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Abstract

Let N be a. nilpotent simply connected Lie group, and A a commutative connected d-dimen-
sional Lie group of automorphisms of N which correspond to semisimple endomorphisms of
the Lie algebra of JV with positive eigenvalues. Form the split extension S = NxA^Nx&,
a being the Lie algebra of A. We consider a family of "rectangles" Br in S, parameterized by
r > 0, such that the measure of Br behaves asymptotically as a fixed power of r. One can
construct the Hardy-Littlewood maximal function operator / —• Mf relative to left translates
of the family {Br}. We prove that M is of weak type (1,1). This complements a result of
J.-O. Stromberg concerning maximal functions defined relative to hyperbolic balls in a sym-
metric space.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 43 A 80, 22 E 30; secondary
42 B 25.

Let G be a semi-simple connected non-compact Lie group with finite center and
let G = NAK be the Iwasawa decomposition of G. Let 5 = G/K be the non-
compact symmetric space. NA acts on S simply transitively and so there is a
natural identification of the group NA (the group of translations of S) and S.
We write

S = NA.
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The G-invariant metric p on S is thus a left-invariant metric on S and the

G-invariant measure on S is the left invariant Haar measure HI on S. In this

setting a theorem of J . -O. Stromberg [2] reads

T H E O R E M . Let

Br = {seS: p(s,e) <r}.

The maximal function Mf defined by

M/(S)=suPW(Br)-1 f f(s')dMs')
r>0 JsBr

is of weak type (1,1).

The aim of this note is to show that a similar theorem is true for other families
of balls {Br}r>o o n S (no t /^-invariant any more) and as a matter of fact, the
proof is very easy and straightforward. As a simple calculation shows, the balls
we consider and the balls with respect to the hyperbolic metric on the upper
half-plane (identified with the 'az + fc'-group as above) are not comparable in
measure, so Stromberg's result and ours are not simple consequences of each
other.

The setting of our theorem is as follows.
Let N be a nilpotent simply connected Lie group. Let A be a commuta-

tive connected d-dimensional Lie group of automorphisms of TV which (as lin-
ear transformations on n) are semi-simple with positive eigenvalues. We write
A = {e*: t € a}, N 9 x -* e*x G N being the action of A on N. We then have
e* • e*'x = et+t'x.

Let
TV 3 x -> \x\ E R +

be a continuous function on iV with the property that for some positive constants
c,C',Q

CrQ < measure{x: | i | <r}< c'rQ

for all r > 0. For t G a let \t\ = norm of the operator t (acting on n). We form
the split extension of N by A:

S = NA = N x a

the multiplication being

Then the left and right invariant Haar measures on S are,

dm(x,t) = e~Tltdxdt,

dfir(x,t) = dxdt,

respectively.
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THEOREM. Let

Br = {s = (x,t):\x\<r,\t\<r}.

The maximal function Mf defined by

M/ = sup/i/(5r)-1 f f(s')dMs')
r>0 JsBr

is of weak type (1,1).

The proof follows [2] but is much simpler. In fact the theorem is an immediate
consequence of the following two propositions.

Let

Mof(a) = supMBr)"1 f f(s')dMs'),
r<l JsBT

r)-1 f f(s')dn,(s')-
JsBr

PROPOSITION l . Mo is of weak type (1,1).

PROPOSITION 2. M00f(s) < \f\ + f{s), where f €.Lx{S,ni).

Proposition 1 follows from the following two easy lemmas.

LEMMA 1. Let E CS and m(E) < +00. Suppose

Ec\JsBr{s), r(«)<l.
a€<r

Then there exists a subset {si,S2,...} of a such that if BTj = Br(s>), then

SiBTi D SjBTj = 0 for i ^ j

and

i

The proof is standard.

LEMMA 2. There is a constant C such that

m{BrB^r
lB2r) < Cii,{Br)

for allr < 1.

PROOF OF PROPOSITION 2. We have

(1) MBr)>CrQ f e-Tttdt
J\t\<r
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Following J.-L. Clerc and E. M. Stein [1], see also [1], we get

1 otherwise,

and we note that for a constant C

(2) w (5 r ) - 1 XB, (x ,0<^(a ; ,<)

for all r > 1, where XE denotes the indicator function of E. In fact, it suffices
to verify (2) for

r0 = min{r: (x, t) € Br)

and for TQ (2) is obvious.

By (1), we have

<p(x,t) < C(l + \x\Q(sh\x\)d + ^(shltlY)-1 = r(x,t).

Consequently, by (2),

Moof(a) =supM/(5r)-1 f X.Brtf)f{8')
r>l J

= SUP f MBr)-1XBr(s'-1s)
r>l J

<\f\*f{x).

But clearly

/"(I + \x\Q{sh\x\)d + \t\Q[8h\t\)d)-1 dtdx < +oo

i.e.

whence f € Z-1(S, m), and the proof is complete.

REMARK. It would perhaps be interesting to know whether a similar result
holds for riemannian balls with respect to some left-invariant riemannian metric
on a solvable Lie group S.
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