
Journal of GlacioJoD, Vol. 13, No. 67. 1974 

STABILITY OF THE JUNCTION OF AN ICE SHEET AND AN 

ICE SHELF 

By J. WEERTMAN 

(Departments of Materials Science and Geological Sciences, Northwestern University, 
Evanston, Illinois 60201, U.S.A. and U.S. Army Cold Regions Research and Engineering 

Laboratory, Hanover, New Hampshire 03755, U.S.A.) 

ABSTRACT. An analysis is made of the steady-state size of a two-dimensional ice sheet whose base is 
below sea-level and which terminates in floating ice shelves. Under the assumption of perfect plasticity it is 
found that an ice sheet placed on a bed whose surface was initially flat cannot exist if the depth of the bed 
below sea-level exceeds a critical depth. If this depth is less than the critical level, the ice sheet exten:is out 
to the edge of the continental shelf. Similar remits are found with more realistic assumptions about the laws 
governing the flow of ice. If the bed slopes away from the centre, the ice sheet can have a stable width that 
increases in value as the accumulation rate increases or as sea-level i, lowere:i. It is not p03sible to decide 
whether or not the West Antarctic ice sheet is in stable equilibrium. It i3 entirely p03sible that this ice sheet 
is disintegrating at preient, as suggested by Hughes. 

RESUME. Slabilil' de la jonclion enlre une calotte glaciaire el une plaliforme de glace. On fait une analyse de la 
forme d'equilibre d'une calotte a deux dimensions, dont la base est au·dcssus du niveau le la mer et qui se 
termine en glaces flottantes. Avec I'hypothese d'une plasticite parfaite, on trouve qu'une calotte placee sur 
un lit dont la surface etait initialement plate ne peut exister si la profondeur du lit en-dessous du niveau de la 
mer excede une profondeur critique. Si cette profondeur est moindre que le niveau critique, la calotte 
s'etend en dehors des limites du plateau continental. Des resultats semblables sont obtenus a partir d'hypo­
theses plus realistes, sur les lois gouvernant l'ecoulement de la glace. Si le lit plonge en s'eloignant du centre, 
la calotte peut avoir une largeur stable qui croit lorsque le taux d'accumulation augmente ou lorsque le 
niveau de la mer s'abaisse. 11 n'est pas possible de deceler si la calotte glaciaire de l'Ouest. Antarctique est 
ou non en equilibre stable. 11 est tout a fait possible que cette calotte soit actuellement en cour3 de desintegra­
tion, comme le suggere Hughes. 

ZUSAMMENFASSUNG. Slabililiil der Verbindung zwischen einem Eisschild und einem Scheifeis. Eine Untersuchung 
gait der stationaren Ausdehnung eines zweidimensionalen Eisschildes, dessen Basis unter dem Meeresniveau 
liegt und der in schwimmenden Schelfeisen endet. Unter der Voraussetzung vollkommener Plastizitat wurde 
gefunden, dass ein Eisschild, der auf einen ursprunglich flachen Untergrund gelagert ist, nicht bestehen 
kann, wenn die Tiefe der Basis unter dem Meeresniveau einen kritischen Wert uberschreitet. Wird dieser 
Wert nicht erreicht, dann dehnt sich der Eisschild bis zum Rand des Festlandsockels aus. Ahnliche Ergebnisse 
wurden mit realistischeren Annahmen uber die Gesetzmassigkeiten des Eisfliessens gefunden. Wenn der 
Untergrund vom Zentrum nach aussen hin abfallt, kann der Eisschild eine stabile Ausdehnung annehmen, 
die mit wachsender Akkumulation od er mit fallendem Meeresspiegel zunimmt. Es ist nicht moglich zu 
entscheiden, ob der Westantarktische Eisschild sich in stabilem Gleichgewicht befindet oder nlcht. Es ist 
durchaus moglich, dass sich dieser Eisschild gegenwartig auf lost, wie Hughes vermutet. 

I. INTRODUCTION 

The junction of an ice sheet and an ice shelf occurs at the point, as the ice flows to the sea, 
at which the ice mass first is afloat and consequently loses contact with the bed. Hughes 
(1972) has suggested that the position of the junction of the West Antarctic ice sheet and of 
the Ross Ice Shelf is unstable. He concluded that at the present time this junction is retreating 
into the interior of West Antarctica at the velocity of about 70 m a - I. 

The problem of junction stability that Hughes' work has emphasized is important. Large 
shifts in the position of the ice sheet-ice shelf junction produce relatively large changes in the 
thickness of an ice sheet. In this paper we attempt to obtain, for the two dimensional problem, 
the basic equations that determine the position of the region in which an ice sheet turns into a 
floating ice shelf; we also examine the conditions that must be satisfied if the ice sheet is 
even to exist. 

2. THEORY 

Consider a symmetric, two-dimensional ice sheet. Let ice shelves be attached to both 
sides of this ice sheet as shown in Figure I. Let D(x) represent the depth of the bedrock 
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below sea-level, where x is the distance measured in the horizontal direction from the center 
of the ice sheet. (We consider x always to be a positive quantity whether it is measured to 
the right or to the left of the center of the ice sheet.) Assume that if no ice sheet were present 
D(x) would be a linearly increasing function of distance x out to the edges of the continent. 
Thus 

D (x) = Do+f3x 

for 0 ~ x ~ Lo and, for all practical purposes, 

D(x) = 00 

( la) 

for x > Lo. Here x = Lo is the position of the edges of the continent, Do is a constant, and 
f3 is the slope of the bed rock away from the center of the continent. (We consider only values 
of f3 in the range f3 ~ 0.) 

ic e 
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sheet 
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0 water 
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L x· • x L ~ Lo 
be d roe k 

Fig. 1. Cross-section of ice sheet with attached ice shelves. 

Isostatic sinking occurs under an ice sheet. If h(x) is the thickness of the ice sheet, D (x) 
after isostatic sinking is given by 

D (x) = (Do + f3x) ( I - pwl Pr) + (pi Pr ) h(x) 

in the region 0 ~ x ~ L where x = L gives the position of the edges of the ice sheet. Of 
necessity the position L of the junction between the ice sheet and an ice shelf must satisfy the 
relationship L ~ Lo. The quantities p, pw and pr in Equation (2) are the average densities 
of ice, sea-water, and bedrock, respectively. In the region under the floating ice shelf (x > L) 
the depth D (x) is given by Equation ( I). 

A rise or fall in the sea-level results in an identical increase or decrease in the value of Do 
in Equations ( I) and (2). The change in the value of the ice sheet-ice shelf junction position 
L with change in sea-level can be found only from an analysis of the mechanics of flow of ice 
sheets and ice shelves. 

Assume that the ice sheet and ice shelves of Figure I are in a steady-state condition. 
From a mass balance argument it can be seen that 

x 

Uh = J a dx 
o 

where a(x) is the accumulation rate at x and U(x) is the average value of the horizontal ice 
velocity component. If there is melting or freezing at the bottom surface this mass loss or gain 
must be included in the term a(x) . 

Differentiation of Equation (3) produces the equation 

hi.-Uy = a (4 ) 
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where i = dUldx is the longitudinal strain-rate and,), = -dhldx = a+a*, where a is the 
slope of the upper ice surface (considered to be a positive quantity if the upper surface decreases 
in elevation as x increases) and a* is the slope of the bottom ice surface (considered to be a 
positive quantity if the lower ice surface increases in elevation with increasing value of x). 

Assume that, in the case of the ice sheet, the value of the velocity is given approximately 
by the equation (see chapter 9 of Patterson, 1969) 

U ~ B(TITo)n ~ B(pgha/To)n (5) 
where B, To and n are constants, and T is the basal shear stress. The value of n and the expres­
sion BITon depend on factors such as whether or not sliding occurs, and the temperature 
distribution within the ice sheet. Reasonable values of Band n are n ~ 3 and B :::= 50 m a-I 
if To = I bar. 

Equation (5) is derived (Paterson, 1969, chapter 9) under the assumption that the 
dominant stress producing flow in an ice sheet is the shear stress that acts across any surface 
that is approximately parallel to the top or bottom surface. When large longitudinal stresses 
are present this equation is not valid. 

In the ice shelves U is given by 

where the longitudinal creep rate is 

x 

U = UI,+ J i dx 
1. 

(6) 

In Equations (6) and (7) , U L is the horizontal velocity at x = L , t:.p = pw-p, m ::::: n ::::: 3, 
and A is a constant whose value depends on the temperature and density profile of an ice shelf. 
A reasonable value of A is ~2 X IO - J a - I for T O = I bar. Equation (7) is found from the 
analysis of the creep rate of an un confined, two-dimensional ice shelf (Weertman, 1957). 

3. PERFECTLY PLASTIC APPROXIMATION 

Considerable insight is often gained in problems in glacier mechanics by making the 
assumption that ice is a perfectly plastic solid. Such is the case with the ice sheet-ice shelf 
junction problem. 

The perfect plasticity approximation is made in our previous equations by taking the limit 
ofn = m = 00. Ifn is set equal to 00 in Equation (7) for an ice shelf with a positive accumula­
tion, that equation predicts that the ice shelf must have the thickness hI p (independent of x) 
equal to 

(8) 
(If the thickness of an ice shelf were greater than hI p it would strain at an infinite rate until its 
thickness were reduced to the value hI p. If the thickness were smaller than hI p the ice shelf 
would not creep but its thickness would increase in time because of the positive accumulation 
rate until it reached the value hI p.) For /:!..p ::::: o. I pw and To = I bar the value of hI p is 
approximately 400 m. 

By similar reasoning it can be seen from Equation (5) that the basal shear stress of the ice 
sheet must take on the value T = TO' The ice sheet profile thus is found by integrating the 
equation 

pgha = TO (9) 

where a = - ( I-p IPr) dh/dx + f3 ( I-pwIPr). (10) 
If the ice sheet bed was flat before the ice sheet was placed on it (f3 = 0) the solution of 

Equations (9) and (10) is 

hI = HZ-2Toxlpg( I-pIPr) = hII+2To(L-x)lpg(I-p IPr) (11) 

https://doi.org/10.3189/S0022143000023327 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000023327


6 JOURNAL OF GLACrOLOGY 

where H, given by 

is the thickness of the ice sheet at the center (x = 0) and hI is the thickness of the ice sheet at 
its edges (x = L). Because the ice sheet is afloat at its edges the thickness hI is equal to 

hI = (pw/p) D (L). 

When fJ "# 0 the ice-sheet profile is given by the equation 

(H-h)-( rJA) In [(AH-r )/(Ah-r)] = ToAx/pg(r-pJPr) 

where A = (fJpgf-ro )( r -Pw/Pr). 

The value of H in Equation ( r4) is found by setting h = hI at x = L. 

3. r. Condition at ice sheet-ice shelf junction 

At x = L, the position of the junction of the ice sheet and an ice shelf, the thickness of the 
ice shelf, h = hI, is such that the ice sheet is afloat. The ice shelf also is afloat. Thus the 
thickness of the ice shelf, h = hIP' must satisfy the condition 

( r 6) 

Suppose hiP were appreciably smaller than hI, a situation illustrated in Figure 2. The 
ice sheet is chopped off essentially at x = L. The effect of this truncation at the edge of the ice 
sheet is to cause a large longitudinal tensile stress to be set up in the ice sheet near its edge. 
The magnitude of this tensile stress must be of the same order as that of the stress existing in 
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Fig. 2. Junction between ice sheet and ice s,~elf. No restriction on thickness of ice sheet at x = L. Perfect plasticity approximation. 

an ice shelf of thickness h2 • The longitudinal strain-rate in the ice sheet near its edge must thus 
be of the order given by Equation (7). But since h2 ~ hiP this strain-rate is infinite ifice is a 
perfectly plastic solid. Therefore it is not possible to have hI ~ hI P and have the ice sheet and 
the ice shelves in a steady-state condition. 

We conclude that 
( 17) 

is a necessary condition at the junction of an ice sheet and an ice shelf. 
An appreciable longitudinal tensile stress exists within the ice near the edge of an ice sheet 

even if Equation (17) is satisfied. The tensile stress that exists within an ice shelf cannot die 
out abruptly at the ice sheet-ice shelf junction. The basal shear stress near the edge of the i~e 
sheet must be reduced in value in order that the effective stress that produces plastic deforma­
tion does not exceed the limit TO' (The effective stress that produces plastic deformation is 
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equal to the sum of the squares of the deviator stress components divided by V2 (Paterson, 
1969) ' ) Therefore when Equation (9) is used to determine the ice-sheet profile a reduced 
value of the term To should be employed near the edge of the ice sheet. 

Figure 3 shows the cross-section of the junction region between the ice sheet and an ice 
shelf when h2 ~ hI p. No sharp change in ice thickness occurs across this zone. The slope of 
the upper ice surface is reduced in the transition region at the edge of the ice sheet because of 
the need to reduce the basal shear stress when a longitudinal tensional stress is present. 
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Fig . 3. Junction between ice sheet and ice shelf. A transition region exists in which the longitudinal tensile stress and the shear 
stress are comparable in magnitude. Perfect plasticity approximation . 

The junction between the ice sheet and the ice shelf occurs at that value of x = L for 
which 

hz ~ hIP = (pw/p) D (L). 

When Equation ( I a ) is inserted in Equation (18) the following equation is found for L: 

L = ([ph!ll /pwJ - Do)ff3 = (4ToP/ t:.PPwg-Do)ff3. ( 19 ) 
If the value of L predicted by Equation ( 19) is larger than Lo (see Fig. I) the edge of the 

ice sheet occurs at the value x = Lo instead of x = L. In this situation the edge of the ice sheet 
cannot be afloat because hI P > (Pw/ p) D (Lo )· Under these circumstances the equivalent of 
ice falls must exist at the edges of the ice sheet. The ice shelves form below these ice falls. 

A bed that was Hat before an ice sheet was placed on it ((3 = 0) becomes entirely covered 
by ice out to x = Lo if hiP > (pw /p) Do ; if hi < (pw/p) Do no ice sheet can exist at all . In the 
former case the ice sheet would turn catastrophically into a Hoating ice shelf if the sea-level 
were to rise until hiP becomes less than (Pw/p) Do. 

4 REALISTIC FLOW LAW 

How are the results of the last section modified if ice is assumed to obey the more realistic 
How laws of Section 2 that use finite values of n and m (m ~ n ::;:;; 3) rather than the infinite 
values of the perfectly plastic approximation? 

The thickness of the ice shelves no longer is a constant. Instead of the unique thickness 
given by Equation (8) the thickness hi of the ice shelf at the junction is given by the following 
equation (found by combining Equations (4) and (7)) : 

hi = h'P{(I/A)[( a) Ly, /h'P
2) + (a,hI /h,p2)]}, /(m+2) (20) 

where hI p is given by Equation (8), YI and a l are the values of Y and a for the ice shelf at the 
junction, and ( a) is the average accumulation rate given by 

L 

( a) = L - I J a dx. 
o 
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Because the exponent 1/ (m+2) in Equation (20) is approximately equal to t, very large 
changes in <a) , al and YI are required to change the value of hi by more than a factor ot 2 to 3. 
Thus the results in Section 3 are expected to remain valid as a first approximation. 

In the transition region (see Figure 3) at the edge of an ice sheet longitudinal as well as 
shear stresses are expected to be important. The deformation and flow in the transition 
region thus are determined by the triaxial creep equations of Nye (see chapter 6 of Paterson, 
1969). The following equation, that takes the triaxial stresses into account and replaces 
Equation (7) , gives a rough approximation of the longitudinal strain-rate E in the transition 
zone 

£ = A (D.pgh/4To){cl (D.pgh/4T,,)1 + c2 (pghrx!ro)2}(m-II /2 (22) 

where Cl and C2 are constants of order of magnitude of I. 

Similarly Equation (5) for the average ice velocity U is replaced by the equation 

U = B (pghrx /TO){C , (D.pgh/4 To) 2 + c2(pghrx/To)2}(n- 1 1/ 2 (23) 

as a rough approximation in the transition region. 
Combining Equations (4) , (22) and (23) gives 

rxy = (Ah/4B )( D.p /P) (24) 

when Tl = m and the approximation Uy ~ a is valid. From Equation (2) it is possible to 
show that 

y = {ex - fJ ( l-pw/Pr)} /(l-P /Pr ). 

Combining Equations (3) and (23) and setting Il = 3 gives 

rx = ( a) L/4B) ( D.p/p)(hlp3 /h4)/{CI+C2(4prx/D.p)2}. 

Combining Equations (24) , (25) and (26) and assuming that rx ~ fJ gives for the upper surface 
slope ex the equation 

ex = {A4B- S( D.PI4P)S ( I - pi pr ) ~hll)3 <a> Lj[c , + c2(4prx j Llp) 2]}1/9 

::::; 0.1 (A4<a> Lh, p3jBS) 1/ 9. (27) 

Combining Equations (24) and (27) gives the following equation for the ice thickness h = h, 
in the transition region 

hl ::::; (0.01) ( a) 2/,2hlp6 /JlB )'/9(4P jLlp) j( 1 - pjPr). (28) 

For <a) = 0. 1 m a - I, L = 1000 km, h'll = 400 m, A = 2 X 10 -3 a - f , B = 50 m a - f
, 

D.p jp = 0.1, and pjPr = ! the thickness h2 = 543 m and the slope rx = 0.019. These results 
justify a posteriori the assumptions that Uy = ( a) Ly/h ~ a and rx ~ fJ for reasonable values 
of a, Land fJ. 

The distance x = L to the edge of an ice sheet can be found from Equation (19) if h2 is 
substituted for h,P in that equation . The following is found for L: 

fJL + Do = gU/Q (29) 

where g = (0.01 )( pjpw )« a) 2/zlp6 jAB)'/9(4P jLlp)j (1 - pIPr ) (30) 

(The term g = 22.7 m7/ 9 for the values of ( a) , etc., mentioned before.) 
The solution for Equation (29) can be found graphically by plotting the function fJL + Do 

versus L and the function gL2/9 versus L. Such a plot is given in Figure 4. Depending upon 
the values of fJ and Do there may be one, two, or no real, positive values of L that satisfy 
Equation (29). 

When fJ = 0 and Do > 0 there is one real, positive value of L that satisfies Equation (29) 
(see Figure 4). It is given by the equation 

L = (Dolg) 9/ 2. (3 1) 

When fJ = 0 a steady-state ice sheet whose half-width L is given by Equation (3 I) clearly is in 
unstable equilibrium. It only need be noted that Equation (3 I) predicts that L decreases in 
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Fig. 4. Plots of the functions gU I9 and ( f3L + Do) verSI/S L. Curues plotted for it = 22.7 m7" , Do = 2001/1 and (for OIU 

cl/rve) 250 m, and f3 = 2 X 10- 3, 6 x 10 -., 4 Y 10- < and o. Values of Lfor steady-state ice sheets oeCl/" wht.r the Cl/rves 
of gLlI9 and (f3L + Do) cross. 

value if the accumulation rate ( a) increases or if t he sea-level drops . A non-steady-state ice 
sheet whose edge occurs at a value of L which is larger than that given by Equation (3' ) will 
grow in size until it reaches the edge of the continental shelf at x = Lo. If the half-width is 
smaller than that given by Equation (3 I) this ice sheet will shrink with time until it disappears. 
If L given by Equation (31) is larger than Lo clearly no ice sheet can exist. These results are 
very similar to those found for an ice sheet that obeys the equations of a perfectly plastic solid 
for the case in which f3 = o. 

If the curve of the function f3L + Do intersects the curve of the function gUN twice (see 
Figure 4) the intersection corresponding to the smaller value of L represents the solution of a 
steady-state ice sheet in unstable equilibrium. The other intersection represents an ice sheet 
in stable equilibrium. For example, if Do is small compared with hz the solution of Equation 
(3) for the larger value of L is 

This equation predicts that L increases if ( a) increases or if the sea-level drops. Equation 
(32) gives the half-width of an ice sheet that is in stable equilibrium. This result too is analo­
gous to that found for the perfectly plastic approximation when f3 #- o. 

If the value of L for the steady-state ice sheet in unstable equilibrium is such that flL ~ Do 
the solution of Equation (29) is 
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From Figure 4 it can be seen that if Do and fJ are made sufficiently large in value no 
solution for L exists. By considering the special case in which the curves of the functions 
fJL + Do and gLz/9 are tangent to each other it is simple to show that no solution exists when 
the following inequality is satisfied 

For the value of g given previously (g = 22.7 m7/9) if the term fJ2/7 Do is larger than 28 m no 
ice sheet can exist. 

If the ice sheet is small the assumption that Uy = ( a> Ljh ~ a breaks down. In this 
situation an ice sheet can exist if hI> the thickness of the ice shelves given by Equation (20), is 
larger than Do. An approximate half-width for such a small ice sheet can be found by re­
placing in Equation (19) the term hI p with the term hI' In the approximation m = 3 and 
(a> Lyjh <{ a the half-width L is given by 

L ~ [(pjpw) (hIpJaI jA)I /4_Do]!fJ. (35) 

Thus if 

an ice sheet can exist. 

5. DISCUSSION 

The results of this paper show that an ice sheet that rests on a flat bed (flat before the ice 
sheet was placed on it) situated below sea-level is inherently unstable. Depending upon the 
depth of the bed below sea-level the ice sheet either will shrink in size until it disappears or it 
will grow until its edge is at the border of the continental shelf. A stable ice sheet can occur 
if the bed slopes away from the center of the ice sheet. The generalization of our results to 
other bed shapes is rathet· obvious. 

We ha\"e not attempted to analyse the three-dimensional situation in which an ice sheet 
flows into a confined ice shelf. The results of Thomas (1973[a], 1973[b]) and Budd (1966) on 
the deformation of confined ice shelves might be used to extend our theory to this situation. 

We hope that the theory of this paper can be applied to the question Hughes raised: Is the 
West Antarctic ice sheet disintegrating? The bedrock under a large fraction of this ice sheet 
is below sea-level now and would still be below sea-level if the ice sheet were removed and 
complete isostatic rebound occurred . From the cross-section of the West Antarctic ice sheet 
through Byrd Station and the Ross Ice Shelf shown in figure 6 in the paper of Hughes (1972) 
or in figure 4 of Robin and others ( 1970) the following estimate can be made: fJ ~ 4 X 10-'4 
and Do ~ 200 m . If these values of fJ and Do are inserted into Equation (29) and if g is 
assumed to equal 22 .7 m7/9 it is found (see Fig. 4) that L ~ 700 km for the stable steady-state 
ice sheet. This value is approximately the half-width of the present West Antarctic ice sheet 
along this flow line. However we emphasize strongly that one should not conclude from this 
calculation , which is only an app"oximate one, that the present ice sheet is indeed in a stable 
steady-state condition. If the estimated va lues of fJ and Do were changed to fJ ~ 6 X 10- 4 

and Do ::::: 250 m, values well within reasonable error limits, no steady-state ice sheet could 
exist (see Fig. 4) and the present West Antarctic ice sheet must shrink until it disappears. 
In addition any complete treatment of this problem must also take into account the fact that 
fast-moving ice streams exist near the edge of the West Antarctic ice sheet where it flows into 
the Ross Ice Shelf. It appears within possibility that Hughes' suggestion that the West 
Antarctic ice sheet is disintegrating is correct. Certainly this suggestion cannot be ruled out as 
physically unlikely on the basis of our theory and calculations. 
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