ON A THEOREM OF KOROUS

by J. A. ANDERSON
(Received 2nd April 1965; revised MS. received 17th July 1965)

i(z) = (z—1,) fj( [Xl—li>, (1)

where the {/,} are numbers near to an arithmetic progression of common
difference unity. Let

1. Introduction
Let

p(2) = +b, @

_lo Zy Iv)
nz 7t v#o v(v—2z)
b being a constant. Write

k(2) = I(2) cot nz + p(2), 3
so that k(z) is an integral function, and

k(z)
zZ) = -7 4
0(2) 316) 4)
is meromorphic with simple poles at {/,}.
Let fe BV(a, x+n), and suppose that C, is a circle, centre the origin, not
passing through any v or /,, and containing in its interior those /, for which

|v| < N, Then,
5,(%) = — f 0(2)dz f S04y

()
— z Cve'lvx,
Ivl =Np
where
k(l ) —ilvt
c, e, 6
=370 j f(De 6
is the N th partial sum of the Cauchy Exponential Series (CES) of f with respect
to Q(z). If
atn
S0 = | cot nzdz I ft)e===0 4y, )
47tl Cp a

then it is easily seen that S,(x) is the N th partial sum of the Fourier series (FS)
of g, given by

a—nT =S x<a

4(x) = {f(x) an<a+7r )
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We have
atn
5,(X) = S,(x) = @) 4, J f(1)e*="4y, 9)
4mi cp l( )
and so, if the right-hand side of (9) is o(1), we have the CES equiconvergent
with a FS. We shall give some sufficient conditions for this equiconvergence.
Korous (1) takes {/,} real, and satisfying
I_,<0 =1y, Li<lyy, I, =v+a+l,
where a = 0 or +4. He considers partial sums s,(x; f), S,(x; f)[see (1), p. 3],
where f, b are real, and which are given, in terms of (5) and (7) above, by
s,(x; f) = Resy(x), S,x; f) = Re Sy(x).
(9) becomes, therefore,
1 p(z) atn
5(x; )=S,(x; )= dz J(V) cos z(x—t)dt,
4ri o U(z)
which is (1), equation (2.7). He proves (Theorem A) that if limsup | 4, | <15,
and fe BV(a, a+n), then s,(x; f)—S,(x; f) = o(1) uniformly in any closed

interval interior to (a«, a+ 7).
In this note, we suppose that the numbers {/,} are complex, say /, = a,+if,,

where

o, = v+ 4,
, (10)

|B. =M
M being a constant. We prove the following generalisation of (1), Theorem A :
Theorem 1. Let fe BV(«, a+7). Suppose that the numbers {1} satisfy (10)
and the condition
limsup | 4, |<%. (11)
Then, the CES of f is uniformly equiconvergent, in any closed interval interior to
(o, c+ 1), with the FS of the function g given by (8). Further, the coefficients c,
tend to zero as | v |— co.

2. Proof of the theorem
Let E={z: |z—1,| 2 4 |r—| vl = 4}. Let C, be the circle
|zl =r=p+4,
which satisfies the condition z € E, if p is sufficiently large. Write

atn

$p(X)—S,(x) = j J()¢,(x—1dt,

a

where
— — (z) IZH
$pu) = 4mjcp i(z) az.
If
(Z)eizu
Tt = r L,, zI(z) , (12)
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then

J 08, (=t = —fla+ mM (x— =)+ @) (5 — ) + fm.f,,(x—z)df(t).

Tt will therefore suffice to prove that J,(u) tends to zero uniformly in
[—n+n, m—7].
In fact, it is enough to consider the first quadrant, and the function

Kp(u) = J\nlz_,?(_z) eiZudB
o U2

nf2
=0
<.[o I(z)

‘We employ Theorem 1 of (2): there is a number L <% such that for ze C,
| 1(z)|> 4e” 17 1G™2E,

p(2)

el”! "d()). (13)

where
2
oo Lzt
|y |+1
=0(@?
on C,, whence
1
— 1 =0(e~m1r1pohy,
1@ ( )

Also by Theorem 1 of (2), we have, for all z,
| l(z)[<Ae""I G2L,

Hence, for v # 0,
| ] =0( v|*D),

| o(2)| = o( Y ! ) +0(1).
S0 V= V7]
To estimate this, we split up the sum as follows:

Z=Z+Z+Z=;+;+;.

|viz1 1S|v|<r r<|v| s 2r v]>2r

and so

Then,

Yt ¥y L
T 1 S5<r W(r—v)

< r*(2 log r+0(1)).

v4L—1
g-o(r 2, 25)
2 r<vs2r V-—r

= O0(r*L log r).

Next,

E.M.S.—H
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o O(r 5 v4L—1>
3 v>2r VT
=0(@r Y v*?)

v>2r

= O(r*h).

and finally,

It follows, therefore, that
p(z) = O(r*tlogr).
Hence,

nf/2
K,(u)=0 (f e ”ré jog rde),

0
where ue[—n+n, n—n],

= O(r®=~ ! Jog 1)
= o(1),
uniformly, since L <.
Finally, to prove that ¢, = o(1), let C} denote the contour obtained from
C, by replacing the minor arc formed by Re z = p—3} by the chord. If

izu

J;(u) - _ i p(2)e
4n J o zl(2)
then J}(u)—0 uniformly, by the same argument as for J,(u). Let Zd,e”* be the
FS of g. Since, as p— oo, J,—0, we have
Z {cveilvx _ dveivx}_)o_

Ivisp

Y {c,e™*—d,e"*}-0.

—p 2 v<p

Since J3-0,

Thus, c,e'**—d,e"* >0 as p—»oo. But d,e”*-0; hence c,—0. Similarly,
c_,—0. This completes the proof.

3. By adding the condition
Ay
IvTspv+3d

and using (2), Theorem 2, we can, in the theorem above, replace % by 4.
I am indebted to the referee for several helpful suggestions.

=0(1), p=1,2,3, ..
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