is familiar.

A.3. Non-autonomous evolution equations and scattering theory

This section collects simple results on wave and scattering operators (50)–(52) for bounded Hamilto-
nians, related to their approximation by Dyson series. We start with the following elementary lemma,
resulting from the theory of non-autonomous evolution equations:

Lemma A.1 (Finite-time scattering and wave operators). For any self-adjoint 𝑋,𝑌 ∈ B(X ) acting on a
Hilbert space X and all 𝑠, 𝑡 ∈ R,

e𝑖𝑡𝑋e𝑖 (𝑠−𝑡) (𝑋+𝑌 )e−𝑖𝑠𝑋 = 1 +
∞∑
𝑛=1
(−𝑖)𝑛

∫ 𝑡

𝑠
d𝜏1 · · ·

∫ 𝜏𝑛−1

𝑠
d𝜏𝑛𝑌𝜏1 · · ·𝑌𝜏𝑛 (A.10)

with (𝑌𝑡 )𝑡 ∈R ⊆ B(X ) being the norm-continuous family

𝑌𝑡 � e𝑖𝑡𝑋𝑌e−𝑖𝑡𝑋 , 𝑡 ∈ R. (A.11)

Proof. We compute that, for any 𝑠, 𝑡 ∈ R,

𝜕𝑡

{
e𝑖𝑡𝑋e𝑖 (𝑠−𝑡) (𝑋+𝑌 )e−𝑖𝑠𝑋

}
= −𝑖

(
e𝑖𝑡𝑋𝑌e−𝑖𝑡𝑋

) (
e𝑖𝑡𝑋e𝑖 (𝑠−𝑡) (𝑋+𝑌 )e−𝑖𝑠𝑋

)
as well as

𝜕𝑠

{
e𝑖𝑡𝑋e𝑖 (𝑠−𝑡) (𝑋+𝑌 )e−𝑖𝑠𝑋

}
=

(
e𝑖𝑡𝑋e𝑖 (𝑠−𝑡) (𝑋+𝑌 )e−𝑖𝑠𝑋

) (
𝑖e𝑖𝑠𝑋𝑌e−𝑖𝑠𝑋

)
both in B(X ). In other words, the family

𝑉𝑡 ,𝑠 � e𝑖𝑡𝑋e𝑖 (𝑠−𝑡) (𝑋+𝑌 )e−𝑖𝑠𝑋 , 𝑠, 𝑡 ∈ R, (A.12)

of (uniformly) bounded operators is a norm-continuous two-parameter family of unitary operators
solving the non-autonomous evolution equations

∀𝑠, 𝑡 ∈ R : 𝜕𝑡𝑍𝑡 ,𝑠 = −𝑖𝑌𝑡𝑍𝑡 ,𝑠 , 𝜕𝑠𝑍𝑡 ,𝑠 = 𝑖𝑍𝑡 ,𝑠𝑌𝑠 , 𝑍𝑠,𝑠 = 1, (A.13)

in B(X ), where (𝑌𝑡 )𝑡 ∈R ⊆ B(X ) is the norm-continuous family defined by (A.11). As is well-known,
there is a unique solution to this non-autonomous evolution equation (A.13), which is given by the Dyson
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series (A.10). This series is absolutely summable in B(X ). Notice that the integrals appearing in it are
Riemann integrals, for their arguments are continuous functions taking values in a Banach space. �

Corollary A.2 (Approximation of scattering and wave operators). Let 𝑋,𝑌 ∈ B(X ) be two self-adjoint
operators acting on a Hilbert space X . Assume that the waves operators

𝑊±(𝑋 + 𝑌, 𝑋) � 𝑠 − lim
𝑡→±∞

e𝑖𝑡 (𝑋+𝑌 )e−𝑖𝑡𝑋𝑃ac(𝑋)

exist. Let 𝜀 ∈ R+. Then

i.) For any 𝜑 ∈ ran(𝑃ac(𝑋)), there is 𝑇 > 0 such that

𝑇 < 𝑡 =⇒
##(𝑊+(𝑋 + 𝑌, 𝑋) −𝑉0,𝑡

)
𝜑
##
X ≤ 𝜀,

whereas

𝑡 < −𝑇 =⇒
##(𝑊−(𝑋 + 𝑌, 𝑋) −𝑉0,𝑡

)
𝜑
##
X ≤ 𝜀.

ii.) For any 𝜑, 𝜓 ∈ ran(𝑃ac(𝑋)), there is 𝑇 > 0 such that

〈𝜓, 𝑆(𝑋 + 𝑌, 𝑋)𝜑〉X =
〈
𝜓,𝑊+(𝑋 + 𝑌, 𝑋)∗𝑊−(𝑋 + 𝑌, 𝑋)𝜑

〉
X =

〈
𝜓,𝑉𝑡 ,𝑠𝜑

〉
X +O(𝜀)

uniformly for 𝑠 < −𝑇 < 𝑇 < 𝑡.

Here,

𝑉𝑡 ,𝑠 � 1 +
∞∑
𝑛=1
(−𝑖)𝑛

∫ 𝑡

𝑠
d𝜏1 · · ·

∫ 𝜏𝑛−1

𝑠
d𝜏𝑛𝑌𝜏1 · · ·𝑌𝜏𝑛 ,

the norm-continuous family (𝑌𝑡 )𝑡 ∈R ⊆ B(X ) being defined by (A.11).

Proof. Assertion (i) is a direct consequence of Lemma A.1. Concerning the scattering operator, remark
in particular that, for any 𝑟, 𝑠, 𝑡 ∈ R, 𝑉𝑡 ,𝑠𝑉𝑠,𝑟 = 𝑉𝑡 ,𝑟 and 𝑉∗𝑡 ,𝑠 = 𝑉𝑠,𝑡 . Given 𝜑, 𝜓 ∈ ran(𝑃ac(𝑌 )), we have
that ��〈𝜓, (𝑆(𝑋 + 𝑌, 𝑋) −𝑉𝑡 ,𝑠 )𝜑〉X ��

=
���〈𝜓, (𝑊+(𝑋 + 𝑌, 𝑋)∗𝑊−(𝑋 + 𝑌, 𝑋) −𝑉∗0,𝑡𝑉0,𝑠

)
𝜑
〉
X

���
=

��〈𝜓, (𝑊+(𝑋 + 𝑌, 𝑋) −𝑉0,𝑡
)∗
𝑊−(𝑋 + 𝑌, 𝑋)𝜑

〉
X

+
〈
𝜓,𝑉∗0,𝑡

(
𝑊−(𝑋 + 𝑌, 𝑋) −𝑉0,𝑠

)
𝜑
〉
X

���
≤

##(𝑊+(𝑋 + 𝑌, 𝑋) −𝑉0,𝑡
)
𝜓
##
X ‖𝑊

−(𝑋 + 𝑌, 𝑋)𝜑‖X
+

##(𝑊−(𝑋 + 𝑌, 𝑋) −𝑉0,𝑠
)
𝜑
##
X ‖𝜓‖X .

Assertion (ii) therefore follows from assertion (i). �

A.4. Constant fiber direct integrals

For more details, we refer to [38, Section XIII.16] as well as [45] for the general theory.
Let (X , 𝜇) be any semifinite measure space and Y any separable Hilbert space. The constant fiber

direct integral of Y over X is, by definition, the Hilbert space∫ ⊕

X
Y 𝜇(d𝑥) ≡ 𝐿2 (X ,Y , 𝜇) �

{
𝐹 ∈ YX : ‖𝐹 (·)‖2

Y ∈ 𝐿1 (X , 𝜇)
}
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of equivalence classes of square-integrable Y–valued functions with scalar product24

〈𝜑, 𝜓〉 ≡ 〈𝜑, 𝜓〉𝐿2 (X ,Y ,𝜇) �
∫
X
〈𝜑(𝑥), 𝜓(𝑥)〉Y 𝜇(d𝑥), 𝜑, 𝜓 ∈ 𝐿2 (X ,Y , 𝜇),

and the pointwise vector space operations

(𝜑 + 𝜓)(𝑥) = 𝜑(𝑥) + 𝜓(𝑥), (𝛼𝜑)(𝑥) = 𝛼𝜑(𝑥), 𝛼 ∈ C, 𝜑, 𝜓 ∈ 𝐿2 (X ,Y , 𝜇).

If Y = C, then we use the shorter notation 𝐿2 (X , 𝜇) ≡ 𝐿2 (X ,C, 𝜇).
A mapping 𝐴 : X → B(Y) is strongly measurable whenever the mapping 𝑥 ↦→ 〈𝜑, 𝐴(𝑥)𝜓〉Y from

X to C is measurable for all 𝜑, 𝜓 ∈ Y . Let 𝐿∞(X ,Y , 𝜇) be the 𝐶∗-algebra of equivalence classes of
strongly measurable functions 𝐴 : X → B(Y) with

‖𝐴‖∞ � ess− sup
{
‖𝐴(𝑥)‖op : 𝑥 ∈ X

}
< ∞. (A.14)

Here, ess− sup denotes the essential supremum and ‖·‖op stands for the operator norm. If Y = C, then
we use the shorter notation 𝐿∞(X , 𝜇) ≡ 𝐿∞(X ,C, 𝜇).

A bounded operator D on 𝐿2 (X ,Y , 𝜇) is decomposable if there is 𝐴 ∈ 𝐿∞(X ,Y , 𝜇) such that, for
all 𝜓 ∈ 𝐿2 (X ,Y , 𝜇),

(𝐷𝜓) (𝑥) = 𝐴(𝑥)𝜓(𝑥), 𝑥 ∈ X (𝜇-a.e.).

If such an A exists, then it is unique. Moreover, the mapping 𝐴 ↦→ 𝐷 defined by the above equality is a
∗-homomorphism which is isometric. See [38, Theorem XIII.83]. The operators 𝐴(𝑥) ∈ B(Y), 𝑥 ∈ X ,
are called the fibers of D and we write

𝐷 =
∫ ⊕

X
𝐴(𝑥) 𝜇(d𝑥).

For the reader’s convenience, we now give three essential properties of decomposable operators used
in the paper, referring to [38, Theorem XIII.85 (a), (c) and (d)]. Note that 𝜎(𝑋) denotes below the
spectrum of any operator X acting on some Hilbert space, as is usual.

Theorem A.3 (Properties of decomposable operators). Let D be a decomposable operator on
𝐿2 (X ,Y , 𝜇), the fibers 𝐴(𝑥) ∈ B(Y), 𝑥 ∈ X , of which are all self-adjoint. Then

i.) D is self-adjoint.
ii.) 𝜆 ∈ 𝜎(𝐷) iff, for all 𝜀 ∈ R+,

𝜇({𝑥 ∈ X : 𝜎(𝐴(𝑥)) ∩ (𝜆 − 𝜀, 𝜆 + 𝜀) ≠ ∅}) > 0.

iii.) For any bounded Borel function f on R, 𝑓 (𝐷) is decomposable and has fibers 𝑓 (𝐴(𝑥)), 𝑥 ∈ X ;
that is,

𝑓 (𝐷) =
∫ ⊕

X
𝑓 (𝐴(𝑥)) 𝜇(d𝑥) .

The above theorem can be used to elegantly prove the following well-known results about multiplica-
tion operators 𝑀𝜑 by any bounded measurable function 𝜑 ∈ 𝐿∞(X , 𝜇), defined for any𝜓 ∈ 𝐿2 (X , 𝜇), by(

𝑀𝜑𝜓
)
(𝑥) = 𝜑(𝑥)𝜓(𝑥), 𝑥 ∈ X (𝜇 -a.e.).

24The scalar product is well-defined, by the polarization identity and the Cauchy-Schwarz inequality. See for instance (46,
Section 7.3.2).
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Corollary A.4 (Properties of multiplication operators). The multiplication operators 𝑀𝜑 by
𝜑 ∈ 𝐿∞(X , 𝜇) have the following properties:

i.) For any bounded Borel function f on R, one has 𝑓 (𝑀𝜑) = 𝑀 𝑓 ◦𝜑 .
ii.) 𝜎(𝑀𝜑) is the essential range ess − im(𝜑) of 𝜑.

iii.) Its operator norm ‖𝑀𝜑 ‖op is equal to ‖𝜑‖∞.

Proof. Noting that 𝑀𝜑 is a decomposable operator on

𝐿2 (X , 𝜇) =
∫ ⊕

X
C 𝜇(d𝑥)

with 𝜑(𝑥), seen as a linear operator onC, being its fibers, we can use Theorem A.3 (iii) to get the equality

𝑓 (𝑀𝜑) =
∫ ⊕

X
𝑓 (𝜑(𝑥)) 𝜇(d𝑥) = 𝑀 𝑓 ◦𝜑 .

This proves Assertion (i). For the second one, we use that 𝜎(𝜑(𝑥)) = {𝜑(𝑥)} for all 𝑥 ∈ X and thus
infer from Theorem A.3 (ii) that 𝜆 ∈ 𝜎(𝑀 𝑓 ) iff, for all 𝜀 ∈ R+,

𝜇({𝑥 ∈ X : |𝜆 − 𝜑(𝑥) | < 𝜀}) > 0.

In other words, one gets Assertion (ii). Assertion (iii) is an elementary application of [38, Theorem
XIII.83]. �

Below, we study the special case of multiplication operators on 𝐿2 (T2, 𝜈), where T2 � [−𝜋, 𝜋)2 is
the torus and 𝜈 is the normalized Haar measure (23) on T2. It is again an elementary result, used in the
paper. To this end, we recall that, for any self-adjoint operator Y acting on a Hilbert space Y , 𝑃ac (𝑌 ) is
the orthogonal projection onto the absolutely continuous space of Y, which is defined by ( 49).

Corollary A.5 (Absolutely continuous space of multiplication operators on 𝐿2 (T2, 𝜈)). Let 𝜑 : T2 → R
be a bounded Borel function with the property that, for every Borel set Ω ⊆ R with zero Lebesgue
measure, one has 𝜈(𝜑−1(Ω)) = 0. Then, 𝑃ac

(
𝑀𝜑

)
= 1; that is,

ran
(
𝑃ac

(
𝑀𝜑

) )
= 𝐿2 (T2, 𝜈).

Proof. Given any Borel set Ω ⊆ R, we deduce from Corollary A.4 (i) that

𝜒Ω
(
𝑀𝜑

)
= 𝑀𝜒Ω◦𝜑 = 𝑀𝜒𝜑−1 (Ω)

,

which in turn implies that, for any 𝜓 ∈ 𝐿2 (T2, 𝜈),〈
𝜓, 𝜒Ω

(
𝑀𝜑

)
𝜓
〉
=

∫
𝜑−1 (Ω)

|𝜓(𝑘) |2𝜈(d𝑘).

Hence, if Ω ⊆ R has zero Lebesgue measure, then under the conditions of the corollary,〈
𝜓, 𝜒Ω

(
𝑀𝜑

)
𝜓
〉
= 0.

In other words, for any 𝜓 ∈ 𝐿2 (T2, 𝜈), 〈𝜓, 𝜒( ·) (𝑀𝜑)𝜓〉 is absolutely continuous with respect to the
Lebesgue measure. �

We next provide a result on the strong operator convergence and a version of Fubini’s theorem for
(constant fiber) direct integrals, which are also used in our proofs.
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Proposition A.6 (Strong operator convergence). Let (𝐴𝑛)𝑛∈N be any bounded sequence in
𝐿∞(X ,Y , 𝜇). If

𝑠 − lim
𝑛→∞

𝐴𝑛 (𝑥) = 𝐴(𝑥), 𝑥 ∈ X ,

then 𝐴 ∈ 𝐿∞(X ,Y , 𝜇) and

𝑠 − lim
𝑛→∞

∫ ⊕

X
𝐴𝑛 (𝑥) 𝜇(d𝑥) =

∫ ⊕

X
𝐴(𝑥) 𝜇(d𝑥).

Proof. The assertion is well-known, but for the reader’s convenience, we give here its complete proof.
For any 𝜑, 𝜓 ∈ Y , it follows from the fact that 𝐴𝑛 (𝑥)𝜓 → 𝐴(𝑥)𝜓 everywhere and the continuity of
〈𝜑, ·〉 ∈ Y∗ that

lim
𝑛→∞

〈𝜑, 𝐴𝑛 (𝑥)𝜓〉Y = 〈𝜑, 𝐴(𝑥)𝜓〉Y , 𝑥 ∈ X .

This shows that A is strongly measurable, because the pointwise limit of a sequence of real-valued
measurable functions is measurable as well. Now, let

𝑀 � sup
𝑛∈N

‖𝐴𝑛‖∞ < ∞.

For 𝜇-a.e. 𝑥 ∈ X and any 𝜑 ∈ Y ,

‖𝐴𝑛 (𝑥)𝜑‖Y ≤ ‖𝐴𝑛 (𝑥)‖op‖𝜑‖Y ≤ 𝑀 ‖𝜑‖Y , 𝑛 ∈ N. (A.15)

Taking the limit 𝑛→∞, one thus gets that, for 𝜇-a.e. 𝑥 ∈ X and any 𝜑 ∈ Y ,

‖𝐴(𝑥)𝜑‖Y = lim
𝑛→∞

‖𝐴𝑛 (𝑥)𝜑‖Y ≤ 𝑀 ‖𝜑‖Y . (A.16)

Hence, M is an essential upper bound for {‖𝐴(𝑥)‖op}𝑥∈X and, therefore, 𝐴 ∈ 𝐿∞(X ,Y , 𝜇). Finally,
given any element 𝜑 ∈ 𝐿2 (X ,Y , 𝜇), by (A.15)–(A.16) and the triangle inequality, we have the estimate

‖𝐴𝑛 (𝑥)𝜑(𝑥) − 𝐴(𝑥)𝜑(𝑥)‖Y ≤ 2𝑀 ‖𝜑(𝑥)‖Y , 𝑥 ∈ X (𝜇-a.e.).

Since 𝐴𝑛 (𝑥)𝜑(𝑥) → 𝐴(𝑥)𝜑(𝑥) for all 𝑥 ∈ X , we can therefore apply Lebesgue’s dominated convergence
theorem to conclude that, for any 𝜑 ∈ 𝐿2 (X ,Y , 𝜇),

lim
𝑛→∞

####(∫ ⊕

X
𝐴𝑛 (𝑥) 𝜇(d𝑥)

)
𝜑 −

(∫ ⊕

X
𝐴(𝑥) 𝜇(d𝑥)

)
𝜑

####
𝐿2 (X ,Y ,𝜇)

= 0. �

Before proving a version of Fubini’s theorem for constant fiber direct integrals, we fix some
terminology concerning the Riemann integral: A partition of the interval [𝑎, 𝑏] is a finite set
𝑃 = {𝑡0 < 𝑡1 < · · · < 𝑡𝑘 } where 𝑡0 = 𝑎 and 𝑡𝑘 = 𝑏. The norm of the partition P is the num-
ber |𝑃 | = max1≤𝑖≤𝑘 (𝑡𝑖 − 𝑡𝑖−1). A tagged partition is a pair 𝑃∗ = (𝑃, 𝜉) where P is a partition and
𝜉 = (𝜉1, . . . , 𝜉𝑘 ) is such that 𝑡𝑖−1 ≤ 𝜉𝑖 < 𝑡𝑖 for every 𝑖 = 1, . . . , 𝑘 . If 𝑃∗ is a tagged partition of [𝑎, 𝑏],
the corresponding Riemann sum for 𝑓 : [𝑎, 𝑏] → Z , with Z being a vector space, is

Σ( 𝑓 ; 𝑃∗) =
𝑘∑
𝑖=1
(𝑡𝑖 − 𝑡𝑖−1) 𝑓 (𝜉𝑖) ∈ Z .

Proposition A.7 (Fubini’s Theorem for direct integrals). Let 𝐴( ·) : [𝑎, 𝑏] → 𝐿∞(X ,Y , 𝜇) be a contin-
uous function. Then
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i.) The mapping

X " 𝑥 ↦→
∫ 𝑏

𝑎
𝐴𝑡 (𝑥) d𝑡 ∈ B(Y)

is an element of 𝐿∞(X ,Y , 𝜇);
ii.) The mapping

[𝑎, 𝑏] " 𝑡 ↦→
∫ ⊕

X
𝐴𝑡 (𝑥) 𝜇(d𝑥) ∈ B

(∫ ⊕

X
Y 𝜇(d𝑥)

)
is continuous and ∫ 𝑏

𝑎

∫ ⊕

X
𝐴𝑡 (𝑥) 𝜇(d𝑥)d𝑡 =

∫ ⊕

X

∫ 𝑏

𝑎
𝐴𝑡 (𝑥) d𝑡 𝜇(d𝑥).

Proof. If 𝐴( ·) : [𝑎, 𝑏] → 𝐿∞(X ,Y , 𝜇) is continuous, then so is 𝐴( ·) (𝑥) : [𝑎, 𝑏] → B(Y) for 𝑥 ∈ X 𝜇-
a.e. For simplicity, we may assume that 𝐴( ·) (𝑥) is even continuous for all 𝑥 ∈ X . If fact, as this is true
for 𝑥 ∈ X 𝜇-a.e., for some Borel set X0 ⊆ X with 𝜇(X0) = 0, 1[𝑥 ∉ X0]𝐴( ·) (𝑥) is continuous for all
𝑥 ∈ X . Note that, for all 𝑡 ∈ [𝑎, 𝑏], the functions 𝐴𝑡 and 1[(·) ∉ X0]𝐴𝑡 are strongly mensurable and
represent the same element (i.e., equivalence class of strongly mensurable functions X → B(Y)) of
𝐿∞(X ,Y , 𝜇). Moreover, as [𝑎, 𝑏] is compact, {𝐴𝑡 }𝑡 ∈[𝑎,𝑏] is bounded as a subset of the metric space
(𝐿∞(X ,Y , 𝜇), ‖ · ‖∞). Thus,####∫ 𝑏

𝑎
𝐴𝑡 (𝑥) d𝑡

####
op
≤

∫ 𝑏

𝑎
‖𝐴𝑡 (𝑥)‖op d𝑡 ≤

∫ 𝑏

𝑎
‖𝐴𝑡 ‖∞ d𝑡

≤ (𝑏 − 𝑎) sup
𝑡 ∈[𝑎,𝑏]

‖𝐴𝑡 ‖∞ < ∞ (𝜇-a.e.).

Let 𝑃∗𝑛 be a tagged partition whose norm of the corresponding partition 𝑃𝑛 goes to zero as 𝑛 → ∞.
Then for every 𝜑, 𝜓 ∈ Y and 𝑥 ∈ X 𝜇-a.e,〈

𝜑,

(∫ 𝑏

𝑎
𝐴𝑡 (𝑥) d𝑡

)
𝜓

〉
Y
=

∫ 𝑏

𝑎
〈𝜑, 𝐴𝑡 (𝑥)𝜓〉Y d𝑡 = lim

𝑛→∞
Σ
(
〈𝜓, 𝐴( ·) (𝑥)𝜑〉Y ; 𝑃∗𝑛

)
.

For the first equality, we used the fact that the Riemann integral commutes with bounded linear transfor-
mations. Observing that for 𝑥 ∈ X 𝜇-a.e., the right-hand side is a pointwise limit of a linear combination
of continuous (hence Riemann integrable) functions, this proves assertion (i).

Note that the mapping defined in Assertion (ii) is a composition of two continuous functions –
namely, 𝐴( ·) : [𝑎, 𝑏] → 𝐿∞(X ,Y , 𝜇) and

𝐿∞(X ,Y , 𝜇) " 𝐵 ↦→
∫ ⊕

X
𝐵(𝑥) 𝜇(d𝑥) ∈ B

(∫ ⊕

X
Y 𝜇(d𝑥)

)
.

Given any 𝜑, 𝜓 ∈ 𝐿2 (X ,Y , 𝜇), observe that the function

X × [𝑎, 𝑏] " (𝑥, 𝑡) ↦→ 𝑓 (𝑥, 𝑡) = 〈𝜑(𝑥), 𝐴𝑡 (𝑥)𝜓(𝑥)〉Y ∈ C

is measurable when 𝐴( ·) (𝑥) ∈ 𝐶 ([𝑎, 𝑏],B(Y)) for any 𝑥 ∈ X .
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To prove this, for each 𝑛 ∈ N, define the function 𝑓𝑛 : X × [𝑎, 𝑏] → C by 𝑓𝑛 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑠𝑡 ), with
𝑠𝑡 = min{𝑚𝑡 ,𝑛/𝑛, 𝑏} and 𝑚𝑡 ,𝑛 ∈ Z being such that (𝑚𝑡 ,𝑛 − 1)/𝑛 ≤ 𝑡 < 𝑚𝑡 ,𝑛/𝑛. In particular,

𝑓𝑛 (𝑥, 𝑡) =
∑

𝑚∈Z:𝑚≥𝑛𝑎
1
[
𝑡 ∈ 𝑛−1 [𝑚 − 1, 𝑚)

]
𝑓 (𝑥,min{𝑚/𝑛, 𝑏}).

Characteristic functions are measurable on [𝑎, 𝑏], and 𝑓 (·, 𝑡) is also measurable onX for every 𝑡 ∈ [𝑎, 𝑏].
So, 𝑓𝑛 is measurable for all 𝑛 ∈ N. It is easy to check that 𝑚𝑡 ,𝑛/𝑛→ 𝑡 for any 𝑡 ∈ [𝑎, 𝑏], which in turn
implies that 𝑓𝑛 pointwise converges to f, as 𝑛 → ∞, because of the continuity of 𝑓 (𝑥, ·) for any fixed
𝑥 ∈ X . The last continuity property is a direct consequence of the assumption 𝐴( ·) (𝑥) ∈ 𝐶 ([𝑎, 𝑏],B(Y))
together with elementary estimates using the Cauchy-Schwarz inequality.

As a consequence, f is measurable on X × [𝑎, 𝑏]. Note also that∫
X

∫ 𝑏

𝑎
| 𝑓 (𝑥, 𝑡) | d𝑡 𝜇(d𝑥) ≤ (𝑏 − 𝑎) | |𝜑| |2

𝐿2 (X ,Y ,𝜇) | |𝜓 | |
2
𝐿2 (X ,Y ,𝜇) sup

𝑡 ∈[𝑎,𝑏]
‖𝐴𝑡 ‖∞ < ∞,

thanks to the Cauchy-Schwarz inequality for both spaces Y and 𝐿2 (X ,Y , 𝜇). We can then apply (usual)
Fubini’s theorem to obtain〈

𝜑,

(∫ ⊕

X

∫ 𝑏

𝑎
𝐴𝑡 (𝑥) d𝑡 𝜇(d𝑥)

)
𝜓

〉
𝐿2 (X ,Y ,𝜇)

=
∫
X

〈
𝜑(𝑥),

(∫ 𝑏

𝑎
𝐴𝑡 (𝑦) d𝑡

)
𝜓(𝑥)

〉
Y
𝜇(d𝑥) =

=
∫
X

∫ 𝑏

𝑎
〈𝜑(𝑥), 𝐴𝑡 (𝑥)𝜓(𝑥)〉Y d𝑡 𝜇(d𝑥) =

∫ 𝑏

𝑎

∫
X
〈𝜑(𝑥), 𝐴𝑡 (𝑥)𝜓(𝑥)〉Y 𝜇(d𝑥) d𝑡 =

=
∫ 𝑏

𝑎

〈
𝜑,

(∫ ⊕

X
𝐴𝑡 (𝑥) 𝜇(d𝑥)

)
𝜓

〉
Y

d𝑡 =
〈
𝜑,

(∫ 𝑏

𝑎

∫ ⊕

X
𝐴𝑡 (𝑥) 𝜇(d𝑥) d𝑡

)
𝜓

〉
𝐿2 (X ,Y ,𝜇)

.

As 𝜑, 𝜓 are arbitrary, we arrive at Assertion (ii). �

We conclude this short account on constant fiber direct integrals by providing a representation of
them as tensor products:

Proposition A.8 (Direct integrals and tensor products). There is a unique unitary transformation
V : 𝐿2 (X , 𝜇) ⊗ Y → 𝐿2 (X ,Y , 𝜇) such that

V( 𝑓 ⊗ 𝜑)(𝑥) = 𝑓 (𝑥)𝜑, 𝑓 ∈ 𝐿2 (X , 𝜇), 𝜑 ∈ Y , 𝑥 ∈ X (𝜇-a.e.).

Proof. See [45, Proposition 5.2]. �

A.5. The Birman-Schwinger principle

There are various versions of the Birman-Schwinger principle in the literature, and we give below the
precise version that is used in our proofs. To this end, we first define Birman-Schwinger operators: For
any operator T acting on some complex vector space, recall that 𝜌(𝑇) ⊆ C denotes its resolvent set.
Given two (bounded) operators 𝑇,𝑉 acting on some complex vector space and any 𝜆 ∈ 𝜌(𝑇), we define
the associated Birman-Schwinger operator to be

B(𝜆) ≡ B(𝜆,𝑇,𝑉) � 𝑉 (𝑇 − 𝜆1)−1𝑉. (A.17)

It turns out that, for all 𝜆 ∈ 𝜌(𝑇), 1 is an eigenvalue of B(𝜆) iff 𝜆 is an eigenvalue of 𝑇 −𝑉2:
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Lemma A.9 (The eigenvalues of Birman-Schwinger operators). Let 𝑇,𝑉 be two bounded operators
acting on a vector space X over C. Assume that 𝜆 ∈ 𝜌(𝑇) is an eigenvalue of 𝑇 − 𝑉2 and let {𝜑𝑖}𝑖∈𝐼
denote any basis of the corresponding eigenspace. Define 𝛾𝑖 � 𝑉𝜑𝑖 , 𝑖 ∈ 𝐼. Then,

𝜑𝑖 = (𝑇 − 𝜆1)−1𝑉2𝜑𝑖 = (𝑇 − 𝜆1)−1𝑉𝛾𝑖 , 𝑖 ∈ 𝐼, (A.18)

and {𝛾𝑖}𝑖∈𝐼 is a linearly independent set satisfying

B(𝜆)𝛾𝑖 = 𝑉𝜑𝑖 = 𝛾𝑖 , 𝑖 ∈ 𝐼 . (A.19)

Proof. Suppose that 𝜆 is an eigenvalue of 𝑇 − 𝑉2 and let {𝜑𝑖}𝑖∈𝐼 be a basis of the corresponding
eigenspace. Set 𝛾𝑖 = 𝑉𝜑𝑖 , 𝑖 ∈ 𝐼. Then

(𝑇 − 𝜆1)𝜑𝑖 =
(
𝑇 −𝑉2

)
𝜑𝑖 +

(
𝑉2 − 𝜆1

)
𝜑𝑖 = 𝜆𝜑𝑖 +

(
𝑉2 − 𝜆1

)
𝜑𝑖 = 𝑉

2𝜑𝑖

so that (A.18) holds true. By (A.18), 𝛾𝑖 is a nonzero vector for any 𝑖 ∈ 𝐼 since 𝜑𝑖 ≠ 0 for all 𝑖 ∈ 𝐼.
As linear transformations map a linearly dependent set onto a linearly dependent set, we conclude that
{𝛾𝑖}𝑖∈𝐼 is a linearly independent set. Equation (A.19) is a direct consequence of (A.17) and (A.18). �

This last lemma is explicitly used in the proof of Corollary 4.6 and allows meanwhile to prove the
Birman-Schwinger principle for eigenvalues. Below, for any operator T, we use the notation E𝑇 (𝜆) for
the eigenspace associated with the eigenvalue 𝜆 of T.

Theorem A.10 (Birman-Schwinger). Let𝑇,𝑉 be two linear operators acting on a vector spaceX overC
and 𝜆 ∈ 𝜌(𝑇). Then 𝜆 is an eigenvalue of 𝑇 −𝑉2 iff 1 is an eigenvalue of B(𝜆) ≡ B(𝜆, 𝑇,𝑉). In this case,

dim E𝑇 −𝑉 2 (𝜆) = dim EB(𝜆) (1) ;

that is, the corresponding (geometric) multiplicities of eigenvalues are equal to each other.

Proof. If 𝜆 is an eigenvalue of 𝑇 − 𝑉2, then Lemma A.9 implies that 1 is an eigenvalue of B(𝜆) and
the eigenspace of B(𝜆) corresponding to the eigenvalue 1 has at least dimension |𝐼 | = dim E𝑇 −𝑉 2 (𝜆).
Conversely, if {𝜙 𝑗 } 𝑗∈𝐽 is a basis of the eigenspace of B(𝜆) corresponding to the eigenvalue 1, then we set

𝜓 𝑗 � (𝑇 − 𝜆1)−1𝑉𝜙 𝑗 , 𝑗 ∈ 𝐽.

Then, by (A.17),

𝜙 𝑗 = B(𝜆)𝜙 𝑗 = 𝑉𝜓 𝑗 , 𝑗 ∈ 𝐽,

which implies that {𝜓 𝑗 } 𝑗∈𝐽 is a linearly independent set. Thus,(
𝑇 −𝑉2

)
𝜓 𝑗 = (𝑇 − 𝜆1)𝜓 𝑗 +

(
𝜆1 −𝑉2

)
𝜓 𝑗 = 𝑉𝜙 𝑗 +

(
𝜆1 −𝑉2

)
𝜓 𝑗 = 𝜆𝜓 𝑗 , 𝑗 ∈ 𝐽,

and hence, the eigenspace of 𝑇 − 𝑉2 corresponding to the eigenvalue 𝜆 has at least dimension
|𝐽 | = dim EB(𝜆) (1). �

A.6. Combes-Thomas estimates

We give here a version of the celebrated Combes-Thomas estimates, first proven in 1973 [47], which is
well-adapted to our framework. For the nonexpert reader, we provide also its proof, which is relatively
short and easy to understand in the particular situation we are interested in.
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Fix a countable set Λ and a pseudometric 𝑑 : Λ×Λ→ R+0 on Λ. Let ℓ2(Λ) be the (separable) Hilbert
space of square summable functions Λ→ C. Similar to (5), its canonical orthonormal basis is defined by

𝔢𝑥 (𝑦) � 𝛿𝑥,𝑦 , 𝑥, 𝑦 ∈ Λ,

where 𝛿𝔦,𝔧 is the Kronecker delta. For simplicity, as before, we use the shorter notation 〈·, ·〉 ≡ 〈·, ·〉ℓ2 (Λ)
for its scalar product.

For each bounded operator 𝑇 ∈ B(ℓ2(Λ)) and positive parameter 𝜇 ∈ R+0 , we define the quantity

S(𝑇, 𝜇) � sup
𝑥∈Λ

∑
𝑦∈Λ

(
e𝜇𝑑 (𝑥,𝑦) − 1

)��〈𝔢𝑥 , 𝑇𝔢𝑦〉�� ∈ [0,∞] . (A.20)

Compare with (136). By definition of a pseudometric, the function d is symmetric with respect to the
variables x and y. The same occurs with the factor |〈𝔢𝑥 , 𝑇𝔢𝑦〉|, provided that T is self-adjoint. Thus, in
this particular case, S(𝑇, 𝜇) is equal to

S(𝑇, 𝜇) = sup
𝑦∈Λ

∑
𝑥∈Λ

(
e𝜇𝑑 (𝑥,𝑦) − 1

)��〈𝔢𝑥 , 𝑇𝔢𝑦〉�� ∈ [0,∞] . (A.21)

The lemma below provides an estimate of the operator norm of T in terms of quantities that are
similar to (A.20) and (A.21):

Lemma A.11. For any bounded operator 𝑇 ∈ B(ℓ2(Λ)),

‖𝑇 ‖2
op ≤

(
sup
𝑦∈Λ

∑
𝑥∈Λ

��〈𝔢𝑥 , 𝑇𝔢𝑦〉��)
��sup
𝑥∈Λ

∑
𝑦∈Λ

��〈𝔢𝑥 , 𝑇𝔢𝑦〉��
��.
Proof. Assume without loss of generality that the above bound is finite for 𝑇 ∈ B(ℓ2(Λ)). Otherwise
the assertion would be trivial. Let 𝑉 : ℓ1(Λ) + ℓ∞(Λ) → ℓ1(Λ) + ℓ∞(Λ) be the mapping defined by

𝑉 𝑓 (𝑥) �
∑
𝑦∈Λ

𝑓 (𝑦)
〈
𝔢𝑥 , 𝑇𝔢𝑦

〉
, 𝑥 ∈ Λ, 𝑓 ∈ ℓ1(Λ) + ℓ∞(Λ).

If 𝑓 ∈ ℓ∞(Λ), then 𝑉 𝑓 ∈ ℓ∞(Λ) because

sup
𝑥∈Λ

∑
𝑦∈Λ
| 𝑓 (𝑦) |

��〈𝔢𝑥 , 𝑇𝔢𝑦〉�� ≤ ‖ 𝑓 ‖∞ sup
𝑥∈Λ

∑
𝑦∈Λ

��〈𝔢𝑥 , 𝑇𝔢𝑦〉�� < ∞,
while, for any 𝑓 ∈ ℓ1(Λ), we also have 𝑉 𝑓 ∈ ℓ1(Λ) because

‖𝑉 𝑓 ‖ℓ1 (Λ)

∑
𝑥∈Λ

|𝑉 𝑓 (𝑥) | ≤
∑
𝑥,𝑦∈Λ

| 𝑓 (𝑦) |
��〈𝔢𝑥 , 𝑇𝔢𝑦〉�� ≤ ‖ 𝑓 ‖ℓ1 (Λ) sup

𝑦∈Λ

∑
𝑥∈Λ

��〈𝔢𝑥 , 𝑇𝔢𝑦〉�� < ∞,
using Tonelli’s theorem. It then follows from the Riesz-Thorin theorem [94, Theorem 6.27] that, for any
function 𝑓 ∈ ℓ2(Λ) ⊆ ℓ1(Λ) + ℓ∞(Λ),

‖𝑉 𝑓 ‖2
ℓ2 (Λ) ≤ ‖ 𝑓 ‖

2
ℓ2 (Λ)

(
sup
𝑦∈Λ

∑
𝑥∈Λ

��〈𝔢𝑥 , 𝑇𝔢𝑦〉��)
��sup
𝑥∈Λ

∑
𝑦∈Λ

��〈𝔢𝑥 , 𝑇𝔢𝑦〉��
��.
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Finally, we observe that

(𝑇 𝑓 )(𝑥) = 〈𝔢𝑥 , 𝑇 𝑓 〉 =
∑
𝑦∈Λ

𝑓 (𝑦)
〈
𝔢𝑥 , 𝑇𝔢𝑦

〉
= (𝑉 𝑓 )(𝑥)

whenever 𝑥 ∈ Λ and 𝑓 ∈ ℓ2(Λ). �

We now state another, well-known, technical lemma, which is given here for completeness. Recall
that, here, 𝜌(𝑇) ⊆ C and 𝜎(𝑇) � C\𝜌(𝑇) respectively denote the resolvent set and the spectrum of
any element T in some unital 𝐶∗-algebra (like the space of bounded operators on some Hilbert space).
Similar to (135), we use the notation

Δ (𝜆;𝑇) � min{|𝜆 − 𝑎 | : 𝑎 ∈ 𝜎(𝑇)} (A.22)

for the distance between a complex number 𝜆 ∈ C and the spectrum 𝜎(𝑇) of any element T in some
unital 𝐶∗-algebra.

Lemma A.12 (Norm estimates of resolvents). Let X be an unital 𝐶∗-algebra with norm ‖·‖. Take
𝑇, 𝐵 ∈ X with T being self-adjoint and let 𝜆 ∈ 𝜌(𝑇). If ‖𝐵‖ < Δ (𝜆;𝑇), then 𝜆 ∈ 𝜌(𝑇 + 𝐵) and##(𝑇 + 𝐵 − 𝜆1)−1## ≤ 1

Δ (𝜆;𝑇) − ‖𝐵‖ .

Proof. Assume all conditions of the lemma, in particular that ‖𝐵‖ < Δ (𝜆;𝑇). Then,##(𝑇 − 𝜆1)−1𝐵
## ≤ Δ (𝜆;𝑇)−1‖𝐵‖ < 1,

and using the Neumann series [46, Lemma 4.24] for −(𝑇 − 𝜆1)−1𝐵, the element 1 + (𝑇 − 𝜆1)−1𝐵 is
invertible with norm bounded by####(1 + (𝑇 − 𝜆1)−1𝐵

)−1
#### ≤ ∞∑

𝑛=0

##(𝑇 − 𝜆1)−1𝐵
##𝑛 = 1

1 −
##(𝑇 − 𝜆1)−1𝐵

##
≤ 1

1 − Δ (𝜆;𝑇)−1‖𝐵‖
=

Δ (𝜆;𝑇)
Δ (𝜆;𝑇) − ‖𝐵‖ .

Finally, one uses the equality

𝑇 + 𝐵 − 𝜆1 = (𝑇 − 𝜆1)
(
1 + (𝑇 − 𝜆1)−1𝐵

)
for any 𝜆 ∈ 𝜌(𝑇) to deduce that 𝜆 ∈ 𝜌(𝑇 + 𝐵) and##(𝑇 + 𝐵 − 𝜆1)−1## = ####(1 + (𝑇 − 𝜆1)−1𝐵

)−1
(𝑇 − 𝜆1)−1

#### ≤ 1
Δ (𝜆;𝑇) − ‖𝐵‖ . �

We can now prove the following version of Combes-Thomas estimates:

Theorem A.13 (Combes-Thomas estimates). Let𝑇 ∈ B(ℓ2(Λ)) be a self-adjoint operator. Given 𝜇 ∈ R+0
and 𝜆 ∈ C with Δ (𝜆;𝑇) > S(𝑇, 𝜇), the following inequality holds true:��〈𝔢𝑥 , (𝑇 − 𝜆1)−1𝔢𝑦

〉�� ≤ e−𝜇𝑑 (𝑥,𝑦)

Δ (𝜆;𝑇) − S(𝑇, 𝜇) , 𝑥, 𝑦 ∈ Λ.

Proof. Fix 𝑦 ∈ Λ and 𝑅 ∈ R+. Define the function 𝜑 : Λ→ [1, e𝜇𝑅] by

𝜑(𝑥) � exp(𝜇min{𝑑 (𝑥, 𝑦), 𝑅}), 𝑥 ∈ Λ.
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Clearly, 𝜑 and 1/𝜑 are bounded, and the inverse of the multiplication operator 𝑀𝜑 ∈ B(ℓ2(Λ)) by 𝜑
is nothing else than 𝑀1/𝜑 . Because 𝜑 is a real-valued function, 𝑀∗

𝜑 = 𝑀𝜑 and, for any 𝑥 ∈ Λ, 𝔢𝑥 is of
course an eigenvector of 𝑀𝜑 with associated eigenvalue 𝜑(𝑥). In particular,〈

𝔢𝑥 , 𝑀𝜑𝑇𝑀
−1
𝜑 𝔢𝑧

〉
=
𝜑(𝑥)
𝜑(𝑧) 〈𝔢𝑥 , 𝑇𝔢𝑧〉, 𝑥, 𝑧 ∈ Λ.

Since (𝑥, 𝑧) ↦→ min{𝑑 (𝑥, 𝑧), 𝑅} is another pseudometric on Λ, for all 𝑥, 𝑧 ∈ Λ, we have that

min{𝑑 (𝑥, 𝑦), 𝑅} −min{𝑑 (𝑧, 𝑦), 𝑅} ≤ min{𝑑 (𝑥, 𝑧), 𝑅} ≤ 𝑑 (𝑥, 𝑧).

In particular, the operator 𝐵 � 𝑀𝜑𝑇𝑀
−1
𝜑 − 𝑇 satisfies the bound

|〈𝔢𝑥 , 𝐵𝔢𝑧〉| ≤
(
e𝜇𝑑 (𝑥,𝑧) − 1

)
|〈𝔢𝑥 , 𝑇𝔢𝑧〉|, 𝑥, 𝑧 ∈ Λ.

By Lemma A.11 together with Equations (A.20) and (A.21), it follows that

‖𝐵‖op ≤ S(𝑇, 𝜇) < Δ (𝜆;𝑇).

Applying now Lemma A.12, we then arrive at the bound####(𝑀𝜑𝑇𝑀
−1
𝜑 − 𝜆1

)−1
####

op
≤ 1

Δ (𝜆;𝑇) − ‖𝐵‖op
≤ 1

Δ (𝜆;𝑇) − S(𝑇, 𝜇) .

Finally, for any 𝑥 ∈ Λ such that 𝑑 (𝑥, 𝑦) ≤ 𝑅, we observe from the last upper bound that

e𝜇𝑑 (𝑥,𝑦)
��〈𝔢𝑥 , (𝑇 − 𝜆1)−1𝔢𝑧

〉�� = 𝜑(𝑥)
𝜑(1)

��〈𝔢𝑥 , (𝑇 − 𝜆1)−1𝔢𝑧
〉�� = ����〈𝔢𝑥 , (𝑀𝜑𝑇𝑀

−1
𝜑 − 𝜆1

)−1
𝔢𝑧

〉����
≤ 1

Δ (𝜆;𝑇) − S(𝑇, 𝜇) .

Since 𝑦 ∈ Λ and 𝑅 ∈ R+ are arbitrary parameters, the above inequality in fact holds true for all
𝑥, 𝑦 ∈ Λ. �

A.7. Elementary observations

For completeness and the reader’s convenience, we conclude the appendix by given a few elementary
results related to the space of bounded operators on a Hilbert space.

Proposition A.14 (Monotonicity of the inverse on operators). Let B and C be two positive bounded
operators on a Hilbert space with bounded (positive) inverse. If 𝐵 ≤ 𝐶, then 𝐶−1 ≤ 𝐵−1.

Proof. The proof is standard. Since it is very short, we give it for completeness. If B and C commute,
then

𝐵−1 − 𝐶−1 = 𝐵−1(𝐶 − 𝐵)𝐶−1 ≥ 0,

because 𝐵−1, 𝐶−1 and 𝐶 − 𝐵 are positive commuting operators. If B and C do not commute, then we
observe that 𝐵 ≤ 𝐶 yields

𝐶−
1
2 𝐵𝐶−

1
2 ≤ 1,
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which in turn implies that

𝐶
1
2 𝐵−1𝐶

1
2 ≥ 1,

because 1 and 𝐶− 1
2 𝐵𝐶−

1
2 commute. From the last inequality it follows that 𝐵−1 ≥ 𝐶−1. �

Proposition A.15 (Monotone convergence theorem for operators). Let X be any complex Hilbert space.
Any increasing (decreasing) monotone net (𝐴𝑖)𝑖∈𝐼 of self-adjoint elements in B(X ) that is bounded from
above (below) has a supremum (infimum) in B(X ). The supremum (infimum) is itself also self-adjoint
and is the strong operator limit of the net.

Proof. [46, Proposition 2.17] already tells us that any increasing (decreasing) monotone net (𝐴𝑖)𝑖∈𝐼
of self-adjoint elements in B(X ) that is bounded from above (below) has a supremum (infimum) 𝐴∞
in B(X ). The supremum (infimum) 𝐴∞ is itself also self-adjoint and is the weak operator limit of the
net. This is proven by using the polarization identity and the Riesz representation theorem together
with elementary estimates. To conclude the proof, it remains to show that 𝐴∞ ∈ B(X ) is the limit of
the increasing net (𝐴𝑖)𝑖∈𝐼 also in the strong operator topology. To this end, assume that (𝐴𝑖)𝑖∈𝐼 is an
increasing net and define the (decreasing) net (𝐵𝑖)𝑖∈𝐼 of positive operators by 𝐵𝑖 � 𝐴∞ − 𝐴𝑖 ≥ 0. By
construction, this net converges in the weak operator topology to 0 ∈ B(X ), which in turn implies that
the net (𝐵1/2

𝑖 )𝑖∈𝐼 converges in the strong operator topology to 0 ∈ B(X ). As the net (𝐵1/2
𝑖 )𝑖∈𝐼 is norm-

bounded and 𝐵𝑖 = 𝐵1/2
𝑖 𝐵1/2

𝑖 , we then conclude that also (𝐵𝑖)𝑖∈𝐼 converges in the strong operator topology
to 0 ∈ B(X ); that is, 𝐴∞ is the strong operator limit of the net (𝐴𝑖)𝑖∈𝐼 . If (𝐴𝑖)𝑖∈𝐼 is a decreasing net,
then we consider the increasing net (−𝐴𝑖)𝑖∈𝐼 to conclude that (𝐴𝑖)𝑖∈𝐼 has a infimum 𝐴∞ = 𝐴∗∞ ∈ B(X ),
which is again the strong operator limit of the net (𝐴𝑖)𝑖∈𝐼 . �
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