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Abstract
We describe a new polarised imaging pipeline implemented in the FHD software package. The pipeline is based on the optimal mapmaking
imaging approach and performs horizon-to-horizon image reconstruction in all polarisation modes. We discuss the formalism behind
the pipeline’s polarised analysis, describing equivalent representations of the polarised beam response, or Jones matrix. We show that, for
arrays where antennas have uniform polarisation alignments, defining a non-orthogonal instrumental polarisation basis enables accurate
and efficient image reconstruction. Finally, we present a new calibration approach that leverages widefield effects to perform fully polarised
calibration. This analysis pipeline underlies the analysis of Murchison Widefield Array data in Byrne et al. (2022, MNRAS, 510, 2011).
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1. Introduction

The field of low-frequency radio astronomy has expanded in
recent years with the development of radio arrays such as the
Low-Frequency Array (LOFAR; Van Haarlem et al. 2013), the
Murchison Widefield Array (MWA; Tingay et al. 2013), the Giant
Metrewave Radio Telescope (GMRT; Swarup 1990), the Donald
C. Backer Precision Array for Probing the Epoch of Reionization
(PAPER; Parsons et al. 2010), the Hydrogen Epoch of Reionization
Array (HERA; De Boer et al. 2014), the Owens Valley Radio
Observatory Long Wavelength Array (OVRO-LWA; Eastwood
et al. 2018; Anderson et al. 2019), the forthcoming Square
Kilometre Array (; Mellema et al. 2013), and others. These pow-
erful instruments are expanding radio astronomy observations to
lower frequencies with enhanced sensitivity and improved reso-
lution. They are inherently widefield instruments with sensitivity
across large swaths of the sky. This widefield imaging regime
has necessitated the development of novel interferometric data
analysis techniques to confront the challenges of horizon-to-
horizon image reconstruction (Bhatnagar et al. 2008; Cornwell,
Golap, & Bhatnagar 2008; Morales & Matejek 2009; Tasse et al.
2013; Offringa et al. 2014; and others). A particular challenge
is the widefield reconstruction of fully polarised images. Here
we describe a new approach to widefield polarised imaging and
calibration, implemented as a capability of the Fast Holographic
Deconvolution (FHD) software pipelinea (Sullivan et al. 2012;
Barry et al. 2019a).
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FHD is a versatile interferometric data analysis package writ-
ten in the IDL programming language that performs calibra-
tion, imaging, data simulation, and compact source deconvo-
lution. The polarised imaging pipeline described in this paper
was applied to MWA data to map diffuse emission across much
of the Southern Hemisphere sky (Byrne et al. 2022). For a
discussion of the computational requirements of that analysis
using Amazon Web Services (AWS) cloud-based instances, see
Byrne & Jacobs (2021). This paper serves as a companion to
Sullivan et al. (2012) and Barry et al. (2019a); together, these
three papers describe various aspects of the FHD data processing
pipeline.

FHD’s analysis is an implementation of the optimal map-
making imaging approach developed by Bhatnagar et al. (2008)
and Morales & Matejek (2009) and based upon the formalism
developed in Tegmark (1997). Under optimal mapmaking, which
also goes by the name ‘A-projection’, visibilities are gridded to
a uv plane with a kernel defined by the instrumental response
beam. This approach accounts for widefield effects and accu-
rately reconstructs images across the entire sky. Here we describe
a fully polarised extension to this imaging approach that pro-
duces horizon-to-horizon images in all four Stokes polarisation
parameters.

This implementation performs image reconstruction in the
‘instrumental’ polarisation basis, described in detail in Section 3.
The images can then be transformed into the usual Stokes polar-
isation modes with no loss of information. This approach has
significant computational benefits and is applicable to any array
in which all antennas have identical polarisation alignments. An
instrument with antennas that are rotated with respect to one
another cannot exploit the instrumental polarisation basis for
efficient imaging.

c© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia.
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The FHD polarisation pipeline builds upon the work of
other widefield polarised imagers. Notably, it is similar to the
A-projection LOFAR analysis pipeline described in Tasse et al.
(2013). It also shares features with WSCLEAN (Offringa et al.
2014) and the MWA’s RTS analysis pipeline (Mitchell et al. 2012).
Although the implementations differ in the specifics of their image
estimation, all either implicitly or explicitly reconstruct images in
the instrumental basis before correcting for widefield projection
effects.

This paper is intended to illuminate the details of FHD’s imple-
mentation while providing a comprehensive exploration of wide-
field polarimetric imaging and the instrumental basis. It offers
explanation of the analysis underlying Byrne et al. (2022) and
future FHD-based polarisation studies and situates FHD within the
broader field of widefield interferometric polarimetry.

In the next section we define polarimetric terms and rela-
tionships that are used throughout the paper. In Section 3 we
discuss the instrumental basis, and in Section 4 we describe FHD’s
polarised image estimation. Section 5 presents FHD’s polarised
calibration implementation.

2. Polarisation formalism

In this section, we present an overview of some of the basic terms
and relationships used throughout this paper: the coherency, the
Stokes parameters, the Jones matrix, and the Mueller matrix.

2.1. The coherency

We describe the proprieties of the electric field signal from the sky
with a coherency vector, given by

S(θ)=

⎡
⎢⎢⎢⎢⎢⎢⎣

〈|ER(θ)|2
〉

〈|ED(θ)|2
〉

〈
ER(θ)E∗

D(θ)
〉

〈
E∗
R(θ)ED(θ)

〉

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

(Hamaker, Bregman, & Sault 1996). Here ER(θ) and ED(θ) are the
components of the electric field in two orthogonal directions. In
our convention, we define these directions to align with the RA
and Dec. directions on the sky, respectively. θ is a two-element
vector defining the position on the sky. The angled brackets 〈〉
denote the time average and the asterisk ∗ represents the complex
conjugate.

The coherency can equivalently be described as a 2× 2 matrix
(Hamaker et al. 1996; Smirnov 2011). Likewise, the vector order-
ing and orthogonal basis are arbitrary. Equation (1) presents the
convention used in the FHD analysis.

2.2. The Stokes parameters

Polarised emission is often described with respect to the Stokes
parameters I, Q, U, and V (Stokes 1851). Stokes I corresponds to
the total intensity, Stokes Q and U correspond to linear polar-
isation, and Stokes V corresponds to circular polarisation. The
Stokes parameters are related to the coherency vector S(θ) via the
relationship

⎡
⎢⎢⎢⎢⎢⎣

I(θ)

Q(θ)

U(θ)

V(θ)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1 1 0 0

1 −1 0 0

0 0 1 1

0 0 i −i

⎤
⎥⎥⎥⎥⎥⎦ S(θ). (2)

Note that, because Equation (1) defines the coherency vector
with respect to the RA/Dec. coordinate system, the Stokes param-
eters are also referenced to that coordinate system. We emphasise
that the Stokes parameters are basis-dependent, and it is critical
that any polarised measurements specify the basis used (Hamaker
& Bregman 1996). Under the RA/Dec. coordinate system, the
Stokes parameters are undefined at the North and South Celestial
Poles. Consequently, analyses of fields at or near the poles may
benefit from choosing a different orthogonal basis. See Ludwig
(1973) for examples of alternative polarisation bases that may be
used to define the Stokes parameters.

2.3. The Jones matrix

The Jones matrix is a 2× 2 complex matrix that represents the
polarised antenna response to the sky (Jones 1941). The matrix
transforms between the true electric field on the sky and the elec-
tric field measured by the instrument (Hamaker et al. 1996; Sault,
Hamaker, & Bregman 1996; Hamaker & Bregman 1996; Hamaker
2000, 2006; Ord et al. 2010; Smirnov 2011):⎡

⎣ εjp(θ)

εjq(θ)

⎤
⎦ = JZAj (θ)

⎡
⎣ EZ(θ)

EA(θ)

⎤
⎦ . (3)

Here EZ(θ) and EA(θ) are components of the electric field aligned
with the zenith angle and azimuth directions, respectively. εjp(θ)
and εjq(θ) represent the contribution of emission from sky direc-
tion θ to the measurements made by antenna j, and the subscripts
p and q correspond to the two instrumental polarisation modes.
For example, for an antenna with dipole elements aligned with the
cardinal directions, p could refer to the east-west aligned dipole
and q could refer to the north-south aligned dipole. JZAj (θ) is the
Jones matrix for antenna j. The superscript ZA indicates that it
corresponds to the zenith angle/azimuth basis on the sky. This is
the usual basis convention for reporting the Jones matrix.

This formalism is fully general in that it assumes dual-
polarisation antenna but makes no further assumptions about the
antenna type. Each antenna could consist of dish with a dual-
polarisation feed (e.g., GMRT or HERA), a simple crossed-dipole
element (as with PAPER or the OVRO-LWA), or a beamformed
array of dipole elements (such as LOFAR’s stations or the MWA’s
tiles). The two antenna polarisations could be orthogonal but
need not be. They could measure linearly or circularly polarised
modes. Note that here we have defined a per-antenna Jones matrix
that depends on the antenna index j: antennas need not have
homogeneous polarised responses. The Jones matrix is direction-
dependent, and we require a 2× 2 Jones matrix for each location
on the sky θ. It is also complex-valued: the direction-dependent
complex phase of the Jonesmatrix elements captures timing delays
in the instrumental response to an incoming wavefront.

In Figure 2 we plot the four elements of the Jones matrix of
an MWA tile, as modelled by Sutinjo et al. (2015), as a func-
tion of position on the sky. Each MWA tile, pictured in Figure 1,
consists of 16 dual-polarisation beamformed elements. The Jones
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Figure 1. A photo of an MWA tile. Each tile consists of 16 dual-polarisation beam-
formed elements, and the full array consists of 256 such tiles (Wayth et al. 2018). The
tile’s response to incident radiation is estimated by a beam model. Three equivalent
representations of the beammodel are shown in each Figures 2, 3, and 4 and 5. Photo
credit: Natasha Hurley-Walker, the MWA Collaboration, and Curtin University.

matrix model in Figure 2 corresponds to the full tile response in its
zenith-pointed mode, averaged across a frequency range of 167–
198 MHz. This Jones matrix defines the instrumental response
for FHD analyses including the polarised mapping in Byrne et al.
(2022) and the EoR analyses in Barry et al. (2019b) and Li et al.
(2019). While the Jones matrix is complex-valued, the complex
phase is near-zero, and for simplicity we plot the real part only.
Note that elements of the Jones matrix exhibit a discontinuity at
zenith. This is a feature of the basis in which it is defined and not
a characteristic of the physical antenna response.

Equation (3) and Figure 2 present the Jonesmatrix in the zenith
angle/azimuth coordinate system, but in Equation (1) we define
the coherency with respect to the RA/Dec. basis. Our analysis is
therefore simplified if we define a Jones matrix JRDj (θ) with respect
to RA/Dec. The transformation between bases involves rotating by
the direction-dependent parallactic angle φ(θ):⎡

⎣ eZ(θ)
eA(θ)

⎤
⎦ =

⎡
⎣ sin [φ(θ)] − cos [φ(θ)]

− cos [φ(θ)] − sin [φ(θ)]

⎤
⎦

⎡
⎣ eR(θ)
eD(θ)

⎤
⎦ . (4)

Here eR(θ), eD(θ), eZ(θ), and eA(θ) are unit vectors in the RA, Dec.,
zenith angle, and azimuth directions, respectively. The parallactic
angle is given by

φ(θ)= tan−1
( − sin α

cos δ tan δzen − sin δ cos α

)
, (5)

where α and δ are the RA and Dec. coordinates of θ, respectively,
and δzen is the declination at zenith. For a full derivation of this
expression see Byrne (2021), Appendix D.

Here Equation (5) assumes that the Earth’s axis of rotation
aligns with the poles of the RA/Dec. coordinate system. Under
this assumption the parallactic angle is time-independent: for an
array at a given declination, the transformation between the zenith
angle/azimuth and RA/Dec. polarisation bases does not depend
on time. In practice, the Earth’s precession and nutation intro-
duce deviations in the alignment of the rotational axis. While FHD
fully accounts for precession and nutation when calculating source

positions on the sky, where small positional errors can substan-
tially degrade analysis accuracy, it does not account for themwhen
transforming between polarisation bases, instead using the paral-
lactic angle calculation presented in Equation (5). This is a good
approximation as the errors from the neglected precession and
nutation effects produce only small errors in the reconstructed
polarisation angle. Future extensions to FHD’s polarised imaging
pipeline could add these higher-order effects to the calculation of
the polarisation basis transformation. This would introduce time
dependence to the parallactic angle calculation in Equation (5) and
by extension the basis transformation in Equation (4).

Applying the transformation in Equation (4) to the Jones
matrix, we get that

JRDj (θ)= JZAj (θ)

⎡
⎣ sin [φ(θ)] − cos [φ(θ)]

− cos [φ(θ)] − sin [φ(θ)]

⎤
⎦ , (6)

where ⎡
⎣ εjp(θ)

εjq(θ)

⎤
⎦ = JRDj (θ)

⎡
⎣ ER(θ)

ED(θ)

⎤
⎦ . (7)

JRDj (θ), the Jones matrix in the RA/Dec. basis, is used throughout
the FHD analysis because it corresponds with the coherency vector
defined in Equation (1). However, it is more typical to report mod-
els of the polarised antenna response in terms of JZAj (θ) because
the RA/Dec. basis is dependent on the antenna’s location on the
Earth and varies with latitude.

In Figure 3 we plot the elements of the MWA Jones matrix in
RA/Dec. coordinates by applying the transformation in Equation
(6) to the Jones matrix presented in Figure 2. Once again, we plot
the real part of the Jones matrix elements only. Note that we no
longer see a discontinuity at zenith. Instead, the Jones matrix ele-
ments exhibit a discontinuity near the lower edge of the plots,
corresponding to the position of the South Celestial Pole.

2.4. The Mueller matrix

The Mueller matrix is a 4× 4 complex matrix formed by the
Kronecker product of two Jones matrices:

Mjk(θ)= JRDj (θ)⊗ JRDk
∗(θ) (8)

(Hamaker et al. 1996). Here we define the Mueller matrix with
respect to the RA/Dec. basis to once again align with the conven-
tion in Equation (1).

The Mueller matrix defines the mapping between the sky sig-
nal and visibilities. We can write the visibilities formed from
correlating antennas j and k in terms of the Mueller matrix:

vjk =
∫

d2θMjk(θ)S(θ) e2π iθ·ujk . (9)

Here ujk is the baseline vector for antennas j and k in units of
wavelengths and vjk is a 4-element vector with components

vjk =

⎡
⎢⎢⎢⎢⎢⎣
vjkpp
vjkqq
vjkpq
vjkqp

⎤
⎥⎥⎥⎥⎥⎦ (10)

where, for example, vjkpq represents the visibility formed by corre-
lating the p-polarised signal from antenna j with the q-polarised
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Figure 2. The elements of the Jonesmatrix for a zenith-pointed MWA tile (pictured in Figure 1) at 167–198 MHz, as modelled by Sutinjo et al. (2015). The Jonesmatrix defines and
instrument’s polarised response. It is a 2× 2 complex matrix defined at each point on the sky; here we plot the real part only. The top row depicts the response of the east-west
aligned, or p, tile polarisation while the bottom row depicts the response of the north-south aligned, or q, tile polarisation. Here the Jones matrix is normalised such that the
peak response amplitude of each tile polarisation is one. This Jones matrix is defined with respect to the zenith angle/azimuth basis (see Equation (3)). The left and right columns
corresponds to the tile’s response to electric field emission polarised in the zenith angle and azimuth directions, respectively. The Jones matrix elements exhibit a discontinuity
at zenith as a result of the pole of the coordinate system.

signal from antenna k, and p and q once again refer to the two
instrumental polarisations of a dual-polarised antenna. The inte-
gral is taken across the visible sky, and the Mueller matrix Mjk(θ)
contains the appropriate visibility normalisation. Polarised imag-
ing, discussed in Section 4, amounts to inverting Equation (9) to
estimate S(θ) from the measured visiblities.

Equation (9) assumes a coplanar array, where each baseline
can be described by the two-element vector ujk. Non-coplanar
baselines introduce an additional phase term in the integrand of
Equation (9), but FHD neglects this term and assumes a reason-
ably coplanar array. Moderate non-coplanarity can be corrected
with w-projection (Cornwell & Perley 1992).

3. The instrumental basis

FHD reconstructs images in the ‘instrumental’ polarisation basis,
defined as the basis that diagonalises the Jones and Mueller
matrices. Physically, we can interpret the basis vectors as the
polarisation directions of maximal instrumental response. It is

fundamentally a non-orthogonal basis, but with good knowl-
edge of the instrument’s polarised response we can freely convert
between the instrumental basis and orthogonal bases such as the
RA/Dec. coordinate system. In this section we define the instru-
mental basis; Section 4 explains how we use this basis for image
reconstruction.

The instrumental basis is defined by decomposing the Jones
matrix into a product of two matrices:

JRDj (θ)= Fj(θ)Kj(θ). (11)

Fj(θ) is a diagonal matrix that encodes the amplitude of the
instrumental response:

Fj(θ)=
⎡
⎢⎣

√|JRpj(θ)|2 + |JDpj(θ)|2 0

0
√|JRqj(θ)|2 + |JDqj(θ)|2

⎤
⎥⎦ ,

(12)
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Figure 3. The Jonesmatrix of anMWA tile, plotted in Figure 2, now recast in the RA/Dec. coordinate system (see Equation (6)). Once again, the top and bottom rows correspond to
the polarised responses of the east-west and north-south aligned antenna polarisation, respectively. However, the left column now corresponds to the tile’s response to emission
polarised in the RA directionwhile the right column corresponds to the response to emission polarised in the Dec. direction. As in Figure 2, we plot the real part of the Jonesmatrix
elements only. Since the RA/Dec. coordinate system has poles at the North and South Poles, we see a discontinuity at the bottom edge of the plots, corresponding to the position
of the South Pole relative to the MWA’s−27◦ latitude.

where the elements of the Jones matrix are given by

JRDj (θ)=
⎡
⎣ JRpj(θ) JDpj(θ)

JRqj(θ) JDqj(θ)

⎤
⎦ . (13)

The two elements of Fj(θ) give the sensitivity of each the p and q
polarisations of antenna j to unpolarised emission from location θ

on the sky. Figure 4 plots these quantities for an MWA tile.
While Fj(θ) captures the instrument’s response to unpolarised

emission, polarised emission preferentially couples with a partic-
ular instrumental polarisation. Kj(θ) captures this effect, encod-
ing the polarisation-dependent component of the instrumental
response. For a complex-valued Jones matrix, Kj(θ) additionally
encodes the complex phase. If Kj(θ) is identical for all antennas,
then we can let Kj(θ)= K(θ) for all antennas j. We then define
a new ‘instrumental basis’ on the sky, where K(θ) transforms
between the usual RA/Dec. basis and our new instrumental basis:⎡

⎣ ep(θ)
eq(θ)

⎤
⎦ = K(θ)

⎡
⎣ eR(θ)
eD(θ)

⎤
⎦ . (14)

Here ep(θ) and eq(θ) are unit vectors aligned with the polarisation
directions that produce the maximal response from the p and q
polarisations of each antenna. ep(θ) and eq(θ) are generally not
orthogonal, so K(θ) is not a unitary matrix. Figure 5 plots the
instrumental basis for the MWA.

We can always define a consistent instrumental basis across
a homogeneous array, where each antenna has an identical
response. However, an array does not need to be homogeneous
for Kj(θ) to be invariant across antennas j. Antennas can have dif-
ferent response amplitudes across the sky provided each antenna
is maximally sensitive to the same polarisation directions.We can-
not define an instrumental basis for arrays where antennas are
rotated with respect to one another. This can also pose issues for
arrays with very long baselines, where the curvature of the Earth
begins to have an appreciable effect (Tasse et al. 2013).

Just as we decomposed the Jones matrix into two compo-
nents in Equation (11), we represent the Mueller matrix as the
product

Mjk(θ)= Bjk(θ)L(θ), (15)
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Figure 4. The sensitivity, or beam amplitude, of east-west (left) and north-south (right) aligned antenna polarisations for an MWA tile. The full Jones matrix for this tile is plotted
in Figures 2 and 3. The quantities plotted here are the diagonal elements of Fj(θ) (Equation (12)). Here they are normalised such that each response has a peak amplitude of one.

Figure 5. The instrumental basis of the MWA, as defined by the Jones matrix model
plotted in Figures 2 and 3. The instrumental basis transformation is encoded in the
matrix K(θ) (see Equation (14)). The red line segments indicate the polarisation direc-
tion that induces a maximal response in the p, or east-west aligned, antenna polarisa-
tion; the blue line segments indicate the polarisation direction that induces amaximal
response in the q, or north-south aligned, antenna polarisation. Note that the instru-
mental basis vectors are approximately orthogonal near zenith but are non-orthogonal
off-axis.

where

L(θ)= K(θ)⊗ K∗(θ) (16)

and

Bjk(θ)= Fj(θ)⊗ Fk(θ). (17)

Here Bjk(θ) is a diagonal 4× 4 matrix that defines the baseline
response amplitude, or beam, of baseline {j, k}. Note that Equation
(17) does not include a complex conjugation simply because
Equation (12) explicitly defines F(θ) to be real.

We define a new coherency vector in the instrumental basis

Sinst(θ)=

⎡
⎢⎢⎢⎢⎢⎣

〈|Ep(θ)|2〉
〈|Eq(θ)|2〉

〈Ep(θ)E∗
q(θ)〉

〈E∗
p(θ)Eq(θ)〉

⎤
⎥⎥⎥⎥⎥⎦ = L(θ)S(θ), (18)

where Ep(θ) and Eq(θ) are the components of the electric field
aligned with unit vectors ep(θ) and eq(θ), respectively.

FHD’s polarised analysis pipeline consists of reconstructing the
instrumental coherency Sinst(θ) and then transforming into the
true coherency S(θ) by inverting Equation (18). We then calculate
the Stokes polarisation parameters using Equation (2).

4. Imaging

FHD’s imaging pipeline follows the optimal mapmaking, or
A-projection, formalism (Bhatnagar et al. 2008;Morales &Matejek
2009). In this approach visibilities are gridded to the uv plane using
a gridding kernel equal to the Fourier transformed beam model.
FHD grids in the instrumental basis, forming uv planes corre-
sponding to each instrumental polarisation mode. We pixelate the
uv plane at half wavelength spacing to enable an accurate horizon-
to-horizon reconstruction of the sky signal. The gridding kernel
is over-resolved with much finer pixelisation to reduce spectral
contamination of the reconstructed signal (Barry et al. 2019a;
Offringa, Mertens, & Koopmans 2019; Barry & Chokshi 2022).
Observations are processed as snapshot images (MWA observa-
tions generally have a duration of about 2 min), and individual
snapshots are combined in the image plane (Beardsley et al. 2016).

4.1. Gridding

Gridding reconstructs the uv plane from the visibilities. Here
we describe gridding the pq-polarised visibilities; for the pp,
qq, and qp polarisations, simply substitute for the subscripts pq
below.
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For a given baseline formed by correlating signals from anten-
nas j and k, we denote the pq-polarised beammodel Bjk pq(θ). Note
that this represents one element of the 4× 4 diagonal matrixBjk(θ)
presented in Equation (17). Under optimal mapmaking, the grid-
ding kernel is the Fourier transform of this beam model, which
we will denote B̃jk pq(u). Here u represents the uv plane coordi-
nate, which is Fourier dual to the sky coordinate θ and has units of
wavelengths. The tilde indicates the Fourier transformed quantity:
B̃jk pq(u)=FT

[
Bjk pq(θ)

]
.

Gridding with this kernel produces the following reconstructed
uv plane:

ˆ̃Sapp pq(u)=
∑

jk B̃jk pq(ujk − u) vjk pq∑
jk B̃jk pq(ujk − u)

. (19)

Here Ŝapp pq(θ) is the apparent sky in the pq polarisation, defined as
the estimate of the skymultiplied by the beam amplitude; ˆ̃Sapp pq(u)
is its Fourier transform. The hat symbol ˆ indicates that this is the
reconstructed estimate. j and k index antennas, and

∑
jk denotes

the sum over all baselines.
The numerator in Equation (19) describes the gridding oper-

ation. If the model accurately captures the true instrumental
beam, this method produces an optimal and lossless sky estimate
(Tegmark 1997; Bhatnagar et al. 2008; Morales & Matejek 2009).
Errors in the beam model produce errors in the reconstructed
intensities, polarisation, and, in rare cases, the positions of sources.
Precision beam modelling is therefore an active area of research
(Newburgh et al. 2014; Sutinjo et al. 2015; Berger et al. 2016;Wayth
et al. 2016; Sokolowski et al. 2017; Line et al. 2018; Fagnoni et al.
2021; Chokshi et al. 2021; etc.).

The denominator in Equation (19) is known as the uv weights
and is equivalent to gridding each visibility with a value of unity.
If the instrument does not have complete uv plane measurement
coverage, the weights will be equal to zero in certain uv plane loca-
tions. We set the expression in Equation (19) equal to zero where
the weights are zero. Other imaging approaches introduce reg-
ularisation methods to, in effect, interpolate over incomplete uv
measurements (see Johnson et al. 2017, Eastwood et al. 2018, and
Eastwood et al. 2019).

Equation (19) represents just one uv weighting scheme. FHD
supports alternative weightings as well, corresponding to different
denominators in Equation (19). For example, the denominator can
be replaced with unity (often called ‘natural weighting’) or with
the number of visiblities that contribute to each uv pixel (often
called ‘uniform weighting’). However, Equation (19) presents a
sensible choice in which the reconstructed uv pixels are scaled by
themeasurement sensitivity. This weighting scheme, which we call
‘optimal weighting’, was used to produce the diffusemaps in Byrne
et al. (2022).

Because Bjk(θ) is defined to be diagonal, pq-polarised visiblities
contribute to the pq uv plane only, and likewise the other visibil-
ity polarisations contribute only to their respective uv planes. This
means that each visibility is only gridded once. This is a unique
feature of the instrumental basis, as any other basis choice intro-
duces off-diagonal elements of Bjk(θ) and requires that each visi-
bility is gridded four times. This holds true even when the Mueller
matrix has significant off-diagonal components: the instrumental
basis need not be orthogonal. Because gridding is themost compu-
tationally intensive step in the imaging pipeline, the instrumental
basis allows for significant computational savings.

4.2. Image reconstruction

Transforming the gridded uv plane into sky coordinates gives

Ŝapp pq(θ)=FT −1
[ ˆ̃Sapp pq(u)

]
, (20)

where FT −1 is the inverse Fourier transform operator. This
apparent sky map can then be converted into an estimate of the
true sky, in the instrumental pq polarisation, by undoing the beam
weighting:

Ŝinst pq(θ)= 1
Bavg pq(θ)

FT −1
[ ˆ̃Sapp pq(u)

]
. (21)

Here Ŝinst pq(θ) is an element of the instrumental coherency esti-
mate, as defined in Equation (18). Bavg pq(θ)= 〈Bjk pq(θ)〉 is the
average pq beam amplitude, averaged across baselines. For a
homogeneous array, Bjk pq(θ)= Bavg pq(θ) for all baselines {j, k}.

Gridding all four visibility polarisations, pp, qq, pq and qp
and Fourier transforming their respective uv planes produces an
estimate of the instrumental coherency Ŝinst(θ). This is a recon-
struction of the polarised sky signal defined with respect to the
non-orthogonal instrumental polarisation basis, plotted for the
MWA in Figure 5. For science applications, we convert this instru-
mental coherency into a fixed, orthogonal basis on the sky or
Stokes parameters.

From Equation (18), we transform the estimated instrumental
coherency into the RA/Dec. basis coherency:

Ŝ(θ)= L−1(θ)Ŝinst(θ). (22)

In general L−1(θ) is well-defined and can be calculated by numer-
ically inverting L(θ). However, L(θ) is singular when the instru-
mental basis vectors are parallel, as is the case for the MWA at the
horizon. Above the horizon L(θ) is invertible.

Note that the coherency estimate Ŝ(θ) must be calculated from
the instrumental coherency Ŝinst(θ), not from the apparent sky
estimate Ŝapp(θ). Because the instrumental beam amplitude is
polarisation-dependent (see Figure 4), the apparent sky estimate
is intrinsically defined in the instrumental polarisation basis.

Finally, we calculate the Stokes parameters from the coherency
estimate Ŝ(θ) via Equation (2):⎡

⎢⎢⎢⎢⎢⎣
Î(θ)

Q̂(θ)

Û(θ)

V̂(θ)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1 1 0 0

1 −1 0 0

0 0 1 1

0 0 i −i

⎤
⎥⎥⎥⎥⎥⎦ Ŝ(θ). (23)

This produces an optimal, lossless estimate of the fully polarised
true sky signal.

A deconvolution step can be added to the image reconstruction
pipeline to reduce imaging artefacts from the array’s Point Spread
Function (PSF). Deconvolution assumes that sources are compact
on the sky and thereby differentiates between true source emission
and the PSF. Sullivan et al. (2012) describes FHD’s deconvolution
algorithm. Deconvolution may not be necessary or desirable when
imaging large-scale, diffuse structure, or when processing data that
nearly completely samples the uv plane, as in Byrne et al. (2022). It
should be noted that, without mitigation through deconvolution,
the imaging approach described in this section produces images
that are convolved with the array’s PSF, as in Figure 6.
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(a)

(e) (f) (g) (h)

(b) (c) (d)

Figure 6. Example of polarised image reconstruction with FHD, based on a simulation of a single Stokes Q polarised point source with a polarisation fraction of 50%. The source
is located in the upper right quadrant of each image at a zenith angle of 10◦ (RA 23h30m04s, Dec. -19.4◦). Zenith is marked with a plus symbol. Visibilities were simulated with the
PYUVSIM simulation package (Lanman et al. 2019) and based on the MWA Phase I at 167–198 MHz. The visibilities were then gridded and imaged with FHD to produce instrumental
polarisation images (top row; see Equation (20)) and Stokes images (bottom row; see Equation (23)). The instrumental polarised images pp and qq are real-valued, but the pq and
qp images are complex-valued and complex conjugates of one another. We therefore plot the real and imaginary components of the pq-polarised image and do not plot the qp-
polarised image. While the simulated source appears predominantly in the pp and qq images, a small amount of power couples into the pq image as a result of non-orthogonality
of the instrumental basis at the source location. The reconstructed Stokes images have a 49.52% total polarisation fraction and 49.47% Stokes Q polarisation fraction at the
location of the simulated source.

Figure 6 presents an example of FHD’s image reconstruction
with a simulated polarised point source. Visibilities were sim-
ulated with the PYUVSIM simulation packageb (Lanman et al.
2019). Although FHD itself performs polarised source simulation,
PYUVSIM enables very accurate, semi-analytical interferometric
simulations and serves as an independent verification of the FHD’s
polarised imaging pipeline. The simulation is based on a zenith-
pointed observation made with the MWA Phase I at 167–198
MHz. We simulated a 10 Jy point source located north-west of
zenith at a zenith angle of 10◦ and polarised in Stokes Q with a
polarisation fraction of 50%. The simulated visibilities were grid-
ded and imaged with FHD, and Figure 6 depicts the resulting
images in instrumental polarisation (top row) and Stokes (bottom
row). The images are not deconvolved, so the simulated source
appears convolved with the array’s PSF.

The top row of Figure 6 presents images of the simulated source
in instrumental polarisation, corresponding to the quantity Ŝapp(θ)
from Equation (20). Although the simulated source appears pri-
marily in the pp and qq polarisations, we see a small amount of
power in the pq-polarised image as well. The source’s polarisation
preferentially couples power into the qq image, and the qq image
therefore has a greater amplitude than the pp image. The power
in the pq image is due to non-orthogonality of the instrumental
polarisation basis.

The bottom row of Figure 6 depicts the reconstructed Stokes
images (Î(θ), Q̂(θ), Û(θ), and V̂(θ) from Equation (23)). At the
source location, the reconstructed images have a polarisation

bhttps://github.com/RadioAstronomySoftwareGroup/pyuvsim.

fraction of 49.52%, of which 49.47% appears in Stokes Q. This
aligns well with the simulation input of 50% fractional polarisation
in Stokes Q.

4.3. Comparison with other widefield polarised imagers

FHD’s polarised imaging pipeline joins the field of other polarised
widefield imagers including WSCLEAN (Offringa et al. 2014) and
the RTS (Mitchell et al. 2008). It is perhaps most similar to the
imaging approach discussed in Tasse et al. (2013), which, like
FHD, is based on optimal mapmaking (A-projection) and grids
visibilities with a kernel derived from the beam model.

Tasse et al. (2013) describes an analysis pipeline built for wide-
field imaging with LOFAR. Although LOFAR’s station configura-
tions differ across the array, each station has identical polarisation
alignment. This enables the analysis to define an implicit instru-
mental basis for visibility gridding, such that each visibility is
gridded to just one uv plane. Tasse et al. (2013) transforms between
the instrumental basis and an orthogonal polarisation basis in
the uv plane, applying a correction factor to the gridded visi-
bilities before deconvolving. This is in contrast to FHD, which
performs this transformation in the image plane after dividing by
the instrumental beam amplitude.

WSCLEAN (Offringa et al. 2014) is a fully polarised wide-
field imager that was originally built for the MWA but has been
widely utilised for analysis of data from instruments including
LOFAR, GMRT, the Very Large Array (VLA), the OVRO-LWA,
and the Australian Square Kilometre Array Pathfinder. It was not
developed as an A-projection algorithm, although it supports a
variety of gridding kernels and can grid with the instrumental
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beam model (Lynch et al. 2021). In its polarised imaging mode,
WSCLEAN produces instrumentally polarised pp, qq, pq and qp
images. Much like in FHD, it then follows with a beam correction
step that transforms the images into Stokes parameters. This step
corrects for direction-dependent image attenuation from the beam
amplitude and gridding kernel and performs the polarisation basis
transformation.

Mitchell et al. (2008) describes the RTS, a GPU-accelerated cal-
ibration and imaging pipeline for the MWA, also discussed in
Tingay et al. (2013). This pipeline also performs widefield imag-
ing and produces fully polarised images. Much like WSCLEAN and
FHD, it produces images in the instrumental polarisation basis
and then uses the Mueller matrix to transform to Stokes param-
eters. Like WSCLEAN, it was not initially developed to perform
A-projection, and it typically does not use the instrumental beam
for gridding.

5. Polarised calibration

FHD performs direction-independent sky-based calibration. This
calibration approach is based on the measurement equation
which, in its fully polarised form, is given by

vjk = Gjkmjk + njk (24)

(Hamaker et al. 1996). Here vjk is the 4-element measured visi-
bility vector given by Equation (10), mjk is the model visiblities
derived from a model of the sky and simulated through a model
of the instrument response, and njk is the noise on the mea-
surement. Gjk is a 4× 4 gain matrix. The gain matrix serves
as a direction-independent modification of the Mueller matrix.
Empirically fitting the gain terms constrains uncertainties in the
modelled Mueller matrix, helping it to better align with the true
Mueller matrix that governs the instrumental response. The
measurement equation is implicitly defined per time step and
frequency channel.

5.1. Gain parameterisation

In its most general form, Gjk is given by

Gjk =

⎡
⎢⎢⎢⎢⎢⎣
gjpp g∗

kpp gjpq g∗
kpq gjpp g∗

kpq gjpq g∗
kpp

gjqp g∗
kqp gjqq g∗

kqq gjqp g∗
kqq gjqq g∗

kqp

gjpp g∗
kqp gjpq g∗

kqq gjpp g∗
kqq gjpq g∗

kqp

gjqp g∗
kpp gjqq g∗

kpq gjqp g∗
kpq gjqq g∗

kpp

⎤
⎥⎥⎥⎥⎥⎦ . (25)

Here gjpp and gjqq are the complex gains of the p and q polarisa-
tions of antenna j, respectively. gjpq and gjqp are the cross gains.
gjpq, for example, denotes the degree to which signal we expect to
appear only in the q polarisation of antenna j also appears in the p
polarisation (Sault et al. 1996).

The calibration solutions are then calculated by minimising a
cost function given by

χ 2(g)=
∑
jk

(
vjk − Gjkmjk

)† (
vjk − Gjkmjk

)
, (26)

where
∑

jk denotes the sum over all baselines. Here we omit all
frequency dependence and assume that the cost function is min-
imised independently for each frequency channel. For discussion
of FHD-based precision bandpass calibration techniques, see Barry
et al. (2019a,b), Li et al. (2019).

If an instrument experiences minimal cross-polarisation signal
coupling, as is the case for the MWA, we can safely set all the cross
gains to zero. Gjk is then diagonal, and we can denote each antenna
gain with a single polarisation index: gjp and gjq. The calibration
cost function then becomes

χ 2(g)=
∑
jk

∑
ab

∣∣vjk ab − gjag∗
kbmjk ab

∣∣2 , (27)

where a and b each index the two instrumental polarisation modes
{p, q}. FHD’s polarised calibration currently does not support non-
zero cross gains.

5.2. Constraining the cross-polarisation phase

FHD initially did not use the cross-polarisation visibilities vpq
and vqp in calibration. Excluding the cross-polarisation visibilities
makes calibration separable in polarisation. Two independent cost
functions are minimised, corresponding to the two instrumental
polarisations:

χ 2
p (gp)=

∑
jk

∣∣∣vjk pp − gjpg∗
kpmjk pp

∣∣∣2 (28)

and

χ 2
q (gq)=

∑
jk

∣∣∣vjk qq − gjqg∗
kqmjk qq

∣∣∣2 . (29)

However, calibrating in this way introduces a new calibration
degeneracy, corresponding to the overall phase difference between
the p and q gains across all antennas. We can identify this degen-
eracy by noting that the transformation gp → gp e−i�/2 and gq →
gq ei�/2 does not affect the calibration solutions. We call the
parameter � the ‘cross-polarisation phase’.

The cross-polarisation phase is not degenerate when we cali-
brate with the cross-polarisation visibilities, as in Equation (26)
or (27)—provided these cross visibilities are non-zero. Although
it is sometimes asserted that this phase can only be con-
strained by calibrating to a polarised source (Sault et al. 1996;
Bernardi et al. 2013; Lenc et al. 2017), in the widefield limit the
non-orthogonality of the instrumental polarisation basis couples
appreciable unpolarised source power into the cross-polarisation
visibilities. This allows for constraint of the cross-polarisation
phase even while using a fully unpolarised sky model. (Note
that this technique was independently developed in Anderson
2019.)

When adapting FHD to perform fully polarised calibration,
we chose to largely retain the original calibration pipeline and
to supplement it with an additional step to constrain the cross-
polarisation phase. As a result, all calibration parameters other
than the cross-polarisation phase are fit from the single polar-
isation visibilities vpp and vqq. Since the original calibration
pipeline constrains the relative phase of the gains across fre-
quency (Beardsley et al. 2016; Barry et al. 2019a,b; Li et al.
2019), the degenerate cross-polarisation phase amounts to a sin-
gle parameter across all antennas and frequencies. If each fre-
quency channel were calibrated independently, we would need
to calculate a cross-polarisation phase at each frequency. We
fit the cross-polarisation phase by plugging the solutions into
the fully polarised cost function given by Equation (27). We let
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gp = ĝp e−i�/2 and gq = ĝq ei�/2, where ĝ are the gains calibrated
up the the cross-polarisation phase. This gives

χ 2(�)=
∑
jk

[∣∣∣vjk pq − e−i�ĝjp ĝ∗
kq mjk pq

∣∣∣2

+
∣∣∣vjk qp − ei�ĝjq ĝ∗

kp mjk qp

∣∣∣2] . (30)

We can calculate the cross-polarisation phase analytically by
finding the value �̂ that minimises χ 2(�). We find that

�̂ =Arg

⎡
⎣∑

jk

(
v∗
jk pq ĝjp ĝ

∗
kq mjk pq + vjk qp ĝ∗

jq ĝkp m
∗
jk qp

)⎤
⎦ , (31)

where Arg denotes the complex phase.

6. Conclusion

We describe an efficient and robust widefield polarised calibration
and imaging pipeline implemented in the FHD software pack-
age. The pipeline employs an analysis approach that reconstructs
images in the instrumental polarisation basis. Provided all anten-
nas have the same polarisation alignment and are not rotated
with respect to one another, this enables computationally efficient
processing as each visibility is gridded to just one uv plane. The
pipeline implements fully polarised calibration by supplementing
FHD’s original calibration implementation with a constraint on the
cross-polarisation phase.

This analysis approach accounts for all widefield polarisation
effects and accurately reconstructs horizon-to-horizon images—
if the instrument’s polarised beam is well-modelled. Imaging is
susceptible to errors if the instrumental response amplitude is
incorrectly modelled. Furthermore, the analysis must accurately
define the instrumental polarisation basis with respect to the sky
coordinates. Low-level errors in the polarised beam model pro-
duces errors in the reconstructed polarisation directions, which in
turn leads to polarisation mode mixing. As fractional beam mod-
elling errors can be quite large at low elevation angles, this effect
can produce significant image reconstruction errors (Bernardi
et al. 2013; Lenc et al. 2017). Recent analyses of MWA data have
found evidence of Stokes I to Q polarisation leakage of up to 40%
near the horizon due to beam modelling errors (Lenc et al. 2017;
Riseley et al. 2018; Byrne et al. 2022). While polarisation mode
mixing can be estimated and mitigated in the image plane (Lenc
et al. 2016, 2017; Byrne et al. 2022), analyses would benefit from
improved a priori beam modelling.

Further extensions to FHD’s polarised imaging pipeline could
add support for arrays with variable antenna polarisation align-
ments. This would preclude the use of the instrumental basis for
visibility gridding, increasing the computational cost of process-
ing. However, it would extend this polarised imaging technique to
a wider class of arrays, including arrays with very long baselines in
which the curvature of the earth has an appreciable effect on the
polarisation alignment.

As noted in Section 5, we can leverage widefield projection
effects to constrain polarised calibration solutions even with a
fully unpolarised sky model. However, constraint of the cross-
polarisation phase � could be improved with calibration to a
known polarised source, as in Bernardi et al. (2013). In addition,
further investigation could explore whether calibration would

benefit from using the cross-polarisation visibilities vpq and vqp to
fit all calibration parameters, not just �.

The FHD polarised imaging pipeline builds upon the success
of optimal mapmaking and A-projection imaging algorithms to
enable accurate and efficient widefield polarised imaging for low-
frequency radio arrays. The pipeline has produced new polarised
diffuse maps with data from the MWA, presented in Byrne
et al. (2022). Coupled with a continued investment in preci-
sion polarised beam modelling, FHD’s polarised imaging capa-
bilities could pave the way for future low-frequency polarimetric
studies.
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