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Abstract
Let X be a toric Calabi-Yau 3-fold and let 𝐿 ⊂ 𝑋 be an Aganagic-Vafa outer brane. We prove two versions of open
WDVV equations for the open Gromov-Witten theory of (𝑋, 𝐿). The first version of the open WDVV equation leads
to the construction of a semi-simple (formal) Frobenius manifold, and the second version leads to the construction
of a flat (formal) F-manifold.
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1. Introduction

1.1. Historical background and motivation

1.1.1. WDVV equations and Frobenius manifolds
The Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation is a system of non-linear partial differential
equations for one function, depending on a finite number of variables. One of the most important
applications of the WDVV equation is the study of the quantum cohomology of a smooth projective
variety X over C. Let {𝑇𝑖}𝑚𝑖=1 be a basis of 𝐻∗(X )1 and 𝑡1, . . . , 𝑡𝑚 be the corresponding coordinates. Let

𝑔𝑖 𝑗 = (𝑇𝑖 , 𝑇𝑗 )X =
∫
X
𝑇𝑖 ∪ 𝑇𝑗

1In this paper, 𝐻 ∗ (−) takes C-coefficients unless otherwise specified.
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and (𝑔𝑖 𝑗 ) = (𝑔𝑖 𝑗 )
−1. Let 𝐹X

0 be the generating function of genus-zero Gromov-Witten invariants of X
which depends on the variables 𝑡1, . . . , 𝑡𝑚. The following theorem is the WDVV equation in Gromov-
Witten theory, first proved in [39, 41].

Theorem 1.1 [39, 41]. For any 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚}, the following WDVV equation holds:

𝜕3𝐹X
0

𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝜈
· 𝑔𝜈𝜇 ·

𝜕3𝐹X
0

𝜕𝑡𝜇𝜕𝑡𝑘𝜕𝑡𝑙
=

𝜕3𝐹X
0

𝜕𝑡 𝑗𝜕𝑡𝑘𝜕𝑡𝜈
· 𝑔𝜈𝜇 ·

𝜕3𝐹X
0

𝜕𝑡𝜇𝜕𝑡𝑖𝜕𝑡𝑙
.

The importance of the WDVV equation is that it implies the associativity of the quantum product ★𝑡
defined by

(𝑇𝑖 ★𝑡 𝑇𝑗 , 𝑇𝑘 )X =
𝜕3𝐹X

0
𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝑘

for 𝑖, 𝑗 ∈ {1, . . . , 𝑚}. The associativity of the quantum product has many important applications. A
typical example is the simple, recursive formula given by Kontsevich and Manin [29] that calculates the
Gromov-Witten invariants of P2. The geometric insight behind the formula is a splitting principle which
is captured by the associativity of the quantum product. The WDVV equation and Kontsevich-Manin
axioms were then used by Göttsche and Pandharipande [21] to give a set of formulae that recursively
compute the Gromov-Witten invariants of P2

𝑟 , the blowup of P2 at r points.
Moreover, the quantum product determines the structure of a Frobenius manifold.

Definition 1.2. A complex Frobenius manifold consists of the data (𝑀, 𝑔, 𝐴, 1) where

1. M is a complex manifold of dimension m;
2. g is a flat holomorphic metric on the tangent bundle T𝑀 ;
3. A is a holomorphic tensor

𝐴 : T𝑀 ⊗ T𝑀 ⊗ T𝑀 → O𝑀 ,

where O𝑀 is the sheaf of holomorphic functions on M.
4. 1 is a holomorphic vector field on M.

The above data are required to satisfy the following conditions.

1. (Potentiality) M is covered by open sets U each equipped with a commuting basis of 𝑔−flat holo-
morphic vector fields,

𝑋1, . . . , 𝑋𝑚 ∈ T𝑀 (𝑈)

and a holomorphic potential function 𝐹 ∈ O𝑈 (𝑈) such that

𝐴(𝑋𝑖 , 𝑋 𝑗 , 𝑋𝑘 ) = 𝑋𝑖𝑋 𝑗𝑋𝑘 (𝐹).

2. (Associativity) Define a commutative product ★ on T𝑀 by

𝑔(𝑋 ★𝑌, 𝑍) = 𝐴(𝑋,𝑌, 𝑍),

where 𝑋,𝑌, 𝑍 are holomorphic vector fields. Then we require that ★ is associative.
3. (Unit) 1 is 𝑔−flat and is a unit for the product ★.

The structure of Frobenius manifolds appears in different areas of mathematics including the sin-
gularity theory and curve counting theories in algebraic geometry (Gromov-Witten theory, Fan-Jarvis-
Ruan-Witten theory). A systematic study of Frobenius manifolds was first done by Dubrovin [11, 12].
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Again, the associativity of the product ★ is equivalent to the fact that the potential function F in Defini-
tion 1.2 satisfies the WDVV equation in Theorem 1.1 by replacing 𝜕

𝜕𝑡𝑖
by 𝑋𝑖 . Let ∇ be the Levi-Civita

connection corresponding to the metric g. For 𝑧 ∈ P1, define the Dubrovin connection ∇𝑧 as

∇𝑧
𝑋 (𝑌 ) = ∇𝑋 (𝑌 ) −

1
𝑧
𝑋 ★𝑌.

Then it is easy to see that the associativity of ★ is equivalent to the flatness of ∇𝑧 and that the
commutativity of ★ is equivalent to the fact that ∇𝑧 is symmetric.

In the case of quantum cohomology, suppose that the genus-zero Gromov-Witten potential 𝐹X
0 is

convergent in a neighborhood U of the origin. One may take M to be U and the potential function F to
be 𝐹X

0 in Definition 1.2. Moreover, let the metric g be given by the Poincaré pairing on 𝐻∗(X ) and 1
be the identity in 𝐻∗(X ). Then one obtains a Frobenius manifold. In general, the genus-zero Gromov-
Witten potential 𝐹X

0 is not convergent. Then one can replace the above formalism by considering formal
Frobenius manifolds (see [35, 30]). Specifically, one can replace the complex manifold M by the formal
scheme �̂� := Spec(ΛX	𝑡1, . . . , 𝑡𝑚
) over the base ring ΛX which is the Novikov ring of X . Then one
may view 𝐹X

0 as a regular function on �̂� and obtain a formal Frobenius manifold. See Section 4 for
additional details, including definitions of formal Frobenius manifolds over general base rings.

1.1.2. Open WDVV equations and F-manifolds
The open WDVV equation is a system of non-linear partial differential equations that extends the WDVV
equation by introducing an additional variable 𝑡𝑜 for the open sector and an additional potential function
𝐹𝑜 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜) called the open potential function. One of the most important motivations to introduce
the open WDVV equation is to study open Gromov-Witten theory. In [42, 26, 43], open Gromov-Witten
invariants of (X ,L) are studied for certain symplectic manifolds X and Lagrangian submanifolds
L ⊂ X . In these cases, one can introduce the disk potential 𝐹X ,L

0,1 which is the generating function of
disk Gromov-Witten invariants of (X ,L). As before, let {𝑇𝑖}𝑚𝑖=1 be a basis of 𝐻∗(X ) and 𝑡1, . . . , 𝑡𝑚 be
the corresponding coordinates. We still consider the Poincaré pairing 𝑔𝑖 𝑗 = (𝑇𝑖 , 𝑇𝑗 )X =

∫
X 𝑇𝑖 ∪ 𝑇𝑗 and

let (𝑔𝑖 𝑗 ) = (𝑔𝑖 𝑗 )
−1. Let 𝐹X

0 be the generating function of genus-zero Gromov-Witten invariants of X ,
which depends on the variables 𝑡1, . . . , 𝑡𝑚 but is independent of the additional variable 𝑡𝑜. On the other
hand, the disk potential 𝐹X ,L

0,1 depends on 𝑡1, . . . , 𝑡𝑚 as well as 𝑡𝑜. The variable 𝑡𝑜 encodes the point-
like insertions from the boundary marked points of the domain disk (see [26, 43] for more details). The
following open WDVV equation is proved in [26, 43].

Theorem 1.3 [26, 43]. For any 𝑖, 𝑗 , 𝑘 ∈ {1, . . . , 𝑚}, the following open WDVV equation holds:

𝜕3𝐹X
0

𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝜇
𝑔𝜇𝜈

𝜕2𝐹X ,L
0,1

𝜕𝑡𝜈𝜕𝑡𝑘
+
𝜕2𝐹X ,L

0,1

𝜕𝑡𝑖𝜕𝑡 𝑗

𝜕2𝐹X ,L
0,1

𝜕𝑡𝑜𝜕𝑡𝑘
=

𝜕3𝐹X
0

𝜕𝑡𝑘𝜕𝑡 𝑗𝜕𝑡𝜇
𝑔𝜇𝜈

𝜕2𝐹X ,L
0,1

𝜕𝑡𝜈𝜕𝑡𝑖
+
𝜕2𝐹X ,L

0,1

𝜕𝑡𝑘𝜕𝑡 𝑗

𝜕2𝐹X ,L
0,1

𝜕𝑡𝑜𝜕𝑡𝑖
,

𝜕3𝐹X
0

𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝜇
𝑔𝜇𝜈

𝜕2𝐹X ,L
0,1

𝜕𝑡𝜈𝜕𝑡𝑜
+
𝜕2𝐹X ,L

0,1

𝜕𝑡𝑖𝜕𝑡 𝑗

𝜕2𝐹X ,L
0,1

(𝜕𝑡𝑜)2 =
𝜕2𝐹X ,L

0,1

𝜕𝑡𝑜𝜕𝑡 𝑗

𝜕2𝐹X ,L
0,1

𝜕𝑡𝑜𝜕𝑡𝑖
.

The open WDVV equation has also been studied in [40, 1, 7, 8, 4, 10, 3].
The natural structure that captures the open WDVV equation is that of a flat F-manifold (see, for

example, [24, 35, 20, 36, 3]), a generalization of a Frobenius manifold.

Definition 1.4. A flat complex F-manifold consists of the data (𝑀,∇, ★, 1) where

1. M is a complex manifold of dimension 𝑚 + 1,
2. ∇ is a holomorphic connection on the tangent bundle T𝑀 ,
3. (T𝑀

��
𝑝
, ★) defines an algebra structure on each tangent space, analytically depending on the point

𝑝 ∈ 𝑀 ,
4. 1 is a ∇-flat vector field which is a unit for ★.
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The above data satisfy the condition that the connection ∇𝑧 := ∇ − 1
𝑧★ is flat and symmetric for any

𝑧 ∈ P1.

The structure of F-manifolds appears in different areas of mathematics including the open Gromov-
Witten theory, Painlevé transcendents, and reflection groups. Again, the associativity of★ is equivalent to
the flatness of∇𝑧 and that the commutativity of★ is equivalent to the fact that∇𝑧 is symmetric. Moreover,
if one chooses flat coordinates 𝑡1, . . . , 𝑡𝑚+1 for the connection ∇, then it is easy to see that locally there
exist holomorphic functions 𝐹𝑖 (𝑡1, . . . , 𝑡𝑚+1), 𝑖 = 1, . . . , 𝑚 + 1, such that the second derivatives

𝑐𝑖𝑗𝑘 :=
𝜕2𝐹𝑖

𝜕𝑡 𝑗𝜕𝑡𝑘

are the structure constants of the algebra (T𝑀
��
𝑝
, ★):

𝜕

𝜕𝑡 𝑗
★

𝜕

𝜕𝑡𝑘
= 𝑐𝑖𝑗𝑘

𝜕

𝜕𝑡𝑖
.

Then the associativity of ★ is equivalent to the equation

𝜕2𝐹𝑖

𝜕𝑡 𝑗𝜕𝑡𝜇
𝜕2𝐹𝜇

𝜕𝑡𝑘𝜕𝑡𝑙
=

𝜕2𝐹𝑖

𝜕𝑡𝑘𝜕𝑡𝜇
𝜕2𝐹𝜇

𝜕𝑡 𝑗𝜕𝑡𝑙
(1)

for 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚 + 1}. The (𝑚 + 1)−tuple 𝐹 = (𝐹1, . . . , 𝐹𝑚+1) is called the vector potential for
the F-manifold M. In the special case when M is a Frobenius manifold with potential F, and assuming
that 𝑔 = Id for simplicity, the vector potential is given by 𝐹 = ( 𝜕𝐹

𝜕𝑡1 , . . . ,
𝜕𝐹

𝜕𝑡𝑚+1 ).
In the case of the open Gromov-Witten theory of (X ,L) with point-like boundary insertions, one

can construct a flat F-manifold as follows. First, we can choose {𝑇𝑖}
𝑚
𝑖=1 such that 𝑔 = Id. Let ∇ be the

connection under which 𝜕
𝜕𝑡1 , . . . ,

𝜕
𝜕𝑡𝑚 ,

𝜕
𝜕𝑡𝑜 are flat. Finally, define the vector potential by

𝐹 := (
𝜕𝐹X

0
𝜕𝑡1

, . . . ,
𝜕𝐹X

0
𝜕𝑡𝑚

, 𝐹X ,L
0,1 ).

In the case when 𝐹 is convergent, we obtain a complex F-manifold of dimension 𝑚 + 1. Equation (1)
is obtained by the open and closed WDVV equations (Theorems 1.1 and 1.3). In general, the vector
potential 𝐹 is not convergent, and one can construct a formal F-manifold as in the case of the quantum
cohomology.

1.1.3. Open WDVV equations for toric Calabi-Yau 3-folds
In this paper, we study the open WDVV equation for (𝑋, 𝐿) where X is a toric Calabi-Yau 3-fold and
𝐿 ⊂ 𝑋 is an outer Aganagic-Vafa brane. We first obtain a collection of non-linear partial differential
equations (Proposition 4.4) which involve both the generating function 𝐹𝑋,𝑇 ′

0 of genus-zero equivariant
Gromov-Witten invariants of X and the generating function 𝐹

𝑋, (𝐿, 𝑓 )
0,1 of equivariant disk Gromov-Witten

invariants of (𝑋, 𝐿). We will package these equations in two different ways to obtain two versions of
the open WDVV equation. The first version leads to the construction of a semi-simple formal Frobenius
manifold, and the second version leads to a flat formal F-manifold, both exhibiting the recursive
structures of the open and closed Gromov-Witten theory of (𝑋, 𝐿).

The key technique we use to derive the open WDVV equation is the open/closed correspondence
[33, 34] which relates the open Gromov-Witten theory of (𝑋, 𝐿) and the closed Gromov-Witten theory
of a corresponding toric Calabi-Yau 4-fold 𝑋 . Based on the original conjectures of Mayr [38] in physics,
the mathematical development of the correspondence emerges from studies of correspondences among
different types (open, relative/log, local) of Gromov-Witten invariants in the literature [31, 13, 16, 5,
23]. Under this correspondence, we may recover both 𝐹

𝑋, (𝐿, 𝑓 )
0,1 and 𝐹𝑋,𝑇 ′

0 from the generating function
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𝐹𝑋,𝑇 ′

0 of genus-zero equivariant Gromov-Witten invariants of 𝑋 . The open WDVV equation for (𝑋, 𝐿)
is then a consequence of the usual WDVV equation for 𝑋 . Recently, the open/closed correspondence
has also been applied to study the integrality properties of Gromov-Witten invariants of (𝑋, 𝐿) and 𝑋
(in terms of BPS or Gopakumar-Vafa invariants) [44]. The correspondence has also been studied on the
B-model side of mirror symmetry [34] and extended to quintic 3-folds [2].

We now discuss our main results and techniques in more detail.

1.2. Statement of the main results

Let X be a smooth toric Calabi-Yau 3-fold and 𝑇 � (C∗)3 be the algebraic 3-torus embedded in X
as a dense open subset. Let 𝑇 ′ � (C∗)2 be the Calabi-Yau 2-subtorus of T which acts trivially on
the canonical bundle of X. Let 𝐿 ⊂ 𝑋 be an Aganagic-Vafa outer brane in X which is a Lagrangian
submanifold diffeomorphic to 𝑆1 × C. It intersects a unique T-invariant line 𝑙 � C in X. Moreover, L is
invariant under the action of the maximal compact subtorus𝑇 ′

R
� 𝑈 (1)2 of𝑇 ′. We further take an integer

f called the framing on the Aganagic-Vafa brane L, and construct a 1-dimensional subtorus 𝑇 𝑓 ⊂ 𝑇 ′.
Under the open/closed correspondence, the closed geometry corresponding to the open geometry

(𝑋, 𝐿, 𝑓 ) is a smooth toric Calabi-Yau 4-fold 𝑋 that takes the form

𝑋 = Tot(O𝑋�𝐷 (−𝐷)),

where 𝑋 � 𝐷 is a toric partial compactification of X given by adding an additional toric divisor D. In
𝑋 � 𝐷, the T-invariant line 𝑙 � C that L intersects is compactified by an additional T-fixed point into a
P

1 whose normal bundle is isomorphic to OP1 ( 𝑓 ) ⊕ OP1 (− 𝑓 − 1). There is an inclusion

𝑋 → 𝑋 � 𝐷 → 𝑋.

Let 𝑇 � (C∗)4 be the algebraic 4-torus of 𝑋 and 𝑇 ′ � (C∗)3 be the Calabi-Yau 3-subtorus of 𝑇 , which
contains 𝑇 ′ as a subtorus. We take the following notations for the equivariant parameters of the tori:

𝑅𝑇 ′ := 𝐻∗
𝑇 ′ (pt) = C[u1, u2, u4], 𝑆𝑇 ′ := C(u1, u2, u4),

𝑅𝑇 ′ := 𝐻∗
𝑇 ′ (pt) = C[u1, u2], 𝑆𝑇 ′ := C(u1, u2),

𝑅𝑇𝑓 := 𝐻∗
𝑇𝑓

(pt) = C[u1], 𝑆𝑇𝑓 := C(u1).

Let 𝑝1, . . . , 𝑝𝑚 be a fixed ordering of the 𝑇 ′-fixed points of X and 𝑝1, . . . , 𝑝𝑚 denote the correspond-
ing 𝑇 ′-fixed points of 𝑋 . We denote the additional 𝑇 ′-fixed point of 𝑋 by 𝑝𝑚+1. We consider the basis
{𝜙1, . . . , 𝜙𝑚} of 𝐻∗

𝑇 ′ (𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ defined by the fixed points as

𝜙𝑖 :=
[𝑝𝑖]

𝑒𝑇 ′ (𝑇𝑝𝑖𝑋)
,

which forms a canonical basis of the semi-simple Frobenius algebra

(𝐻∗
𝑇 ′ (𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ ,∪, (−,−)𝑋,𝑇 ′ ),

where ∪ is the cup product and (−,−)𝑋,𝑇 ′ is the 𝑇 ′-equivariant Poincaré pairing on X. Similarly, we
define the basis {𝜙1, . . . , 𝜙𝑚, 𝜙𝑚+1} of 𝐻∗

𝑇 ′
(𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ as

𝜙𝑖 :=
[𝑝𝑖]

𝑒𝑇 ′ (𝑇𝑝𝑖𝑋)
,
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which forms a canonical basis of the semi-simple Frobenius algebra

(𝐻∗
𝑇 ′
(𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ ,∪, (−,−)𝑋,𝑇 ′ ).

Let 𝑡1, . . . , 𝑡𝑚, 𝑡𝑚+1 be the coordinates corresponding to the basis {𝜙1, . . . , 𝜙𝑚, 𝜙𝑚+1}. Under the cor-
respondence between {𝜙1, . . . , 𝜙𝑚} and {𝜙1, . . . , 𝜙𝑚}, we also view 𝑡1, . . . , 𝑡𝑚 as coordinates corre-
sponding to the basis {𝜙1, . . . , 𝜙𝑚}.

We will use the above bases to define the following generating functions of Gromov-Witten invariants
over suitable Novikov rings:

◦ 𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚) – the generating function of genus-zero 𝑇 ′-equivariant closed Gromov-Witten
invariants of X;

◦ 𝐹
𝑋, (𝐿, 𝑓 )
0,1 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜) – the generating function of genus-zero 𝑇 𝑓 -equivariant disk invariants of

(𝑋, 𝐿) with framing f, depending on an additional formal variable 𝑡𝑜 for the open sector;
◦ 𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑚+1) – the generating function of genus-zero𝑇 ′-equivariant closed Gromov-Witten
invariants of 𝑋 .

See Section 3 for detailed definitions. In particular, we will see that the dependence of 𝐹𝑋, (𝐿, 𝑓 )
0,1 on the

additional open variable 𝑡𝑜 is captured by terms of form (𝑒𝑡
𝑜X0)

𝑑 , 𝑑 ∈ Z>0, where X0 is a Novikov
variable for the relative curve class. The term X = 𝑒𝑡

𝑜X0 is viewed as encoding the winding number d
of the disk invariants.

The open/closed correspondence (see Theorem 3.1) retrieves both 𝐹𝑋,𝑇 ′

0 and 𝐹
𝑋, (𝐿, 𝑓 )
0,1 from 𝐹𝑋,𝑇 ′

0

under a suitable change of coordinates and Novikov variables. The WDVV equation for 𝐹𝑋,𝑇 ′

0 (Theorem
1.1) then gives rise to a collection of non-linear partial differential equations involving 𝐹𝑋,𝑇 ′

0 and
𝐹
𝑋, (𝐿, 𝑓 )
0,1 (see Proposition 4.4). This collection recovers the WDVV equation for 𝐹𝑋,𝑇 ′

0 , and contains
equations analogous to the open WDVV equation obtained by [26, 43] (Theorem 1.3). As our main
results, we use this collection of equations to construct a semi-simple formal Frobenius manifold and a
flat formal F-manifold to package the structures of the open and closed Gromov-Witten theory of (𝑋, 𝐿).

1.2.1. A formal Frobenius manifold
The first aspect of our constructions is a formal Frobenius manifold (Section 5.1). Consider the formal
scheme

�̂�1 := Spec(Λ𝑇𝑓

𝑋,𝐿 [𝜖]	𝑡
1, . . . , 𝑡𝑚, 𝑡𝑜
)

over the base ring

Λ
𝑇𝑓

𝑋,𝐿 [𝜖] := Λ
𝑇𝑓

𝑋,𝐿 ⊗ C[𝜖]/〈𝜖2〉,

where Λ
𝑇𝑓

𝑋,𝐿 is the 𝑇 𝑓 -equivariant Novikov ring of (𝑋, 𝐿) and 𝜖 is a nilpotent variable with 𝜖2 = 0.

We will define a pairing
(
𝜕
𝜕𝑡𝑖

, 𝜕
𝜕𝑡 𝑗

)
= ℎ𝑖 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑚, 𝑜, on the tangent bundle T�̂�1

of �̂�1 which
is spanned by vector fields 𝜕

𝜕𝑡1 , . . . ,
𝜕

𝜕𝑡𝑚 ,
𝜕
𝜕𝑡𝑜 . Let (ℎ𝑖 𝑗 ) = (ℎ𝑖 𝑗 )

−1. Moreover, we define the potential
function F by

𝐹 := −
u1
6
(𝑡𝑜)3 + 𝐹𝑋,𝑇 ′

0

��
u2− 𝑓 u1=0 + 𝜖

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 ,

where the weight restriction u2 − 𝑓 u1 = 0 corresponds to the inclusion 𝑇 𝑓 ⊂ 𝑇 ′ and the symbol
∫

represents taking the antiderivative with respect to 𝑡𝑜. We show that F satisfies the following WDVV
equation.
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Proposition 1.5 (See Proposition 5.3). For any 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚, 𝑜}, the following WDVV equation
holds:

𝜕3𝐹

𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝜈
· ℎ𝜈𝜇 ·

𝜕3𝐹

𝜕𝑡𝜇𝜕𝑡𝑘𝜕𝑡𝑙
=

𝜕3𝐹

𝜕𝑡 𝑗𝜕𝑡𝑘𝜕𝑡𝜈
· ℎ𝜈𝜇 ·

𝜕3𝐹

𝜕𝑡𝜇𝜕𝑡𝑖𝜕𝑡𝑙
.

In particular, the potential F defines a product ★𝑡 on T�̂�1
that is compatible with the metric h and

associative. We have the following main structural result.

Theorem 1.6 (See Theorems 5.5, 5.6). The tuple (�̂�1, 𝐹, (−,−)) is a semi-simple formal Frobenius
manifold over Λ𝑇𝑓

𝑋,𝐿 [𝜖].

Remark 1.7. One way to interpret the variable 𝜖 is the following. Consider �̂�1 as a formal supermanifold
over Λ𝑇𝑓

𝑋,𝐿 with local coordinates 𝑡1, . . . , 𝑡𝑚, 𝑡𝑜, 𝜖 where 𝑡1, . . . , 𝑡𝑚, 𝑡𝑜 are even coordinates and 𝜖 is an
odd coordinate (and hence, 𝜖2 = 0). Then the pairing h and the product structure ★𝑡 may be viewed
as defined on the subbundle of the tangent bundle spanned by the even vector fields 𝜕

𝜕𝑡1 , . . . ,
𝜕

𝜕𝑡𝑚 ,
𝜕
𝜕𝑡𝑜 .

The product ★𝑡 itself does not involve the odd vector field 𝜕
𝜕𝜖 . Rather, as remarked in, for example,

[37, Section 4.1], 𝜖 is regarded as an odd structural constant pulled back from the base Spec(Λ𝑇𝑓

𝑋,𝐿 [𝜖])

viewed also as a supermanifold over Λ𝑇𝑓

𝑋,𝐿 .

1.2.2. A flat formal F-manifold
The second aspect of our constructions is a flat formal F-manifold (Section 5.2). Consider the formal
scheme

�̂�2 := Spec(Λ𝑇𝑓

𝑋,𝐿	𝑡
1, . . . , 𝑡𝑚, 𝑡𝑜
)

over the base ring Λ
𝑇𝑓

𝑋,𝐿 , where as compared to �̂�1 above, the variable 𝜖 is dropped. Let ∇ be the flat
connection on the tangent bundle T�̂�2

of �̂�2 under which 𝜕
𝜕𝑡1 , . . . ,

𝜕
𝜕𝑡𝑚 ,

𝜕
𝜕𝑡𝑜 are flat. We define the vector

potential 𝐹 = (𝐹1, . . . , 𝐹𝑚, 𝐹𝑜) by

𝐹𝑖 := ℎ𝑖𝑖
𝜕

𝜕𝑡𝑖

(
𝐹𝑋,𝑇 ′

0

��
u2− 𝑓 u1=0 +

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1

��
𝑡𝑜=0

)
, 𝑖 = 1, . . . , 𝑚,

𝐹𝑜 := 𝐹
𝑋, (𝐿, 𝑓 )
0,1

��
𝑡𝑜=0.

Here, 𝑡𝑜 is still viewed as the variable for the ‘open state space’, while we should notice that each
component of 𝐹 is independent of 𝑡𝑜. We show that 𝐹 satisfies the following open WDVV equation.

Proposition 1.8 (See Proposition 5.9). For any 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚, 𝑜}, the following open WDVV
equation holds:

𝜕2𝐹 𝑗

𝜕𝑡𝑖𝜕𝑡𝜇
·
𝜕2𝐹𝜇

𝜕𝑡𝑘𝜕𝑡𝑙
=

𝜕2𝐹 𝑗

𝜕𝑡𝑘𝜕𝑡𝜇
·
𝜕2𝐹𝜇

𝜕𝑡𝑖𝜕𝑡𝑙
.

In particular, the vector potential 𝐹 defines a product structure★𝑡 on T�̂�2
that is associative. Analyzing

the structural constants and using that 𝐹 is independent of 𝑡𝑜, we show that★𝑡 does not admit an identity
field and 𝜕

𝜕𝑡𝑜 is nilpotent. We arrive at the following main structural result.
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Theorem 1.9 (See Theorem 5.11). The tuple (�̂�2,∇, ★𝑡 ) is a flat formal F-manifold without unit over
Λ
𝑇𝑓

𝑋,𝐿 in which the 𝑡𝑜-direction is nilpotent.

F-cohomological field theories without unit have been studied in [3, 9].

Remark 1.10. The situation here is in a sense opposite to that in Remark 1.7: in the Frobenius manifold
�̂�1, the variable 𝜖 appears in the potential F while 𝜕

𝜕𝜖 is not involved in the product★𝑡 ; in the F-manifold
�̂�2, the variable 𝑡𝑜 does not appear in 𝐹 while 𝜕

𝜕𝑡𝑜 is involved in★𝑡 . From a geometric point of view, we
may view the open variable 𝑡𝑜 as parameterizing a divisor-like insertion arising from the open sector. In
�̂�1, it contributes to the factor 𝑒𝑡𝑜X0 appearing in the 𝐹𝑋, (𝐿, 𝑓 )

0,1 -part of F via the ‘open divisor equation’.
However, in �̂�2, the vector potential 𝐹 defined by the restriction 𝑡𝑜 = 0 has no boundary insertions and
does not depend on 𝑡𝑜.

Despite the above differences, we will see that both structures �̂�1 and �̂�2 can be viewed as extensions
of the formal Frobenius manifold determined by 𝐹𝑋,𝑇 ′

0 ; see Remarks 5.7, 5.12.

1.3. Future works

1.3.1. Recursion for open Gromov-Witten invariants of toric Calabi-Yau 3-folds
In [29], Kontsevich and Manin proved that closed Gromov-Witten invariants can be recursively computed
from an initial set of known values. In particular, when X is Fano, this initial set of values is finite.
A typical example is the recursive formula that calculates the Gromov-Witten invariants of P2. This
theorem is proved via the WDVV equations for closed Gromov-Witten invariants.

In the study of open Gromov-Witten invariants, similar recursive formulas can be obtained via open
WDVV equations. In many cases [10, 19, 25, 26, 28, 43], open Gromov-Witten invariants have been
shown to be computable from a finite initial set of values. Later in [6], a more general recursive formula
is obtained based on a formal object called the Frobenius superpotential.

In our case, the open WDVV equations can be used to prove a recursive formula for open Gromov-
Witten invariants of toric Calabi-Yau 3-folds. Since we study equivariant Gromov-Witten theory and our
target spaces are Calabi-Yau, this recursive formula is more subtle and contains richer structures.

1.3.2. Open-closed map and variation of Hodge structures
In his ICM address, Kontsevich conjectured the homological mirror symmetry and moreover conjectured
that this homological mirror symmetry implies enumerative mirror symmetry. Ganatra-Perutz-Sheridan
[18] show that for certain Calabi-Yaus, whose variations of Hodge structures are of Hodge-Tate type,
the genus-zero Gromov-Witten invariants are indeed extractable from the Fukaya category. The strategy
is to show that the open-closed map [15, 17] respects the variation of Hodge structures.

In [27], the open-closed map is extended to a map from the relative cyclic homology to the relative
quantum homology whose definition is based on the open WDVV equations. In our case of toric Calabi-
Yau 3-folds, the open WDVV equations studied in this paper may be used to construct relative quantum
cohomology, which would further enable a study of the relative open-closed map and its compatibility
with variations of Hodge structures.

1.4. Outline of the paper

In Section 2, we review the open geometry of (𝑋, 𝐿) and the corresponding closed geometry of 𝑋 . We
will also study the equivariant cohomology of X and 𝑋 . In Section 3, we give the basic definitions of
open and closed Gromov-Witten invariants for X and 𝑋 , and then state the open/closed correspondence
in Section 3.3. In Section 4, we review the WDVV equation in closed Gromov-Witten theory and use the
specialization to 𝑋 to prove non-linear partial differential equations which involve 𝐹𝑋,𝑇 ′

0 and 𝐹
𝑋, (𝐿, 𝑓 )
0,1 .

Finally, in Section 5, we use these equations to establish the main results of the paper on the formal
Frobenius and F-manifold structures.
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2. Geometric setup

In this section, we review the geometry of toric Calabi-Yau 3-folds and Aganagic-Vafa branes. We then
review the geometry of the corresponding toric Calabi-Yau 4-folds. We refer to [13, 14, 33, 34] for
additional details. We work over C.

2.1. Notations for toric geometry

In this paper, we use the following notations for an r-dimensional smooth toric variety Z defined by a
fan Ξ in R𝑟 . The algebraic torus of Z is isomorphic to (C∗)𝑟 .

◦ For 𝑑 = 0, . . . , 𝑟 , let Ξ(𝑑) denote the set of d-dimensional cones in Ξ. For a cone 𝜎 ∈ Ξ(𝑑), let
𝑉 (𝜎) ⊆ 𝑍 denote the (C∗)𝑟 -orbit closure corresponding to 𝜎, which is a codimension-d closed
subvariety of Z.

◦ For a maximal cone 𝜎 ∈ Ξ(𝑟), let 𝑝𝜎 := 𝑉 (𝜎) denote the corresponding (C∗)𝑟 -fixed point.
◦ For a cone 𝜏 ∈ Ξ(𝑟 − 1), let 𝑙𝜏 := 𝑉 (𝜏) denote the corresponding (C∗)𝑟 -invariant line, which is

isomorphic to either C or P1. We set Ξ(𝑟 − 1)𝑐 := {𝜏 ∈ Ξ(𝑟 − 1) : 𝑙𝜏 � P1}.
◦ Let 𝐹 (Σ) := {(𝜏, 𝜎) ∈ Ξ(𝑟 − 1) × Ξ(𝑟) : 𝜏 ⊂ 𝜎} denote the set of flags in Ξ.

2.2. Open geometry

Let 𝑁 � Z3 be a lattice and 𝑀 := Hom(𝑁,Z) be the dual lattice. Let X be a smooth toric Calabi-Yau
3-fold specified by a finite fan Σ in 𝑁R := 𝑁 ⊗ R � R3. We assume that Σ(3) is non-empty and every
cone in Σ is a face of some 3-cone.

Let 𝑅 := |Σ(1) |. Let Σ(1) = {𝜌1, . . . , 𝜌𝑅} be a listing of the rays in Σ, and for each 𝑖 = 1, . . . , 𝑅 let
𝑏𝑖 ∈ 𝑁 be the primitive generator of 𝜌𝑖 . The Calabi-Yau condition on X is equivalent to the existence
of 𝑢3 ∈ 𝑀 such that 〈𝑢3, 𝑏𝑖〉 = 1 for all i, where 〈−,−〉 is the natural pairing between M and N. Let
𝑁 ′ := ker(𝑢3 : 𝑁 → Z) � Z2.

Let P be the cross-section of the support |Σ | of Σ in the hyperplane

{𝑣 ∈ 𝑁R : 〈𝑢3, 𝑣〉 = 1} � 𝑁 ′ ⊗ R � R2, (2)

which is a 2-dimensional lattice polytope with a triangulation induced by Σ. We assume that P is simple.
As in the setup of [33, Section 2.2], we do not assume that P is convex or equivalently X is semi-projective.
There is a toric partial compactification 𝑋 ⊆ 𝑋 ′ by a semi-projective smooth toric Calabi-Yau 3-fold 𝑋 ′

determined by a fan Σ′ which contains Σ as a subfan and satisfies Σ′(1) = Σ(1). The cross-section of
Σ′ with the hyperplane (2) is the convex hull 𝑃′ of P, and we have 𝑃′ ∩ 𝑁 = 𝑃 ∩ 𝑁 = {𝑏1, . . . , 𝑏𝑅}.

Let 𝑇 := 𝑁 ⊗ C∗ � (C∗)3 be the algebraic torus of X, whose character lattice is Hom(𝑇,C∗) � 𝑀 .
We consider a 2-subtorus 𝑇 ′ := ker(𝑢3 : 𝑇 → C∗) = 𝑁 ′ ⊗ C∗ � (C∗)2. The fixed points and invariant
lines of X under the 𝑇 ′-action are the same as those under the T-action.

Let 𝐿 ⊂ 𝑋 be an Aganagic-Vafa brane in X, which is a Lagrangian submanifold diffeomorphic to
𝑆1 × C. We refer to [13, Section 2.4], [33, Section 2.2] for detailed definitions. The brane L is invariant
under the action of the maximal compact subtorus 𝑇 ′

R
� 𝑈 (1)2 of 𝑇 ′. Moreover, it intersects a unique

T-invariant line 𝑙𝜏0 in X, where 𝜏0 ∈ Σ(2). Given a semi-projective toric partial compactification 𝑋 ′ of
X as above, L can be viewed as an Aganagic-Vafa brane in 𝑋 ′, intersecting the T-invariant line in 𝑋 ′

corresponding to 𝜏0 ∈ Σ′(2). As in [33, Assumption 2.3], we make the following assumption on L.

Assumption 2.1. We assume that L is an outer brane in the partial compactification 𝑋 ′, that is, 𝜏0 ∈
Σ′(2) \ Σ′(2)𝑐 .

Note that this assumption does not depend on the choice of 𝑋 ′. In particular, 𝜏0 ∈ Σ(2) \ Σ(2)𝑐 and
L is also an outer brane in X. Let 𝜎0 ∈ Σ(3) be the unique 3-cone containing 𝜏0 as a face.
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For any cone 𝜎 in Σ, we set

𝐼 ′𝜎 := {𝑖 ∈ {1, . . . , 𝑅} : 𝜌𝑖 ⊆ 𝜎}, 𝐼𝜎 := {1, . . . , 𝑅} \ 𝐼 ′𝜎 .

We assume without loss of generality that

𝐼 ′𝜏0 = {2, 3}, 𝐼 ′𝜎0 = {1, 2, 3}

with 𝑏1, 𝑏2, 𝑏3 appearing in P in a counterclockwise order. Such labeling determines a unique way to
complete 𝑢3 into a Z-basis {𝑢1, 𝑢2, 𝑢3} of M such that under the dual Z-basis {𝑣1, 𝑣2, 𝑣3} of N, we have
the coordinates

𝑏1 = (1, 0, 1), 𝑏2 = (0, 1, 1), 𝑏3 = (0, 0, 1).

For 𝑖 = 1, . . . , 𝑅, we write (𝑚𝑖 , 𝑛𝑖 , 1) for the coordinate of 𝑏𝑖 ∈ 𝑁 under the basis {𝑣1, 𝑣2, 𝑣3}.
Assumption 2.1 implies that 𝑚𝑖 ≥ 0 for all i.

Finally, let 𝑓 ∈ Z be a framing on the Aganagic-Vafa brane L. This determines a 1-subtorus 𝑇 𝑓 :=
ker(𝑢2 − 𝑓 𝑢1 : 𝑇 ′ → C∗) ⊂ 𝑇 ′ ⊂ 𝑇 . We take the following notations for the equivariant parameters of
the tori:

𝑅𝑇 := 𝐻∗
𝑇 (pt) = C[u1, u2, u3], 𝑆𝑇 := C(u1, u2, u3),

𝑅𝑇 ′ := 𝐻∗
𝑇 ′ (pt) = C[u1, u2], 𝑆𝑇 ′ := C(u1, u2),

𝑅𝑇𝑓 := 𝐻∗
𝑇𝑓

(pt) = C[u1], 𝑆𝑇𝑓 := C(u1).

Assumption 2.2. We assume that 𝑓 ∈ Z is generic with respect to X (i.e., avoiding a finite subset of Z
depending on X).2

2.3. Closed geometry

Under the open/closed correspondence [38, 33, 34], the closed geometry corresponding to the open
geometry (𝑋, 𝐿, 𝑓 ) is a smooth toric Calabi-Yau 4-fold 𝑋 that takes the form

𝑋 = Tot(O𝑋�𝐷 (−𝐷)),

where 𝑋 � 𝐷 is a toric partial compactification of X given by adding an additional toric divisor D
corresponding to the ray generated by (−1,− 𝑓 , 0) ∈ 𝑁 .3 In 𝑋 � 𝐷, the T-invariant line 𝑙𝜏0 � C that L
intersects is compactified by an additional T-fixed point into a P1 whose normal bundle is isomorphic
to OP1 ( 𝑓 ) ⊕ OP1 (− 𝑓 − 1). There is an inclusion

𝜄 : 𝑋 → 𝑋 � 𝐷 → 𝑋.

Let 𝑁 := 𝑁 ⊕ Z � Z4 and 𝑇 := 𝑁 ⊗ C∗ � (C∗)4. We view N as a sublattice of 𝑁 and let 𝑣4
be a generator of the additional Z-component. The toric geometry of 𝑋 can be described by a fan
Σ̃ ∈ 𝑁R := 𝑁 ⊗ R � R4 as follows. The rays of Σ̃ are given by

Σ̃(1) = { �̃�1, . . . , �̃�𝑅, �̃�𝑅+1, �̃�𝑅+2},

2We note in advance that this assumption is needed to ensure that the𝑇 ′-equivariant Poincaré pairing and genus-zero Gromov-
Witten potential of X have well-defined weight restrictions to u2 − 𝑓 u1 = 0, to be used in Section 4.4 onwards. This assumption
is not required for the open/closed correspondence [34] (Theorem 3.1) and is not the counterpart of [33, Assumption 3.3].

3This is the construction in [33] and is sufficient for the purpose of this paper. In [34], assuming that X is semi-projective, the
corresponding toric 4-fold can be further taken to be a semi-projective partial compactification of 𝑋 which may be an orbifold.
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where under the basis {𝑣1, . . . , 𝑣4} of 𝑁 , the primitive generators �̃�𝑖 ∈ 𝑁 of the rays �̃�𝑖 , 𝑖 = 1, . . . , 𝑅+2,
have the following coordinates:

�̃�𝑖 = (𝑏𝑖 , 0) = (𝑚𝑖 , 𝑛𝑖 , 1, 0) for 𝑖 = 1, . . . , 𝑅,

�̃�𝑅+1 = (−1,− 𝑓 , 1, 1), �̃�𝑅+2 = (0, 0, 1, 1).

In 𝑋 = Tot(O𝑋�𝐷 (−𝐷)), the toric divisor 𝑉 ( �̃�𝑅+1) is the restriction of the line bundle O𝑋�𝐷 (−𝐷) to
D and 𝑉 ( �̃�𝑅+2) = 𝑋 � 𝐷 is the zero section.

We describe cones �̃� in Σ̃ by the index sets

𝐼 ′�̃� := {𝑖 ∈ {1, . . . , 𝑅 + 2} : �̃�𝑖 ⊆ �̃�}, 𝐼�̃� := {1, . . . , 𝑅 + 2} \ 𝐼 ′�̃� .

First, Σ̃ contains Σ as a subfan. Any cone 𝜎 ∈ Σ(𝑑), 𝑑 = 0, . . . , 3, can be viewed as a cone in Σ̃(𝑑) with
𝐼 ′𝜎 preserved, and there is a cone 𝜄(𝜎) ∈ Σ̃(𝑑 + 1) given by

𝐼 ′𝜄 (𝜎) = 𝐼 ′𝜎 � {𝑅 + 2}.

This induces an injective map 𝜄 : Σ(𝑑) → Σ̃(𝑑 + 1).4 For maximal cones in Σ̃, we have

Σ̃(4) = 𝜄(Σ(3)) � {�̃�0},

where the additional cone �̃�0 is characterized by

𝐼 ′�̃�0
= {2, 3, 𝑅 + 1, 𝑅 + 2}.

Note that �̃�0 is the only 4-cone that contains the ray �̃�𝑅+1. Moreover, the map 𝜄 : Σ(2) → Σ̃(3) restricts
to an injective map 𝜄 : Σ(2)𝑐 → Σ̃(3)𝑐 , and we have

Σ̃(3)𝑐 = 𝜄(Σ(2)𝑐) � {𝜄(𝜏0)}.

Indeed, the𝑇-invariant line 𝑙 𝜄 (𝜏0) � P
1 is the compactification of 𝑙𝜏0 � C ⊂ 𝑋 described at the beginning

of this subsection.
Let 𝑀 := Hom(𝑁,Z), which is the character lattice of the 4-torus 𝑇 , and {𝑢1, . . . , 𝑢4} be the basis

of 𝑀 dual to the basis {𝑣1, . . . , 𝑣4} of 𝑁 . Here, we abuse notations since 𝑢1, 𝑢2, 𝑢3 ∈ 𝑀 are natural
lifts of the corresponding elements of M defined before under the projection 𝑀 → 𝑀 . We consider a
3-subtorus 𝑇 ′ := ker(𝑢3 : 𝑇 → C∗) � (C∗)3 of 𝑇 , which contains 𝑇 ′ and 𝑇 𝑓 as subtori. The fixed points
and invariant lines of 𝑋 under the 𝑇 ′-action are the same as those under the 𝑇-action. We introduce the
following notations:

𝑅𝑇 := 𝐻∗
𝑇 (pt) = C[u1, u2, u3, u4], 𝑆𝑇 := C(u1, u2, u3, u4),

𝑅𝑇 ′ := 𝐻∗
𝑇 ′ (pt) = C[u1, u2, u4], 𝑆𝑇 ′ := C(u1, u2, u4).

2.4. Second homology and effective curve classes

The intersection of L with 𝑙𝜏0 � C in X is isomorphic to 𝑆1 and bounds a holomorphic disk B in 𝑙𝜏0 ,
oriented by the holomorphic structure of X. The disk B represents a class [𝐵] in 𝐻2(𝑋, 𝐿;Z), and its
boundary 𝜕𝐵 = 𝐿 ∩ 𝑙𝜏0 generates 𝐻1(𝐿;Z) � Z[𝜕𝐵]. We have a splitting

𝐻2(𝑋, 𝐿;Z) � 𝐻2 (𝑋;Z) ⊕ Z[𝐵] .

4We will abuse notations and use ‘ 𝜄’ to denote various inclusions maps.
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We introduce the following notations for the semigroups of effective classes:

𝐸 (𝑋) := NE(𝑋) ∩ 𝐻2(𝑋;Z),
𝐸 (𝑋, 𝐿) := 𝐸 (𝑋) ⊕ Z≥0 [𝐵] ⊂ 𝐻2 (𝑋, 𝐿;Z),

𝐸 (𝑋) := NE(𝑋) ∩ 𝐻2(𝑋;Z).
(3)

The inclusion 𝜄 : 𝑋 → 𝑋 induces an isomorphism

𝜄∗ : 𝐻2(𝑋, 𝐿;Z) → 𝐻2 (𝑋;Z), 𝛽 + 𝑑 [𝐵] ↦→ 𝜄∗(𝛽) + 𝑑 [𝑙 𝜄 (𝜏0) ]

which restricts to a semigroup isomorphism

𝜄∗ : 𝐸 (𝑋, 𝐿) � 𝐸 (𝑋).

We will thus use the coordinates (𝛽, 𝑑) ∈ 𝐸 (𝑋) ⊕ Z≥0 for both semigroups above. The pairing between
𝛽 = (𝛽, 𝑑) ∈ 𝐸 (𝑋) and the divisor class [𝑉 ( �̃�𝑅+1)] is

𝛽 · [𝑉 ( �̃�𝑅+1)] = 𝑑.

2.5. Flags and tangent weights at torus-fixed points

For a flag (𝜏, 𝜎) ∈ 𝐹 (Σ), let

w(𝜏, 𝜎) := 𝑐𝑇
′

1 (𝑇𝑝𝜎 𝑙𝜏) ∈ 𝐻2
𝑇 ′ (pt;Z)

be the weight of the 𝑇 ′-action on tangent space 𝑇𝑝𝜎 𝑙𝜏 of 𝑙𝜏 at 𝑝𝜎 . Similarly, for a flag (�̃�, �̃�) ∈ 𝐹 (Σ̃), let

w̃(�̃�, �̃�) := 𝑐𝑇
′

1 (𝑇𝑝�̃�
𝑙 �̃�) ∈ 𝐻2

𝑇 ′
(pt;Z).

The maps 𝜄 : Σ(𝑑) → Σ̃(𝑑 + 1) defined in Section 2.3 induce an injective map 𝜄 : 𝐹 (Σ) → 𝐹 (Σ̃),
(𝜏, 𝜎) ↦→ (𝜄(𝜏), 𝜄(𝜎)). We have

w̃(𝜄(𝜏), 𝜄(𝜎))
��
u4=0 = w(𝜏, 𝜎).

Each 4-cone 𝜄(𝜎) ∈ Σ̃(4) with 𝜎 ∈ Σ(3) ⊂ Σ̃(3) belongs to an additional flag (𝜎, 𝜄(𝜎)) ∈ 𝐹 (Σ̃). We
have

w̃(𝜎, 𝜄(𝜎)) = u4.

The additional 4-cone �̃�0 ∈ Σ̃(4) \ 𝜄(Σ(3)) belongs to the flags

(𝜄(𝜏0), �̃�0), (�̃�2, �̃�0), (�̃�3, �̃�0), (�̃�4, �̃�0) ∈ 𝐹 (Σ̃)

where the facets �̃�2, �̃�3, �̃�4 of �̃�0 are given by

𝐼 ′�̃�2
= {3, 𝑅 + 1, 𝑅 + 2}, 𝐼 ′�̃�3

= {2, 𝑅 + 1, 𝑅 + 2}, 𝐼 ′�̃�4
= {2, 3, 𝑅 + 1}.

The tangent weights are given by

w̃(𝜄(𝜏0), �̃�0) = −u1, w̃(�̃�2, �̃�0) = − 𝑓 u1 + u2, w̃(�̃�3, �̃�0) = 𝑓 u1 − u2 − u4, w̃(�̃�4, �̃�0) = u1 + u4.
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2.6. Equivariant cohomology and bases

We fix an ordering of the 𝑇 ′-fixed points of X by

𝑝1, . . . , 𝑝𝑚

and denote the corresponding 𝑇 ′-fixed points of 𝑋 by

𝑝1, . . . , 𝑝𝑚.

We denote the additional 𝑇 ′-fixed point 𝑝 �̃�0 of 𝑋 by 𝑝𝑚+1.
We consider the basis {𝜙1, . . . , 𝜙𝑚} of 𝐻∗

𝑇 ′ (𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ defined as

𝜙𝑖 :=
[𝑝𝑖]

𝑒𝑇 ′ (𝑇𝑝𝑖𝑋)
=

[𝑝𝑖]

Δ 𝑖,𝑇 ′ , Δ 𝑖,𝑇 ′
:= 𝑒𝑇 ′ (𝑇𝑝𝑖𝑋).

Then for 𝑖, 𝑗 = 1, . . . , 𝑚, we have

𝜙𝑖 ∪ 𝜙 𝑗 = 𝛿𝑖 𝑗𝜙𝑖 , (𝜙𝑖 , 𝜙 𝑗 )𝑋,𝑇 ′ =
𝛿𝑖 𝑗

Δ 𝑖,𝑇 ′ ,

where (−,−)𝑋,𝑇 ′ is the 𝑇 ′-equivariant Poincaré pairing on X. It follows that {𝜙1, . . . , 𝜙𝑚} is a canonical
basis of the semi-simple Frobenius algebra

(𝐻∗
𝑇 ′ (𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ ,∪, (−,−)𝑋,𝑇 ′ ).

Similarly, we define the basis {𝜙1, . . . , 𝜙𝑚, 𝜙𝑚+1} of 𝐻∗
𝑇 ′
(𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ as

𝜙𝑖 :=
[𝑝𝑖]

𝑒𝑇 ′ (𝑇𝑝𝑖𝑋)
=

[𝑝𝑖]

Δ 𝑖,𝑇 ′
, Δ 𝑖,𝑇 ′

:= 𝑒𝑇 ′ (𝑇𝑝𝑖𝑋).

Note that for any 𝑖, 𝑗 = 1, . . . , 𝑚, we have

𝜙𝑖
��
𝑝 𝑗

= 𝜙𝑖
��
𝑝 𝑗

= 𝛿𝑖 𝑗 , 𝜙𝑖
��
𝑝𝑚+1

= 0, (4)

and

u−1
4 Δ 𝑖,𝑇 ′ ��

u4=0 = Δ 𝑖,𝑇 ′
.

For 𝑖, 𝑗 = 1, . . . , 𝑚 + 1, we have

𝜙𝑖 ∪ 𝜙 𝑗 = 𝛿𝑖 𝑗𝜙𝑖 , (𝜙𝑖 , 𝜙 𝑗 )𝑋,𝑇 ′ =
𝛿𝑖 𝑗

Δ 𝑖,𝑇 ′
,

where (−,−)𝑋,𝑇 ′ is the𝑇 ′-equivariant Poincaré pairing on 𝑋 . It follows that {𝜙1, . . . , 𝜙𝑚+1} is a canonical
basis of the semi-simple Frobenius algebra

(𝐻∗
𝑇 ′
(𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ ,∪, (−,−)𝑋,𝑇 ′ ). (5)

Moreover, for 𝑖 = 1, . . . , 𝑅 + 2, let

𝐷𝑇 ′

𝑖 := 𝑐𝑇
′

1 (O𝑋 (𝑉 ( �̃�𝑖))) ∈ 𝐻2
𝑇 ′
(𝑋)
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denote the 𝑇 ′-equivariant Poincaré dual of the divisor 𝑉 ( �̃�𝑖). Specifically, we denote

𝐷 := 𝐷𝑇 ′

𝑅+1.

Since the divisor 𝑉 ( �̃�𝑅+1) only contains the 𝑇 ′-fixed point 𝑝 �̃�0 = 𝑝𝑚+1, we have that

𝐷 = 𝐷
��
𝑝𝑚+1

𝜙𝑚+1 = −u1𝜙𝑚+1. (6)

3. Gromov-Witten theory and open/closed correspondence

In this section, we review the different types of Gromov-Witten invariants involved in our study of
Frobenius structures, specifically the closed invariants of X and 𝑋 as well as the open invariants of
(𝑋, 𝐿). We then use the open/closed correspondence [33, 34] to obtain a refined relation among the
generating functions of Gromov-Witten invariants (Theorem 3.1).

3.1. Closed Gromov-Witten invariants of X and 𝑋

We refer to [32] for additional details on virtual localization [22] in the Gromov-Witten theory of toric
varieties.

For 𝑛 ∈ Z≥0 and effective class 𝛽 ∈ 𝐸 (𝑋) (see (3)), let M0,𝑛 (𝑋, 𝛽) be the moduli space of genus-
zero, n-pointed, degree-𝛽 stable maps to X. Given 𝑇 ′-equivariant cohomology classes 𝛾1, . . . , 𝛾𝑛 ∈
𝐻∗
𝑇 ′ (𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ as insertions, we define the closed Gromov-Witten invariant

〈𝛾1, . . . , 𝛾𝑛〉
𝑋,𝑇 ′

0,𝑛,𝛽 :=
∫
[M0,𝑛 (𝑋,𝛽)𝑇

′
]vir

∏𝑛
𝑖=1 ev∗𝑖 (𝛾𝑖)
𝑒𝑇 ′ (𝑁vir)

∈ 𝑆𝑇 ′

by localization with respect to the torus 𝑇 ′, where for 𝑖 = 1, . . . , 𝑛, ev𝑖 : M0,𝑛 (𝑋, 𝛽) → 𝑋 is the
evaluation map at the i-th marked point.

We now define a generating function of such invariants. The Novikov ring of X is the completion of
the semigroup ring of 𝐸 (𝑋),

Λ𝑋 :=
⎧⎪⎪⎨⎪⎪⎩

∑
𝛽∈𝐸 (𝑋 )

𝑐𝛽𝑄
𝛽 : 𝑐𝛽 ∈ C

⎫⎪⎪⎬⎪⎪⎭,
in which we use 𝑄𝛽 to denote the semigroup ring element corresponding to 𝛽 ∈ 𝐸 (𝑋). We will also
use the equivariant versions

Λ𝑇 ′

𝑋 := 𝑆𝑇 ′ ⊗C Λ𝑋 , Λ
𝑇𝑓

𝑋 := 𝑆𝑇𝑓 ⊗C Λ𝑋 .

Consider the basis {𝜙1, . . . , 𝜙𝑚} of 𝐻∗
𝑇 ′ (𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ defined in Section 2.6. Let

𝑡 :=
𝑚∑
𝑖=1

𝑡𝑖𝜙𝑖 ,

where 𝑡1, . . . , 𝑡𝑚 are formal variables viewed as coordinates. The genus-zero, 𝑇 ′-equivariant Gromov-
Witten potential of X is the following generating function of closed Gromov-Witten invariants:

𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚) :=
∑

𝛽∈𝐸 (𝑋 )

∑
𝑛∈Z≥0

〈𝑡, . . . , 𝑡〉𝑋,𝑇
′

0,𝑛,𝛽

𝑛!
𝑄𝛽 ∈ Λ𝑇 ′

𝑋 	𝑡1, . . . , 𝑡𝑚
.

https://doi.org/10.1017/fms.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.14


Forum of Mathematics, Sigma 15

Now we set up a parallel theory for 𝑋 . For 𝑛 ∈ Z≥0 and effective class 𝛽 ∈ 𝐸 (𝑋) (see (3)),
let M0,𝑛 (𝑋, 𝛽) be the moduli space of genus-zero, n-pointed, degree-𝛽 stable maps to 𝑋 . Given 𝑇 ′-
equivariant cohomology classes �̃�1, . . . , �̃�𝑛 ∈ 𝐻∗

𝑇 ′
(𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ as insertions, we define the closed

Gromov-Witten invariant

〈�̃�1, . . . , �̃�𝑛〉
𝑋,𝑇 ′

0,𝑛,𝛽
:=

∫
[M0,𝑛 (𝑋,𝛽)𝑇

′
]vir

∏𝑛
𝑖=1 ev∗𝑖 (�̃�𝑖)
𝑒𝑇 ′ (𝑁vir)

∈ 𝑆𝑇 ′

by localization with respect to the torus 𝑇 ′, where for 𝑖 = 1, . . . , 𝑛, ev𝑖 : M0,𝑛 (𝑋, 𝛽) → 𝑋 is the
evaluation map at the i-th marked point.

The Novikov ring of 𝑋 is the completion of the semigroup ring of 𝐸 (𝑋),

Λ𝑋 :=
⎧⎪⎪⎨⎪⎪⎩

∑
𝛽∈𝐸 (𝑋 )

𝑐𝛽𝑄
𝛽 : 𝑐𝛽 ∈ C

⎫⎪⎪⎬⎪⎪⎭,
in which we use 𝑄𝛽 to denote the semigroup ring element corresponding to 𝛽 ∈ 𝐸 (𝑋). We will also
use the equivariant version

Λ𝑇 ′

𝑋
:= 𝑆𝑇 ′ ⊗C Λ𝑋 .

Consider the basis {𝜙1, . . . , 𝜙𝑚, 𝜙𝑚+1} of 𝐻∗
𝑇 ′
(𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ defined in Section 2.6. Let

𝑡 :=
𝑚∑
𝑖=1

𝑡𝑖𝜙𝑖 , 𝑡 := 𝑡 + 𝑡𝑚+1𝜙𝑚+1,

where 𝑡1, . . . , 𝑡𝑚 are formal variables as before and 𝑡𝑚+1 is an additional formal variable. The genus-zero,
𝑇 ′-equivariant Gromov-Witten potential of 𝑋 is the following generating functions of closed Gromov-
Witten invariants:

𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑚+1) :=
∑

𝛽∈𝐸 (𝑋 )

∑
𝑛∈Z≥0

〈𝑡, . . . , 𝑡〉𝑋,𝑇
′

0,𝑛,𝛽

𝑛!
𝑄𝛽 ∈ Λ𝑇 ′

𝑋
	𝑡1, . . . , 𝑡𝑚, 𝑡𝑚+1
.

By (6), we have

𝑡 = 𝑡 −
𝑡𝑚+1

u1
𝐷.

Recall from Section 2.4 that each 𝛽 ∈ 𝐸 (𝑋) can be uniquely expressed as 𝜄∗(𝛽) + 𝑑 [𝑙 𝜄 (𝜏0) ] for some
𝛽 ∈ 𝐸 (𝑋) and 𝑑 ∈ Z≥0. The divisor equation then implies that

𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑚+1)

=
(𝑡𝑚+1)3

6Δ𝑚+1,𝑇 ′
+

∑
𝛽=(𝛽,𝑑) ∈𝐸 (𝑋 )

∑
𝑛∈Z≥0

〈𝑡, . . . , 𝑡〉𝑋,𝑇
′

0,𝑛,𝛽

𝑛!
𝑄 𝜄∗ (𝛽)

(
𝑒
− 𝑡𝑚+1

u1 𝑄 [𝑙𝜄 (𝜏0 ) ]

)𝑑
. (7)
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Here, the term (𝑡𝑚+1)3

6Δ𝑚+1,𝑇 ′ captures the 𝑡𝑚+1-dependence of the (3-pointed) degree-0 invariants in 𝐹𝑋,𝑇 ′

0 :

〈𝑡𝑚+1𝜙𝑚+1, 𝑡
𝑚+1𝜙𝑚+1, 𝑡

𝑚+1𝜙𝑚+1〉
𝑋,𝑇 ′

0,3,0

3!
=

(𝑡𝑚+1)3

6
(𝜙𝑚+1 ∪ 𝜙𝑚+1, 𝜙𝑚+1)𝑋,𝑇 ′ =

(𝑡𝑚+1)3

6Δ𝑚+1,𝑇 ′
.

Note that 𝜙𝑖 ∪ 𝜙𝑚+1 = 0 for any 𝑖 = 1, . . . , 𝑚.

3.2. Open Gromov-Witten invariants of (𝑋, 𝐿, 𝑓 )

Recall from Section 2.2 that the 𝑇 ′
R

-action on X preserves the Lagrangian L and may thus be used to
define open Gromov-Witten invariants, specifically disk invariants which are virtual counts of open
stable maps from genus-zero domains with one boundary component. We now recall the definitions and
refer to [13, 14] for additional details.

For 𝑛 ∈ Z≥0 and effective class 𝛽′ = (𝛽, 𝑑) ∈ 𝐸 (𝑋, 𝐿) (see (3)) with 𝑑 ∈ Z>0, let M(0,1) ,𝑛 (𝑋, 𝐿 |
𝛽′, 𝑑) be the moduli space of degree-𝛽′ stable maps to (𝑋, 𝐿) from domains (𝐶, 𝜕𝐶) with

◦ topological type (0, 1), i.e. C is a nodal Riemann surface of arithmetic genus zero with one open disk
removed, and

◦ n interior marked points disjoint from 𝜕𝐶.

Given 𝑇 ′-equivariant (or equivalently 𝑇 ′
R

-equivariant) cohomology classes 𝛾1, . . . , 𝛾𝑛 ∈ 𝐻∗
𝑇 ′ (𝑋) ⊗𝑅𝑇 ′

𝑆𝑇 ′ as insertions, we define the disk invariant

〈𝛾1, . . . , 𝛾𝑛〉
𝑋,𝐿
(0,1) ,𝑛,𝛽′,𝑑 :=

∫
[M(0,1) ,𝑛 (𝑋,𝐿 |𝛽′,𝑑)

𝑇 ′
R ]vir

∏𝑛
𝑖=1 ev∗𝑖 (𝛾𝑖)
𝑒𝑇 ′
R
(𝑁vir)

∈ 𝑆𝑇 ′

by localization with respect to the compact torus 𝑇 ′
R

, where for 𝑖 = 1, . . . , 𝑛, ev𝑖 : M(0,1) ,𝑛 (𝑋, 𝐿 |
𝛽′, 𝑑) → 𝑋 is the evaluation map at the i-th marked point. Here, we identify the field of fractions of
𝐻∗
𝑇 ′
R

(pt) with 𝑆𝑇 ′ . Furthermore, using the framing 𝑓 ∈ Z, we take a weight restriction to define

〈𝛾1, . . . , 𝛾𝑛〉
𝑋, (𝐿, 𝑓 )
(0,1) ,𝑛,𝛽′,𝑑 := 〈𝛾1, . . . , 𝛾𝑛〉

𝑋,𝐿
(0,1) ,𝑛,𝛽′,𝑑

��
u2− 𝑓 u1=0 ∈ 𝑆𝑇𝑓 .

In this paper, we will only need to work with insertions for which the above weight restriction of the
disk invariant is defined.

The completion of the semigroup ring of 𝐸 (𝑋, 𝐿) is

Λ𝑋,𝐿 :=
⎧⎪⎪⎨⎪⎪⎩

∑
(𝛽,𝑑) ∈𝐸 (𝑋,𝐿)

𝑐 (𝛽,𝑑)𝑄
𝛽X𝑑

0 : 𝑐 (𝛽,𝑑) ∈ C
⎫⎪⎪⎬⎪⎪⎭ = Λ𝑋	X0


in which we introduce the new formal variable X0 for the last component. Note that the isomorphism
𝜄∗ : 𝐸 (𝑋, 𝐿) � 𝐸 (𝑋) induces an isomorphism Λ𝑋,𝐿 � Λ𝑋 under the change of variables 𝑄 𝜄∗ (𝛽) = 𝑄𝛽 ,
𝑄 [𝑙𝜄 (𝜏0 ) ] = X0. We will also use the equivariant version

Λ
𝑇𝑓

𝑋,𝐿 := 𝑆𝑇𝑓 ⊗C Λ𝑋,𝐿 = Λ
𝑇𝑓

𝑋 	X0
.

Consider the basis {𝜙1, . . . , 𝜙𝑚} of 𝐻∗
𝑇 ′ (𝑋) ⊗𝑅𝑇 ′ 𝑆𝑇 ′ and 𝑡 =

∑𝑚
𝑖=1 𝑡

𝑖𝜙𝑖 as in Section 3.1. Let 𝑡𝑜 be
an additional formal variable for the open sector. The 𝑇 𝑓 -equivariant disk potential of (𝑋, 𝐿, 𝑓 ) is the
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following generating functions of disk invariants:

𝐹
𝑋, (𝐿, 𝑓 )
0,1 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜) :=

∑
(𝛽,𝑑) ∈𝐸 (𝑋,𝐿)

𝑑∈Z>0

∑
𝑛∈Z≥0

〈𝑡, . . . , 𝑡〉
𝑋, (𝐿, 𝑓 )
(0,1) ,𝑛,𝛽+𝑑 [𝐵],𝑑

𝑛!
𝑄𝛽 (𝑒𝑡

𝑜
X0)

𝑑

∈ Λ
𝑇𝑓

𝑋 	𝑡1, . . . , 𝑡𝑚, 𝑒𝑡
𝑜
X0
.

Conceptually, we may view 𝑡𝑜 as parameterizing a divisor-like insertion arising from the open sector and
X := 𝑒𝑡

𝑜X0 as parameterizing the winding numbers of disk invariants. Note that 𝐹𝑋, (𝐿, 𝑓 )
0,1 is supported

on the ideal of Λ𝑋,𝐿 generated by X0. For later use, we introduce the following modified version:

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜) :=

∑
(𝛽,𝑑) ∈𝐸 (𝑋,𝐿)

𝑑∈Z>0

∑
𝑛∈Z≥0

〈𝑡, . . . , 𝑡〉
𝑋, (𝐿, 𝑓 )
(0,1) ,𝑛,𝛽+𝑑 [𝐵],𝑑

𝑑 · 𝑛!
𝑄𝛽 (𝑒𝑡

𝑜
X0)

𝑑

∈ Λ
𝑇𝑓

𝑋 	𝑡1, . . . , 𝑡𝑚, 𝑒𝑡
𝑜
X0
,

where
∫

is interpreted as taking the antiderivative with respect to 𝑡𝑜. We note that the insertions
𝜙1, . . . , 𝜙𝑚 are homogeneous of degree 0 and do not introduce additional poles along u2 − 𝑓 u1. Thus,
the weight restriction to u2 − 𝑓 u1 = 0 in the definition of the disks invariants in 𝐹

𝑋, (𝐿, 𝑓 )
0,1 is valid.

Similarly, it is valid to apply this weight restriction to the closed invariants of X in 𝐹𝑋,𝑇 ′

0 .

3.3. Open/closed correspondence

The open/closed correspondence [33, 34] identifies the genus-zero open Gromov-Witten theory of
(𝑋, 𝐿, 𝑓 ) and closed Gromov-Witten theory of 𝑋 at the numerical level of invariants as well as the
level of generating functions. In this paper, we use the following statement of the correspondence. We
introduce the notation

v :=

{
w̃(�̃�2, �̃�0) = u2 − 𝑓 u1 if 𝑓 ≥ 0,
−w̃(�̃�3, �̃�0) = u2 − 𝑓 u1 + u4 if 𝑓 < 0.

(8)

Theorem 3.1 [34]. The Gromov-Witten potential 𝐹𝑋,𝑇 ′

0 of 𝑋 can be expanded as

𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑚+1) =
(𝑡𝑚+1)3

6Δ𝑚+1,𝑇 ′
+ u−1

4 𝐴(𝑡1, . . . , 𝑡𝑚) + v−1𝐵(𝑡1, . . . , 𝑡𝑚, 𝑡𝑚+1)

+ u4v−1𝐶1 (𝑡
1, . . . , 𝑡𝑚, 𝑡𝑚+1) + 𝐶2 (𝑡

1, . . . , 𝑡𝑚, 𝑡𝑚+1),

(9)

where

(a) Each of 𝐴, 𝐵, 𝐶1, 𝐶2 has a well-defined weight restriction to u4 = 0, u2 − 𝑓 u1 = 0.
(b) 𝐴 is supported on the Novikov variables {𝑄 𝜄∗ (𝛽) : 𝛽 ∈ 𝐸 (𝑋)} and

𝐴(𝑡1, . . . , 𝑡𝑚)
��
u4=0 = 𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚)

after the change of variables 𝑄 𝜄∗ (𝛽) = 𝑄𝛽 .
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(c) We have

𝐵(𝑡1, . . . , 𝑡𝑚, 𝑡𝑚+1)
��
u4=0,u2− 𝑓 u1=0 =

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜)

after the change of variables 𝑄 𝜄∗ (𝛽) = 𝑄𝛽 , 𝑄 [𝑙𝜄 (𝜏0 ) ] = X0, and 𝑡𝑚+1 = −u1𝑡
𝑜.

The statement of Theorem 3.1 differs from the results in [34], particularly Theorems 4.1 and 5.4
there, in that it uses the classes 𝜙1, . . . , 𝜙𝑚 and their counterparts 𝜙1, . . . , 𝜙𝑚 to parameterize insertions,
and that it also involves closed Gromov-Witten invariants of X. Nevertheless, it directly follows from
the localization analysis and vanishing arguments in [34, Section 4]. We defer the derivation details to
Appendix A.1.

4. Frobenius structures on closed Gromov-Witten theory

In this section, we review the equivariant formal Frobenius structures determined by the closed Gromov-
Witten theory of X, 𝑋 and specifically the WDVV equations. Under the open/closed correspondence,
we use the WDVV equation for 𝑋 to deduce a collection of non-linear partial differential equations that
involve the open and closed Gromov-Witten invariants of (𝑋, 𝐿) (Proposition 4.4).

4.1. Formal Frobenius and F-manifolds

We first recall the definition of formal Frobenius manifolds over a general base ring R which is a
commutative algebra over C, extending Definition 1.2. We refer to [30, Chapter 2] for additional details.

Definition 4.1. A formal Frobenius manifold over R consists of the data (�̂�, 𝑔, 𝐴, 1) where

1. �̂� = Spec(𝑅	𝐾∨
) is a formal manifold over R defined by the completion of a free R-module K of
rank m at the origin, where 𝐾∨ := Hom𝑅 (𝐾, 𝑅);

2. g is a formal, flat, R-linear, symmetric, nondegenerate quadratic form on the formal tangent bundle
T�̂� over R;

3. A is a formal, R-linear, symmetric tensor

𝐴 : T�̂� ⊗ T�̂� ⊗ T�̂� → O�̂� .

4. 1 is a formal vector field on �̂� over R.

The above data are required to satisfy the potentiality, associativity, and unit conditions as in Defini-
tion 1.2.

A formal Frobenius manifold �̂� over R may alternatively be viewed as a relative formal complex
Frobenius manifold over the affine base Spec(𝑅). Elements in R pull back to constants in the structure
sheaf O�̂� .

Given a formal Frobenius manifold �̂� = Spec(𝑅	𝐾∨
) as above, the origin is the only point in �̂�
and T�̂� � 𝐾 ⊗𝑅 O�̂� . The product ★ defined by the associativity condition specializes to an R-algebra
(𝐾,★) at the origin.

Definition 4.2. A formal Frobenius manifold �̂� over R is semi-simple if the induced R-algebra (𝐾 ⊗𝑅

𝑅	𝐾∨
, ★) is isomorphic to
⊕𝑚

𝑖=1 𝑅	𝐾
∨
 with the product algebra structure.

Similarly, we may define flat formal F-manifolds over the general base ring R, extending Definition
1.4.

Definition 4.3. A flat formal F-manifold over R consists of the data (�̂�,∇, ★, 1) where

1. �̂� = Spec(𝑅	𝐾∨
) is a formal manifold over R defined by the completion of a free R-module K of
rank 𝑚 + 1 at the origin;
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2. ∇ is an R-linear connection on the formal tangent bundle T�̂� ,
3. ★ defines an algebra structure on T�̂� ,
4. 1 is a ∇-flat formal vector field on �̂� over R which is a unit for ★.

The above data satisfy the condition that the connection ∇𝑧 := ∇ − 1
𝑧★ is flat and symmetric for any

𝑧 ∈ P1.

4.2. Gromov-Witten case

LetX be a smooth projective variety. Let {𝑇𝑖}𝑚𝑖=1 be a basis of 𝐻∗(X ) and 𝑡1, . . . , 𝑡𝑚 be the corresponding
coordinates. Consider the genus-zero Gromov-Witten potential 𝐹X

0 of X . Let

𝑔𝑖 𝑗 = (𝑇𝑖 , 𝑇𝑗 )X =
∫
X
𝑇𝑖 ∪ 𝑇𝑗

and (𝑔𝑖 𝑗 ) = (𝑔𝑖 𝑗 )
−1.

Let 𝜕𝑖 := 𝜕
𝜕𝑡𝑖

. As stated in Theorem 1.1, for any 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚}, the following WDVV equation
holds:

𝜕𝑖𝜕 𝑗𝜕𝜈𝐹
X
0 · 𝑔𝜈𝜇 · 𝜕𝜇𝜕𝑘𝜕𝑙𝐹

X
0 = 𝜕 𝑗𝜕𝑘𝜕𝜈𝐹

X
0 · 𝑔𝜈𝜇 · 𝜕𝜇𝜕𝑖𝜕𝑙𝐹

X
0 .

For any 𝑖, 𝑗 ∈ {1, . . . , 𝑚}, we define the quantum product 𝑇𝑖 ★𝑡 𝑇𝑗 as

(𝑇𝑖 ★𝑡 𝑇𝑗 , 𝑇𝑘 )X =
𝜕3𝐹X

0
𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝑘

.

The WDVV equation implies that the quantum product ★𝑡 is associative.
Moreover, we can define a formal Frobenius manifold as follows. Let

𝐻 := Spec(ΛX [𝑡1, . . . , 𝑡𝑚]),

where ΛX is the Novikov ring of X . Let �̂� be the formal completion of H along the origin:

�̂� := Spec(ΛX	𝑡1, . . . , 𝑡𝑚
).

Let O�̂� be the structure sheaf on �̂� and T�̂� be the tangent sheaf on �̂�. Then T�̂� is a sheaf of free
O�̂� -modules of rank N. Given an open set U in �̂�, we have

T�̂� (𝑈) �
𝑚⊕
𝑖=1

O�̂� (𝑈)
𝜕

𝜕𝑡𝑖
.

The quantum product and the Poincaré pairing define the structure of a formal Frobenius manifold on
�̂� over ΛX : (

𝜕

𝜕𝑡𝑖
★𝑡

𝜕

𝜕𝑡 𝑗
,
𝜕

𝜕𝑡𝑘

)
X

=
𝜕3𝐹X

0
𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝑘

,

(
𝜕

𝜕𝑡𝑖
,
𝜕

𝜕𝑡 𝑗

)
X

= 𝑔𝑖 𝑗 .

The generalization of the WDVV equation to the equivariant setting is straightforward. Suppose X
admits an action of a torus T and let {𝑇𝑖}𝑚𝑖=1 be a basis of 𝐻∗

T
(X ). One only needs to replace 𝐹X

0 by
the genus-zero T-equivariant Gromov-Witten potential 𝐹X ,T

0 and replace (𝑇𝑖 , 𝑇𝑗 )X by the T-equivariant
Poincaré pairing (𝑇𝑖 , 𝑇𝑗 )X ,T. Then the WDVV equation (Theorem 1.1) still holds. Moreover, in the
equivariant setting, X can be allowed to be non-compact. We only need M𝑔,𝑛 (X , 𝛽)T to be compact in
order to define T-equivariant Gromov-Witten invariants of X .
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In the equivariant setting, we can still define a formal Frobenius manifold as follows. Let

𝐻 := Spec(ΛTX [𝑡1, . . . , 𝑡𝑚]),

where ΛTX is the base change of ΛX to adjoin equivariant parameters of T. Let �̂� be the formal
completion of H along the origin:

�̂� := Spec(ΛTX	𝑡1, . . . , 𝑡𝑚
).

Let O�̂� be the structure sheaf on �̂� and T�̂� be the tangent sheaf on �̂�. Then T�̂� is a sheaf of free
O�̂� -modules of rank m. Given an open set U in �̂�, we have

T�̂� (𝑈) �
𝑚⊕
𝑖=1

O�̂� (𝑈)
𝜕

𝜕𝑡𝑖
.

The quantum product and the T-equivariant Poincaré pairing define the structure of a formal Frobenius
manifold on �̂� over ΛTX :(

𝜕

𝜕𝑡𝑖
★𝑡

𝜕

𝜕𝑡 𝑗
,
𝜕

𝜕𝑡𝑘

)
X ,T

=
𝜕3𝐹X ,T

0
𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝑘

,

(
𝜕

𝜕𝑡𝑖
,
𝜕

𝜕𝑡 𝑗

)
X ,T

= 𝑔𝑖 𝑗 .

4.3. Specializing to X and 𝑋

Now we specialize to the toric Calabi-Yau 3-fold X and the toric Calabi-Yau 4-fold 𝑋 . Recall from Section
2.6 that we defined the bases {𝜙1, . . . , 𝜙𝑚}, {𝜙1, . . . , 𝜙𝑚+1} of 𝐻∗

𝑇 ′ (𝑋), 𝐻∗
𝑇 ′
(𝑋), respectively. Let

�̂�𝑋 := Spec(Λ𝑇 ′

𝑋 	𝑡1, . . . , 𝑡𝑚
), �̂�𝑋 := Spec(Λ𝑇 ′

𝑋
	𝑡1, . . . , 𝑡𝑚+1
)

be the induced equivariant formal Frobenius manifolds constructed as in Section 4.2. The quantum
products are given by the closed Gromov-Witten potentials 𝐹𝑋,𝑇 ′

0 , 𝐹𝑋,𝑇 ′

0 , respectively. The equivariant
Poincaré parings are diagonal:

𝑔𝑖 𝑗 := (𝜙𝑖 , 𝜙 𝑗 )𝑋,𝑇 ′ =
𝛿𝑖 𝑗

Δ 𝑖,𝑇 ′ , 𝑖, 𝑗 ∈ {1, . . . , 𝑚};

�̃�𝑖 𝑗 := (𝜙𝑖 , 𝜙 𝑗 )𝑋,𝑇 ′ =
𝛿𝑖 𝑗

Δ 𝑖,𝑇 ′
, 𝑖, 𝑗 ∈ {1, . . . , 𝑚 + 1}.

Note that for 𝑖 = 1, . . . , 𝑚 we have

�̃�𝑖𝑖 =
1
u4

𝑔𝑖𝑖 .

Let (𝑔𝑖 𝑗 ) = (𝑔𝑖 𝑗 )
−1 and (�̃�𝑖 𝑗 ) = (�̃�𝑖 𝑗 )

−1. For any 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚}, the WDVV equation for X
reads

𝜕𝑖𝜕 𝑗𝜕𝜈𝐹
𝑋,𝑇 ′

0 · 𝑔𝜈𝜈 · 𝜕𝜈𝜕𝑘𝜕𝑙𝐹
𝑋,𝑇 ′

0 = 𝜕 𝑗𝜕𝑘𝜕𝜈𝐹
𝑋,𝑇 ′

0 · 𝑔𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑙𝐹
𝑋,𝑇 ′

0 (10)

where the summation index 𝜈 runs through 1, . . . , 𝑚. For any 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚 + 1}, the WDVV
equation for 𝑋 reads

𝜕𝑖𝜕 𝑗𝜕𝜈𝐹
𝑋,𝑇 ′

0 · �̃�𝜈𝜈 · 𝜕𝜈𝜕𝑘𝜕𝑙𝐹
𝑋,𝑇 ′

0 = 𝜕 𝑗𝜕𝑘𝜕𝜈𝐹
𝑋,𝑇 ′

0 · �̃�𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑙𝐹
𝑋,𝑇 ′

0 , (11)

where the summation index 𝜈 runs through 1, . . . , 𝑚 + 1.
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4.4. Recursive relations for open and closed invariants

Now we combine the WDVV equation (11) for 𝑋 and the open/closed correspondence (Theorem 3.1)
to obtain the following non-linear partial differential equations for the closed Gromov-Witten potential
𝐹𝑋,𝑇 ′

0 of X and the disk potential 𝐹𝑋, (𝐿, 𝑓 )
0,1 of (𝑋, 𝐿, 𝑓 ). For 𝑖, 𝑗 ∈ {1, . . . , 𝑚}, we set

ℎ𝑖 𝑗 := 𝑔𝑖 𝑗
��
u2− 𝑓 u1=0 (12)

which is well-defined by Assumption 2.2. Let (ℎ𝑖 𝑗 ) = (ℎ𝑖 𝑗 )
−1.

Proposition 4.4. Denote 𝜕𝑜 := 𝜕
𝜕𝑡𝑜 . We have

(I) For 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚}:
(Ia)

𝜕𝑖𝜕 𝑗𝜕𝜈𝐹
𝑋,𝑇 ′

0
��
u2− 𝑓 u1=0 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑘𝜕𝑙

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 + 𝜕𝑖𝜕 𝑗𝜕𝜈

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑘𝜕𝑙𝐹

𝑋,𝑇 ′

0
��
u2− 𝑓 u1=0

= 𝜕 𝑗𝜕𝑘𝜕𝜈𝐹
𝑋,𝑇 ′

0
��
u2− 𝑓 u1=0 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑙

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1

+ 𝜕 𝑗𝜕𝑘𝜕𝜈

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑙𝐹

𝑋,𝑇 ′

0
��
u2− 𝑓 u1=0;

(Ib)

𝜕𝑖𝜕 𝑗𝜕𝜈

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑘𝜕𝑙

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 = 𝜕 𝑗𝜕𝑘𝜕𝜈

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑙

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 ;

(Ic)

𝜕𝑖𝜕 𝑗𝜕𝜈𝐹
𝑋,𝑇 ′

0 · 𝑔𝜈𝜈 · 𝜕𝜈𝜕𝑘𝜕𝑙𝐹
𝑋,𝑇 ′

0 = 𝜕 𝑗𝜕𝑘𝜕𝜈𝐹
𝑋,𝑇 ′

0 · 𝑔𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑙𝐹
𝑋,𝑇 ′

0 .

(II) For 𝑖, 𝑗 , 𝑘 ∈ {1, . . . , 𝑚}:
(IIa)

𝜕𝑖𝜕 𝑗𝜕𝜈𝐹
𝑋,𝑇 ′

0

��
u2− 𝑓 u1=0 · ℎ

𝜈𝜈 · 𝜕𝜈𝜕𝑘𝜕𝑜

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 = 𝜕 𝑗𝜕𝑘𝜕𝜈𝐹

𝑋,𝑇 ′

0

��
u2− 𝑓 u1=0

· ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑜

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 ;

(IIb)

𝜕𝑖𝜕 𝑗𝜕𝜈

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑘𝜕𝑜

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 = 𝜕 𝑗𝜕𝑘𝜕𝜈

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑜

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 .

(III) For 𝑖, 𝑗 ∈ {1, . . . , 𝑚}:
(IIIa)

𝜕𝑖𝜕 𝑗𝜕𝜈𝐹
𝑋,𝑇 ′

0

��
u2− 𝑓 u1=0 · ℎ

𝜈𝜈 · 𝜕𝜈𝜕𝑜𝜕𝑜

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 − u1𝜕𝑖𝜕 𝑗𝜕𝑜

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 = 0;

(IIIb)

𝜕𝑖𝜕 𝑗𝜕𝜈

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑜𝜕𝑜

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1

= 𝜕 𝑗𝜕𝑜𝜕𝜈

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 · ℎ𝜈𝜈 · 𝜕𝜈𝜕𝑖𝜕𝑜

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 .
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Here, the summation index 𝜈 runs through 1, . . . , 𝑚. Identity (Ic) is valued in Λ𝑇 ′

𝑋 	𝑡1, . . . , 𝑡𝑚
, while
all the other identities are valued in Λ

𝑇𝑓

𝑋 	𝑡1, . . . , 𝑡𝑚, 𝑒𝑡
𝑜X0
.

In particular, (Ic) recovers the WDVV equation (10) for X.

Proof. The proposition directly follows from applying the expansion (9) in Theorem 3.1 to both sides
of (11) and reading off appropriate coefficients, under the following rules:

◦ For (I), apply with 𝑖, 𝑗 , 𝑘, 𝑙 as they are.
◦ For (II), apply with 𝑖, 𝑗 , 𝑘 as they are and 𝑙 = 𝑚 + 1.
◦ For (III), apply with 𝑖, 𝑗 as they are and 𝑘 = 𝑙 = 𝑚 + 1.
◦ For (Ia), (IIa), (IIIa), read off the coefficients of v−1 on both sides.
◦ For (Ib), (IIb), (IIIb), read off the coefficients of u4v−2 on both sides.
◦ For (Ic), read off the coefficients of u−1

4 on both sides.

Here, we use the following observation: We have

�̃� (𝑚+1) (𝑚+1) = Δ𝑚+1,𝑇 ′
= (u2 − 𝑓 u1) (u4 + u2 − 𝑓 u1)u1(u1 + u4) = (v2 ± u4v)u1(u1 + u4), (13)

where the sign ‘±’ is ‘+’ when 𝑓 ≥ 0 and ‘−’ when 𝑓 < 0 (see (8) for the notation v). It has second-order
zeroes along v, u4, and thus, the 𝜈 = 𝑚 + 1 terms in (11) do not contribute to the result except for case
(IIIa), where the triple derivative 𝜕𝑚+1𝜕𝑚+1𝜕𝑚+1

(𝑡𝑚+1)3

6Δ𝑚+1,𝑇 ′ provides a cancelling factor 1
Δ𝑚+1,𝑇 ′ . Moreover,

we change from 𝜕𝑚+1 to 𝜕𝑜 using the relation 𝜕𝑚+1 = − 𝜕𝑜
u1

. �

Remark 4.5. Note that identities (IIa), (IIIa) of Proposition 4.4 resemble but are different from the open
WDVV equation of [26, 43] (stated in Theorem 1.3) for the disk potential with point-like boundary
insertions, and the difference arises from how the 𝜈 = 𝑚 + 1 terms contribute, as indicated in the proof
above.

5. Frobenius structures on open Gromov-Witten theory

In this section, we use the equations in Proposition 4.4 to construct Frobenius structures on the open
and closed Gromov-Witten theory of (𝑋, 𝐿), specifically,

◦ (Section 5.1, Theorems 5.5, 5.6) a semi-simple formal Frobenius manifold structure on
Spec(Λ𝑇𝑓

𝑋,𝐿 [𝜖]	𝑡
1, . . . , 𝑡𝑚, 𝑡𝑜
) where 𝜖 is a nilpotent variable with 𝜖2 = 0;

◦ (Section 5.2, Theorem 5.11) a flat formal F-manifold structure without unit on
Spec(Λ𝑇𝑓

𝑋,𝐿	𝑡
1, . . . , 𝑡𝑚, 𝑡𝑜
) in which the 𝑡𝑜-direction is nilpotent.

Both structures can be viewed as extensions of the semi-simple formal Frobenius manifold

�̂�
𝑓
𝑋 := Spec(Λ𝑇𝑓

𝑋,𝐿	𝑡
1, . . . , 𝑡𝑚
), (14)

which is obtained from �̂�𝑋 by base change to Λ
𝑇𝑓

𝑋,𝐿 .

5.1. A formal Frobenius structure

In this section, we construct a Frobenius structure on the formal scheme

�̂�1 := Spec(Λ𝑇𝑓

𝑋,𝐿 [𝜖]	𝑡
1, . . . , 𝑡𝑚, 𝑡𝑜
)

over the base ring

Λ
𝑇𝑓

𝑋,𝐿 [𝜖] := Λ
𝑇𝑓

𝑋,𝐿 ⊗ C[𝜖]/〈𝜖2〉.
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Let O�̂�1
be the structure sheaf on �̂�1 and T�̂�1

be the tangent sheaf on �̂�1. Then T�̂�1
is a sheaf of free

O�̂�1
-modules of rank 𝑚 + 1. Given an open set U in �̂�1, we have

T�̂�1
(𝑈) �

𝑚⊕
𝑖=1

O�̂�1
(𝑈)

𝜕

𝜕𝑡𝑖

⊕
O�̂�1

(𝑈)
𝜕

𝜕𝑡𝑜
.

We will construct a potential function F involving both the open and closed Gromov-Witten invariants
of (𝑋, 𝐿), as well as a pairing (−,−) on T�̂�1

. We prove the associativity of the induced product ★𝑡 on
T�̂�1

, which packages identities (Ia), (Ic), (IIa) and (IIIa) of Proposition 4.4. We show that the resulting
tuple (�̂�1, ★𝑡 , (−,−)) is a semi-simple formal Frobenius manifold.

5.1.1. Potential
Introduce the variable 𝜖 with 𝜖2 = 0.

Definition 5.1. We define the potential function F as

𝐹 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜) := −
u1
6
(𝑡𝑜)3 + 𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚)
��
u2− 𝑓 u1=0 + 𝜖

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜). (15)

5.1.2. Pairing
In (12), we defined the restriction (ℎ𝑖 𝑗 ) of the 𝑇 ′-equivariant Poincaré pairing (𝑔𝑖 𝑗 ) to 𝑇 𝑓 . We now
extend this pairing to the 𝑡𝑜-direction. Recall that we have the change of variables 𝑡𝑚+1 = −u1𝑡

𝑜 from
Theorem 3.1, which identifies 𝜕

𝜕𝑡𝑜 with −u1
𝜕

𝜕𝑡𝑚+1 . Moreover, we have(
𝜕

𝜕𝑡𝑚+1 ,
𝜕

𝜕𝑡𝑚+1

)
𝑋,𝑇 ′

= �̃�(𝑚+1) (𝑚+1) =
1

(v2 ± u4v)u1(u1 + u4)

(see (13)). Clearing the second-order poles along v, u4, we set

ℎ𝑜𝑜 := 1, ℎ𝑖𝑜 = ℎ𝑜𝑖 := 0, 𝑖 = 1, . . . , 𝑚.

Definition 5.2. We define the pairing (−,−) on T�̂�1
by the following: For any 𝑖, 𝑗 ∈ {1, . . . , 𝑚, 𝑜},(

𝜕

𝜕𝑡𝑖
,
𝜕

𝜕𝑡 𝑗

)
:= ℎ𝑖 𝑗 .

As before, let (ℎ𝑖 𝑗 ) = (ℎ𝑖 𝑗 )
−1.

5.1.3. WDVV equations
Proposition 5.3. For any 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚, 𝑜}, the following WDVV equation holds:

𝜕𝑖𝜕 𝑗𝜕𝜈𝐹 · ℎ𝜈𝜇 · 𝜕𝜇𝜕𝑘𝜕𝑙𝐹 = 𝜕 𝑗𝜕𝑘𝜕𝜈𝐹 · ℎ𝜈𝜇 · 𝜕𝜇𝜕𝑖𝜕𝑙𝐹, (16)

where the summation indices 𝜈, 𝜇 run through 1, . . . , 𝑚, 𝑜.

Proof. Note that (ℎ𝑖 𝑗 ) is diagonal and the summation is over 𝜈 = 𝜇. The proposition directly follows
from identities (Ia), (Ic), (IIa) and (IIIa) of Proposition 4.4, under the following rules:

◦ When 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚}, the 𝜖0-term of (16) follows from identity (Ic) and the 𝜖1-term follows
from (Ia).

◦ When 𝑖, 𝑗 , 𝑘 ∈ {1, . . . , 𝑚}, 𝑙 = 𝑜, there is no 𝜖0-term in (16) and the 𝜖1-term follows from (IIa).
◦ When 𝑖, 𝑗 ∈ {1, . . . , 𝑚}, 𝑘 = 𝑙 = 𝑜, again there is no 𝜖0-term in (16) and the 𝜖1-term follows from

(IIIa).
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Any other case is either trivial or symmetric to a case above. Here, we note that since 𝜖2 = 0, the equation
(16) does not contain terms involving a product of two copies of 𝐹𝑋, (𝐿, 𝑓 )

0,1 (or their antiderivatives). �

5.1.4. The formal Frobenius manifold
Definition 5.4. For any 𝑖, 𝑗 ∈ {1, . . . , 𝑚, 𝑜}, define the product 𝜕

𝜕𝑡𝑖
★𝑡

𝜕
𝜕𝑡 𝑗

on T�̂�1
by(

𝜕

𝜕𝑡𝑖
★𝑡

𝜕

𝜕𝑡 𝑗
,
𝜕

𝜕𝑡𝑘

)
=

𝜕3𝐹

𝜕𝑡𝑖𝜕𝑡 𝑗𝜕𝑡𝑘
,

where k ranges through 1, . . . , 𝑚, 𝑜.

By Proposition 5.3, the product ★𝑡 is indeed associative. Moreover, it is clear by definition that we
have the compatibility condition(

𝜕

𝜕𝑡𝑖
★𝑡

𝜕

𝜕𝑡 𝑗
,
𝜕

𝜕𝑡𝑘

)
=

(
𝜕

𝜕𝑡𝑖
,
𝜕

𝜕𝑡 𝑗
★𝑡

𝜕

𝜕𝑡𝑘

)
.

In other words, we have the following result.

Theorem 5.5. The tuple (�̂�1, ★𝑡 , (−,−)) is a formal Frobenius manifold over Λ𝑇𝑓

𝑋,𝐿 [𝜖].

5.1.5. Semi-simplicity of �̂�1
Let 𝑆 = O�̂�1

(�̂�1). Consider the global Frobenius algebra 𝐴 = (T�̂�1
(�̂�1), ★𝑡 , (, )) and let 𝐼 ⊂ 𝑆 be the

ideal generated by Q and X0. Then A is a free S-module of rank 𝑚 + 1. Let

𝑆𝑛 := 𝑆/𝐼𝑛, 𝐴𝑛 := 𝐴 ⊗𝑆 𝑆𝑛.

Then 𝐴𝑛 is a free 𝑆𝑛-module of rank𝑚+1, and the ring structure★𝑡 on A induces a ring structure ∗𝑛 on 𝐴𝑛.
Note that 𝐴1 encodes the classical product. From the construction, the semi-simplicity of the (classical)
Frobenius algebra (5) associated to 𝑋 implies that 𝐴1 is semi-simple and {𝜉 (1)1 := 𝜕

𝜕𝑡1 , . . . , 𝜉
(1)
𝑚 :=

𝜕
𝜕𝑡𝑚 , 𝜉

(1)
𝑜 := 𝜕

𝜕𝑡𝑜 } is a system of idempotent basis of 𝐴1. For 𝑛 ≥ 1, let {𝜉 (𝑛+1)
𝑖 : 𝑖 = 1, . . . , 𝑚, 𝑜} be the

unique idempotent basis of (𝐴𝑛+1, ★𝑛+1) which is the lift of the idempotent basis {𝜉 (𝑛)𝑖 : 𝑖 = 1, . . . , 𝑚, 𝑜}
of (𝐴𝑛, ★𝑛) [30, Lemma 16]. Then

{𝜉𝑖 (𝑡) := lim 𝜉 (𝑛)𝑖 : 𝑖 = 1, . . . , 𝑚, 𝑜}

is an idempotent basis of (𝐴,★𝑡 ). Therefore, we have the following result.

Theorem 5.6. The formal Frobenius manifold (�̂�1, ★𝑡 , (−,−)) is semi-simple.

Remark 5.7. As discussed in Remark 1.7, the structural morphism

�̂�1 → Spec(Λ𝑇𝑓

𝑋,𝐿 [𝜖])

may be viewed as a submersion of (formal) supermanifolds over Λ𝑇𝑓

𝑋,𝐿 with 𝜖 viewed as an odd variable.
Taking 𝜖 = 0, we obtain a Frobenius structure on the underlying reduced formal manifold, which we
denote by �̂�1,red. The induced global Frobenius algebra of �̂�1,red decomposes as the direct sum of the
global Frobenius algebra of �̂�

𝑓
𝑋 (defined in (14)) and a 1-dimensional Frobenius algebra over Λ𝑇𝑓

𝑋,𝐿

generated by 𝜕
𝜕𝑡𝑜 , and the decomposition is consistent with the semi-simplicity description above. In

particular, �̂�1,red is semi-simple over Λ𝑇𝑓

𝑋,𝐿 , and �̂�1 may be viewed as an infinitesimal deformation of
�̂�1,red.
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5.2. A flat formal F-manifold structure

In this section, we construct a flat F-manifold structure on the formal scheme

�̂�2 := Spec(Λ𝑇𝑓

𝑋,𝐿	𝑡
1, . . . , 𝑡𝑚, 𝑡𝑜
)

over the base ring Λ
𝑇𝑓

𝑋,𝐿 , where as compared to �̂�1 introduced in Section 5.1, we drop the variable 𝜖 .
Let O�̂�2

be the structure sheaf on �̂�2 and T�̂�2
be the tangent sheaf on �̂�2. Then T�̂�2

is a sheaf of free
O�̂�2

-modules of rank 𝑚 + 1. Given an open set U in �̂�2, we have

T�̂�2
(𝑈) �

𝑚⊕
𝑖=1

O�̂�2
(𝑈)

𝜕

𝜕𝑡𝑖

⊕
O�̂�2

(𝑈)
𝜕

𝜕𝑡𝑜
.

We will construct a vector potential 𝐹 = (𝐹1, . . . , 𝐹𝑚, 𝐹𝑜) whose second derivatives give structural
coefficients for a product ★𝑡 on T�̂�1

. We prove the associativity of ★𝑡 , which packages identities (Ia),
(Ib), (Ic), (IIa) and (IIb) of Proposition 4.4.

5.2.1. Vector potential
Let (ℎ𝑖 𝑗 ) be as defined in (12).

Definition 5.8. We define the vector potential 𝐹 = (𝐹1, . . . , 𝐹𝑚, 𝐹𝑜) by

𝐹𝑖 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜) := ℎ𝑖𝑖𝜕𝑖

(
𝐹𝑋,𝑇 ′

0 (𝑡1, . . . , 𝑡𝑚)
��
u2− 𝑓 u1=0 +

∫
𝐹
𝑋, (𝐿, 𝑓 )
0,1 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜 = 0)

)
for 𝑖 = 1, . . . , 𝑚 and

𝐹𝑜 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜) := 𝐹
𝑋, (𝐿, 𝑓 )
0,1 (𝑡1, . . . , 𝑡𝑚, 𝑡𝑜 = 0).

All components of 𝐹 are functions that are independent of the variable 𝑡𝑜. As discussed in Remark
1.10, as we set 𝑡𝑜 = 0 in the definitions, conceptually 𝐹 has no insertions from the open sector. The
𝑡𝑜-direction may also be viewed as an auxiliary direction in addition to the original m directions; see
Remark 5.12.

5.2.2. Open WDVV equations
Proposition 5.9. For any 𝑖, 𝑗 , 𝑘, 𝑙 ∈ {1, . . . , 𝑚, 𝑜}, the following open WDVV equation holds:

𝜕𝑖𝜕𝜇𝐹
𝑗 · 𝜕𝑘𝜕𝑙𝐹

𝜇 = 𝜕𝑘𝜕𝜇𝐹
𝑗 · 𝜕𝑖𝜕𝑙𝐹

𝜇, (17)

where the summation index 𝜇 runs through 1, . . . , 𝑚, 𝑜.

Proof. Recall that the vector potential 𝐹 consists of functions that are independent of 𝑡𝑜. Thus, the two
sides of (17) are zero if at least one of 𝑖, 𝑘, 𝑙 is o. For the remaining case 𝑖, 𝑘, 𝑙 ∈ {1, . . . , 𝑚}, first note
that the term in (17) corresponding to 𝜇 = 𝑜 is again zero. Then the case 𝑗 ∈ {1, . . . , 𝑚} follows from
identities (Ia), (Ib) and (Ic) of Proposition 4.4, and the case 𝑗 = 𝑜 follows from identities (IIa) and
(IIb). �

5.2.3. The flat formal F-manifold
Let ∇ be the flat connection on T�̂�2

under which 𝜕
𝜕𝑡1 , . . . ,

𝜕
𝜕𝑡𝑚 , 𝜕

𝜕𝑡𝑜 are flat. Moreover, we define the
following product.
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Definition 5.10. For any 𝑖, 𝑗 ∈ {1, . . . , 𝑚, 𝑜}, define the product 𝜕
𝜕𝑡𝑖

★𝑡
𝜕
𝜕𝑡 𝑗

on T�̂�2
by

𝜕

𝜕𝑡𝑖
★𝑡

𝜕

𝜕𝑡 𝑗
=

𝜕2𝐹𝑘

𝜕𝑡𝑖𝜕𝑡 𝑗
𝜕

𝜕𝑡𝑘
,

where the summation index k runs through 1, . . . , 𝑚, 𝑜.

Since the components of the vector potential 𝐹 are independent of 𝑡𝑜, the above definition implies that

𝜕

𝜕𝑡𝑖
★𝑡

𝜕

𝜕𝑡𝑜
= 0

for any 𝑖 = 1, . . . , 𝑚, 𝑜. Thus, 𝜕
𝜕𝑡𝑜 is nilpotent. Moreover, the product ★𝑡 does not admit an identity

field, which means that the induced structure on �̂�2 will be an formal F-manifold without unit. This
is different from the case studied by [26, 43] (see Theorem 1.3), and the difference is reflected by that
our 𝐹𝑜 = 𝐹

𝑋, (𝐿, 𝑓 )
0,1 is supported on the ideal of Λ𝑋,𝐿 generated by X0 while the disk potential of [26,

43] has a constant term. The difference is discussed from the perspective of open WDVV equations in
Remark 4.5.

Summarizing the above, we arrive at the following result.

Theorem 5.11. The tuple (�̂�2,∇, ★𝑡 ) is a flat formal F-manifold without the unit over Λ𝑇𝑓

𝑋,𝐿 in which
the 𝑡𝑜-direction is nilpotent.

Remark 5.12. The flat formal F-manifold �̂�2 is a rank-1 extension of the formal Frobenius manifold
�̂�

𝑓
𝑋 (defined in (14)) in the sense of, for example, [1, Chapter 3], [4, Section 4]. In other words, there

is a surjective homomorphism from the global algebra of �̂�2 to that of �̂� 𝑓
𝑋 whose kernel is the rank-1

algebra over Λ𝑇𝑓

𝑋,𝐿 generated by the nilpotent element 𝜕
𝜕𝑡𝑜 .

A. Deferred proofs

A.1. Proof of Theorem 3.1

We consider the contributions of individual effective classes to the Gromov-Witten potential 𝐹𝑋,𝑇 ′

0 of
𝑋 . Let 𝛽 = (𝛽, 𝑑) ∈ 𝐸 (𝑋), which by Section 2.4 corresponds to an effective class in 𝐸 (𝑋, 𝐿). By (7),
we consider the computation of the closed invariant

〈𝑡, . . . , 𝑡〉𝑋,𝑇
′

0,𝑛,𝛽

by localization as detailed in [33, Section 3.5], [34, Section 3.5] and adopt the notations there. Com-
ponents of the 𝑇 ′-fixed locus of the moduli space M0,𝑛 (𝑋, 𝛽) are indexed by the set Γ0,𝑛 (𝑋, 𝛽) of
decorated graphs (see [33, Section 3.1], [34, Section 3.2]). We have

〈𝑡, . . . , 𝑡〉𝑋,𝑇
′

0,𝑛,𝛽
=

∑
Γ̃∈Γ0,𝑛 (𝑋,𝛽)

𝐶Γ̃, (18)

where 𝐶Γ̃ is the contribution of the component indexed by Γ̃.
Let Γ̃ = (Γ, �𝑓 , �𝑑, �𝑠) ∈ Γ0,𝑛 (𝑋, 𝛽). As in [34, Section 4.3], let

𝑉0 := {𝑣 ∈ 𝑉 (Γ) : �𝑓 (𝑣) ∈ 𝜄(Σ(3))}, 𝐸2 := {𝑒 ∈ 𝐸 (Γ) : �𝑓 (𝑒) = 𝜄(𝜏0)},
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and 𝑐0 denote the number of connected components of the subgraph of Γ induced on𝑉0. We may assume
that 𝑐0 ≥ 1, since otherwise, Γ̃ represents a constant map to the fixed point 𝑝𝑚+15 and thus 𝐶Γ̃ = 0. By
the proof of [34, Lemma 4.4], the total power of u4 in 𝐶Γ̃ is

|𝐸2 | − 𝑐0 ≥ −1.

Equality holds if and only if 𝐸2 = ∅ and 𝑉0 = 𝑉 (Γ), which happens if and only if 𝑑 = 0. Therefore,
𝐹𝑋,𝑇 ′

0 has at most a simple pole along u4 and the residue 𝐴 is supported on the Novikov variables
{𝑄 𝜄∗ (𝛽) : 𝛽 ∈ 𝐸 (𝑋)} and is independent of 𝑡𝑚+1. Part (b) of the theorem follows from the following
result.

Lemma A.1. For 𝛽 = (𝛽, 0), we have

u4〈𝑡, . . . , 𝑡〉
𝑋,𝑇 ′

0,𝑛,𝛽

��
u4=0 = 〈𝑡, . . . , 𝑡〉𝑋,𝑇

′

0,𝑛,𝛽 .

Proof. We consider the contributions from decorated graphs as in (18). In the case 𝛽 = 𝜄∗(𝛽), any
Γ̃ ∈ Γ0,𝑛 (𝑋, 𝛽) (with 𝑐0 ≠ 0) naturally corresponds to a decorated graph in Γ0,𝑛 (𝑋, 𝛽); that is,
it represents stable maps which factor through 𝑋 ⊂ 𝑋 . The lemma then follows directly from the
comparison of localization contributions as in the proof of [34, Lemma 4.2]. Note from (4) that 𝑡

��
𝑝𝑖

= 𝑡
��
𝑝𝑖

for 𝑖 = 1, . . . , 𝑚. �

Now we consider the case 𝑑 > 0 which corresponds to the part of 𝐹𝑋,𝑇 ′

0 that does not have a pole
along u4. By the divisor equation, we have

〈𝑡, . . . , 𝑡〉𝑋,𝑇
′

0,𝑛,𝛽
=

1
𝑑
〈𝑡, . . . , 𝑡, 𝐷〉𝑋,𝑇

′

0,𝑛+1,𝛽
.

Similar to (18), we consider the localization computation of this invariant as a sum of contributions
from decorated graphs:

〈𝑡, . . . , 𝑡, 𝐷〉𝑋,𝑇
′

0,𝑛+1,𝛽
=

∑
Γ̃∈Γ0,𝑛+1 (𝑋,𝛽)

𝐶Γ̃, (19)

where by an abuse of notation, 𝐶Γ̃ denotes the contribution of Γ̃ ∈ Γ0,𝑛+1 (𝑋, 𝛽). We study the poles of
𝐶Γ̃ along u2 − 𝑓 u1 or u2 − 𝑓 u1 − u4. We assume below that 𝑓 ∈ Z is generic with respect to the curve
class 𝛽. Eventually, the argument in [34, Section 4.4] will enable us to extend the proof to all 𝑓 ∈ Z.

Note that 𝐸2 ≠ ∅ when 𝑑 > 0. By the computations in the proof of [34, Lemma 4.6], we can write

𝐶Γ̃ =

⎧⎪⎪⎨⎪⎪⎩
w̃( �̃�3 , �̃�0)

|𝐸2 |−1

w̃( �̃�2 , �̃�0)
�̃�Γ̃ if 𝑓 ≥ 0

w̃( �̃�2 , �̃�0)
|𝐸2 |−1

w̃( �̃�3 , �̃�0)
�̃�Γ̃ if 𝑓 < 0

=
1
v
�̃�Γ̃ +

u4
v
�̃�Γ̃,1 + �̃�Γ̃,2,

where each of �̃�Γ̃, �̃�Γ̃, �̃�Γ̃,1, �̃�Γ̃,2 has a well-defined weight restriction to u4 = 0, u2 − 𝑓 u1 = 0. Moreover,
�̃�Γ̃ is nonzero only if |𝐸2 | = 1, in which case, [34, Lemma 4.2] implies that �̃�Γ̃ (or the graph Γ̃)
contributes to the localization computation of a corresponding disk invariant of (𝑋, 𝐿, 𝑓 ). More formally,
and combining the analysis over all decorated graphs, we have the following lemma which is a direct
consequence of [34, Lemma 4.2].

5The contribution of such maps to 𝐹𝑋,𝑇 ′

0 has already been singled out in the term (𝑡𝑚+1 )3

6Δ𝑚+1,𝑇 ′ in (9).
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Lemma A.2. For 𝛽 = (𝛽, 𝑑) with 𝑑 > 0, we can write

〈𝑡, . . . , 𝑡, 𝐷〉𝑋,𝑇
′

0,𝑛+1,𝛽
=

1
v
�̃� +

u4
v
�̃�1 + �̃�2,

where each of �̃�, �̃�1, �̃�2 has a well-defined weight restriction to u4 = 0, u2 − 𝑓 u1 = 0 and

�̃�
��
u4=0,u2− 𝑓 u1=0 = 〈𝑡, . . . , 𝑡〉

𝑋, (𝐿, 𝑓 )
(0,1) ,𝑛,𝛽+𝑑 [𝐵],𝑑

.

Lemma A.2 implies part (c) of Theorem 3.1 and completes the proof.
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