## EFFICIENT STAR-FORMATION IN THE TIDAL ARMS OF THE STEPHAN'S QUINTET GROUP OF GALAXIES

Y. OHYAMA, S. NISHIURA, T. MURAYAMA AND Y. TANIGUCHI Astronomical Institute, Tohoku University Aramaki, Aoba, Sendai 980-77, JAPAN

NGC 7318B in Stephan's Quintet has two optical arms (toward N and S) emanating from the eastern part of the main body. Since these arms are similar morphologically to the tidal tails of merging galaxies such as NGC 4038/9, it is considered that NGC 7318B itself is a major merger with a retrograde orbit. In order to study the emission-line activity in the tidal arms of NGC 7318B, we took CCD narrow-band (H $\alpha$  ON and OFF) images and then found a large-scale arc in H $\alpha$  emission which traces closely the arms. This H $\alpha$  arc resembles both the radio and the soft X-ray arcs morphologically (van der Hulst & Rots 1981; Pietsch et al. 1997), suggesting that a single physical mechanism is responsible for all of these kinds of emission. Our optical spectroscopic observations of the shell-like feature at the southern tip of the arc reveal both broad H $\alpha$  emission and stronger-than-normal [NII] and [SII] emission lines, which are typical of supernova remnants (SNRs). The required number of SNRs is estimated to be as much as  $\sim 10^6$ .

The proposed scenario for the arc formation is the following (Ohyama et al. 1997): The two tidal tails were formed during a past merging event between two gas-rich disk galaxies. Giant HII regions containing numerous massive stars ( $\sim 10^6$ ) were formed almost simultaneously along the tails (e.g., Barnes & Hernquist 1992). After  $\sim 10^{6-7}$  years, supernovae exploded almost simultaneously and formed the emission arc observed in H $\alpha$ , radio, and soft X-ray.

## References

Barnes, J. E., & Hernquist, L. 1992, *Nature*, **360**, 715 Ohyama, Y., Nishiura, S., Murayama, T., & Taniguchi, Y. 1997, *ApJL*, in press Pietsch, W., Trinchieri, G., Arp, H., & Sulentic, J. W. 1997, *A&A*, **322**, 89 van der Hulst, J. M., & Rots, A. H. 1981, *AJ*, **86**, 1775