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Abstract. We define the co-spectral radius of inclusions S ≤ R of discrete, probability-
measure-preserving equivalence relations as the sampling exponent of a generating random
walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for
random walks on G/H for inclusion H ≤ G of groups. For the proof, we develop a more
general version of the 2–3 method we used in another work on the growth of unimodular
random rooted trees. We use this method to show that the walk growth exists for an
arbitrary unimodular random rooted graph of bounded degree. We also investigate how
the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents
for percolation that can be defined using the co-spectral radius.
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1. Introduction
Let � be an infinite group generated by a finite symmetric set S and let G = Cay(�, S)

be its Cayley graph. We would like to measure the size of certain subsets C of �, in a
translation-invariant way, using the graph structure of G. As a measuring tool, we will use
the lazy (laziness is convenient, but it is not necessary; see §3.3 for details) random walk
(gn) on G, starting at the identity, through the sampling probabilities

pn,C = P(gn ∈ C).
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We are mostly interested in the case when C has zero density and consider the sampling
exponent

ρ(C) = lim
n→∞ pn,C

1/n.

When H is a subgroup of �, the limit defining ρ(H) will exist and be equal to the
spectral radius of the random walk on the quotient Schreier graph Sch(�, H , S). Indeed,
the covering map � → �/H gives a bijection between walks returning to H on � and walks
returning to the root on Sch(�, H , S). There is a considerable literature on this notion
[7, 28, 36, 39, 40], starting with the amenability criterion of Kesten [3, 4, 30]. For arbitrary
subsets of �, the sampling exponent will not exist in general, but the picture changes when
it is defined by a �-invariant stochastic process. The most studied such subsets [9, 21, 22,
33–35] are percolation clusters of an independent and identically distributed (i.i.d.) (site or
bond) percolation on Cayley graphs.

THEOREM 1.1. Let � be a countable group and consider an i.i.d. percolation on a Cayley
graph of �. Then almost surely, for every connected component C of the percolation, the
limit

ρ(C) = lim
n→∞ pn,C

1/n.

exists.

This result is most interesting when the percolation clusters are infinite and there
are infinitely many of them almost surely. It is easy to see that once ρ(C) exists, it is
independent of the starting point of the walk and so, by the indistinguishability theorem of
Lyons and Schramm [34, Theorem 3.3], it will be a constant on infinite clusters, depending
only on the percolation parameter. Note that when � is amenable, the above phase does not
exist for i.i.d. percolations, but by Kesten’s theorem [30], in this case, ρ(C) equals 1 for
any subset C anyway. That is, ρ is not a suitable measuring tool for amenable groups. For
non-amenable groups, it is a well-known conjecture that the non-uniqueness phase exists
for any Cayley graph of the group [9].

We establish the above theorem in a much wider generality, using the framework of
countable-measure-preserving equivalence relations. Note that our most general results in
this direction (see Theorem 3.2, as well as §5 for the translation between relations and
percolation) do not even involve an ambient group anymore, but for this introduction we
stick to group actions.

Let (X, μ) be a standard Borel probability space and let � act on (X, μ) by μ-preserving
maps. We define the orbit relation

R = {(x, gx) ∈ X × X | x ∈ X, g ∈ �}.

A subrelation S of R is a Borel subset of R that, as a relation on X, is an equivalence
relation. Orbit relations and their subrelations are commonly studied objects in measured
group theory; see [16–20, 29].
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Let S be a subrelation of R. For x, y ∈ X such that (x, y) ∈ R and for a natural n, let
the sampling probabilities be

pn,x,[y]S = P((gnx, y) ∈ S)

where, as before, (gn) is the lazy random walk on G starting at the identity of �. That is,
we walk from x and take the probability that we hit the S-class of y.

THEOREM 1.2. Let � be a countable group acting by measure-preserving maps on (X, μ)

and let S be a subrelation of the orbit relation of the action. Then for μ-almost every
y ∈ X, for every x ∈ �y,

ρS(x, [y]S) = lim
n→∞ pn,x,[y]S

1/n.

exists and is independent of x. Moreover, if S is either normal or ergodic, then ρS is almost
surely constant.

Note that one can also state an equivalent stochastic form of Theorem 1.2 using the
notion of an invariant random partition, that is, a random partition of the group that is
invariant in distribution under the shift action. Invariant random partitions are defined
in [38, §8.1]. They are natural stochastic generalizations of subgroups, as individually
shift-invariant partitions are exactly coset partitions with respect to a subgroup. The
reformulation says that for any invariant random partition of a countable group, all the
partition classes have well-defined sampling exponents. We chose to state Theorem 1.2 in
the language of relations because that is the internal language of its proof. We develop the
language of invariant random partitions in the paper [2].

Theorem 1.2 does not seem to follow from the usual arguments. The local environment
may look quite different from different points of a class. In algebraic terms, there is no
natural quotient object on which the group would act. This is a major deviation from the
subgroup case, where this homogeneity holds and trivially makes pn,H supermultiplicative
in n. As a result, we were not able to derive the existence of the sampling exponent with
the usual tools, including the standard or Kingman ergodic theorems. For the case of
unimodular random trees, Theorem 1.1 follows from an argument we call the 2–3 method.
In order to prove Theorem 1.2 we introduce a generalized version of 2–3 method, which
we expect to have more applications. We recall the rough idea behind the 2–3 method is to
establish a local submultiplicative nature of the sequence and then yield the existence of
the limit by a density argument. The reader can form a quick impression of this method by
reading the text after the statement of Theorem 1.5.

It turns out that the sampling exponent still admits a spectral interpretation, and equals
a norm of a natural Markov-type operator acting on a quotient object of sorts (see
Theorem 3.2). Because of that and to keep consistency with the subgroup case, we call
the sampling exponent ρS(x, [y]S) the co-spectral radius of the class [y]S in this paper.
This operator approach also has interesting connections to prior work in percolation theory.
For example, our methods recover a lemma due to Schramm on the connectivity decay of
random walks in critical percolation which has been used in later results in percolation
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theory ([31], [21, Lemma 6.4], [22, §3]). We refer the reader to the discussion preceding
§3.2 for more details.

This Markov-type operator is defined on a Hilbert space which is constructed by
integrating the bundle of Hilbert spaces �2([x]R/S) into one Hilbert space. While we
will not need it for this work, this Hilbert space can be naturally related to the basic
Jones construction of the inclusion L(S) ≤ L(R) of von Neumann algebras of the
corresponding equivalence relations, as well as the L2-space of a natural measure space
occurring in [15] (see Definition 1.4 of that paper). We expect that our new methods will
have applications to the operator-algebraic setting. We refer the reader to the discussion
preceding §3.1.

We now state the 2–3 method theorem in its most general form that leads to
Theorem 1.2.

THEOREM 1.3. Let R be a discrete, measure-preserving equivalence relation over a
standard probability space (X, μ), and fix π ∈ L1(X, μ) with π(x) ∈ (0, ∞) for almost
every x ∈ X. Let fk : R → [0, ∞] for k ≥ 1 be a sequence of measurable functions such
that:
(a) fk is π -symmetric for all k ∈ N, that is, fk(x, y)π(y) = fk(y, x)π(x) for almost

every (x, y) ∈ R;
(b) for all l, k ∈ N we have

∑
y,z∈[x]R fl(x, z)fk(z, y) ≤ ∑

y∈[x]R fl+k(x, y) for
almost every x ∈ X;

(c) for almost every x ∈ X and every k ∈ N we have 0 <
∑

y∈[x]R fk(x, y) < ∞;
(d) there is a measurable D : X → (0, ∞) so that∑

y∈[x]R

fl+k(x, y) ≥ D(x)l
∑

y∈[x]R

fk(x, y)

for almost every x ∈ X and every l, k ∈ N.
Then

f̃ (x) = lim
k→∞

( ∑
y∈[x]R

fk(x, y)

)1/k

exists and is positive almost surely. Further:
(i) for every k ∈ N, ∫

π(x)

∑
y∈[x]R fk(x, y)

f̃ (x)k
dμ(x) ≤

∫
π dμ;

(ii) limk→∞(
∫

π(x)
∑

y∈[x]R fk(x, y) dμ(x))1/k = ‖f̃ ‖∞.

In the special case when fk(x, y) is the probability of transition from x to y by a standard
random walk in k steps, the first part of the theorem can be seen as a large-deviations
estimate, in the sense that it controls the density of starting points where the random walk
sampling probability deviates from what is suggested by the co-spectral radius. In fact, it
is natural to ask whether our main result holds in the ‘annealed’ sense, that is, when we
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take expected value of the sampling probabilities before we take the nth root. A warning
comment here is that in this case we have to consider the event of returning to the class of
the starting point, because equivalence classes often cannot be individually identified in a
measurable way (this is what is called indistinguishability in percolation theory, which is
equivalent to the ergodicity of a subrelation in the measured language). In any case, this
‘annealed’ version is much simpler to prove than our main result and most of the effort
in this paper is spent establishing the pointwise (or ‘quenched’) version. Additionally, we
show that the ‘annealed’ version is the essential supremum of the ‘quenched’ version and
that in many cases, the ‘quenched version’ is almost surely constant. See Theorem 3.2 for a
precise relation between the ‘annealed’ and ‘quenched’ versions. As a sample application,
in the case of Bernoulli bond percolation it follows from the indistinguishability result of
Lyons and Schramm [34] and our work that the ‘annealed’ version and the ‘quenched’
version agree on infinite clusters.

Remark 1.4. The following was pointed out to us by the anonymous referee. As in
Theorem 1.1. consider an i.i.d. percolation on the Cayley graph of a group �. Let Xn be a
random walk on � with X0 = e and with transition probabilities P(Xn = a|Xn−1 = b) =
ν(b−1a) for some ν ∈ Prob(�) whose support generates �. We let P(X0 ↔ Xn) be the
probability that Xn is in the connected component of e in this percolation, and we let C be
the connected component of e in this percolation. Theorem 1.3 implies in the context of
Theorem 1.1 that

lim
n→∞ P(X0 ↔ Xn)

1/n = lim
n→∞ P(X0 ↔ Xn|C)1/n

almost surely, where C is the cluster of X0. The subadditive ergodic theorem shows, for
example, for Bernoulli percolation that almost surely

lim
n→∞ P(X0 ↔ Xn|Xn)

1/n = exp
[

lim
n→∞

1
n
E log P(X0 ↔ Xn)

]
.

So in order to get the correct almost sure decay of the connection probability conditioned
on the random walk, one must take the limit of the expectation of the logarithm. Our
results says that if one instead conditions on the cluster C, then one does not need to take
the expectation of the logarithm. In this sense, our result may be thought of as saying that
the major contribution to E[P(X0 ↔ Xn|C)] is from contributions which are of ‘typical
size’ (up to subexponential factors). For the expectation E[P(X0 ↔ Xn|Xn)] this is not the
case, and often rare events contribute substantially to the expectation.

1.1. The 2–3 method and walk growth. We now present another application of the
general 2–3 method (see [1, §3] for another application), showing the existence of the
exponential rate of growth of the number of walks in any unimodular random rooted graph
(see also Example 3.12 in §3.2). We also sketch the proof, as it illustrates quite well what
goes into the 2–3 method that is behind Theorem 1.2. Then we state the most general
version of the 2–3 method.
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THEOREM 1.5. Let (G, o) be a connected bounded-degree unimodular random rooted
graph with degree at most d. Let wn(o) denote the number of walks of length n starting
at o. Then the limit limn→∞(1/n) log wn(o) exists. Further, if (G, o) is ergodic and
η ∈ Prob(Md) is the distribution of (G, o), define A ∈ B(L2(Md , η)) by

(Af )([(G, o)]) =
∑
w∼o

f (w).

Then A is a self-adjoint operator and log ‖A‖ = limn→∞(1/n) log wn(o).

The usual technique used to establish the rate of growth in ergodic theory is the
Kingman subadditive theorem. We were not able to find any action or equivalence relation
with a submultiplicative cocycle that would control the number of walks in G, so we could
not use it to solve the problem. As wn(o) can be naturally expressed as an inner product,
one is also tempted to use spectral theory, but this also did not work for us. Instead we use
the mass transport principle to show that the inequalities

w2n(o) 	 wn(o)2 and w3n(o) 	 wn(o)3

hold with overwhelming probability, as n gets large. To see why this is useful, imagine
that we know that these inequalities hold always and with the implicit constant 1. Then the
sequence w2p3q (o) is submultiplicative, so the limit

lim
p,q→∞

1
2p3q

log w2p3q (o)

exists. The function n 
→ log wn(o) is Lipschitz and the set 2p3q is dense on the
logarithmic scale, so we can deduce that the limit limn→∞(1/n) log wn(o) also exists.

1.2. Outline of the paper. Section 2 introduces the necessary background for this paper,
including a discussion of measure-preserving equivalence relations and how to reduce the
study of percolation clusters to equivalence relations. Section 3 contains a proof of the
co-spectral radius and its basic properties. In that section we also include some background
on representations of equivalence relations, so that in §3.1 we may identify the co-spectral
radius with an operator norm. In §3.2 we give a proof of the general 2–3 method which
gives us the pointwise existence of the co-spectral radius as a special case. In §3.3 we
show that the co-spectral radius is almost surely constant if the subrelation is ergodic or
normal. In §4, we show that the co-spectral radius agrees with the spectral radius when
the subrelation is hyperfinite and give a counterexample for the converse (i.e., a Kesten
theorem for subrelations) using monotone couplings of invariant random subgroups. In §5
we use the co-spectral radius to define new critical exponents for percolation. Finally, in
§5.2 we use the 2–3 method to establish the existence of walk growth and relate it to an
operator norm.

Remark. Note that this paper and parts of [1, 2] first appeared on arXiv as one long text.
Following explicit suggestions of helpful referees, we decided to separate the work into the
three papers, making the results more accessible to their natural audiences.
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2. Background and notation
A standard probability space is pair (X, μ) where X is a standard Borel space, and μ is
the completion of a Borel probability measure on X. We say that E ⊆ X is measurable if it
is in the domain of μ. An equivalence relation over (X, μ) is a Borel subset R ⊆ X × X

such that the relation ∼ on X given by x ∼ y if (x, y) ∈ R is an equivalence relation. For
x ∈ X, we let [x]R = {y ∈ X : (x, y) ∈ R. We say that R is discrete if for almost every
x ∈ X we have that [x]R is countable. If R is discrete, we may turn R into a σ -finite
measure space by endowing R with the Borel measure

μ(E) =
∫

X

|[x]R ∩ E| dμ(x) for all Borel E ⊆ R.

We will continue to use μ for the completion of μ. If R is discrete, we say that it is
measure-preserving if the map R → R given by (x, y) 
→ (y, x) is measure-preserving.
Equivalently, this just means that the mass-transport principle holds: if f : R → [0, ∞]
is Borel, then ∫

X

∑
y∈[x]R

f (x, y) dμ(x) =
∫

X

∑
y∈[x]R

f (y, x) dμ(x).

For a group �, and S ⊆ �, we use 〈S〉 for the subgroup of � generated by S. If � is a
countable group, and � � (X, μ) is a measure-preserving action, then R�,X = {(x, gx) :
g ∈ �} is a discrete, measure-preserving equivalence relation. We use the notation S ≤ R
to mean that S is a subequivalence relation of R, namely a subset of R which is also
an equivalence relation over (X, μ). We often abuse terminology and say that S is a
subrelation of R, and leave it as implicit that S should also be an equivalence relation.
If (X, μ) and E ⊆ X is measurable we let

R|E = R ∩ (E × E).

If E has positive measure, then R|E is a measure-preserving relation over the probability
space (E, μ(E ∩ ·)/μ(E)). We let [R] be the group of all bimeasurable bijections
φ : X → X so that φ(x) ∈ [x]R for almost every x ∈ X. We identify two elements of
[R] if they agree almost everywhere. We have a natural metric d on [R] given by

d(φ, ψ) = μ({x ∈ X : φ(x) �= ψ(x)}).
This is a complete, separable, translation-invariant metric on [R] and this turns [R] into a
Polish group. We use Prob([R]) for the Borel probability measures on [R]. Since [R] is a
Polish group, the space Prob([R]) can be made into a semigroup under convolution; so if
ν1, ν2 ∈ Prob([R]), then ν1 ∗ ν2 ∈ Prob([R]) is defined by

(ν1 ∗ ν2)(�) = ν1 ⊗ ν2({(φ, ψ) : φψ ∈ �}).
Given a countable � ≤ [R], we say that � generates R if �x = [x]R for almost every
x ∈ X. Given a countably supported ν ∈ Prob([R]), we say that ν generates R if 〈supp(ν)〉
generates R, where supp(ν) = {φ ∈ [R] : ν(φ) �= 0}. We say that ν ∈ Prob([R]) is
symmetric if the map φ 
→ φ−1 preserves ν.
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Let G be a graph. We write V (G) and E(G) respectively for the vertex and the edge
set of G. Let v ∈ V (G) and r ∈ N. The r-ball around v is denoted by BG(v, r) and the
r-sphere by SG(v, r).

We use Vinogradov’s notation and write f � g if |f | is bounded by a constant
times |g|.

For a Banach space V, we let B(V ) be the space of continuous, linear operators
T : V → V . For T ∈ B(V ), we set

‖T ‖ = sup
v∈V :‖v‖≤1

‖T (v)‖.

At various times we will have to appeal to spectral theory of bounded self-adjoint operators
on a Hilbert space. Since most standard references on this theory assume Hilbert spaces
are complex, in order to make these applications most transparent all Hilbert spaces will
be assumed complex throughout this paper.

2.1. Translation between percolation and equivalence relations. Some of our results are
stated in the language of percolation theory but all our proofs will be based on measured
equivalence relations and graphings. An invariant (edge) percolation on a unimodular
random graph (G, o) is a random triple (G, o, P) where P is a subset of edges of G and the
distribution of the triple is invariant under the rerooting equivalence relation. The following
proposition associates a probability-measure-preserving measured equivalence relation to
a percolation is such a way that Theorem 1.1 can deduced from Theorem 1.2.

PROPOSITION 2.1. Let (G, o) be a unimodular random graph with an invariant perco-
lation P. There exists a probability-measure-preserving countable equivalence relation
(�#, ν#, R) with a generating graphing (ϕi)i∈I and a subrelation S ⊂ R such that the
following statements hold.
(1) The rooted graph (Gω, ω) with the vertex set [ω]R and the edge set {(ω′, ϕi(ω

′)) :
ω′ ∈ [ω]R, i ∈ I } has the same law as (G, o).

(2) The law of the pairs (P o, G) where P o is the connected component of the percolation
P ⊂ G is the same as the law of ([ω]S , Gω) where [ω]S ⊂ Gω is the S equivalence
class of ω.

Proof. We follow closely the construction in [6, Example 9.9]. Let � be the space of
pairs ((G, o), S) where (G, o) is a rooted graph of degree at most d and S is a subset
of edges. The distribution of the percolation P is naturally a probability measure on �;
let us call it μ. Let �# be a the set of triples ((G, o), S, λ), where (G, o), S are as
before and λ is a two-coloring of the vertices of (G, o). Let μ# be the distribution of
the random triple ((G, o), P , �), where � is an i.i.d. coloring. The space (�#, μ#) is
equipped with a natural finite graphing � in which ((G, o), S, λ), ((G′, o′), S′, λ′) are
connected if and only if G = G′, S = S′, λ = λ′, and o′ is a neighbor of o. The graphing
� spans the rerooting measured equivalence relation R, which preserves μ#. For each point
ω ∈ �#, the equivalence class [ω]R is equipped with a bounded-degree graph structure Gω.
The resulting random rooted graph (Gω, ω) has the same law as (G, o) and the second
coordinate has the same law as the percolation P. To construct the subrelation S, we select
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a subgraphing �′ ⊂ � where ((G, o), S, λ), ((G′, o′), S′, λ′) are connected if and only if
G = G′, S = S′, λ = λ′, and o′ is a neighbor of o connected by an edge in S. In this way
the connected component of P containing the root is given by the S-equivalence class of
w in Gw.

3. Existence of the co-spectral radius for subrelations
Let R be an ergodic probability-measure-preserving equivalence relation over a standard
probability space (X, μ) and let ν ∈ Prob([R]) be countably supported and symmetric,
that is, ν({φ}) = ν({φ−1}) for all φ ∈ [R]. Consider a measurable subequivalence relation
S ≤ R. For x ∈ X, the measure ν determines a random walk on [x]R with transition
probabilities py,z = ν({φ : φ(y) = z}). For n ∈ N, (x, y) ∈ R, we let pν

n,x,y (respectively,
pν

n,x,S ) be the probability that the random walk corresponding to ν starting at x is at y after
n steps (respectively, in [x]S after n steps). By direct calculation,

pν
n,x,y = ν∗n({φ : φ(x) = y}).

If ν is clear from the context (which is the usually the case), we will use pn,x,S , pn,x,x

instead of pν
n,x,S , pν

n,x,x . We are interested in the existence of the co-spectral radius of S
inside R which is, by definition, the limit

lim
n→∞ p

1/2n

2n,x,S .

In particular, we will show that this limit exists almost surely. While there are easy
examples where this limit genuinely depends upon x (see Example 3.23) we will show
that in many cases it is almost surely constant and is the norm of a self-adjoint operator on
a Hilbert space naturally associated to S ≤ R.

This is, of course, motivated by the case of an inclusion of groups � ≤ �. Here
the existence of the co-spectral radius, as well as the fact that it is the norm of the
corresponding Markov operator on �2(�/�), is a non-trivial, but well-known, fact. In the
case when � is finitely generated and ν is the uniform measure on a finite generating set of
� we are looking at a random walk on a Schreier graph and it is easier to see the existence
of this limit using the natural action of � on �/�. Even in the case when ν is not the
uniform measure on a finite subset of � the action � � �/� naturally enters into the very
definition of the Markov operator. In the relation case this presents a problem a priori.

Because S is a subrelation of R, for x ∈ X we can divide [x]R into S-equivalence
classes. We let [x]R/S be the space of S-equivalence classes in [x]R. The field of
spaces [x]R/S is analogous to �/�, and so we may consider �2([x]R/S) as analogous to
�2(�/�). However, there is no obvious natural action of [R] on [x]R/S and this makes it
difficult to see how one would define a Markov operator, and thus the co-spectral radius.
We proceed to explain how to navigate this difficulty by collecting the field of Hilbert
spaces �2([x]R/S) together in a natural object.

Definition 3.1. Let (X, μ) be a standard probability space. Then a measurable field of
Hilbert spaces over X is a family (Hx)x∈X of separable Hilbert spaces, together with a
family Meas(Hx) ⊆ ∏

x∈X Hx so that:
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• for every (ξx)x , (ηx)x ∈ Meas(Hx) we have that x 
→ 〈ξx , ηx〉 is measurable;
• if η = (ηx)x∈X ∈ ∏

x∈X Hx and x 
→ 〈ξx , ηx〉 is measurable for all ξ = (ξx)x ∈
Meas(Hx), then η ∈ Meas(Hx);

• there is a sequence (ξ (n))∞n=1 with ξ (n) = (ξ (n))x∈X in Meas(Hx) so that

Hx = span{ξ (n)
x : n ∈ N} for almost every x ∈ X.

The direct integral, denoted by
∫ ⊕
X

Hx dμ(x), is defined to be all ξ ∈ Meas(Hx) so that∫
X

‖ξx‖2 dμ(x) < ∞, where we identify two elements of Meas(Hx) if they agree outside
a set of measure zero. We put an inner product on

∫ ⊕
X

Hx ,

〈ξ , η〉 =
∫

X

〈ξx , ηx〉 dμ(x),

and this gives
∫ ⊕
X

Hx the structure of a Hilbert space.

We shall typically drop ‘over X’ in ‘a measurable field of Hilbert space over X’ if X is
clear from the context. For later use, if (Hx)x is a measurable field of Hilbert spaces, then
given A ⊆ X measurable and ξ ∈ Meas(Hx), we let 1Aξ ∈ Meas(Hx) be defined by

(1Aξ)x = 1A(x)ξx .

In our case, we can give the family (�2([x]R/S))x a measurable structure by declaring
that ξ = (ξx)x ∈ ∏

x∈X �2([x]R/S) is measurable if x 
→ ξx([φ(x)]S) is measurable, for
all φ ∈ [R]. General facts about direct integral imply that this collection of measurable
vectors satisfy the above axioms (see Lemma 3.4). So we can define L2(R/S) by

L2(R/S) =
∫ ⊕

X

�2([x]R/S) dμ(x).

As mentioned above, there is no obvious natural action of [R] on [x]R/S. However, we
do have a natural unitary representation of [R] on L2(R/S). Define

λS : [R] → U(L2(R/S))

by

(λS(φ)ξ)x = ξφ−1(x).

We will not need it for this paper, but this can be regarded as a representation of R
itself (a precise definition will be given in [2]). For our purposes, we simply note that we
have natural Markov operators defined on L2(R/S). Namely, for a countably supported
ν ∈ Prob([R]), we define

λS(ν) =
∑

φ∈[R]

ν(φ)λ(φ).

Here we are mildly abusing notation and using ν(φ) for ν({φ}); this will not present
problems since ν is atomic.

THEOREM 3.2. Let R be a measure-preserving equivalence with countable orbits over
a standard probability space (X, μ), and let ν ∈ Prob([R]) be atomic. Suppose that the
support of ν generates R. Fix S ≤ R.
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(i) The limit

ρ(R/S, ν) := lim
n→∞

( ∫
p2n,x,S dμ(x)

)1/2n

exists. Moreover,

ρ(R/S, ν) = ‖λS(ν)‖.

(ii) The pointwise limit

ρS
ν (x) = lim

n→∞ p
1/2n

2n,x,S

exists almost surely, and

ρ(R/S, ν) = ‖ρS
ν ‖∞.

(iii) Suppose that the partial one-sided normalizer of S ≤ R acts ergodically (see
Definition 3.14 for the definition). Then ρS

ν is almost surely constant, and by (ii)
equals ρ(R/S, ν). In particular, this applies if S is normal or ergodic.

We will often drop the ν from ρS
ν if it is clear from context, and simply write ρS . Let

X, μ, R be as in Theorem 3.2. Suppose that y ∈ X and that the limit defining ρS(y) exists.
Given x ∈ [y]R, choose a k ∈ N with p2k,x,y > 0. Then

p2k,x,yp2(n−k),y,[y]S ≤ p2n,x,[y]S ≤ p2(n+k),y,[y]Sp−1
2k,x,y ,

and so the limit

lim
n→∞ p

1/2n

2n,x,[y]S

exists and equals ρS(y). If ν is assumed lazy, then

p2k,x,ypy,yp2(n−k),y,[y]S ≤ p2n+1,x,[y]S ≤ p2(n+k+1),y,[y]Sp−1
2k,x,yp

−1
y,y ,

and so

lim
n→∞ p

1/n
n,x,[y]S

exists and equals ρS(x). Thus, Theorem 3.2 recovers Theorem 1.2.

Remark 3.3. A co-spectral radius for normal subrelations also occurs in [10, Lemma
6.7]; however, in that context the subrelation is both normal and ergodic, which gives a
well-defined quotient group. If the subrelation is normal, there is a quotient groupoid [15];
however, our situation is general enough (encompassing when the subrelation is ergodic or
when it is normal) that we cannot appeal directly to the group case as in [10]. We remark
that the space L2(R/S) is closely related to the relation Ŝ that appears in [15, Definition
1.4] (we caution the reader that the roles of S, R are reversed in [15] relative to our work
and so this relation is denoted R̂ there), which is a measure-preserving relation on the
space Y = {(x, c) : x ∈ X, c ∈ [x]R/S}.

https://doi.org/10.1017/etds.2024.32 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.32


3396 M. Abert et al

Explicitly,

Ŝ = {(x, c), (y, c̃) : (x, y) ∈ R, c = c̃}.
We proceed to explain how they are related. Since we not explicitly use the connection
between L2(R/S) and L2(Ŝ), we will only sketch the details.

In [2], we will explain how to give Y the structure of a standard Borel space and equip
it with a natural σ -finite measure. This measure will be defined in such a way as to make
L2(Y ) naturally unitarily isomorphic to L2(R/S). We also have an isometric embedding
V of L2(R/S) into L2(Ŝ) given by

(Vf )(x, c, y, c) = δx=yf (x, c).

Part of the significance of the relation Ŝ for the results in [15] is that certain properties
of the inclusion S ≤ R (e.g., the index, normality) are reflected in terms of properties of
the inclusion R ≤ Ŝ . An alternative explanation for this can be given by von Neumann
algebras. Let L(S), L(R) be the von Neumann algebras of the equivalence relations S, R
as defined in [14] (the analogous notation there is M(S), M(R)). We then have a natural
inclusion of von Neumann algebras L(S) ≤ L(R). The von Neumann algebra L(Ŝ) can
be realized as the basic construction M̂ = 〈L(R), eL(S)〉, in the sense of Jones [25, §3],
of L(S) ≤ L(R). For the interested reader, we remark that under this correspondence, the
space L2(R/S) corresponds to the following subspace of L2(M̂):

H = span{f uφeL(S)u
−1
φ : f ∈ L∞(X, μ), φ ∈ [R]},

where uφ are the canonical unitaries in L(R) corresponding to the elements of [R] and
eL(S) is the Jones projection corresponding to the inclusion L(S) ≤ L(R) (see [15]).
Moreover, the action of [R] naturally acts on H by conjugating by uφ , and this action
is isomorphic to the action of [R] on L2(R/S) we define above. We refer to [25] and [11,
Appendix F], for the appropriate definitions, which we will not need in this work.

We now proceed to prove (i) of the above theorem, whose proof is almost entirely
operator theory.

3.1. Proof of Theorem 3.2(i). The essential idea behind Theorem 3.2(i) is that we have
a natural vector in L2(R/S) which is given by the measurable field ξx = δ[x]S . By a direct
calculation, we have that

〈λS(ν)2nξ , ξ〉 =
∫

p2n,x,S dμ(x).

We then have to show that

‖λS(ν)‖ = lim
n→∞〈λS(ν)2nξ , ξ〉1/2n.

Because ν is symmetric, the operator λS(ν) is self-adjoint and the existence of the limit on
the right-hand side follows from the spectral theorem [12, Theorems IX.2.2 and IX.2.3].
The limit on the right-hand side is also dominated by ‖λS(ν)‖. We prove a general Hilbert
space theorem which, after a small amount of work, will prove the reverse inequality. First,
let us alleviate any concerns about the measurable structure defined on (�2([x]R/S))x∈X.
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LEMMA 3.4. Let S ≤ R be discrete measure-preserving equivalence relations
over a standard probability space (X, μ). Define a family Meas(�2([x]R/S)) ⊆∏

x∈X �2([x]R/S) by saying that (ξx)x∈X ∈ Meas(�2([x]R/S)) if and only if for every
φ ∈ [R] the function X → C given by x 
→ ξx([φ(x)]S) is measurable. Then the family
Meas(�2([x]R/S)) turns (�2([x]R/S))x into a measurable field of Hilbert spaces.

Proof. Fix a countable subgroup � ≤ [R] so that �x = [x]R for almost every x. We start
by proving the following claim.

Claim. A vector ξ = (ξx)x ∈ ∏
x∈X �2([x]R/S) is in Meas(�2([x]R/S)) if and only if

the map x 
→ ξx([φ(x)]S) is measurable for every φ ∈ �. If ξ is measurable then, by
definition, x 
→ ξx([φ(x)]S) is measurable for every φ ∈ [R]. In particular, this is true
for φ ∈ �. Conversely, suppose that x 
→ ξx([φ(x)]S) is measurable for all φ ∈ �. Fix a
ψ ∈ [R]. We then have to show that x 
→ ξx([ψ(x)]S) is measurable. Since �x = [x]R
for almost every x ∈ X, we may find a disjoint family of sets (Eφ)φ∈ � with Eφ ⊆ {x ∈
X : ψ(x) = φ(x)} and so that

⊔
Eφ is a co-null subset of X. Then

ξx([ψ(x)]S) =
∑
φ∈�

1Eφ (x)ξx([φ(x)]S)

for almost every x (the sum above converges since the Eφ are disjoint). Since � is
countable, this proves that x 
→ ξx([ψ(x)]S) is measurable, and this proves the claim.

Having shown the claim, for φ ∈ � define ζφ ∈ ∏
x∈X �2([x]R/S) by ζφ,x = δ[φ(x)]S .

Then

�2([x]R/S) = span{ζφ,x : φ ∈ �}‖·‖2

for almost every x ∈ X, and also ξx([φ(x)]S) = 〈ξx , δφ(x)〉 for all φ ∈ [R]. Moreover, for
φ, ψ ∈ � we have that

〈ζφ,x , ζψ ,x〉 = 1S(φ(x), ψ(x)),

which is a measurable function of x. The lemma now follows from countability of � and
[37, Lemma IV.8.10].

We use the following well-known lemma (see, for example, [24, Equation 2.8] for a
proof), which is the main way we will relate the operator norm of the Markov operator
λS(ν) to the growth of the matrix coefficients 〈λS(ν)2nξ , ξ〉.

LEMMA 3.5. Let H be a Hilbert space and T ∈ B(H) self-adjoint. Let K be an index set,
and let (ξk)k∈K be a K-tuple of vectors in H so that H = span{ξk : k ∈ K}. Then

‖T ‖ = sup
k∈K

lim
n→∞〈T 2nξk , ξk〉1/2n.

In order to apply this in the context of a direct integral of Hilbert spaces, the following
density criterion will be useful.
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LEMMA 3.6. Let (X, μ) be a standard probability space. Let (Hx)x∈X be a measurable
family of Hilbert spaces over X and set H = ∫ ⊕

X Hx . Suppose we have a sequence
ξn = (ξn,x)x∈X ∈ Meas(Hx) such that

Hx = span{ξn,x : n ∈ N}
for almost every x ∈ X. Then

H = span{1Aξn : n ∈ N, A ⊆ X is measurable}.

Proof. Suppose that η ∈ H and that 〈η, 1Aξn〉 = 0 for every n ∈ N and every measurable
A ⊆ X. Then for every measurable A ⊆ X and every n ∈ N we have∫

A

〈ηx , ξn,x〉 dμ(x) = 0.

Since this holds for every A, applying this with A being {x ∈ X : Re(ij 〈ηx , ξn,x〉) > 0} for
j = 0, 1, 2, 3, and taking real and imaginary parts of the above integral shows that that
for every n ∈ N we have that 〈ηx , ξn,x〉 = 0 for almost every x ∈ X. By countability, for
almost every x ∈ X we have 〈ηx , ξn,x〉 = 0 for all n ∈ N. Since Hx = span{ξn,x : n ∈ N}
for almost every x ∈ X, we deduce that ηx = 0 for almost every x ∈ X, that is η = 0 as an
element of H. Thus, we have shown that the only vector in H orthogonal to {1Aξn : n ∈ N,
A ⊆ X is measurable} is the zero vector, and this implies that

H = span{1Aξn : n ∈ N, A ⊆ X is measurable}.

Proof of Theorem 3.2(i). Let ξ ∈ L2(R/S) be the measurable vector field given by
ξx = δ[x]S . By direct calculation,

〈λS(ν)2nξ , ξ〉 =
∫

p2n,x,S dμ(x).

By the spectral theorem, there is a probability measure η on [−‖λS(ν)‖, ‖λS(ν)‖] so that

〈λS(ν)2nξ , ξ〉 =
∫

t2n dη(t).

From this, we see that limn→∞〈λS(ν)2nξ , ξ〉1/2n exists and is the L∞-norm of t with
respect to η. Combining these results, we see that

lim
n→∞

( ∫
p2n,x,S dμ(x)

)1/2n

exists. Call this limit ρ(R/S, ν) as in the statement of the theorem.
We now turn to the proof that ρ(R/S, ν) = ‖λS(ν)‖. It follows from the logic in the

preceding paragraph that ρ(R/S, ν) ≤ ‖λS(ν)‖. Let � be the subgroup of [R] generated
by the support of ν. Since ν generates R, we have [x]R = �x for almost every x ∈ X. By
Lemma 3.6,

{1AλS(φ)ξ : φ ∈ �, A ⊆ X is measurable}
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has dense linear span in H. It thus suffices, by Lemma 3.5, to prove that

lim
n→∞〈λS(ν)2n1AλS(φ)ξ , 1AλS(φ)ξ〉1/2n ≤ ρ(R/S, ν)

for every measurable A ⊆ X and φ ∈ �. It is direct to see that

〈λS(ν)2n1AλS(φ)ξ , 1AλS(φ)ξ〉 ≤ 〈λS(ν)2nλS(φ)ξ , λS(φ)ξ〉
for every measurable A ⊆ X. So it simply suffices to show that

lim
n→∞〈λS(ν)2nλS(φ)ξ , λS(φ)ξ〉1/2n ≤ ρ(R/S, ν) for every φ ∈ �. (3.1)

To prove (3.1), fix φ ∈ �. Let φ∗(S) be the subrelation φ∗(S) = {(φ(x), φ(y)) :
(x, y) ∈ S}. By direct computation,

〈λS(ν)2nλS(φ)ξ , λS(φ)ξ〉 =
∫

p2n,φ(x),φ∗(S) dμ(x).

Choose k ∈ N so that c = ν∗k({φ}) > 0. Then for every n ∈ N we have that

p2(n+k),x,S =
∑

y∈[x]S

p2(n+k),x,y ≥
∑

y∈[x]S

pk,x,φ(x)p2n,φ(x),φ(y)pk,φ(y),y

≥ c2
∑

y∈[x]S

p2n,φ(x),φ(y) = c2p2n,φ(x),φ∗(S).

Integrating both sides, we obtain

〈λS(ν)2nλS(φ)ξ , λS(φ)ξ〉 ≤ c−2〈λS(ν)2(n+k)ξ , ξ〉.
Thus,

lim
n→∞〈λS(ν)2nλS(φ)ξ , λS(φ)ξ〉1/2n ≤ lim

n→∞ c−1/n[〈λS(ν)2(n+k)ξ , ξ〉1/2(n+k)](n+k)/n

= ρ(R/S, ν).

This proves (3.1), and so completes the proof of Theorem 3.2(i).

As mentioned in the introduction, Theorem 3.2 and our later work in §4 can be used to
recover a result due to Schramm used in [31], [21, Lemma 6.4], and [22, §3]. Indeed, given
a percolation of a connected, regular, transitive graph G by §2.1, one can build an inclusion
S ≤ R of relations on a standard probability space as well as a symmetric probability
measure ν on [R] so that, in the notation of [21, Lemma 6.4], we have∫

pn,x,S dμ(x) = E[τp(X0, Xn)].

For p ∈ (0, 1), consider Bernoulli(p) edge percolation, where each edge is kept with
probability p; let Sp ≤ Rp be the corresponding inclusion of equivalence relations. Set

pc = inf{p : almost every connected component in Bernoulli (p) percolation is finite}.
In the setup of the proof of Theorem 3.2(i), we have that∫

p2n,x,S dμ(x) = 〈λS(ν)2nξ , ξ〉.
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Since λS(ν) is self-adjoint, the spectral theorem tells us that(∫
p2n,x,S dμ(x)

)1/2n

= 〈λS(ν)2nξ , ξ〉1/2n

is increasing in n and Theorem 3.2(i) characterizes its supremum as ‖λS(ν)‖. Additionally,
for every n ∈ N we have by Cauchy–Schwarz that(∫

p2n,x,S dμ(x)

)1/n

= 〈λS(ν)nξ , ξ〉1/n ≤ ‖λS(ν)nξ‖1/n = 〈λS(ν)2nξ , ξ〉1/2n,

where in the last step we use self-adjointness of λS(ν). The construction of the inclusion
S ≤ R forces that the spectral radius of G is equal to the co-spectral radius of T ≤ R
where T = {(x, x) : x ∈ X} is the trivial relation. For Bernoulli(p) percolation with
p < pc, finiteness of the clusters tells us that [x]Sp

is finite for almost every x ∈ X.
We will later show (see Proposition 4.1) that this implies that ρ(R/Sp, ν) = ‖λSp

(ν)‖ ≤
‖λT (ν)‖ = ρ(R, ν). Using the standard monotone coupling of Bernoulli percolation [33,
§5.2], it is direct to see that ‖λSp

(ν)‖ is semicontinuous and that ‖λSpc
(ν)‖ ≤ ‖λT (ν)‖.

Thus, we obtain the estimate of Schramm for connected, transitive graphs. With minor
modifications, our results work for random walks on finite cost graphings (see Example 3.9
of §3.2). In this manner, we can recover the same estimate of Schramm when G is a
connected, locally finite, transitive graph. As mentioned in the introduction, in the context
of percolation all our proofs can be rephrased without equivalence relations and can be
written in the language of percolation theory.

3.2. The 2–3 method and proof of Theorem 3.2(ii). We now explain how to deduce the
existence of the pointwise limit defining the co-spectral radius. We first state the general
Theorem behind this existence and then explain why it applies to our setting, as well as to
more general situations. For notation, if f , g : R → [0, ∞] are measurable, then we define
their convolution to be the function f ∗ g : R → [0, ∞] given by

(f ∗ g)(x, y) =
∑

z∈[x]R

f (x, z)g(z, y).

Given a measurable π : X → C, we say that f : R → [0, ∞] is π -symmetric if
π(x)f (x, y) = π(y)f (y, x) for almost every (x, y) ∈ R. If π = 1, we just say that f
is symmetric.

THEOREM 3.7. Let R be a discrete, measure-preserving equivalence relation over a
standard probability space (X, μ), and fix π ∈ L1(X, μ) with π(x) ∈ (0, ∞) for almost
every x ∈ X. Let fk : R → [0, ∞] for k ≥ 1 be a sequence of measurable functions such
that:
(a) fk is π -symmetric for all k ∈ N;
(b) for all l, k ∈ N we have

∑
y∈[x]R(fl ∗ fk)(x, y) ≤ ∑

y∈[x]R fl+k(x, y) for almost
every x ∈ X;

(c) for almost every x ∈ X and every k ∈ N we have 0 <
∑

y∈[x]R fk(x, y) < ∞;
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(d) there is a measurable D : X → (0, ∞) so that∑
y∈[x]R

fl+k(x, y) ≥ D(x)l
∑

y∈[x]R

fk(x, y)

for almost every x ∈ X and every l, k ∈ N.
Then

f̃ (x) = lim
k→∞

( ∑
y∈[x]R

fk(x, y)

)1/k

exists and is positive almost surely. Further:
(i) for every k ∈ N ∫

π(x)

∑
y∈[x]R fk(x, y)

f̃ (x)k
dμ(x) ≤

∫
π dμ;

(ii) limk→∞(
∫

π(x)
∑

y∈[x]R fk(x, y) dμ(x))1/k = ‖f̃ ‖∞.

The name ‘2–3’ refers to the way we are proving Theorem 3.7. In the proof we have
two separate steps where we show that ‘typically’

∑
y f2k(x, y) ∼ (

∑
y fk(x, y))2 and

(
∑

y f3k(x, y)) ∼ (
∑

y fk(x, y))3. Since 2, 3 generate a multiplicative semigroup which
is asymptotically dense on the logarithmic scale, we are able to deduce that the exponential
growth of (

∑
y fk(x, y)) has a definite rate.

Before jumping into the proof of Theorem 3.7, let us list several examples where it
applies. For all of these examples, fix a discrete, measure-preserving equivalence relation
R over a standard probability space (X, μ) and fix a S ≤ R.

Example 3.8. Fix a symmetric ν ∈ Prob([R]). Define

fk(x, y) = p2k,x,y1S(x, y).

It is direct to check that our hypotheses apply in this case with π = 1, D(x) = p2,x,x . In
this case ∑

y∈[x]S

fk(x, y) = p2k,x,S ,

and we recover the existence of the pointwise co-spectral radius ρS
ν . Moreover, item (ii) of

Theorem 3.7 as well as Theorem 3.2(i) imply that

‖λS(ν)‖ = ρ(R/S, ν) = ‖ρS
ν ‖∞.

So we recover the operator norm of the Markov operator λS(ν) as the L∞-norm of ρS
ν .

Example 3.9. Suppose that ν : R → [0, 1] is measurable and that
∑

y∈[x]R ν(x, y) = 1
for almost every x ∈ X. Moreover, assume that there is a π : X → (0, ∞) with
π ∈ L1(X, μ) so that ν is π -symmetric. Consider the Markov chain on [x]R with
transition probabilities ν(x, y), and for k ∈ N and (x, y) ∈ R let pk,x,y be the
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probability that the random walk corresponding to this Markov chain starting at x is
at y after k steps. Set

fk(x, y) = p2k,x,y1S(x, y),

and p2k,x,S = ∑
y∈[x]S p2k,x,y . Note that if f , g : R → [0, ∞] are π -symmetric, then so

is f ∗ g. Since fk = ν∗2k1S , we see that fk is π -symmetric. Finally, observe that for every
x ∈ X, k ∈ N,

0 < pk
2,x,x ≤ p2k,x,x ≤

∑
y∈[x]R

fk(x, y) ≤ 1.

So we deduce the existence of

ρ(R/S, ν) = lim
k→∞ p

1/2k

2k,x,S .

A good example to keep in mind is the following. Recall that the full pseudogroup,
denoted [[R]], of R is by definition the set of bimeasurable bijections φ : dom(φ) →
ran(φ) satisfying:
• dom(φ), ran(φ) are measurable subsets of X;
• φ(x) ∈ [x]R for almost every x ∈ X.
We identify φ, ψ ∈ [[R]] if μ(dom(φ)� dom(ψ)) = 0 and if φ(x) = ψ(x) for almost
every x ∈ dom(φ) ∩ dom(ψ). For φ, ψ ∈ [[R]] we use φ ◦ ψ for the element of [[R]]
whose domain is dom(ψ) ∩ ψ−1(dom(φ)) and which satisfies φ ◦ ψ(x) = φ(ψ(x)) for
x ∈ dom(ψ) ∩ ψ−1(dom(φ)). For φ ∈ [[R]], we let φ−1 be the element of [[R]] with
dom(φ−1) = ran(φ), ran(φ−1) = dom(φ), and so that φ−1(φ(x)) = x for all x ∈ dom(φ).
Given a countable � ⊆ [[R]] and x ∈ X we define a graph G�,x whose vertex set is [x]R
and whose edge set is

⋃
φ∈�{{y, φα(y)} : α ∈ {±1}, y ∈ [x]R ∩ dom(φα)}. We say that �

is a graphing if G�,x is connected for almost every x ∈ X. We define the cost of a graphing
to be

c(�) =
∑
φ∈�

μ(dom(φ)).

This definition is due to Levitt in [32], and the cost of a relation (which is by definition the
infimum of the cost of its graphings) was further systematically studied in [18, 19]. If �

is a finite cost graphing, then for almost every x ∈ X define ν(x, y) = 1/degG�
(x) where

degG�
(x) is the degree of x in the graph G�,x . Observe that ν is degG,�-symmetric. Since∫

degG�
dμ ≤ 2c(�) < ∞, we have a well-defined co-spectral radius for the simple

random walk associated to finite cost graphings.
Another good example is as follows. Consider a symmetric ν ∈ Prob([R]), and E ⊆ X

a measurable set with μ(E) > 0. Assume that for almost every x ∈ E, we have that∑
y∈[x]R∩E px,y > 0 (e.g., this holds if the random walk is lazy).
For x ∈ X, define ν|E : R ∩ (E × E) → [0, 1] by

ν|E(x, y) = px,y∑
y∈[x]R∩E px,y

.
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As above this defines a Markov chain on [x]R ∩ E with transition probabilities given
by ν|E . We have that ν|E is π -symmetric, with π(x, y) = ∑

y∈[x]R∩E px,y . For k ∈ N,

we let p
ν|E
k,x,y be the probability that the random walk starting at x with these transition

probabilities is at y after k steps. Setting p
ν|E
2k,x,S|E = ∑

y∈[x]S∩E p
ν|E
2k,x,y , we deduce the

almost sure existence of the ‘conditional’ co-spectral radius

ρS|E (x) = lim
k→∞(p

ν|E
2k,x,S|E )1/2k

for x ∈ E.

Example 3.10. Fix a symmetric ν ∈ Prob([R]) and a measurable E ⊆ X with μ(E) > 0.
Define

fk(x, y) = p2k,x,y1S(x, y)1E(x)1E(y).

In this case for x ∈ E we have ∑
y∈[x]S

fk(x, y) = p2k,x,S ,E

where p2k,x,S ,E is the probability that the random walk corresponding to ν starting at x is
in [x]S ∩ E after 2k steps. All of our hypotheses apply in this case with X replaced with
E, R replaced with R|E , and π = 1. So we recover the existence of the pointwise local
co-spectral radius

ρS
E(x) = lim

k→∞ p
1/2k

2k,x,S ,E ,

at least for x ∈ E. See §3.3 for more details. In that section we will show more generally
that

lim
k→∞ p

1/2k

2k,x,S ,E

exists for almost every x ∈ X; see Corollary 3.17. This specific example will be important
for us when we show that the spectral radius is almost surely constant in the case that S is
either normal or ergodic.

We say that a ν ∈ Prob([R]) is lazy if ν({id}) > 0.

Example 3.11. Fix a lazy, symmetric ν ∈ Prob([R]), and a measurable E ⊆ X with
μ(E) > 0. Define for (x, y) ∈ R:

p2k,x,y,E =
∑

x1,...,x2k−1∈E

px,x1px1,x2 · · · px2k−1,y ,

p2k,x,S|E =
∑

x1,...,x2k∈E,
(x,x2k)∈S

px,x1px1,x2 · · · px2k−1,x2k
.

Define

fk(x, y) = p2k,x,y,E1E(x)1E(y)1S(x, y).
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Then ∑
y∈[x]S

fk(x, y) = p2k,x,S|E .

Again, it is direct to check that the hypotheses of Theorem 3.7 apply with π = 1. Note that
laziness implies that

p2k,x,S|E ≥ p(x, x)2k > 0

for every x ∈ E, and we always have

p2k,x,S|E ≤ 1.

Thus, (c) of Theorem 3.7 holds. So we deduce the existence of the ‘restricted’ co-spectral
radius

ρS|E (x) = lim
k→∞ p

1/2k

2k,x,S|E

for x ∈ E. It can be shown by the same method of proof as in Theorem 3.2(i) that

lim
k→∞

( ∫
p2k,x,S|E dμ(x)

)1/2k

= ‖1EλS(ν)1E‖,

so

‖ρS|E‖∞ = ‖1EλS1E‖.

So we again recover the norm of a corner of the Markov operator as the essential supremum
of the restricted co-spectral radius.

Example 3.12. Let ε > 0 and let η : R → [ε, +∞) be a measurable bounded symmetric
function. Define for (x, y) ∈ R:

fk(x, y) :=
∑

x1,...,x2k−1∈[x]R

ηx,x1ηx1,x2 · · · ηx2k−1,y .

Theorem 3.7 yields almost sure existence of the growth exponent ρη := limk→∞(
∑

y∈[x]R
fk(x, y))1/k . Let � ⊂ R be a symmetric graphing generating R. If we put η = 1�, we
get the existence of the growth exponent for the number of trajectories of length 2k

starting at x in the graph induced by � on the equivalence class of [x]R. In particular,
for every unimodular random graph (G, o), the number of walks of length 2k starting from
o has an exponential rate of growth almost surely. Note that such a result is definitely
not true for any rooted bounded degree graph. This last example is discussed in more
detail in §5.2.

Having explained why Theorem 3.7 implies the existence of the pointwise co-spectral
radius, we now turn to the proof of Theorem 3.7. The following is the main technical
lemma behind the proof.
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LEMMA 3.13. Let (fk)k , π be as in Theorem 3.7. For k ∈ N, define f̃k : X → [0, ∞] by

f̃k(x) =
∑

y∈[x]R

fk(x, y),

and define

φk(x) =
∑

y∈[x]R

fk(x, y)f̃k(y)−1,

ψk(x) = f̃k(x)
∑

y∈[x]R

fk(x, y)

( ∑
z∈[y]R

fk(y, z)f̃k(z)

)−1

.

Then:
(i) for every k ∈ N and almost every x ∈ X,

f̃k(x)2 ≤ φk(x)f̃2k(x) and f̃k(x)3 ≤ ψk(x)f̃3k(x);

(ii) for every k ∈ N, ∫
πφk dμ =

∫
π dμ =

∫
πψk dμ.

Note that in order to make sense of φk , ψk we are using hypothesis (c).

Proof. (i) By Cauchy–Schwarz,

f̃k(x)2 =
( ∑

y∈[x]R

fk(x, y)1/2f̃k(y)−1/2fk(x, y)1/2f̃k(y)1/2
)2

≤ φk(x)
∑

y∈[x]R

fk(x, y)f̃k(y)

≤ φk(x)f̃2k(x)

for almost every x ∈ X, where in the last step we use hypothesis (b). Using
Cauchy–Schwarz again,

f̃k(x)2 ≤ f̃k(x)−1ψk(x)
∑

y∈[x]R

fk(x, y)

( ∑
z∈[y]R

fk(y, z)f̃k(z)

)
for almost every x ∈ X.

We can estimate the second sum using our hypothesis on fk:∑
y∈[x]R

fk(x, y)

( ∑
z∈[y]R

fk(y, z)f̃k(z)

)
=

∑
y∈[x]R

fk(x, y)

( ∑
w∈[y]R

(fk ∗ fk)(y, w)

)

≤
∑

w,y∈[x]R

fk(x, y)f2k(y, w)

=
∑

w∈[x]R

(fk ∗ f2k)(x, w)

≤
∑

w∈[x]R

f3k(x, w)

= f̃3k(x),
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with all of the above inequalities and equalities holding for almost every x ∈ X. So we
have shown that

f̃k(x)2 ≤ f̃k(x)−1ψk(x)f̃3k(x) for almost every x ∈ X,

and rearranging proves the desired inequality.
(ii) By the mass transport principle and π -symmetry,∫

π(x)φk(x) dμ(x) =
∫ ∑

y∈[x]R

π(x)fk(x, y)f̃k(x)−1 dμ(x) =
∫

π dμ,

as ∑
y∈[x]R

fk(x, y)f̃k(x)−1 = 1.

Similarly,∫
π(x)ψk(x) dμ(x)

=
∫ ∑

y∈[x]R

π(x)fk(x, y)f̃k(y)

( ∑
z∈[x]R

fk(x, z)f̃k(z)

)−1

dμ(x) =
∫

π dμ,

as ∑
y∈[x]R

fk(x, y)f̃k(y)

( ∑
z∈[x]R

fk(x, z)f̃k(z)

)−1

= 1.

We now prove Theorem 3.7. It will be helpful to pass to limits along subsets of N which
are ‘not too sparse’ in a multiplicative sense. We say that A ⊆ N is asymptotically dense
on the logarithmic scale if

lim
x→∞
x∈R

inf
n∈A

|x − log(n)| = 0.

We leave it as an exercise for the reader to show that if A ⊆ N is asymptotically dense on
the logarithmic scale, and if (ak)

∞
k=1 is a sequence of non-negative real numbers for which

there is a uniform C > 0 with

al+k ≥ Clak for all l, k ∈ N,

then

lim sup
k∈A

a
1/k
k = lim sup

k→∞
a

1/k
k and lim inf

k∈A
a

1/k
k = lim inf

k→∞ a
1/k
k .

Proof of Theorem 3.7. Adopt notation as in Lemma 3.13. Set

f (x) = lim sup
k→∞

f̃k(x)1/2k and f (x) = lim inf
k→∞ f̃k(x)1/2k .

For p, q ∈ N ∪ {0}, k ∈ N we have, by Lemma 3.13 and induction, that

f̃k(x)2p3q ≤ Cp,q,k(x)f̃2p3qk(x) for almost every x ∈ X, (3.2)
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where

Cp,q,k(x) =
p−1∏
i=0

φ2i k(x)2p−1−i3q
q−1∏
j=0

ψ2p3j k(x)3q−1−j

.

By Lemma 3.13 and the fact that π ∈ L1(X, μ), both
∑

k k−2πφk and
∑

k k−2πψk

converge almost everywhere. Since π(x) > 0 almost surely, we see that for almost
every x ∈ X, there is a k0 (depending upon x) so that for k ≥ k0 we have φk(x) ≤ k2,
ψk(x) ≤ k2. So for almost every x ∈ X, and for all k ≥ k0, and all p, q ∈ N ∪ {0},

Cp,q,k(x) ≤
p−1∏
i=0

(2ik)2p−i3q
q−1∏
j=0

(2p3j k)3q−1−j 2,

which implies

1
2p3q

log Cp,q,k(x) ≤
p−1∑
i=0

2−i log(2ik) +
q−1∑
j=0

21−p3−1−j log(2p3j k)

≤ B + 2 log(k),

where

B =
(

max
p∈N∪{0}

p

2p

)
log(2) + log(2)

∞∑
i=0

i

2i
+ 2 log(3)

3

∞∑
j=0

j

3j
< ∞.

Fix k1 ≥ k0. Since A = {2p3qk1 : p, q ∈ N} is asymptotically dense on the logarithmic
scale, we have by (3.2) and hypothesis (d) that

f (x) = lim inf
p+q→∞ f̃2p3qk1(x)1/2p3qk1 ≥ lim inf

p+q→∞ Cp,q,k1(x)−1/2p3qk1 f̃k1(x)1/k1

≥ e−B/k1k
−2/k1
1 f̃k1(x)1/k1 . (3.3)

Letting k1 → ∞, we see that f ≥ f almost everywhere, and this proves that
f̃ exists almost everywhere. Note that (3.3) applied with k1 = k0 shows that
f (x) ≥ e−B/k0k

−2/k0
0 f̃k0(x)1/k0 . Thus, f̃ (x) > 0 for almost every x.

(i) By (3.2), we have for p, k ∈ N and almost every x ∈ X that

f̃k(x)

f̃2pk(x)1/2p
≤ Cp,0,k(x)1/2p =

( p−1∏
i=0

φ2i+1k(x)2p−1−i

)1/2p

≤ 1
2p

(
1 +

p−1∑
i=0

2p−1−iφ2i+1k(x)

)
,

where in the last step we use the arithmetic-geometric mean inequality. Lemma 3.13
implies that ∫

π(x)
f̃k(x)

f̃2pk(x)1/2p
dμ(x) ≤

∫
π dμ.

Letting p → ∞ and applying Fatou’s lemma proves (i).
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(ii) Part (i) shows that∫
π(x)f̃k(x) dμ(x) ≤ ‖f̃ ‖k∞

∫
π dμ,

for every k ∈ N. Since π ∈ L1(X, μ),

lim sup
k→∞

( ∫
π(x)f̃k(x) dμ(x)

)1/k

≤ ‖f̃ ‖∞.

We now prove the reverse inequality. Fatou’s lemma implies that for all r ∈ N,∫
π(x)f̃ (x)r dμ(x) ≤ lim inf

k→∞

∫
π(x)f̃k(x)r/k dμ(x)

≤ lim inf
k→∞

( ∫
π(x)f̃k(x) dμ(x)

)r/k( ∫
π(x) dμ(x)

)1−r/k

,

where in the last step we use Holder’s inequality for k > r . Since π ∈ L1(X, μ),( ∫
π(x)f̃ (x)r dμ(x)

)1/r

≤ lim inf
k→∞

( ∫
π(x)f̃k(x) dμ(x)

)1/k

.

Letting r → ∞ and using that 0 < π(x) for almost every x and that π ∈ L1(X, μ) shows
that

‖f̃ ‖∞ ≤ lim inf
k→∞

( ∫
π(x)f̃k(x) dμ(x)

)1/k

.

3.3. Normal subrelations and the proof of Theorem 3.2(iii). In this subsection we prove
that the co-spectral radius ρS(x) is almost surely constant when S is either ergodic normal
(the case when S is ergodic is fairly direct; see Corollary 3.17(a)). We prove a common
generalization of the cases where S is normal or ergodic, for which we need partial
one-sided normalizers.

Definition 3.14. Let (X, μ) be a standard probability space, and let S ≤ R be discrete,
measure-preserving equivalence relations on (X, μ). We define the partial one-sided
normalizers to be the set of φ ∈ [[R]] such that for almost every x ∈ dom(φ) we
have φ([x]S ∩ dom(φ)) ⊆ [φ(x)]S . We use PN

(1)

R (S) for the set of partial one-sided
normalizers of S inside R.

One example to keep in mind for intuition is as follows. Suppose that R is the
orbit equivalence relation of a measure-preserving action of G on (X, μ). Suppose
that H ≤ G, and let S = {(x, ax) : a ∈ N , x ∈ X}. For g ∈ G, we let φg ∈ [R] be
given by φg(x) = gx. If g is in the normalizer of H inside G, then by direct calcu-
lation φg([x]S) = [x]S for almost every x ∈ X. So φg ∈ PN

(1)

R (S). More generally,
φg|E ∈ PN

(1)

R (S) for every g ∈ G in the normalizer of H. We can thus think of the
partial one-sided normalizers as a generalization of normalizers to the setting of the full
pseudogroup.
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Another source of elements in the partial normalizer is as follows. Recall that the set
of endomorphisms of R over S, denoted by EndR(S), is constituted by the measurable
functions φ : X → X such that for almost every x ∈ X the following two conditions
hold:
• φ(x) ∈ [x]R;
• φ([x]S) ⊆ [φ(x)]S .
Such functions need not be injective modulo null sets, and when they fail to be injective
modulo null sets are not measure-preserving. Indeed, one can use the mass-transport
principle to show that for φ ∈ EndR(S) we have that

dφ∗μ
dμ

(x) = |φ−1({x})| for almost every x ∈ X

(we will not use this fact so will not give a full proof of it). However, as we will see shortly
(see Lemma 3.16), for each φ ∈ EndR(S) we may find a partition modulo null sets (Ei)i∈I

of X into countably many sets so that φ|Ei
is injective for each i ∈ I .

This last example in fact provides the motivation for our consideration of the one-sided
partial normalizers, as this is one way to define normal subrelations.

Definition 3.15. (See Theorem 2.2 of [14]) Let R be a discrete, measure-preserving
equivalence relation on a standard probability space (X, μ). A subrelation S ≤ R is
normal if there is a countable set D ⊆ EndR(S) so that [x]R = ⋃

φ∈D φ([x]S) for almost
every x ∈ X.

From the above definition, one can imagine attempting to prove that the co-spectral
radius is almost surely constant for a normal subrelation by trying to understand how
it varies after applying endomorphisms of S ≤ R. However, as alluded to above, endo-
morphisms can have undesirable properties (namely, lack of injectivity and failure to be
measure-preserving) and the possibility of these undesirability properties makes them
ill-suited for our proofs. A good tradeoff for our purposes is to drop being everywhere
defined and gain being measure-preserving and injective. This is precisely the purpose of
the one-sided partial normalizers.

We have a natural way for elements of PN
(1)

R (S) to act on Lp(X, μ) for 1 ≤ p ≤ ∞.
Namely, if φ ∈ PN

(1)

R (S) we define αφ ∈ B(Lp(X, μ)) via

(αφf )(x) = 1ran(φ)(x)f (φ−1(x)).

This allows us to say what it means for PN
(1)

R (S) to act ergodically. It simply means
that if f ∈ Lp(X, μ) and αφ(f ) = 1ran(φ)f for every φ ∈ PN

(1)

R (S), then f is essentially
constant. We leave it as an exercise for the reader to follow the usual arguments to verify
that this is equivalent to saying that there exists a countable C ⊆ PN

(1)

R (S) so that if
a measurable subset of X is invariant under C, then its measure is either 0 or 1. Note
that PN

(1)

R (S) automatically acts ergodically if S is ergodic, because [S] ⊆ PN
(1)

R (S).
The following lemma shows that PN

(1)

R (S) also acts ergodically if S is normal and R is
ergodic.
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LEMMA 3.16. Suppose that S is normal in R. Then there is a countable set C ⊆ PN
(1)

R (S)

so that

[x]R =
⋃
φ∈C

φ(x)

for almost every x ∈ X.

Proof. By [15, Theorem 2.2], we may find a countable set D ⊆ EndR(S) so that

[x]R =
⋃
φ∈D

[φ(x)]S

for almost every x ∈ X. Fix a countable subgroup H ⊆ [S] so that [x]S = Hx for almost
every x ∈ X. Then for almost every x ∈ X we have that

[x]R =
⋃

φ∈D,ψ∈H

(ψ ◦ φ)(x).

Fix a countable subgroup G ⊆ [R] so that [x]R = Gx for almost every x ∈ X. Then for
each φ ∈ D we may write, up to sets of measure zero,

dom(φ) =
⋃
g∈G

Eg,φ

where Eg,φ ⊆ {x ∈ dom(φ) : φ(x) ∈ gx}. For each g ∈ G, φ ∈ D, define φg ∈ [[R]]
by declaring that dom(φg) = Eg,φ and that φg(x) = gx for x ∈ Eg,φ . Observe that
φg ∈ PN

(1)

R (S). Then

[x]R =
⋃

ψ∈H ,
φ∈D,g∈G with x∈Eg,φ

ψ ◦ φg(x).

Thus,

C = {ψ ◦ φg : g ∈ G, φ ∈ D, ψ ∈ H }
is the desired countable set.

By the preceding lemma and the inclusion [S] ⊆ PN
(1)

R (S), the condition that
PN

(1)

R (S) acts ergodically on (X, μ) is satisfied if either S is ergodic or S is normal
and R is ergodic. We will show that ρS is almost surely invariant under the partial
one-sided normalizers, and is thus essentially constant when PN

(1)

R (S) acts ergodically.
Since the elements of PN

(1)

R (S) are only partially defined, we will need to relate the
co-spectral radius to the modification given by Example 3.10 by restricting to a subset. It
will not be hard to show from Theorem 3.7 that ρS

E(x) as defined in Example 3.10 exists
for almost every x ∈ X. To deduce the existence of ρS

E(x) for almost every x ∈ X, as
well as some of its basic properties, we need to recall the S-saturation of a measurable
set. Given a discrete, measure-preserving equivalence relation S on a standard probability
space and a measurable E ⊆ X, the S-saturation of E is the (unique up to measure zero
sets) measurable subset Ẽ ⊆ X satisfying the following properties:
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• E ⊆ Ẽ;
• for almost every x ∈ Ẽ we have [x]S ⊆ Ẽ;
• for almost every x ∈ Ẽ, there is a y ∈ E with x ∈ [y]S .
If � ≤ [S] is a countable subgroup which generates S, then a model for Ẽ can be given by

Ẽ =
⋃
φ∈�

φ(E).

It will also be helpful to relate ρS
E to a quantity more operator-theoretic in nature. For a

measurable set E ⊆ X of positive measure, and x ∈ X, we let

p2k,x,S ,E =
∑

y∈[x]S∩E

p2k,x,y .

We also let

ρE(R/S, ν) = lim
k→∞

(
1

μ(E)

∫
E

p2k,x,S ,E dμ(x)

)1/2k

.

Define ζE ∈ L2(R/S) by (ζE)x = 1E(x)/
√

μ(E)δ[x]S . Then

1
μ(E)

∫
E

p2k,x,S ,E dμ(x) = 〈λS(ν)2kζE , ζE〉,

so it follows from the spectral theorem that the limit defining ρE(R/S, ν) exists. We now
proceed to show that limk→∞ p

1/2k

2k,x,S ,E exists.

COROLLARY 3.17. Let (X, μ) be a standard probability space, and let S ≤ R be discrete,
probability-measure-preserving equivalence relations defined over X. Let ν ∈ Prob([R])
be symmetric, countably supported, and generate R. Fix a measurable E ⊆ X with
positive measure.
(a) For almost every x ∈ X we have that

ρS
E(x) = lim

k→∞ p
1/2k

2k,x,S ,E

exists and is almost surely S-invariant.
(b) ‖ρS

E‖∞ = ρE(R/S, ν).

Proof. Note that the sequence of functions fk : E → [0, ∞) given by

fk(x, y) = p2k,x,y1S(x, y)1E(x)1E(y)

satisfies the hypothesis of Theorem 3.7 with R replaced by R|E . This proves that ρS
E(x)

exists for almost every x ∈ E. Since

1
μ(E)

∫
p2k,x,S ,E dμ(x) = 〈λS(ν)2kζE , ζE〉,

Theorem 3.7 also proves (b).
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To prove that ρS
E(x) exists for almost every x, let Ẽ be the S-saturation of E. Note that

ρS
E(x) = 0 for almost every x ∈ Ẽc. For almost every x ∈ Ẽ, we have that ρS

E(y) exists for
all y ∈ [x]S ∩ E. Fix such an x ∈ Ẽ, and let y ∈ [x]S ∩ E. Then there is an � ∈ N with
p�,x,y > 0. So for all k ≥ 2�,

p2k,x,S ,E =
∑

z∈[x]S∩E

p2k,x,z ≥ p2
�,x,y

∑
z∈[x]S∩E

p2(k−�),y,z = p2
�,x,yp2(k−�),y,S ,E .

This shows that for almost every x ∈ Ẽ we have

lim inf
k→∞ p

1/2k

2k,x,S ,E ≥ ρS
E(y).

The proof that

lim sup
k→∞

p
1/2k

2k,x,S ,E ≤ ρS
E(y)

is similar.

It will be helpful to study how ρE(R/S, ν) varies as a function of E. We can embed
measurable subsets (modulo null sets) of (X, μ) into L1(X, μ) via identifying each set
with its indicator function. We thus have a natural distance on measurable sets modulo
null sets defined by

d(E, F) = μ(E�F).

We show that ρE(R/S, ν) is semicontinuous as function of E. For later use, it will also
be useful to know that ρE(R/S, ν) as a function of S. We now define a topology on
subrelations of R making this precise.

For R a discrete, probability-measure-preserving equivalence relation on (X, μ),
φ ∈ [[R]], and S ≤ R, set

FS ,φ = {x ∈ dom(φ) : φ(x) ∈ [x]S}.
For a given subrelation S ≤ R, a finite set � ⊆ [[R]], and ε > 0, let O�,ε(S) consist of
all subrelations S ′ ≤ R such that

μ(FS ,φ�FS ′,φ) < ε for all φ ∈ �.

We define a topology on subrelations of R (modulo null sets) by declaring that the family
O�,ε(S) form a neighborhood basis of S. Suppose that I is countable, and that � = (φi)i∈I

in [[R]] is such that [x]R = {φi(x) : i ∈ I , x ∈ dom(φi)} for almost every x ∈ X. In this
case, given (αi)i∈I ∈ (0, 1]I with

∑
i αi = 1, we can define a metric on subrelations

of R by

d(S, S ′) =
∑

i

αiμ(FS ,φi
�FS ′,φi

).

It can be check that this metric induces the topology defined above (moreover, this metric
is complete, though we will not need this). We now prove our promised semicontinuity.
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LEMMA 3.18. Let (X, μ) be a standard probability space and R a discrete, measure-
preserving equivalence relation defined over X. Let ν ∈ Prob([R]) be symmetric, countably
supported, and generate R. The map (E, S) 
→ ρE(R/S, ν) is lower semicontinuous
(where the domain is all pairs of positive measure, measurable subsets E of X and
subrelations S of R).

Proof. From

1
μ(E)

∫
E

p2k,x,S ,E dμ(x) = 〈λS(ν)2kζE , ζE〉

and the spectral theorem, we have

ρE(R/S, ν) = sup
k

(
1

μ(E)

∫
E

p2k,x,S ,E dμ(x)

)1/2k

.

It thus suffices to prove that

(E, S) 
→
∫

E

p2k,x,S ,E dμ(x)

is continuous. Let idE ∈ [[R]] be defined by dom(idE) = E and idE(x) = x for every
x ∈ E. Then

∫
E

p2k,x,S ,E dμ(x) can be rewritten as∑
φ∈supp(ν∗2k)

ν∗2k(φ)μ(E ∩ FS ,idE φ).

Note that each term in this sum is a continuous as a function of (E, S). Since∑
φ∈supp(ν∗2k) ν∗2k(φ) = 1, it follows that the sum converges uniformly. Thus,

(E, S) 
→
∫

E

p2k,x,S ,E dμ(x)

is continuous.

For technical reasons, in order to show that ρS is invariant under the partial normalizer
of S inside of R, it will be helpful to reduce to the case that ν is lazy. We will briefly
need to adopt notation for how the co-spectral radius depends upon the measure. So for
S ≤ R, X as in Theorem 3.20 and a countably supported ν ∈ Prob([R]), we use ρS

ν (x)

for the co-spectral radius at x defined using ν. Similarly, for n ∈ N we use pν
n,x,S for the

probability that the random walk starting at x associated to ν is in [x]S after n steps.
It will be helpful to use the following lemma which shows that the local co-spectral

radius associated to ν is uniformly close to the local co-spectral radius associated to
(1 − t)ν + tδid as t → 0.

LEMMA 3.19. Let (X, μ) be a standard probability space, and S ≤ R discrete,
probability-measure-preserving equivalence relations defined over X. For a symmetric
and countably supported ν ∈ Prob([R]) and t ∈ [0, 1], define νt = (1 − t)ν + tδid. Then

‖ρS
νt

− ρS
ν ‖∞ ≤ t (1 + ρ(R/S, ν)), for all t ∈ [0, 1].
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Proof. To simplify notation, set ρ = ρ(R/S, ν). Let ζE be defined as in the discussion
preceding Corollary 3.17. Let η ∈ Prob([−ρ, ρ]) be the spectral measure of λ(ν) with
respect to ζE . Then for every measurable set E ⊆ X of positive measure we have that
ρE(R/S, νt ), ρE(R/S, ν) are the L∞-norms of s 
→ s, s 
→ (1 − t)s + t with respect
to η. In particular, for all measurable E ⊆ X of positive measure,

|ρE(R/S, νt ) − ρE(R/S, ν)| ≤ t (1 + ρ).

If E is almost surely S-invariant, then ρS
E = ρS1E . So Corollary 3.17(b) implies that

|‖ρS
νt

1E‖∞ − ‖ρS
ν 1E‖∞| ≤ t (1 + ρ) for all measurable E ⊆ X which are S-invariant.

To prove the lemma, fix c > 0 and let

E = {x : ρS
ν (x) + ct (1 + ρ) ≤ ρS

νt
(x)}.

Note that E is S-invariant, by S-invariance of ρS
ν and ρS

νt
. Assume, for the sake of

contradiction, that μ(E) > 0. Then by the preceding paragraph we have

‖ρS
νt

1E‖∞ ≤ t (1 + ρ) + ‖ρS
ν 1E‖∞.

On the other hand, the definition of E forces

‖ρS
νt

1E‖∞ ≥ ct (1 + ρ) + ‖ρS
ν 1E‖∞.

Since c > 1, we obtain a contradiction. Thus,

ρS
νt

− ρS
ν ≤ ct (1 + ρ)

almost everywhere. A similar proof shows that ρS
ν − ρS

νt
≤ ct (1 + ρ) almost everywhere.

Thus,

‖ρS
νt

− ρS
ν ‖∞ ≤ ct (1 + ρ)

for all c > 1, and the proof is completed by letting c → 1.

The above reduction to the lazy case and the semicontinuity in Lemma 3.18 allow us to
give a general formula for the local co-spectral radius in terms of the co-spectral radius.
We will ultimately use this to prove invariance under partial normalizers of S ≤ R by
restrict to sets where we have uniform lower bound on transition probabilities pk,x,φ(x) for
φ ∈ PN

(1)

R (S).

THEOREM 3.20. Let (X, μ) be a standard probability space, and let S ≤ R be discrete,
probability-measure-preserving equivalence relations defined over X, and fix a symmetric
and countably supported ν ∈ Prob([R]). If E ⊆ X has positive measure, then

ρS
E = ρS1Ẽ ,

where Ẽ is the S-saturation of E.
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Proof. By Lemma 3.19, we may assume that ν is lazy. Observe that by S-invariance of Ẽ,
we have that ρS1Ẽ = ρS

Ẽ
almost everywhere. Hence, it is enough to show that ρS

E = ρS
Ẽ

almost everywhere. Clearly ρS
E ≤ ρS

Ẽ
so it suffices to show that reverse inequality holds

almost everywhere. For k ∈ N, let

Ek = {x ∈ X : p2k,x,S ,E > 0}.
Then Ek is an increasing sequence of sets with Ek ⊇ E. By symmetry and laziness of ν

we know that
⋃

k Ek = Ẽ up to sets of measure zero. By Lemma 3.18, it suffices to show
that for almost every k ∈ N we have that ρS

Ek
≤ ρS

E almost surely.
For m ∈ N, set Ek,m = {x ∈ X : p2k,x,S ,E > 1/m}. Then the Ek,m are increasing and

Ek =
∞⋃

m=1

Ek,m,

so again by Lemma 3.18 it suffices to show that ρS
Ek,m

≤ ρS
E almost surely. Fix an x ∈ Ek,m

so that both ρS
E(x), ρS

Ek,m
(x) exist. Then for every l ∈ N,

p2(l+k),x,S ,E ≥
∑

y∈[x]S∩Ek,m

p2l,x,yp2k,y,S ,E ≥ 1
m

p2l,x,S ,Ek,m .

Taking 2lth roots of both sides and letting l → ∞ shows that

ρS
E ≥ ρS

Ek,m
.

Since ρS
E , ρS

Ek,m
exist almost everywhere, this completes the proof.

We now have amassed enough results to show that the co-spectral radius does not
increase after applying partial normalizing elements.

PROPOSITION 3.21. Let (X, μ) be a standard probability space, let S ≤ R be discrete,
probability-measure-preserving equivalence relations defined over X, and fix a symmetric
countably supported ν ∈ Prob([R]) which generates R. Then for every φ ∈ PN

(1)

R (S) we
have

ρS(φ(x)) ≥ ρS(x)

for almost every x ∈ dom(φ).

Proof. First assume that ν is lazy. Fix φ ∈ PN
(1)

R (S). Replacing X with a co-null set,
we may assume that φ([x]S ∩ dom(φ)) ⊆ [φ(x)]S for every x ∈ X. Since ν is lazy and
generating, for almost every x ∈ dom(φ) we have that pk,x,φ(x) > 0 for all large k. So, up
to sets of measure zero,

dom(φ) =
∞⋃

k=1

{x ∈ dom(φ) : pk,x,φ(x) > 0 for all k ≥ n}.

Since ν is lazy, this union is increasing and thus it follows that we may find a sequence
δn → 0 of positive numbers and an increasing sequence of integers rn so that
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∞∑
n=1

μ({x ∈ dom(φ) : prn,x,φ(x) ≤ δn}) < ∞.

Set Fn = {x ∈ dom(φ) : prn,x,φ(x) > δn} and En = φ(Fn). By the Borel–Cantelli lemma,
for almost every x ∈ dom(φ) we have that x ∈ Fk for all sufficiently large k. By
Theorem 3.20, for almost every x ∈ dom(φ) the following conditions are satisfied for all
sufficiently large k:
• x ∈ Fk;
• ρS(φ(x)) = ρS

Ek
(φ(x));

• ρS(x) = ρS
Fk

(x).
Fix an x ∈ dom(φ) which satisfies the above three conditions, and fix k such that the above
three bulleted items hold. Then for all l ∈ N,

p2l,φ(x),S ,Ek
=

∑
z∈[φ(x)]S∩Ek

p2l,φ(x),z.

Since φ([x]S ∩ dom(φ)) ⊆ [φ(x)]S , and φ(x) ∈ Ek , x ∈ Fk , we have for all l ≥ rk that

p2l,φ(x),S ,Ek
≥

∑
y∈[x]S∩Fk

p2l,φ(x),φ(y) ≥ δ2
k

∑
y∈[x]S∩Fk

p2(l−rk),x,y = δ2
kp2(l−rk),x,S ,Fk

,

where in the second to last step we use symmetry and the fact that x ∈ Fk . Thus,

ρS(φ(x)) = ρS
Ek

(φ(x)) ≥ ρS
Fk

(x) = ρS(x).

So

ρS ◦ φ|dom(φ) ≥ ρS |dom(φ)

almost everywhere. The general case follows from the lazy case by using Lemma 3.19.

We are now ready to prove that the co-spectral radius does not change under the partial
one-sided normalizers.

COROLLARY 3.22. Let (X, μ) be a standard probability space, let S ≤ R be discrete,
probability-measure-preserving equivalence relations defined over X, and fix a symmetric
and countably supported ν ∈ Prob([R]) which generates R. Suppose that PN

(1)

R (S) acts
ergodically on (X, μ). Then ρS is almost surely constant (in particular, by Lemma 3.16
this applies if S is normal in R and R is ergodic).

Proof. Let C be as in Lemma 3.16. By the preceding proposition and countability, for
every t ∈ [0, 1].

Et = {x ∈ X : ρS(x) ≥ t}
is invariant under C, and so by ergodicity of R has measure 0 or 1 for every t ∈ [0, 1]. If
s = sup{t : μ(Et ) = 1}, then ρS ≥ s almost everywhere, and ρS(x) < s + 1/n for almost
every x and every n ∈ N. Thus, ρS(x) = s for almost every x.

https://doi.org/10.1017/etds.2024.32 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.32


Co-spectral radius for countable equivalence relations 3417

We close this section with an example illustrating the fact that ρS(x) may fail to
be essentially constant if we only assume that R is ergodic. Thus, we need to assume
something special about the inclusion S ≤ R.

Example 3.23. Let R be an ergodic, discrete, measure-preserving equivalence relation on
(X, μ). Let E ⊆ X be a measurable set of positive measure. Let

S = R ∩ (E × E) ∪ {(x, x) : x ∈ Ec}.
We claim that the following statements hold.

CLAIM

(i) For almost every x ∈ Ec, we have ρS(x) = ρ(R, ν).
(ii) For almost every x ∈ E, we have ρS(x) = 1.

In particular, if R is not hyperfinite, then by [10, Lemma 2.2.] there is a ν ∈ Prob([R])
so that ρ(R, ν) < 1 (this also follows from condition (GM) in [26] being equivalent to
hyperfiniteness) and this gives an example where the co-spectral radius is not essentially
constant.

Proof of claim. Let T = {(x, x) : x ∈ X}. Let λx(ν) be the Markov operator associated to
ν acting on �2([x]R). Then for all x ∈ X we have

〈λx(ν)δx , δx〉 = p2n,x,T ,

and so the co-spectral radius of R with respect to T agrees with the spectral radius of
[x]R with respect to ν, that is, ρT (x) = ‖λx(ν)‖. If (x, y) ∈ R, then λx(ν), λy(ν) are both
operators on �2([x]R) and λx(ν) = λy(ν). So, by ergodicity, the operator norm ‖λx(ν)‖
is essentially constant. Since ρ(R/T , ν) = ρ(R, ν), it follows from Theorem 3.2(ii) that
‖λx(ν)‖ is almost surely equal to ρ(R, ν).

(i) For almost every x ∈ Ec we have ρS(x) = ρT (x), so this follows by the preceding
paragraph.

(ii) For almost every x ∈ E we have ρS(x) = ρR
E (x), with notation as in Corollary 3.17.

So this follows from Theorem 3.20.

4. Co-spectral radius and hyperfinite subrelations
In this section we investigate the relation between co-spectral radius and hyperfiniteness.
Specifically, we show that if S is hyperfinite, then ρ(R/S, ν) = ρ(R, ν).

PROPOSITION 4.1. Let R be an ergodic, discrete measure-preserving equivalence relation
over a standard probability space (X, μ). Suppose that ν ∈ Prob([R]) is countably
supported, symmetric, and that S ≤ R is hyperfinite. Then ρ(R, ν) = ρ(R/S, ν).

Proof. The inequality ρ(R, ν) ≤ ρ(R/S, ν) is clear, so it remains to prove the reverse
inequality. Since S is hyperfinite, we can write S = ⋃

n Sn, where Sn ≤ R is an increasing
sequence and Sn is an equivalence relation where almost every equivalence class is finite.
Note that Sn converges to S in the topology defined by Lemma 3.18. Thus, by Lemma
3.18, it is enough to show that ρ(R/Sn, ν) ≤ ρ(R, ν) for every n ∈ N. For an integer �,
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let E� = {x ∈ X : |[x]Sn
| ≤ �}. Then the Ek are an increasing sequence of measurable

subsets whose union is co-null. By Theorem 3.2, we know that ρ(R/Sn, ν) = ‖ρSn‖∞.
So it suffices to show that ‖ρSn1E�

‖∞ ≤ ρ(R, ν) for all �, n.
Fix integer n, � ∈ N. We may then choose φ1, . . . , φ� ∈ [[Sn]] so that for every x ∈ E�,

[x]Sn
= {φj (x) : 1 ≤ j ≤ �, x ∈ dom(φj )},

with φ1 = id. Then, for every x ∈ E�, and every k ∈ N,

p2k,x,Sn
=

�∑
j=1

p2k,x,φj (x)1dom(φj )(x).

Set

ρSn(x) = lim
n→∞ p

1/2k

2k,x,Sn
and ρ(x) = lim

n→∞ p
1/2k

2k,x,x .

Then

ρSn(x) = lim
k→∞ p

1/2k

2k,x,S = lim
k→∞

( �∑
j=1

p2k,x,φj (x)1dom(φj ))(x)

)1/2k

= lim
k→∞ max

j

(
p2k,x,φj (x)1dom(φj )

)1/2k

.

For each j ∈ {0, . . . , �} such that x ∈ dom(φj ), we may choose a non-negative integer tj

so that ptj ,x,φj (x) > 0. Thus,

p2k,x,φj (x) ≤ p2(k+tj ),x,xp
−2
tj ,x,φj (x).

Thus,

ρ
Sn

E�
(x) ≤ ρ(x)

for almost every x. Hence,

‖ρSn1E�
‖∞ ≤ ‖ρ‖∞ = ρ(R, ν).

In the group context, the analogous statement is that if � is a countable, discrete
group and ν ∈ Prob(�) is symmetric with 〈supp(ν)〉 = �, then for any amenable H ≤ �

we have that ρ(�, ν) = ρ(�/H , ν). It is known that the converse fails, namely there
are cases of �, ν, and non-amenable H ≤ � such that ρ(�, ν) = ρ(�/H , ν). It is a
theorem of Kesten [30, Theorem 2] that the converse is true if we assume in addition
that H is normal. This was generalized to invariant random subgroups by Abért, Glasner,
and Virág (see [3]). Normal subgroups and invariant random subgroups can both be
realized as a special case of normal subrelations. So it is natural to ask if R is an
ergodic, probability-measure-preserving, discrete relation, if ν ∈ Prob([R]) is symmetric
and generating, and if S � R has ρ(R, ν) = ρ(R/S, ν), whether we necessarily have that
S is hyperfinite?. We will show that the answer is negative in general, but it might be
helpful first to study a special case.
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In general, a normal subrelation S � R can be expressed in terms of the partial
one-sided normalizers of S generating R (recall our discussion for §3.3). Let us begin
by investigating the case when R is generated by NR(S) = {φ ∈ [R] : φ([x]S) =
[φ(x)]S for almost everyx ∈ X}. Moreover, to simplify things, assume that ν is the
uniform measure on a finite, generating subset � of NR(S). It turns out that we can
naturally translate this special case into a generalization of the Abért–Glasner–Virag
result.

PROPOSITION 4.2. Let R be a discrete, ergodic, probability-measure-preserving equiva-
lence relation over a standard probability space (X, μ). Let S ≤ R, and let � ≤ NR(S)

be a countable subgroup. For x ∈ X, set Hx = {φ ∈ � : φ(x) ∈ [x]S}.
(i) For almost every x ∈ X, we have that Hx is a subgroup of �. Moreover, for almost

every x ∈ X and every φ ∈ � we have Hφ(x) = φHxφ
−1.

(ii) If � generates R, then for almost every x ∈ X we have that [x]S = Hxx.
(iii) Suppose that � generates R, and that ν ∈ Prob(�) is symmetric with 〈supp(ν)〉 = �.

Then for almost every x ∈ X we have

ρ(R, ν) = ρ(�/ Stab�(x), ν), ρ(R/S, ν) = ρ(�/Hx , ν).

Proof. Items (i) and (ii) follow from [38, Proposition 8.10].
(iii) Since � generates R, for almost every x ∈ X we have a �-equivariant bijection

f : �/ Stab�(x) → [x]R satisfying f (φ(x) Stab�(x)) for every φ ∈ �. Moreover, since
� ≤ NR(S), for almost every x ∈ X we have for all φ, ψ ∈ � that (φ(x), ψ(x)) ∈ S if
and only if (ψ−1φ(x), x) ∈ S, which is equivalent to saying that φHx = ψHx . Thus, f
induces a �-equivariant bijection f : �/Hx → [x]R/S satisfying f (φHx) = [φ(x)]S .

For H ≤ �, let pk,H be the probability that the random walk on � corresponding to ν

and starting at 1 is at H after k steps. Then by the above paragraph we have for almost
every x ∈ X that

pk,x,x = pk,Stab�(x) and pk,x,S = pk,Hx .

Thus, for almost every x ∈ X, we have

lim
k→∞ p

1/2k

2k,x,x = ρ(�/ Stab(x)) and lim
k→∞ p

1/2k

2k,x,S = ρ(�/Hx).

Since we are assuming that R is ergodic and that � ≤ NR(S) generates R, the result now
follows from Theorem 3.2(iii).

The above proposition motivates the following definition, which first appeared in [38,
§8] (under slightly different terminology). Recall that if � is a countable, discrete group
Sub(�) denotes the space of subgroups of �. We may identify each subgroup with its
indicator function and thus view Sub(�) ⊆ {0, 1}� . We may thus regard Sub(�) as a
compact, metrizable space by giving Sub(�) the restriction of the product topology. An
invariant random subgroup is a Borel probability measure η on Sub(�) which is invariant
under the conjugation action of � on Sub(�). We let IRS(�) be the space of invariant
random subgroups of �.
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Definition 4.3. (§8 of [38]) Suppose that η1, η2 ∈ IRS(�). A monotone joining of η1

with η2 is a ζ ∈ Prob(Sub(�) × Sub(�)) which is invariant under � � Sub(�) × Sub(�)

given by g · (K , H) = (gKg−1, gHg−1) and which satisfies

ζ({(K , H) : K ⊆ H }) = 1.

We will often use the language of probability and think of the Sub(�)-valued random
variables K , H with distribution η1, η2 as the coupled invariant random subgroups. Thus,
we will often say ‘let K ≤ H be a monotone joining of invariant random subgroups H , K’.

In our context, given S ≤ R and � ≤ NR(S) we get a monotone joining of invariant
random subgroups by considering the pushforward of μ under the map � → Sub(�) ×
Sub(�) given by x 
→ (Stab�(x), Hx). We can also reverse this construction.

THEOREM 4.4. (Theorem 8.15 of [38]) Let ζ ∈ Prob(Sub(�) × Sub(�)) be a monotone
joining of invariant random subgroups η1, η2. Then there is a standard probability space
(X, μ), a probability-measure-preserving action � � (X, μ) and a normal subrelation S
of the orbit equivalence relation of � � (X, μ) with the following property. We have that
� ≤ NR(S), and if we set

Hx = {g ∈ � : (gx, x) ∈ S}
and define � : X → Sub(�) × Sub(�) by �(x) = (Stab�(x), Hx), then ζ = (�)∗(μ).

So by Proposition 4.2 our question on co-spectral radii leads to another. Suppose that
K ≤ H is a monotone joining of invariant random subgroups. Under what conditions do
we have that ρ(�/H , ν) = ρ(�/K , ν) almost surely? Let us first show that this is always
true when K is co-amenable in H.

PROPOSITION 4.5. Suppose that K ≤ H ≤ � are countable, discrete groups and that
ν ∈ Prob(�). If K is co-amenable in H , then ρ(�/H , ν) = ρ(�/K , ν).

Proof. To say that K is co-amenable in H means that the trivial representation of H is
weakly contained in the quasi-regular representation of H on �2(H/K). By induction of
representations, it follows that the quasi-regular representation of � on �2(�/H) is weakly
contained in the quasi-regular representation of � on �2(�/K) [8, Example E.1.8(ii),
Theorem F.3.5]. This implies [8, Theorem F.4.4] that

ρ(�/H , ν) = ‖λH (ν)‖ ≤ ‖λK(ν)‖ = ρ(�/K , ν),

where λH : � → U(�2(�/H)), λK : � → U(�2(�/H)) are the quasi-regular representa-
tions. The reverse inequality is direct to argue, so this completes the proof.

Notice that if �, Hx , Stab(x) are as in Theorem 4.4, then having Stab(x) be co-amenable
in Hx does not guarantee that S is hyperfinite. So from Theorem 4.4 and Proposition 4.5 we
get an example of an equivalent relation R, a ν ∈ Prob([R]) and a normal S � R, so that
S is not hyperfinite, and yet ρ(R, ν) = ρ(R/S, ν). So a naive generalization of Kesten’s
theorem does not hold in this context. In fact, there is even a monotone joining of invariant
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random subgroups K ≤ H of � so that K ≤ H is almost surely not co-amenable, and yet
still ρ(�/K , ν) = ρ(�/H , ν) < 1 for every finitely supported ν ∈ Prob(�) whose support
generates �.

Example 4.6. (Counterexample to the converse of Proposition 4.5.) Let G be a
non-amenable finitely generated group and let � = F2 � G be the wreath product of
F2 with G. Let N := ⊕

F2
G. Recall that � = F2 � N with γ ∈ F2 acting on N by

γ ((gλ)λ)γ
−1 = (gλ)γ λ. For any subset � ⊂ F2 let N� be the subgroup

⊕
λ∈� G.

By construction, N� is a normal subgroup of N, and for every γ ∈ F2 we have
γN�γ −1 = Nγ� . This defines a �-equivariant map

N• : {0, 1}F2 → Sub(�).

A percolation on F2 is random subset of F2 with distribution invariant under left
translations. For any percolation P ∈ {0, 1}F2 the group NP is an invariant random
subgroup of �. Let p < q ∈ (0, 1) and let (P , Q) ∈ {0, 1}F2 × {0, 1}F2 be a �-invariant
coupling of two Bernoulli percolations of parameters p and q respectively such that P ⊂ Q

almost surely. This can be arranged by first choosing P as a Bernoulli percolation of
parameter p and then declaring Q to be the union of P and an independent copy of
a Bernoulli percolation with parameter (q − p)/(1 − p). In this way we construct an
invariant random couple of subgroups NP ⊂ NQ.

The set Q \ P is infinite almost surely, so the quotient NQ/NP is the direct sum of
infinitely many copies of G. In particular, NP is almost surely not co-amenable in NQ. Let
S be a finite generating set for �. We claim that

ρ(�/NP , S) = ρ(�/NQ, S) = ρ(�/N , S).

This will follow quite quickly from the semicontinuity properties of the co-spectral radius.
Since P is a Bernoulli percolation, for any n ∈ N we will almost surely find γn ∈ F2

such that γP contains the R-ball around the identity. The sequence of subgroups NγnP

converges to N in Sub(�). On the other hand ρ(�/NγnP , S) = ρ(�/NP , S), because
NγnP = γnNP γ −1

n . By Lemma 4.7 we conclude that ρ(�/NP , S) ≥ ρ(�/N , S). The
reverse inequality is clear, so ρ(�/NP , S) = ρ(�/N , S). In the same way we show that
ρ(�/NQ, S) = ρ(�/N , S).

LEMMA 4.7. Let � be a countable group generated by a finite symmetric set S. Let �n be
a sequence of subgroups of � converging to a subgroup �∞ ⊂ � in Sub(�). We have

lim inf
n→∞ ρ(�/�n, S) ≥ ρ(�/�∞, S).

Proof. For any subgroup � ⊂ � let B�(R) denote the R-ball around the trivial coset
in the Schreier graph Sch(�/�, S). We will write P for the Markov transition operator
P = (1/|S|) ∑

s∈S s. Let ε > 0 and let f ∈ �2(�/�∞) be a non-zero finitely supported
function such that

〈Pf , f 〉
〈f , f 〉 ≥ ρ(�/�∞, S) − ε.
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Choose R > 0 such that the support of f is contained in B�∞(R). For big enough n we
will have an isomorphism between labeled graphs ιn : B�n(R + 1) � B�∞(R + 1). Let
fn = f ◦ ιn be the pullback of f to �2(�/�n). Then

〈Pfn, fn〉
〈fn, fn〉 = 〈Pf , f 〉

〈f , f 〉 ≥ ρ(�/�∞, S) − ε.

We deduce that lim infn→∞ ρ(�/�n, S) ≥ ρ(�/�∞, S) − ε. We finish the proof by
taking ε → 0.

5. Co-spectral radius and percolation
Let (G, o) be a transitive graph with the root at o (respectively, unimodular random graph).
A invariant percolation P is a random subset of edges of G, such that the distribution
of P is invariant under graph automorphisms (respectively, invariant under the rerooting
equivalence relation).

THEOREM 5.1. Let P be an invariant bond percolation on a unimodular random graph
(G, o) of degree at most d. Let C be the connected component of o in the percolation P. Let
Xn be the standard random walk on G starting at o. The limit

ρP := lim
n→∞ P(Xn ∈ C)1/2n

exists almost surely.

Proof. The fist step is to use Proposition 2.1 to construct an associated probability-
measure-preserving equivalence relation with a graphing and a subrelation that will allow
us to apply Theorem 1.2. We now borrow the notation from §3 and Proposition 2.1.
Let (G, o), P be an instance of the percolation and let x = ((G, o), P , λ) ∈ �# with an
i.i.d. random coloring λ. The graph (Gx , x) is isomorphic to (G, o) almost surely. Since
C = [x]S almost surely, the probability of returning to the connected component of P
containing the root o at time n is the same as pν

n,x,S . We have

lim
n→∞ P(Xn ∈ C)1/2n = lim

n→∞(pν
2n,x,S)1/2n.

The limit on the right-hand side exists for μ# almost all x, by virtue of Theorem 1.2.

5.1. Critical values from spectral radius. Using Theorem 5.1, we can define two new
critical values of the Bernoulli bond percolation that fit nicely with the existing classical
exponents like pc, pu, p[2→2] and pexp. We recall their definitions below. Bp denotes
the Bernoulli bond percolation with parameter p ∈ [0, 1]. For simplicity we restrict to
transitive rooted graph (G, o), but the definitions below can be easily adapted to all ergodic
unimodular random graphs.
• pu is defined as the infimum of p ∈ [0, 1] such that Bp has a unique infinite connected

component almost surely.
• pc is defined as the infimum of p ∈ [0, 1] such that Bp has an infinite connected

component almost surely.
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• For x, y ∈ V (G) let τp(x, y) denote the probability that x and y are connected in Bp.
The exponent pexp is the supremum of all p such that τp(x, y) decays exponentially in
d(x, y).

• Consider the operator Tp acting on compactly functions on V (G) defined by

Tp(φ)(x) =
∑

y∈V (G)

τp(x, y)φ(y).

The exponent p[2→2] is the supremum of p such that Tp defines a bounded operator
�2(V (G)) → �2(V (G)) [21, §2].

For quasi-transitive graphs, these numbers satisfy the inequalities pc ≤ p[2→2] ≤ pexp ≤
pu, ([5], [13, Theorem 1.1.2], [23, Theorem 2.2]). We add two more specimens to this
zoo of critical values. They implicitly depend on the random walk; we always choose the
standard one.

Definition 5.2
(1) Let pRam (for Ramanujan) be the supremum of p such that ρBp

= ρG.
(2) Let pcK (for co-Kaimanovich) be the infimum of p such that ρBp

= 1.

The reason for the term ‘co-Kaimanovich’ is as follows. For the spectral radius (as
opposed to the co-spectral radius) of relations R, having ρ(R, ν) = 1 for some countably
supported ν ∈ Prob([R]) whose support generates R is not equivalent to hyperfiniteness
of R, as discussed in detail in work of Kaimanovich [27]. This work of Kaimanovich
greatly clarified a common misconception in the literature, and gave precise and tractable
criteria to verify when a relation is hyperfinite in terms of the data of several spectral radii.
For example, this work shows that spectral radius 1 is equivalent to having ρ(R, ν) = 1 for
every countably supported ν ∈ Prob([R]) whose support generates R. It is thus reasonable
to call a relation R Kaimanovich if there is a ν ∈ Prob([R]) whose support generates R
and has ρ(R, ν) = 1. Since the co-spectral radius heuristically plays the role of the spectral
radius in a quotient, this motivates the term ‘co-Kaimanovich’.

We now compare how these critical values are related.

PROPOSITION 5.3
(1) pRam ≤ pcK.
(2) pcK ≤ pu.
(3) pexp ≤ pcK.
(4) p[2→2] ≤ pRam.

We remark that (4) is equivalent to a theorem of Hutchcroft [21, Proposition 6.4], but
as our proof is short we include the proof for completeness.

Proof. (1) If G is amenable, then 1 ≥ ρBp
≥ ρG ≥ 1. If G is non-amenable, then ρG < 1.

The inequality follows now from the obvious monotonicity of ρBp
in p.

(2) Let p > pu. Let S ≤ R be the inclusion of equivalence relations constructed
in Proposition 2.1. The infinite connected component of Bp in the percolated graph
corresponds to an S-invariant positive measure subset E ⊆ �# (namely, E = {ω : [ω]S
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is infinite}). Uniqueness of the infinite connected component tells us that R|E = S|E . For
l ∈ N, we let pl,x,E be the probability that the random walk starting at x is in E after l steps.
Since R|E = S|E , we have p2n,x,S ≥ p2n,x,E . Thus, for almost every x ∈ X we have

ρS(x) ≥ ρR
E (x) = ρR(x)1Ẽ(x) = 1Ẽ(x),

where in the first equality we use Theorem 3.20. Since μ(E) > 0 we obtain that

ρBp
= ‖ρS‖∞ = 1.

(3) Let

ξp := − lim sup
n→∞

1
n

log sup
u,v

{τp(u, v)| d(u, v) ≥ n}.

Then pexp = sup{p ∈ [0, 1]|ξp > 0}. Let p < pexp. The spheres in G grow at most
exponentially fast, so there exists q > 1 such that

Aq :=
∑
v∈G

|τp(o, v)|q < +∞.

We have

pn(o, [o]Bp
) =

∑
v∈G

pn(o, v)τp(o, v).

By the Hölder inequality,

pn(o, [o]Bp
) ≤ ‖pn(o, −)‖q/(q−1)‖τp(o, −)‖q = A‖pn(o, −)‖q/(q−1).

By the Riesz–Thorin theorem

‖pn(o, −)‖q/(q−1) ≤ ‖pn(o, −)‖1−2/q

1 ‖pn(o, −)‖2/q

2 ≤ ρ
2n/q
G .

Hence, pn(o, [o]Bp
) ≤ Aρ

2n/q
G . The upper bound decays exponentially in n, so ρBp

< 1.
This proves that pexp ≤ pcK.

(4) Let p < p[2→2], so that ‖Tp‖L2→L2 < ∞. Fix the root o ∈ V (G) and let v ∈ V (G)

be a vertex. Let fn(v) := pn(o, v), that is, the probability of going from o to v in time n.
Note that ‖fn‖2

2 = p2n(o, o). We have

Tpfn(o) =
∑

v∈V (G)

τp(o, v)pn(o, v) = E(pn(o, [o]Bp
)).

The operator Tp is bounded, so ‖Tpfn‖2 � ‖fn‖2. We deduce that

ρBp
= lim

n→∞ E(p2n(o, [o]Bp
))1/2n ≤ lim

n→n
p4n(o, o)1/4n = ρG.

The reverse inequality ρG ≤ ρBp
is always true so ρBp

= ρG. This demonstrates that
p ≤ pRam. It follows that p[2→2] ≤ pRam.

Example 5.4. Let Td be the d-regular tree. We have pcK = 1 and pRam = 1
2 .
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5.2. Walk growth. Let (G, o) be a unimodular random graph with degree at most d ∈ N.
Let Md be the space of rooted graphs where each vertex has degree at most d, modulo
isomorphism. This can be turned into a compact metric space with the distance

ρ([(G, o)], [(G′, o′)]) = inf{2−l : (BG(o, l), o) ∼= (BG′(o′, l), o′)}.
Recall that the distribution η of [(G, o)] is a probability measure on Md which is invariant
under the rerooting equivalence relation

{([(G, o)], [(G′, o′)]) : G ∼= G as unrooted graphs}
(we remark that η being rerooting invariant does not characterize unimodularity, but that
will not cause an issue for us here). Let wn(o) be the number of walks of length n
starting at o.

Note that, by Proposition 2.1, we can find a probability-measure-preserving countable
equivalence relation (�#, ν#, R) with a generating graph � = (φi)i∈I so that the dis-
tribution of [(G, o)] is the law of the rooted graph (Gω, ω) defined for ω ∈ �# where
the vertex set of Gω is [ω]R and the edge set {(ω′, φ±1

i (ω′) : w′ ∈ [ω]R, i ∈ I }. Define
fk : R → [0, +∞) by declaring fk(x, y) to be the number of paths from x to y in Gx . It is
direct to verify the hypotheses of Theorem 3.7 and thus

lim
k→∞

( ∑
y∈[x]R

fk(x, y)

)1/k

exists almost everywhere. The above sum has the same law as wk(o), and this proves that
limn→∞(1/n) log wn(o) exists.

THEOREM 5.5. Fix notation as above, and suppose η is ergodic under the rerooting
equivalence relation. Define A ∈ B(L2(Md , η)) by

(Af )([(G, o)]) =
∑
v∼o

f ([(G, v)]).

Then

‖A‖ = lim
n→∞ wn(o)1/n.

Proof. Observe that if o′ is a vertex in the rooted graph (G, o) and if l = dG(o, o′), then

wn−l(o
′) ≤ wn(o) ≤ wn+l(o

′), for all n ∈ N,

and so

lim
n→∞ wn(o

′)1/n = lim
n→∞ wn(o)1/n.

Thus, by ergodicity, limn→∞ wn(o)1/n is almost surely constant. By Theorem 3.7(ii) this
constant equals

lim
n→∞ E(wn(o))1/n. (5.1)
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A direct calculation shows that 〈Ak1, 1〉 = E(wk(o)). Note that

span{1E : E ⊆ Md is measurable} = L2(Md , η),

and that 〈Ak1E , 1E〉 ≤ 〈Ak1, 1〉 for all measurable sets E. Thus, the same argument as in
Theorem 3.2(i) using Lemma 3.5 shows that (5.1) is equal to ‖A‖.
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