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ON MORITA DUALITY

WEIMIN XUE

Modules whose nonzero endomorphisms are epimorphisms and modules whose
nonzero endomorphisms are monomorphisms are considered in this paper. We
prove that these two classes of modules are dual to each other via Morita duality.
We also prove that a left artinian ring R with Jacobson radical J has a Morita
duality if either (1) J/J1 is a central bimodule; or (2) R is artinian right duo and
R/J is commutative.

Throughout rings are associative with identity and modules are unitary. Module
homomorphisms will be written as acting on the side opposite scalars. Tiwary and
Pandeya [19] said that a module satisfies the (*) property if each nonzero endomorphism
is a monomorphism. Dually, we say that a module has the (**) property if each nonzero
endomorphism is an epimorphism.

This paper consists of three sections. Modules with property (**)are considered
in the first section. We note that each quotient module of a quasi-projective module
with (**)also has (**), and the converse is also investigated. Then we discuss the
endomorphism rings of modules with property (**). In Section 2 we prove, under Morita
duality, that an reflexive module has the (*)property if and only if its Morita dual has
the (**) property, and that semihereditary modules and semi-cohereditary modules are
also dual to each other. In the last section, we consider artinian rings with a Morita
duality. We prove, among other things, that a left artinian ring R with Jacobson radical
J has a Morita duality if either (1) J/J2 is a central dimodule; or (2) R is artinian
right duo and R/J is commutative.

1. MODULES THAT HAVE PROPERTY **

The following is the dual result of [19, Theorem 1.5].

THEOREM 1. Let R be a ring.

(1) If RP is a quasi-projective module vrith the property (**), then each
quotient module ot RP has (**).

(2) Suppose that RP —*R M —> 0 is a projective cover such that Ker(p)
is stable under the endomorphisms of P and Homji(.P, Ker(p)) = 0. If

has the property (**), then so does RP .

Received 21 January 1993

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 SA2.00+0.00.

35

https://doi.org/10.1017/S0004972700016051 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016051


36 W. Xue [2]

PROOF: (1) Let RM be a quotient module of RP and p: RP —> RM be the
natural epimorphism. If M does not have (**), there exists 0 ^ / £ End(fiM) such
that / is not an epimorphism. Since RP is quasi-projective, there is a g 6 End (RP)
with the diagram

p ——» M • 0

p —?—> M > 0

commutative. It follows that j ^ 0 and g is not an epimorphism. This contradicts
that RP has property (**).

(2) Assume that there exists a 0 / j 6 End (RP) and g is not an epimorphism.
Since Ker (p) is stable under the endomorphisms of RP, h = g |icer(p)G End(Ker(p)).
It follows that there is an / € End(jjM) such that the diagram

0 • Ker(p) < > P ——> M > 0

I' I' 'I
0 > Ker(p) *• * P —?—* M * 0

is commutative (see [16, p.27], for example). Now g ^ 0 and Hom.R(P, Ker(p)) = 0,
hence Im(g) is not contained in Ker(p). Therefore / ^ 0. Since (P, p) is a projective
cover of M and g is not an epimorphism, gp is not onto. So pf is not onto, neither is
/ . This is a contradiction since RM has (**). D

It is easy to see that every module with either property (*)or (**)must be inde-
composable.

PROPOSITION 2.

(1) It RP is a quasi-projective module with (**), then End (RP) is a division
ring.

(2) II RQ is an quasi-injective module with (*), then End(nQ) is a division
ring.

PROOF: (1) Let 0 ^ / G End(flP) be an epimorphism. Since RP is quasi-
projective, the exact sequence

0 —> Ker(/) <-*P-L> p —» 0

splits. Having property (**), RP is indecomposable, so Ker(/) = 0 and / is an
isomorphism.
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(2) Let 0 jL g £ End(RQ) be a monomorphism. Then O ^ I m ( j ) = f l Q , which is
indecomposable since RQ has (*). Since RQ is quasi-injective, lm(g) is a summand
of RQ and then lm(g) = Q. That is, g is an isomorphism. D

The following proposition is the analogous result of [19, Proposition 2.8].

PROPOSITION 3 . Suppose that RP -^-*R M —> 0 is a projective cover of a
simple module RM . If Homji(P, JP) = 0, then End(nP) is a division ring, where
J = J(R) is the Jacobson radical of R.

PROOF: Since Ker(p) = JP is the unique maximal submodule of RP and
Hom« (P, JP) = 0, RP has (**)by Theorem 1. Now the result follows from Proposition
2. D

Following Shrikhande [18], we call a Module RP (semi-) hereditary in case each
(finitely generated) submodule of RP is projective, and call a module RQ (semi-)
cohereditary in case each (finitely cogenerated) factor module of RQ is injective.

PROPOSITION 4.

(1) An indecomposable hereditary module RP has property (*); and
(2) an indecomposable cohereditary module RQ has property (**).

PROOF: (1) If 0 ^ / 6 End(f iP), then Ker (/) (^ P) is a summand of RP since
Im(/) is projective. Hence Ker(/) = 0. (2) If 0 ^ g G End(fi<2), then 0 ^ lm(g) S
Q/Ker(g) is injective. So lm(g) is a summand of RQ and hence Im(g) = Q. U

COROLLARY 5 . Let RM be an indecomposable module. If RM is both heredi-
tary and cohereditary, then End (RM) is a division ring.

If R is a left perfect ring and RP is an indecomposable hereditary module, then
End(flP) is a division ring [9, Proposition 1.2]. Now we show the following.

COROLLARY 6. Let RQ be an indecomposable cohereditary module. If RQ is
noetherian, then End (RQ) is a division ring.

PROOF: By Proposition 4, RQ has the property("). Hence each nonzero endo-
morphism of RQ, being an epimorphism, is an isomorphism by [1, Lemma 11.6(2)]. D

2. ON MoRITA DUALITY

Morita duality was established by Morita [13] and Azumaya [2]. A presentation
of this duality can be found in Anderson and Fuller [1, Sections 23 and 24], or the
author's recent book [25]. Recall that a bimodule RES defines a Morita duality if RES
is a faithfully balanced bimodule such that both RE and Es are injective cogenerators;
and in this case the natural domain and range of such a duality are the categories of
23-reflejrive modules.
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THEOREM 7 . Let RES define a Morita duality and RP be an E-re£exive module.
Then RP has property (*)if and only if Pg = Homn {RP, RES) has property (**).

PROOF: Since RP is iJ-reflexive, the evaluation map RP —> RP** =
Horns (Ps> RES) is an isomorphism.

(•$=). Let 0 ^ / € End(flP). Since RE is an injective cogenerator, we have
0 ^ /* £ End(Ps), where /*: J K fg for g 6 Ps. So /* is an epimorphism. If there
exists 0 ^ x £ Ker ( / ) , it follows from the injective cogenerator of RE that there is
0 / j 6 F j such that (x)g ^ 0. Now /* is epic, so g = fh for some h £ P£. Then
0 ^ (35)5 = (x)/A = 0, since x £ Ker(/). This contradiction shows that Ker(/) = 0
and / is a monomorphism.

( = > ) Let 0 ^ / £ End(P£). Then 0 ^ / ' 6 End(flP**), since Es is an
injective cogenerator. Being isomorphic to RP , RP" has property (**)and so /* is a
monomorphism. It follows that Horns (-P*/Im(/)) ^s) — 0- Now Es is a cogenerator,
hence P*/ Im( / ) = 0 and P* = Im( / ) . D

The notion of linearly compact modules (artinian modules are linearly compact)
plays an important role in the duality theory [15]. The basic properties of linearly
compactness are given in [25, Section 3]. Mueller [15] proved that if RES defines a
Morita duality then the linearly compact left R- (or right S-) modules are precisely the
.E-reflexive modules.

The following result is a generalisation of Fisher [8, p.391, Lemma] which asserts
that an artinian projective module is fininitely generated. Fisher [8, p.391, Example]
gave an artinian projective module which is not noetherian.

LEMMA 8 . If RP is a linearly compact projective module, then RP is finitely
generated.

PROOF: Let J — J(R). By [25, Proposition 3.11], RP is complemented in the
sense that for any submodule N of P there is a submodule L of P such that L is mini-
mal with respect to the property that N + L = P. It follows from [11, Theorems 11.1.5
and 11.1.7] that JP is small in P. Now P/JP is linearly compact and semisimple, so
it must be finitely generated. Hence RP is finitely generated. U

It follows immediately from Lemma 8 that a linearly compact hereditary module is
noetherian. In particular, a left hereditary ring with a duality must be left noetherian.

THEOREM 9 . Let RES define a Morita duality and RP be an E-reflexive module.

(1) If RP is (semi-) hereditary, then Ps = Horns (RP, RES) is (semi-) co-
hereditary;

(2) If RP is semi-cohereditary, then Ps = Homa (RP, RES) is semiheredi-
tary.
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PROOF: (1) If Ms is a (finitely cogenerated) factor module of Pg, then RM* =
Horns (M, E) (is finitely generated and) can be embedded into RP** = Horns (P*, E)
= RP. Hence RM* is projective. Being a factor module of the ^-reflexive module
Pg, Ms is E-reflexive. Then RM* is 25-reflexive, so it is linearly compact. By the
above lemma, RM* is finitely generated. Hence Ms = Hom.R (M*, E)s is an injective
S-module by [1, Theorem 24.6]. This shows that Pg is a (semi-) cohereditary module.

(2) Let Ms be a finitely generated submodule of Pg. Then RM* is a finitely
cogenerated factor module of RP** = RP , so RM* is injective. It follows from [1,
Theorem 24.6] that Ms = Hom f l (M ' , E) is a projective 5-module. Therefore PJ is
semihereditary. D

The following question arises naturally from Theorem 9: Let RES define a
Morita duality and RQ be an E-reflexive module. If RQ is cohereditary, is Qs =

HoniR (RQ, RES) hereditary? We answer it in the negative as follows.

EXAMPLE 10. Let R = F[[x\] be the formal power series ring over a field F. As
abelian group, let E = J^fas"1], the polynomial ring over F with indeterminate x" 1 .
E obtains an .R-module structure by additive extension of

(«.,) = { .
^ djOiX — t + j otherwise.

We note that the artinian .R-module RER defines a Morita duality. Let Q = F((x)) be
the quotient field of R. Then the .R-module Q is E-reflexive and cohereditary. Since
RQ is not finitely cogenerated, its dual QR — Homfl (Q, E)R is not finitely generated.
Hence Q*R is not projective by Lemma 8.

3. ARTINIAN RINGS WITH MORITA DUALITY

Azumaya [2] and Morita [13] proved that a left artinian ring R possesses a (left)
duality if and only if R has an artinian injective cogenerator RE . In this event, RE

induces a duality between finitely generated left i2-modules and finitely generated right
End (RJ3)-modules. They also verified the existence of a duality for commutative ar-
tinian rings. In this section, we always denote the radical of a ring R by J. If RM is
a left .R-module, we let rM(J) = {m e M \ Jm = 0}.

Rosenberg and Zelinsky [17] have proved that a left artinian ring R has a duality
if and only if R/J2 does. Using this result one concludes that R has a duality if R/J7

is commutative. In this paper, we first generalise this result by showing that R still
has a duality if J/ J2 is only a central iZ-bimodule. Employing a result of Hill [10] we
prove that an artinian right duo ring R has a duality in case R/J is commutative.
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It is well-known that a left perfect ring with a duality is left artinian. We gener-
alise this to rings whose linearly compact left modules have projective covers. In the
conclusion, we partially solve a problem raised in our paper [24].

We begin with a lemma which may be known. Here we give its proof, since we are
unable to find any proof in the literature. Recall that a module is artinian if and only
if each factor module is finitely cogenerated.

LEMMA 1 1 . If E is a finitely cogenerated module but not artinian, then there is
a non-zero artinian submodule Eo of E such that E/Eo is not finitely cogenerated but
E/Ex is finitely cogenerated for each proper submodule E\ of Eo.

PROOF: Let

W = {E' < E | E/E' is not finitely cogenerated}.

Then 0 $ W, since E is finitely cogenerated. And W is non-empty, since E is not
artinian. Partially order W by the opposite of inclusion. Consider a totally ordered
subset {Ei}i€l of W. Clearly we have f\ (E,/ f| Ei) = 0. If E/ f) Et is finitely

ie / v <•£/ ' iei
cogenerated, then there is a finite subset {ji, ..., jn} of I such that Q ( Ej, / f\ EA =

k=i^ iei '
n

0. Since {2?t}»eJ is totally ordered, f| Ejk = Ejt for some t, 1 ^ t ^ n. It follows

that 0 = D (Eik/ H Ei) = Ehl n Ei ^ Ejt = f| Ei. This is a contradiction,

since Ejt G W. Hence E/ f| Ei is not finitely cogenerated, and then f) Ei e W. By
iei »€/

Zorn's lemma, W has a maximal element Eo, which is actually minimal with respect
to inclusion. If E\ is a proper submodule of Eo, then by the minimality of Eo we have
Ei £ W. Hence E/Ei is finitely cogenerated, and so is E0/Ei. It follows that Eo is
artinian. u

A bimodule RMR is called central if RM (or MR ) has a generating set {m,-}ig/
such that rvrii = tntr for each r 6 R and i £ I, and {7n,-}<gj is called a central
generating set for RMR . For example, any module RM over a commutative ring R
becomes a central bimodule RMR if we define MR via m • r = rm in RM.

THEOREM 12 . A left artinian ring R has a duality if J/J2 is a central R-
bimodule.

PROOF: We may assume J2 = 0, since R is left artinian. Also we have a finitely
cogenerated injective cogenerator RE. We shall prove that RE is artinian.

If not, by Lemma 11, E has a non-zero artinian submodule Eo with the property
stated in the lemma. Since R is left noetherian and RJR is a central bimodule, RJR
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has a finite central generating set {ji, ..., j n } • Define a mapping

/ : Soc(E/Eo) = rE/Eo(J) -»(E0/JE0)
n

via
e + Eo^Uie + JEo)^.

Then / is an iZ-homomorphism. Since Eo ^ 0 and R is left artinian, JE0 is a
proper submodule of EQ. SO E/JEQ is finitely cogenerated by Lemma 11, and then
rE/JEoiJ) = Soc(E/JE0) is finitely generated. Now Ker(/) = {e + E0E E/EQ | Je C
JE0}, which is finitely generated, since there is an epimorphism from rE/jE0(J) to
Ker(/) given by e + JE0 •-» e + EQ. And Im(/) , being a submodule of the finitely
generated semisimple module (Eo/JEo)

n, is finitely generated. Therefore Soc(E/Eo)
is finitely generated, and then E/Eo is finitely cogenerated, since R is left artinian.
This contradicts to the property oi EQ. U

COROLLARY 13 . A left artinian ring R has a duality if R/J2 is commutative;
in particular, a commutative artinian ring has a duality.

To see that our Theorem 12 is a non-trivial generalisation, we construct an artinian
ring R with J2 = 0 such that RJR is a central bimodule but R is not commutative.
Let D be a non-commutative division ring and n a positive integer. Let

as abelian group and define the multiplication via

Then R is the ring we want. One notes that R is an exact ring in the sense of Azumaya

[3].

In [17, p.375], Rosenberg and Zelinsky gave an example of a local left artinian (not

right artinian) ring R such that R/J is a field, but R does not possess a duality. Using

Cohn's division ring extensions [5], one constructs an artinian ring without a duality

(see [1, p.286]). This artinian ring is not commutative modulo its radical. From these

two examples the following question arises naturally.

Open question: If R is an artinian ring and R/J is commutative, does R have a

duality?

A ring is called left (right) duo if each left (right) ideal is a two-sided ideal. The

above question has an affirmative answer if R is a left duo ring [22]. Next we show

that the answer is still "Yes" if R is a right duo ring.

THEOREM 1 4 . If R is an artinian right duo ring with R/J commutative, then

R has a duality.
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PROOF: By Courter [6, Theorem 3.1] we may assume that R is a local ring,
and by [17] we suppose J2 = 0. We need to show that the composition length of
RE = E(R(R/J)), c(RE), is finite.

(1) If c(JR) = 1, by Hill [10, Theorem 3.2] we have c(RE) = 2.

(2) Now let c(JR) = n > 1 and write JR = @ j{R. Since R is right duo,

each jiR is an ideal. By [1, p.286] we have

n

RE/SOC{RE) £ RHomR(RJ, R(R/J)) S 0 * Homfl (H( j<fl), R(R/J))
t = i

which has length n since we can apply the result of (1) to the ring Ri =
Rl ( © JkR) s i n c e c ( j i ^ R i ) = *. where t = 1, . . . , n. It follows that(

c(RE) = n + 1 is finite.

D
COROLLARY 15. If R is a JocaJ artinian right duo ring with c((j/J2)R) > 1,

then R has a duality.

PROOF: By [22, Theorem 2(1)], R/J is a field. D

As a generalisation of left perfect ring, we call a ring R left weakly perfect in case
each linearly compact left i2-module has a projective cover. We have

PROPOSITION 16. The following are equivalent for a semiperfect zing R:

(1) R is left weakly perfect;
(2) Every non-zero linearly compact left R-module has a maximum submod-

ule;
(3) Every Hnearly compact left R-module is finitely generated;
(4) Every linearly compact left R-module is noetherian.

PROOF: (1) =• (2). [4, Proposition 2].

(2) =» (3). If RM •£ 0 is linearly compact, then M/JM is linearly compact
and finitely generated. Let M = K + JM where K is finitely generated. Then
J(M/K) = M/K which is still linearly compact. Hence M/K = 0 and M = K.

(3) =>• (4). Submodules of a linearly compact module are linearly compact.
(4) => (1). A ring is semiperfect if and only if each noetherian module has a

projective cover. U

It is known that a left perfect ring with a duality is left artinian. A slight general-
isation is given as follows.
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THEOREM 1 7 . If R is a left weakly perfect ring with a duality, then R is left
aitinian.

PROOF: Let RES define a Morita duality. Since RE is linearly compact, it is
noetherian by Proposition 16. So S = End (RE) is a semiprimary ring by [7, Corollary
2.5]. Then S is right artinian and R is left artinian. D

A ring extension R ^ S is called a finite triangular extension if there are a finite
n j i

number of elements a\, . . . , an of S such that S — ^2 Rsi and 53 -R** = X *«-̂
t=i t=i «=i

(j = 1, . . . , n). Finite triangular extensions arise from Azumaya's exact rings [3] which
are such over a finite direct sum of local exact rings [23, Theorem 3]. Lemonnier [12,
Theorem 5.4] showed that a finite triangular extension over a ring with a duality has
itself a duality. But the converse is open (see [24, p.59]) and is far from being solved.
We shall give partial answers.

LEMMA 18 . Let R ^ S be a ring extension and RE a left injective R-module.
If R Homfl (S, E) is artinian (noetherian), then so is RE .

PROOF: Since RE is injective, the embedding of iZ-modules

R<->S

induces an epimorphism of left iZ-modules

R Horn* (5, E) —> Horn* (R, E) 2 RE.

D
Recall that a bimodule RES defines a duality if and only if R is a left linearly

compact ring, RE is a linearly compact and finitely cogenerated injective cogenerator,
and 5 = End(fl-E) canonically, (see [15, 20, or 25]). In this event we also say that R
has a duality induced by RE or that RE defines a duality.

PROPOSITION 19 . Let R ^ S be a Unite triangular extension and S have a
oo

duality. If f\ J(S)n = 0 and R is left Hnearly compact, then R is a left noetherian
n=l

ring with a duality.

PROOF: Let RU define a duality. By Mueller [14, Theorem 7], sU is artinian
and S is left noetherian. Hence R is left noetherian by [21, Theorem 5.2]. Since a
left linearly compact ring must be semiperfect, we have a finitely cogenerated injective
cogenerator RE . Then sHomji(5, E) is an injective cogenerator which is finitely
cogenerated by [12, Proposition 5.3]. Hence sHomji(S, E) is artinian, since sU is an
artinian cogenerator. By [12, Theorem 1.2], fiHomjj(5, E) is also artinian. It follows
from the above lemma that RE is artinian. Hence RE defines a duality. D
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COROLLARY 2 0 . Let R ^ S be a finite triangular extension. If S is a left
artinian ring with a. duality, then R is a left artinian ring with a duality.

PROOF: Using [21, Theorem 5.2] we see R is a left artinian ring. Hence R has a
duality by Proposition 19. D
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