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Introduction. A tight Riesz group is a partially ordered group which satisfies a strengthened
form of the Riesz interpolation property. The term " tight" was introduced by Miller in [8],
and the tight interpolation property has been considered in papers by Fuchs [3], Miller [8, 9],
Loy and Miller [7] and Wirth [12]. If the closure P of the cone P, in the interval topology, of
such a partially ordered group G contains no pseudozeros, then P is itself the cone of a partial
order on G. Loy and Miller found of particular interest the case in which this associated
partial order is a lattice order. This situation was then considered in reverse by A. Wirth [12]
who investigated under what circumstances a lattice ordered group would permit the existence
of a tight Riesz order (called a compatible tight Riesz order) for which the initial lattice order
is the order defined by the closure of the cone of the tight Riesz order. Wirth gave two funda-
mental and useful characterizations of those subsets of the cone of a lattice ordered group that
can be the strict cone of a compatible tight Riesz order; one is in terms of archimedean classes
and the other is an elementwise characterization. Although Loy, Miller and Wirth restricted
their attention to abelian groups, much of what they do carries over verbatim to nonabelian
groups. In the main result of this paper (Theorem 2.6) a description of the strict cone of a
compatible tight Riesz order on a lattice ordered group G is given in terms of the prime sub-
groups of G. This is particularly useful when one is attempting to identify the compatible
tight Riesz orders on some particular lattice ordered group or class of lattice ordered groups,
since it narrows down to a convenient family of subsets the possible candidates for strict
cones of compatible tight Riesz orders. These can then be tested under Wirth's criteria. This
technique is illustrated in § 5, where the compatible tight Riesz orders are determined on a
lattice ordered group of the type V(T, Gy), where T is of finite width, and in § 6, where two
examples are considered.

1. By a. partially ordered group (G, ^ ) we mean a group G and a partial ordering, ^ , of
G which is compatible with the group operation. We shall usually denote the group operation
by +, even for nonabelian groups. A partially ordered group (G, ^ ) is called a tight Riesz
group if £ is a directed partial ordering and if, for any elements a, b, c, d in G such that
a, b < c, d there exists an element xin G with

a, b < x < c, d.

The order relation is then called a tight Riesz order. This interpolation property, which is a
refinement of the Riesz interpolation property [11], has been extensively considered for abelian
partially ordered groups by Miller and Loy in [7], [8] and [9], by Wirth in [12] and has been
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called the tight Rieszproperty. The property is interesting since it ensures that the open interval
topology on (G, g ) is not discrete [7]. However, we shall not restrict ourselves to abelian
groups in this note. For some of the basic properties of tight Riesz groups the reader is referred
to [7], [8], [9] and [12].

If (G, ^ ) is a tight Riesz group, then we shall write

P = {a:aeG and 0 ^ a}, P* = P\{0},

and call P* the strict cone of the tight Riesz order ^ . An element weG is a pseudopositive
if w£P and w+P* £ P*. (Since P* is necessarily a normal subset of G, this is equivalent
to?*+H>c />*.) If w and — w are both pseudopositives, then w is a pseudozero. If G has no
pseudozeroes, then the open interval topology on G is also Hausdorff and consequently com-
pletely regular [7, Theorem 3]. It is also shown by Loy and Miller that P = {aeG : aeP or
a is a pseudopositive} is the closure of P. Now let =̂  be another partial ordering of G such
that (G, =Q is a lattice ordered group (henceforth /-group). We shall write G+ = {g e G : 0 =̂  g)
and call G+ the cone of (G, = )̂ or of =v If P = G+, then ^ is a compatible tight Riesz order
for (G, =^). For instance, let U denote the set of real numbers with their usual ordering and
A(U) denote the group of all order preserving permutations of R. Let T = {a e A(U) : r < ret,
for all reU}. Then T is the strict cone of a compatible tight Riesz order on A(U). Note that
A(U) is also nonabelian.

Let (G, < ) be an /-group. Let T c G. We shall write x < T to mean that nx < f for all
positive integers n and all teT. We shall say that T is a dual ideal of (G, ^ ) if

(i) b^a,beT implies that a e T;

(ii) a, beTimplies that a A beT.

For any proper subset T of G+ (that is, any subset T such that T # G+, 0) we shall be
interested in the following properties:

T(l) Tisa dual ideal of (G, =0;

T(2) T+T=T;

J(3) 0 =< x •€ T implies that x = 0;

J(4) T is normal in G.

The proof of the following result given by A. Wirth for abelian /-groups is valid without
the assumption of commutativity.

LEMMA 1.1. (A. Wirth [12]). Let (G, =0 be an l-group and T be a proper subset ofG+. If
T satisfies conditions T(i), T(2) and T(4), then T is the strict cone of a tight Riesz order on G.
T is the strict cone of a compatible tight Riesz order on G if and only if T satisfies T(\), T(2),
J(3) and T(4).

We shall also require the following observations regarding convex /-subgroups of /-groups.
For basic terminology and results relating to /-groups the reader is referred to [1] and [4].
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For any convex subgroup M of a partially ordered group (G, :S), we shall denote by
(R(M), ^ ) the set of right cosets of M with the naturally induced order, which we also denote
by g . If (G, ^ ) is actually an /-group and M is a convex /-subgroup, then (R(M), ^ ) is a
lattice [1].

LEMMA 1.2. [1]. For a convex l-subgroup M of an l-group (G, = )̂, the following statements
are equivalent:

1. a, beG+\M implies that a A beG+\M;
2. a, beG+\M implies that a A b # 0;
3. the lattice (R(M), =0 of right cosets of M is totally ordered;
4. the convex l-subgroups of G containing M form a chain in the lattice of convex l-sub-

groups of G.
A convex /-subgroup M of an /-group G satisfying the conditions of Lemma 1.2 is called

a prime subgroup. These subgroups play a central role in the theory of /-groups and par-
ticularly in the representation of /-groups as groups of order preserving permutations [5].

2. In this section we relate compatible tight Riesz orders to prime subgroups. We begin
by providing a source of examples of tight Riesz groups and compatible tight Riesz orders.

A nonempty family {Mt: iel} of subgroups will be called a normal family if \J{Mt: iel}
is a normal subset of G. More generally, when we refer to a family of subgroups {Mt: iel}
we shall always mean a nonempty family.

An /-group (G, = )̂ is archimedean if, for any a, beG such that na^ b (n = 1, 2,...), we
have a ̂  0. An archimedean /-group is always abelian [4].

The following lemma is almost immediate from Lemmas 1.1 and 1.2.

LEMMA 2.1. Let (G, ^ ) be a divisible l-subgroup. Let {Mt: iel} be a normal family of
prime subgroups such that T = G+\ (J{M,+ : iel} is nonempty. Then T is the strict cone of a
tight Riesz order. IfG is archimedean, then T is the cone of a compatible tight Riesz order.

Proof. Condition T(l) is satisfied, by Lemma 1.2, since each M-, is a prime subgroup.
Condition T(2) is satisfied since G is assumed to be divisible. Condition T(4) is satisfied since
{Mj-. iel} is assumed to be a normal family. Thus Tis the strict cone of a tight Riesz order.
If G is archimedean, then 7(3) will also be satisfied and then Tis the strict cone of a compatible
tight Riesz order.

We now weaken the assumption of divisibility of G in Lemma 2.1 to one of denseness
of the sets R(Mt) at the cost of being forced to consider only a finite number of primes. We
shall say that a partially ordered set X is dense if x, yeX and x < y implies that there exists a
zeX with x < z <y.

Note that, if {M,: / = 1, 2, . . . ,«} is a family of incomparable primes and Mt c \J{Mf
j = 1, 2 , . . . , n, j £ i}, then Mt = MJt for some j ^ /. Otherwise, for each j ± /, we can select
ajeMf\Mj. Then v ajeM^iMj-.j = 1, 2 , . . . , n,j ± /}.

THEOREM 2.2. Let (G, =0 be an l-group and {M{: i = 1, . . . , n} be a family of proper
(that is, T^G) prime subgroups of G such that, for each i, Mx is normal in G and {R(M^, =̂ ) is
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dense. Let T = G+\ [){M? : i = 1 , . . . , n}. Then T is the strict cone of a tight Riesz order.
If either G is archimedean or each M{ is a minimal prime, then T is the strict cone of a compatible
tight Riesz order.

Proof. Without loss of generality we assume that the M; are incomparable. Since we
have only a finite number of primes, no one of which is equal to G, 7Ms nonempty. Since each
Mi is a prime subgroup, T clearly satisfies T{\) and, since each M( is normal in G, T satisfies
7X4).

Let t e T. Since / e G+\Mlt Mi<Mi +1. Since (R{M^), = )̂ is dense, there exists an xt

such that

and we may (by replacing xx by (xx v 0) A t) assume that 0 -< xt «< /.

Now suppose that, for 1 <j ^ n, we have an *,_! such that

and

If

M

then let Xj = Xj-V On the other hand, suppose that

Mj^Mj + Xj-^Mj + t.

Then, as withy = 1, since (R(Mj), =Q is dense, there exists an x'j such that

Mj -< Mj + x'j -<Mj+t

and Xj_! -<xj-< t. For each i= 1, ...,j— 1, let pieM*\Mj. Then, since Mj is a prime
subgroup, p= A pief]{M^ : 1 ̂  i ^ j - l } \ M t . Let x7-= (p + Xj-j) A xj. Then, for

M ( M + + _i) A (Mj+xj)

= Mj+x7_1 A xj

= M,.+xJ_1

and so

Ml<Mi+xj<Mi+t.
Also,

MJ.+XJ- = (Mj+p+Xj-!) A (M;+xj)

= (Mj+p) A (Mj+x'j) (since M7- is normal)
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since M -< Mj +p, Mj + x). Moreover,

0 -< Xj = ip + Xj-i) A X'j < X'j -< t.

Thus

for i = 1 , . . . ,j and 0 -< Xj -< t.
If Mj+Xj-y = Mj + t, then we proceed in an analogous manner. Hence, by induction,

we can obtain an xn such that

Mi<Mi-\-xn-<Mi + t

for / = 1, . . . , / i and 0<xn<t. Then xneG+\{J{M? : i = 1 , . . . , n) = 7; likewise, t-xneT
and t = (t-xn) + xneT+T. Thus T satisfies condition 7(2) and determines a tight Riesz
order.

If we now assume in addition that G is archimedean, then 7 will satisfy condition 7(3)
and so will be the strict cone of a compatible tight Riesz order.

So finally suppose that each Mt is a minimal prime subgroup. Let 0 =̂  x •< T. Then
xeMit for some/, say xeM1nM2...r\Mk, while x$Mk+luMk+2... uMn. F o r / = 1 , . . . , k,
let a, be such that ai $ M{ and at A x = 0 (Such elements exist since each Mt is a minimal
prime; [1, p. 44]). Let a = x v a^ v . . . va t , Then «£(J{M,: / = 1 , . . . , n}. Thus a e T .
Now

2* = 2x Aa(s incex« :T)

= 2x A (* v Oj v . . . v ak)

= (2* A x) v (2x A flj) v . . . v (2x A a*)

= x v 0 v . . . v 0

= x.

Hence JC = 0 and T satisfies T(3). Thus 7" is the strict cone of a compatible Riesz order.
In general, for an /-group (G, = )̂ and a family of prime subgroups {Mt: iel}, T =

G+\(J{Mf: iel} can be the strict cone of a compatible tight Riesz order without the Mt being
minimal primes. By Lemma 2.1, if G is divisible and archimedean, then T= G+\M+ will be
the strict cone of a compatible tight Riesz order for any proper prime subgroup M, minimal
or otherwise. An example is given in §6 where G is not even dense and T'= G+\M+ is the
strict cone of a compatible tight Riesz order for some nonminimal prime M.

LEMMA 2.3. Let (G, = )̂ be an l-group and Tbe the strict cone of a compatible tight Riesz
order on G. Let S be a maximal subsemigroup ofG+\T. Then S is the cone of a prime subgroup
ofG.

Proof. Clearly S must contain 0. If S is not convex, then 5" = {g: i j ^ g % s2t for some
su s2eS} will be a subsemigroup of G+ and, by 7(1), will be contained in G+\7. This con-
tradicts the maximality of 51. Hence S is convex and so is the cone of a convex /-subgroup
M of G. To show that M is a prime subgroup, it suffices to show that, if a,beG+\S, then
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a AbeG+\S. Suppose that a,beG+\S and that a A beS. For x = a,b, let <S, x} denote
the subsemigroup of G+ generated by S and x. By the maximality of S, A = (S, a^nT and
B = <S, b~)r\T are both nonempty. Let xeA, yeB. Since 5 contains 0, x and j> are of the
form

and
y =

for some positive integers m, n and some elements rit st of 5. Since T is a dual ideal, x A yeT.
On the other hand

= z, say,

where z is a sum of terms of the form rt A st, r, A b, a A s,, a A b. However, a A b e 5 by
assumption and the remaining terms are in S by the convexity of S. Hence zeS and so
x A yeS, a contradiction. Thus a A b$S and 5 is the cone of a prime subgroup.

COROLLARY 2.4. Lef (G, =Q be an l-group and let T be the strict cone of a compatible
tight Riesz order on G. IfS = G+\Tis a subsemigroup ofG+, then S is the cone of a prime sub-
group of G.

For the next theorem, we need to know that a compatible tight Riesz order ^ on an
/-group G is an isolated order; that is that, if na ^ 0 for aeG and some positive integer n, then
a ^ 0. We make use of the fact that, if (G, =Q is an /-group, then =< is an isolated order [4].

LEMMA 2.5. Let (G, ^ ) be an l-group and T be the strict cone of a compatible tight Riesz
order ^ . Then ^ is an isolated order.

Proof. Let na > 0, for some positive integer n. Without loss of generality, we may assume
that n = 2. Since =̂  is an isolated order, a ̂  0. Since ^ is a tight Riesz order, there exist
elements h', k'eT such that

2a = h' + k'.

~Leth = h'Ak'. Then h > 0, by T{\), and 2A =< 2a. Thus

0^a + a-h-h = a-(a + h-a)+(a-h).

Let k — (a+h-a) A h. Since a+h—a and h are both elements of T, so is k, by T( 1). Now

=^a — fe+a — k

= 2(a-/c).

Since =< is an isolated order, a-k^0. Hence a^k>0. So, by T(1), aeT, that is,
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If na = 0 for some positive integer n, then a = 0 since the fact that (G, =Q is an /-group
implies that G is torsion free [4]. Thus ^ is an isolated order.

THEOREM 2.6. Let (G, =Q be an l-group and Tbe the strict cone of a compatible tight Riesz
order <|. Then G+\T= \J{St: iel}, where, for each iel, St is the cone of a prime subgroup.

Proof. From Lemma 2.5, we know that ^ is an isolated order. Hence, for any aeG+\T,
the subsemigroup generated by a is contained in G+\T. Thus G+\T= \J{S[: iel}, where
{5,: iel} is the set of maximal subsemigroups of G+\T. By Lemma 2.3, each St is the cone of
a prime subgroup.

From Theorem 2.6 and Lemma 2.1 we have the following corollary.

COROLLARY 2.7. Let (G, =̂ ) be a divisible archimedean l-group and T be a nonempty
subset of G+\{0}. Then T is the strict cone of a compatible tight Riesz order if and only if

+ U ' : i^I}for some family {St: iel} of cones of prime subgroups ofG.

THEOREM 2.8. Let (G, ^ ) be a divisible abelian l-group. Then the following statements
are equivalent:

(1) T is the strict cone of a maximal compatible tight Riesz order;
(2) S = G+\T is the cone of a minimal prime subgroup.

Proof. Suppose that (1) holds. By Theorem 2.6, G+\T= \J{St: iel}, where {5,: iel}
is the set of maximal subsemigroups of G+\!T and each St is the cone of a prime subgroup Mh

say. For any fixed i e /, let P be a minimal prime subgroup contained in Mf. Let 7\ = G+\P+.
Since G is divisible, (R(P), = )̂ is dense, and, since G is abelian, P is normal in G. Hence, by
Theorem 2.2, 7\ is the strict cone of a compatible tight Riesz order. But clearly T s 7\.
Hence 7\ = Tand G+\T= P+, the cone of a minimal prime subgroup.

Now let (2) hold. By Theorem 2.2, T is the strict cone of a compatible tight Riesz order
and, by Theorem 2.6, this order must be a maximal compatible tight Riesz order.

Let (G, =Q be an /-group and geG. By a value of g is meant a convex /-subgroup of G
which is maximal with respect to the property of not containing the element g. A convex
/-subgroup M of G which is a value for some element of G is called regular. Regular subgroups
are prime subgroups [1]. If M is a value of geG, then M is covered in the lattice of convex
/-subgroups of G by the convex /-subgroup generated by M and g. We denote this covering
convex /-subgroup by M*. By Lemma 1.2, M* is also a prime subgroup of G.

LEMMA 2.9. Let (G, =̂ ) be an abelian l-group and geG+. Then # < {t} if and only if
teG+\{J{M* :Misa value of g}.

Proof. Let teG+\\J{M* : M is a value of g}. Consider any representation of (G, =0
as an /-group of order preserving permutations of a set A'(for example, the Holland representa-
tion [5]). Let xeXbe any element such that xg ^ x. Then g$Gx= {aeG: xa = x}. Hence
there exists a value Gy of g such that Gx s Gy. Then Gx <=. G* and, since G* is a prime sub-
group of G containing Gx, G* determines a convex congruence p, say, on xG defined by:
(y, z)ep if and only if yh, zhexG* for some heG [5, Lemma 4]. The class containing JC is
xG*. Now {xG*)g = x(G*g) = xG* and so (xGfig" = xG*, for any positive integer n. On
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the other hand, since t^G*, (xG*)t # xG* and so, in fact, (xG*)tnxG* = 0. Since teG+,
we must have xG* < (xG*)t. In particular, xg" < xt, for all positive integers n. Since x was
chosen arbitrarily subject to the restriction that xg # x, we must have g" -< t, for all positive
integers n. Hence g < {t}.

Now let g < {t} and let M be a value of #. Suppose that / e M*. Then < ^ m+ng, for
some meMand some positive integer n. Hence

Thus t ^ 2m and J e M. Hence gsM. This is a contradiction, since M is a value of g. There-
fore t$M*, for any value M of g.

For divisible abelian /-groups we can now give a complete characterization of the strict
cone of a compatible tight Riesz order in terms of the prime subgroups.

PROPOSITION 2.10. Let (G, = )̂ be a divisible abelian l-group. Let T be a nonempty subset
of G+\{0}. Then T is the strict cone of a compatible tight Riesz order if and only if T =
G+\U{M? : iel}, where each M, is a prime subgroup and for no element g ofG* is []{M* :
M is a value of g} S \J{Mf : iel}.

Proof. As before, G divisible, abelian and r=G + \ (J{M, + :ieT} nonempty implies
that T satisfies J(l), J(2) and T(4). By Lemma 2.9, T satisfies T(3) and so is the strict cone of a
compatible tight Riesz order.

Conversely, if 7"is the strict cone, then, by Theorem 2.6, T= G+\(J{M(
+ : iel} for some

prime subgroups M( of G. By Lemma 2.9, since T satisfies T(3), there is no element geG+

such that (J {M* : M is a value of g} £ \J {Mt: ie /} and the proof is complete.

3. This section is devoted to observations regarding convex /-subgroups of /-groups with
compatible tight Riesz orders. Throughout this section, let (G, = )̂ be an /-group and T be
the strict cone of a compatible tight Riesz order ^ on G.

LEMMA 3.1. Let H be a subgroup ofG. The following statements are equivalent:

(1) H is a convex l-subgroup of(G, = )̂ such that HnT # 0;
(2) H is a convex directed subgroup of(G, ^ ) and H ^ {0}.

Proof. Let (1) hold and teHnT. Then H ± {0}. Since < is a refinement of ^ and
His convex with respect to ^ , Hmust be convex with respect to ^ . Let a,beH. Then

t + (avb) > avb'fza,b.

By Lemma 1 . 2 , / + ( a v i ) > a , i and so H is directed.
Now let (2) hold. Let a be any nonzero element of H. If a > 0, then a e Hn T. If a < 0,

then - a e Hn T. If a and 0 are incomparable, then, since H is directed, there exists an element
6ei7suchthatZ>^a,0. Since a $ 0, we must haveZ) > 0 and so be HnT. Hence HnT^fy.

Now let a ^ b ̂  c, where a, c are elements of H. If a = c, then b = aeH. Hence, since
H is directed, we may assume that a < c. Then

a — (c—a) < a^b^c < c+(c — a)
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or
2a — c < b < 2c —a.

Since H is convex with respect to ^ , beH and so H is convex with respect to = .̂ Thus H
is a convex directed subgroup of (G, sQ and so is a convex /-subgroup.

We shall denote by #(G, =0 the lattice of convex /-subgroups of (G, =̂ ) and by #((7, ^ )
the set of convex directed subgroups of (G, g).

COROLLARY 3.2. <tf(G, g ) is a sublattice of <g(G, =0.

Proof. By Lemma 3.1, we do have that #(G, <) £ <g(G, =0. Let H, Ke<g(G, g) . Then
H, Ke <€{G, =0, HnT # 0 and isTnT ? 0. Hence ( # v K)r\T # 0, where # v Kis the smallest
convex /-subgroup of (G, =<) containing H and #. Thus H v Ke #(G, ^ ) . Now let h e HnT,
keKnT. By T(l), hAkeT. Thus A A ks(Hr\K)nT and HnKe<8{G, ^ ) . So #(G, g ) is
a sublattice of ^(G, =<).

In general, <tf(G, ^ ) need not be a complete sublattice of #(G, = )̂. Let G denote the
additive group of functions from the set of nonnegative integers N into the additive group
of rationals, with the cardinal order. Let U denote an ultrafilter on N containing all subsets
A ofiVsuch that | N\A | is finite. For/e G, let Nf = {n :f(n) = 0} and let M={feG:Nfe U}.
Then G is a divisible archimedean /-group and M is a prime subgroup. By Lemma 2.1, T =
G+\M+ is the strict cone of a compatible tight Riesz order. For n = 2, 3 , . . . , let Hn =
{feG:f(n) = 0}. Then H= f]{Hn: n = 2, 3,...} = {/eG :/(«) = 0, n = 2, 3, . . .} . Thus
Hne<€{G, g) , for each n, but

THEOREM 3.3. The following statements are equivalent:
(1) M is a prime subgroup of(G, =0 such that MnT / 0;
(2) Me<£{G, g ) and(R(M), g ) is roto//y ordered.

Proof Let (1) hold. Then, by Lemma 3.1, Me^(G, ^ ) . Consider any elements
M+x, M+y of R(M). It suffices to show that these are comparable in (R(M), ^ ) . Let
/ € MnT and, without loss of generality, let M+x >- M+y. Then m'+x >- y for some element
m'eM and f + m' + x > w' + JC >• y. If we let m = / + w', then, by Lemma 1.2, m + x > >» and
so M+x > M+y. Thus (R(M), ^ ) is totally ordered.

Conversely, let (2) be satisfied. By Lemma 3.1, Me<tf(G, =0 and Mr\T ^ 0. Since =<
is a refinement of ^ , if (R(M), ^ ) is totally ordered then so must (R(M), =̂ ) be totally ordered.
Hence, by Lemma 1.3, M is a prime subgroup of (G, ^ ) .

Another source of subgroups M of G for which (R(M), ^ ) is totally ordered is described
in the following theorem.

THEOREM 3.4. Let M be a prime subgroup of{G, =<), and let T = G+\\J {S,: iel}, where
each Si is the cone of a prime subgroup Mt. If either

(1)
or

(2) M+ = Sj, where Sj $ ( J { S i : '

then (R(M), ^ ) is totally ordered.
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Conversely, if I is finite and(R(M), ^ ) is totally ordered, then either (1) or (2) holds.

Proof. The assertion that (1) implies that (R(M), S) is totally ordered is just a restate-
ment of one half of Theorem 3.3. So let (2) hold, and let M+x, M+y be any two elements
of R(M). It suffices to show that these elements are comparable in (R(M), g) , and without
loss of generality we may assume that M+x >• M+y and x >- y. Then x—y$ Sj. Let se Sj\
(J {St: i # j} and t = s+x-y. Then t > x-y and so t$ Sj. Also t > s and so t$ [j{St: i ¥=/}•
Hence t$\J{S,:ieI} and so teT. Thus t>0 and M + * = M + J + J C > Af+j. Hence
(R(M), <;) is totally ordered.

Now suppose that J is finite and that (R(M), ^ ) is totally ordered. If M+ properly
contains 5;, for any j , then, by the maximality of the St as subsemigroups of G+\T, we must
have Mr\T =£ 0. If Af+ = S,-, for anyj, then we again have the desired conclusion. So suppose
that Sj $ M+, for any j . For each j , let s,eS7\M+. Since (-R(Af), ^ ) is totally ordered, we
must have either M+Sj > M or M+Sj < M. But M+Sj < M implies that M+Sj -< M,
which contradicts the fact that 5,^=0. Hence M+Sj > M and, for some OjSM*, aj+Sj > 0
or aj+SjeT. Then aj+Sj^Sj and so aj^Sj. Thus, for each j , there exists an a;eM+\5j.
Hence, if a is the least upper bound of {a,-: je/} in (G, =<), then aeM+\\J{St: iel}; that is,
aeM+r\Tand

4. Throughout this section, let (G, =0 be an /-group and H be a convex /-subgroup of
(G, =Q. Let TH{G) denote the set of strict cones of compatible tight Riesz orders on G that
have nontrivial restrictions to H and let T{H) denote the set of strict cones of compatible tight
Riesz orders on H. For Te TH{G), let TO = TnH and, for T e T(H), let T'<t> = {xe G : x =̂ h
for some h e T'}.

Let PH{G) denote the set of prime subgroups of G that do not contain H, and P{H) denote
the set of proper prime subgroups of H (that is, prime subgroups that are not equal to H).
For any MePB(G), let Ma = MnH.

LEMMA 4.1. [1]. The mapping a: M-> Mo is a bijection of PH{G) onto P(JH). The inverse
mapping a'1 can be described as follows. For PeP(H), let heH+\P. Then

| | = x v (—x).
If MePH(G), NeP(H) then we shall also write M+nH = M+c and N<r-1nG+ =

N+o-K

THEOREM 4.2. JfG is an abelian l-group, then Q:T->T6isa bijection ofTH(G) onto T(H)
and (j>:T'-y T'<j> is the inverse mapping.

If Te TB(G) and T e T(H) are such that

T=G+\{J{Si:iel}, (A)

where {St: iel} is a family of cones of prime subgroups ofG and

(B)
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where {Qj :jeJ} is a family of cones of prime subgroups of H, then

and

T'<f> = G+\[){QJG-1:jeJ}.

Proof. Let Te TH(G). Then clearly TO = TnH satisfies conditions T(l), 7(2) and T(4).
If 0 =< x « TO, then, since T is a dual ideal and TO is an ideal of T, 0 =< JC < T. Thus x = 0
3indT0eT(H).

If T'eT(H), then clearly 7"<£ (= T, say) satisfies T(l) and T(4) and, since I" £ T, T must
satisfy J(3). Now let f e 7" and h e 7" be such that f =̂ A. Then h = a+b, for some a, 6 e 7" £ 71,
and so / = ((/-/i) + a)+2>. Now t-h^O implies that (t-h) + a^a and so (t-h)+a,beT.
Thus f e J + 71 and 7" satisfies J(3). Finally, 7 h # = 7" and so Te TH(G) and 7"<£0 = 7".

It is clear that T0(j) £ 7", for any TeTu{G). Let fe7" and Ae719. Then t A he TO,
t A h^t and so fe79$. Thus Tfl^ = Tand 0 and <j) are inverse mappings.

Let T have the description (A). Then

TO = TnH = H+\(J{Sf: ie /}

Now let 7" have the description in (B). Let teT'<j). Thenf^Afor some/ieT".
for somey, then heQJ<r~1nH= QjO~lo = Qj, which contradicts the fact that / ie7' . Thus
t^Qjo'1, forany7,andso7"0£ G+\U{Q;<r"1 :ye /} . Denote this latter set by .R, say. To
obtain the converse inclusion, let geR and heT. Then heT £ T"</> £ J? and so h A geR,
since each QJCT"1 is the cone of a prime subgroup. ThusA A geH+nR = H+\\J{Qj :jeJ} =
J' . Hence g^h A geTand geT'(f>. Thus 7"$ = i?, as required.

5. In this section we use the description of compatible tight Riesz orders in terms of prime
subgroups to help us to identify all the compatible tight Riesz orders on a certain type of
abelian /-group.

Let T be a root system, that is, a partially ordered set such that, for any yeT, {5eF -.d^y}
is totally ordered. For each yeT, let Gy be a subgroup of the additive group of real numbers
and let P = U{Gy: yeT}, the product of the groups Gy; that is, the additive group of functions
/ : T-> []{Gy: yeT} such that f(y)eGr We shall assume throughout that Gy ± {0}, for all
yeT. Let V(T, Gy) denote the subgroup of P consisting of those v in P for which Sv= {5 :
v(S) #0} satisfies the ascending chain condition. If we order V(T, Gy) by defining v > 0 to
mean that v(S) > 0 for all maximal elements 5 of S(v), then V(T, Gy) is an abelian /-group. By
[2], every abelian /-group can be imbedded in an /-group of the type V(T, Gy).

We shall say that T is of width at most n if, for any subset A of T of incomparable elements,
the cardinality of A is less than or equal to n.

Throughout this section we let V = V(T, Gy), where T is a root system of width at most n,
and denote the lattice ordering of V introduced above by = .̂
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For v e V, let Mv denote the set of maximal elements of Sv. Since F is of width at most«,
Mo must be a finite set.

For each 5 eF , let Vs = {v : v(y) = 0, for y # <5}. Clearly Vd is a subgroup of Kisomorphic
with Gd.

We shall say that a subset A of F is unbounded above if there is no y eF\A such that A < y.

LEMMA 5.1. Let P be a proper prime subgroup of V. Then

A(P) = {8 : Vs $ P}

is a convex totally ordered subset ofT which is unbounded above. Conversely, if A is a convex
totally ordered subset of F which is unbounded above, then

P(A) = {veV: v(5) = 0, for all 8 e A}

is a proper prime subgroup of V. The mappings P -> A(P) and A -+ P(A) are inverse mappings.
For prime subgroups Plt P2 of V, Px £ P2 if and only if A{P^) 2 A(P2) and, consequently,

P is a minimal prime subgroup of V if and only //A(P) is a maximal totally ordered subset ofT.

Proof. Let P be a proper prime subgroup. For any y e F it is clear that either Vy £ P
or VynP = {0}. Suppose that Vs £ P, for all 5, and let veV+. For each 8e Mv, let ute V+

be such that
(v(3) if y = S,

««(y) = 1
[0 otherwise.

Then u6eP, for each 5eMv. Hence ^2w a eP . But D < ^ 2 W < ! and so veP. Thus V* £ P,
which is a contradiction. Hence v} $ P, for some 5. Let A(P) = {5 : Vd $ P}. If there are
elements y, <5eA(P) which are incomparable, then, for any nonzero elements uye V*, uae Vf,
we have that uy A U& = 0. But uy, vs$P and so uy AUS$P. Thus we again have a contradic-
tion. Hence A(P) must be totally ordered. Since P is convex, A(P) must be convex and
unbounded above.

Now let A be a convex totally ordered subset of F which is bounded above. Clearly P(A)
is a convex /-subgroup of V. If a, be V+\P(A), then a(y) ^ 0 and b(8) j= 0 for some y e ManA,
SeMbr\A. Now A is totally ordered and so, without loss of generality, let y ^ 5. Then
(a A b)(y) = a(y) ^ 0. Thus a A b$P(A) and so P(A) is a prime subgroup.

Let P be a prime subgroup and P' be the prime subgroup of V determined by A(P);
P ' = {veV:v(5) = 0, for all 5eA(P)}. Suppose that veV+\P. Then, for some 5eM0,
Vb $ P. Thus MunA(P) # 0. Hence, if ve(P')+, then veP+. Conversely, let veP+ and
5 e Mv. Define wd e F as follows:

f«#) if y = 5,

[0 otherwise.

Then 0 =̂  us ^ v and so u3ePnV}. Since Fa is isomorphic with a subgroup of the additive
group of real numbers, we must have V} £ P. HenceMrnA(P) = 0andu(<5) = 0,forall<5eA(P).
Thusi)e(P')+ and P = P' .
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If A is a convex totally ordered subset of F which is unbounded above and A' = A(P(A)),
then, in a similar manner one can show that A = A'. Thus the mappings P-*A(P) and
A -»P(A) are inverse mappings, The final assertion of the lemma then follows easily.

To identify the compatible tight Riesz orders on V, consider any expression of the form
T~ V+\[]{Pf '• ' 6 J}» where {P,: iel} is a family of pairwise incomparable prime subgroups.
If | /1 = 1, then we also require that Pt be a proper prime subgroup. Since F is of width at
most n, it follows from Lemma 5.1 that / is finite and that | / | ^ n. Then necessarily T # 0.
Let / = {1, 2, . . . , k}, where 1 ^ k ^ n, and let A( =A(/'I), in the notation of Lemma 5.1.
Since the Z5, are pairwise incomparable, we must have, for each 7, that Aj\\J {Af: / #7} ^ 0.
We shall write A'} = Ay\U(A,: i #7} . Then A] # 0, for allj. That T satisfies J ( l ) follows
immediately from its description, and T satisfies r(4), since Kis abelian.

LEMMA 5.2. The following statements are equivalent:

(1) T satisfies T(2);
(2) 5 minimal in A, for some Ae {Af: iel}, implies that Gd is dense.

Proof. Let (1) hold and let <5 be minimal in A. Then 8 e A'. For each Aj # A let 5j e A).
Now suppose that Gs is not dense. Then we may take Gd to be the additive group of integers.
For j such that A; =A A, let a,- be any strictly positive element of Gfr Let ye V be the element
defined as follows:

Since 8, 8jsMv, we have that MunAf # 0, for all /, and hence veT. However, by considering
the (5th component of v it is clear that there do not exist x,yeT with x+y = v. Thus 7\2) is
violated, contradicting our initial assumption. Hence Gs is dense and (1) implies (2).

Now suppose that (2) holds. Let te T, Ml = {8 : 8eM,nAi for some iel, and 8 is not
minimal in A,} and let M2 = {8 : <5eAf,nA, for some iel, and 8 is minimal in A,}. For each
1 such that AjnM! ^ 0, let <5(e A', be such that 8, < 8, where 8 is the unique element of M,r\Ah

and let E denote the set of such <5,'s. For 8eE, let a(8) be any strictly positive element of Gs.
For 8eM2, let a{8) be any element of G} such that 0 < a(<5) < t(8). Such an element exists,
since 8 minimal in A, implies by (2) that Gs is dense. Now let ae Y be such that

{ a(8), as denned above, if 8eEuM2,

0 otherwise.

Then a e T, t - a e T and t = (t - a) + a. Thus 7(2) is satisfied.

LEMMA 5.3. The following statements are equivalent:

(1) T satisfies J(3);
(2) for each i, At is a maximal (convex) totally ordered subset ofT.
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Proof. Suppose that (2) does not hold and that A,- is not maximal for some /. By Lemma
5.1, A, is unbounded above and is convex. Hence there exists a 5 such that 5 < A(. Let a be
a strictly positive element of Gd, and define ceKas follows:

{ a if y = 8,

0 otherwise.

Let te T. Then A.nM, ^ 0 and, if 8' is the unique element of AjOM,, then t(8') > 0. Then,
since 8 < 8', we have v < t. Thus (1) does not hold. Hence (1) implies (2).

Suppose that (2) holds and that 0 -< v e V. Let 8 e Mu. For each i e /, let 8j be chosen in
A'j so that Sj ^ 8 if 5 6 Ay. For each such <5y, let a(8J) be any strictly positive element of GSj

unless Sj = 8, in which case let a(8J) = v(8). Since each A( is maximal, either 8 is in Ay for some
j , so that Sj ^ 5, or 8 is not comparable with any <5y. Thus, if we define ae V by

(a(8) as defined above, if y = <5y for some;,

(_0 otherwise,

then 2v =£ a. Thus T(3) holds and (2) implies (1).

THEOREM 5.4. Let V = V(F, Gy), where T is of width at most «(« < oo) and each Gy is a
nontrivial subgroup of the additive group of real numbers. Let T £ V+. Then T is the strict
cone of a compatible tight Riesz order if and only if, for some nonempty set {A,: iel} of maximal
totally ordered subsets ofT such that, if 8 is a minimal element of some A,-, then Gs is dense, we
have T= {veVifor each i, v(5) > Ofor some d e A j .

Proof. Let T be such a strict cone. By Theorem 2.6, T= F+\U{P;
+ : iel}, for some

family of prime subgroups {Pt: iel}, and T =£0. Since F is of width at most n, we may
assume that / is finite and that the Pt are proper and incomparable. Let A, = A(P,), as defined
in Lemma 5.1. By Lemmas 5.1, 5.2, 5.3, each Af is a maximal totally ordered subset of F such
that Gd is dense if 8 is minimal in At. From Lemma 5.1 again, we have that T = V+\{J {P,+ :
iel} = {veV: for each i, v(8) > 0 for some <5eA;}.

Conversely, if T has the description given in the statement of the theorem, then T =
F+\(J{i' j

+ : iel}, where Pt = P(A.) is defined as in Lemma 5.1. By Lemmas 5.2 and 5.3, we
then have that T is the strict cone of a compatible tight Riesz order.

For A a maximal totally ordered subset of F, P(A) is a minimal prime subgroup of V, by
Lemma 5.1. Thus, for /-groups of the type considered in this section and in contrast with the
general situation, in order that T= V+\{J{P? : iel}, where {Pf

+ : iel} is a family of prime
subgroups, should be the strict cone of a compatible tight Riesz order on V it is necessary for
the Pi to be minimal prime subgroups.

6. We conclude with two examples.

Example 1. First we show that it is possible for an /-group G to have compatible tight
Riesz orders and yet for there to be no minimal prime subgroup M such that T = G+\M+ is
the strict cone of a compatible tight Riesz order.
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Let G denote the group of functions from the set of nonnegative integers N into the additive
group Z of integers with the usual cardinal order, which we shall denote by = .̂ Then (G, =0
is an /-group.

Let U be any non-principal ultrafilter on N. For each neN,feG, let An(f) = {ieN:
—nS f(J) ^ n }. Let P = {fe G : for some n e N, An(f) eU}. Then P i sa non-minimal prime
subgroup of G. (/" = {fe G : A0(J) e U} is also a prime subgroup and P' is a proper subgroup
of P.) Let T=G+\P. We have immediately that T satisfies condition T(l) since P is a prime
subgroup, J(3) since G is archimedean and T(4) since G is abelian. It remains to show that
T(2) is satisfied. Let/e T. Define g, h as follows:

f[/(0/2] + l, for all /eJV such that / ( 0 # 0 ,
5(0 = \ n

[0 otherwise,
h =f-g,

where [x] denotes the integral part of the number JC. Let An = {i :f(i) ^ n}, Bn = {i: g{i) ̂  n)
and Cn = {J : h(i) ̂  «}. Then, since fe T= G+\P, we have that Ane U for all neN, and, in
order to show that g,heT, it is necessary to show that Bn, Cne U, for all n. Consider n ̂  2.
For ieA2n-2, we have that

/(i) ^ 2«-2

and so

Hence [ / (0 /2 ]^n- l and

= 1/(0/2] +

Thusy42n_2 s 5 n . Since/42n_2e 17and t/is an ultrafilter, 5net/. Since 5 2 S 5 0 and 5 2 £ J?j,
we have that Bne U, for all neN. Thus j e l . In a similar way one shows that heT. Hence
/ = h+geT+ T and T satisfies condition T(2). Thus Tis the strict cone of a compatible tight
Riesz order.

Now let M denote the function such that u(i) = 1, for all i. Then it is easy to see that, for
any minimal prime subgroup M, M+u covers M in (R(M), = )̂. Consequently, for any
minimal prime subgroup M,T = G+\M+ cannot satisfy condition T(2).

Note however that, since P covers P' in ^(G, =0 and P' is a minimal prime subgroup, P
is minimal with respect to the property that G+\P+ is the strict cone of a compatible tight
Riesz order on G.

Example 2. This example demonstrates that a dense /-group need not possess a compatible
tight Riesz order. This example was considered by Redfield in a different context in [10].

Let H be the /-subgroup of the /-group (G, =̂ ) in Example 1 consisting of those functions
f:N-*Z for which there is a positive integer n (dependent on/) such that f(i) =/(/+«), for
all ieN. Then H is dense. To see this, let/eH+, f+ 0, and suppose that/(O =/(»+«), for
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all / G N. Define g as follows: For any m e N with m = rn+s for some nonnegative integers r,
s such that 0 ^ s < n, let

{/(s) = /(m) if r is even,

0 if r is odd.
Then clearly 0<g<f.

Suppose that T is the strict cone of a compatible tight Riesz order. Then, by Theorem 2.6,
H+\T= \J{Sj '-jsl}, where, for each jel, Sj is the cone of a prime subgroup of H. Let « e / /
be such that u(i) = 1, for all ieN.

If u$ T, then ueSp for some jel. But u is a strong unit in H, since all the functions in
H are bounded functions, and so H+ £ 5y. But then T = 0, a contradiction.

Hence «e Tand so, by T(2), there exist elements ul>u2, -..in H such that

M > «! > M2 > • • • > 0.

Clearly (w—Mj) A «! = 0 . Hence, for anyjel, either u—u1eSj or uleSJ. ButM>M! implies
that u—Ui > 0, that is, that u — uteT. Hence u — ui$Sj and so u1eSj. But then Uj >• 0, a

contradiction. Hence there is no compatible tight Riesz order on H.
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