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Abstract 

Characterising a socio-technical system by its underlying structure is often achieved by cluster analyses and 

bears potentials for engineering design management. Yet, highly connected systems lack clarity when 

systematically searching for structures. At two stages in a clustering procedure (pre-processing and post-

processing) modelled and external information were used to reduce ambiguity and uncertainty of clustering 

results. A holistic decision making on 1) which information, 2) when, and 3) how to use is discussed and 

considered inevitable to reliably cluster highly connected systems. 

Keywords: cluster analysis, design structure matrix (DSM), socio-technical systems, dense matrices, 
design models 

1. Introduction 
The amount of publicly available information has never been greater than today. The steady growth of 

complexity, expressed through huge amounts of data connecting diverse elements, raises the need to 

develop methods and techniques, which help us to access and interpret information (Eppinger and 

Browning, 2012). Within this context, the Design Structure Matrix (DSM) is an analytical model often 

applied to better understand and improve complex systems (Wynn and Clarkson, 2018). Detecting and 

translating structures of an engineering system into modules, bears the potential to better manage 

complexity, facilitate parallel work and accommodate future uncertainty (Baldwin and Clark, 2006).  

A distinction is made between binary and numerical (analogue) DSMs, the latter being characterised 

by their increased information content resulting from their ability to model graded or stepped 

dependency weights rather than just binary values (Maier et al., 2017). At a certain level of 

granularity, the higher the connectivity of a network is, the denser its respective DSM model becomes, 

due to the many dependencies between the individual elements. To extract information about a 

system's structure from DSMs, algorithmic cluster analyses are generally conducted. Unfortunately, 

when searching for structures in highly connected DSMs, such analyses require special attention 

(Pimmler and Eppinger 1994). This paper seeks to overcome this challenge by generally improving the 

clustering results in the context of dense matrices. By contrasting research in the fields of computer 

science and mathematics into networks and graphs, this paper provides meaningful information that 

will be of use in engineering practice. It focuses on DSM applications in product development, where 

clustering solutions cannot be determined and assessed purely by mathematical means. To this end, 

Section 2 defines the cluster types relevant to socio-technical systems and describes the background of 

clustering DSMs. Section 3 presents two use cases that exemplify the problems of clustering dense 
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matrices. Several approaches for potentially improving the clustering of dense DSMs are introduced in 

Section 4. This is followed by a discussion of the results in Section 5 and a conclusion in Section 6.  

As there is no quantitative definition of a dense matrix (cf. Newman 2010), the non-zero fraction 

(NZF) will be used to quantify the density of a DSM in this paper. Thus, matrices with a NZF of 50% 

and above will be referred to as 'dense' and the corresponding network as 'highly connected'. The NZF 

is calculated as the fraction of the actual number of dependencies to the maximum number of 

dependencies n * (n-1) in a DSM, where n is the number of elements in the modelled system. 

2. State of the Art  
Recent models of social, technical and socio-technical systems in engineering design are characterised 

by a triadic relation linking the target system with the model's structure and its purpose (Maier et al., 

2017). Thereby, various requirements for models exist and are defined by the stakeholders' needs 

(Little, 1970). Applied to various engineering problems (cf. Eppinger and Browning, 2012), their 

potential for analytical and structural investigation makes DSMs a fitting tool for characterising a 

system. The concepts of granularity (Maier et al., 2017), method-based analyses using metrics 

(Kreimeyer, 2009), and clustering approaches form the basis for analysing the information modelled 

as a DSM.  

2.1. Clustering  

Known as 'community detection' in graph theory (Newman, 2010), the purpose of cluster analysis is to 

find underlying structures in a system. There are four types of clusters, beginning with 1) a module, 

defined as "a relatively independent chunk of a system that is loosely coupled to the rest of the 

system" (Hölttä-Otto et al., 2012). Modules comprise more than one element of the modelled system. 

Besides modules, there is usually at least one more cluster within each technical or socio-technical 

system, comprising a single element (Hölttä-Otto et al., 2012). These may be 2) a receiving bus, 3) a 

sending bus, or 4) a framework. Based on the selected DSM convention of 'columns influence rows', 

receiving buses lead to many entries in a certain row in the DSM. The bus connects more than one 

module and primarily receives information from the elements it connects. In contrast, a sending bus is 

defined as an element influencing several other elements in different modules. A framework is defined 

as a sending and receiving bus at the same time and is thus bi-directionally connected to other parts of 

a system. A set of clusters is called a clustering or a clustering solution. Clusters are usually visualized 

as boxes drawn into a DSM with correspondingly ordered elements, as shown by the example of the 

upper-left DSM in Figure 1.  

Revealing a hidden or underlying structure in a system is not always easy, as increasing complexity 

and scale (e.g. the number of elements) complicate the system's characterisation (Sarkar et al., 2013, 

Sharman and Yassine, 2004). Thus, the robustness of a found solution (Sharman and Yassine, 2004) 

and the sensitivity of an identified clustering must be considered for characterisation (Chiriac et al., 

2011). There are several algorithms that can be used for clustering DSMs, each pursuing a different 

direction; these include spectral methods (e.g. Sarkar et al., 2014) and modularity metrics (e.g. Jung 

and Simpson, 2014). While spectral methods do not require a priori assumptions regarding a system's 

structure (Sarkar et al., 2013), they are usually limited to detecting clusters comprising a single 

element, i.e. frameworks or buses. Another clustering algorithm, using a 'minimum description length 

(MDL)' as an objective function, was introduced by Yu et al. (2007). It can detect modules and 

frameworks and uses a 'genetic algorithm (GA)' as a search strategy. Within the conducted use case in 

Section 3 this clustering approach was further extended with a receiving and sending bus detection and 

serves as an algorithm precisely detecting clusters for benchmarks in the following. 

2.2. Pre- and Post-Processing 

A basic clustering approach that pursues the creation of a DSM model comprises three stages: pre-

processing, the clustering process itself, and post-processing. In the "pre-processing [step,] the DSM 

model is prepared for the subsequent clustering" (Helmer et al, 2010). The post-processing performed 

later in the clustering procedure describes "the correction and improvement of the results obtained by 
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application of the clustering algorithm" (Helmer et al, 2010). A review of literature relating to DSM 

and clustering applications reveals that the processing of modelled data is usually adjusted to the 

respective application. In this context information is often extracted from the model and analysed 

using general metrics. As an example, Kreimeyer (2009) discussed a comprehensive set of 52 

structural metrics that can be used generically to investigate complex systems and processes. 

Application-specific pre- and post-processing measures, such as the use of a modified rating scale (-2 

to +2), symmetry, or perspective reduction (combining various modelled interaction types), can be 

found in Helmer et al. (2010). 

3. The challenge of extracting information from dense matrices  
To identify limitations in the clustering of dense matrices, a model of a hand drilling machine 

(HDM) was created and clustered by applying three different algorithms. Results are shown in the 

first row of Figure 1. Numerical dependency weights represent interaction strengths between engineers 

that are responsible for one particular part of a power tool. Algorithmic implementations applied to 

cluster the system follow a coordination cost approach (Thebeau, 2001) and a modularity strength 

metric, both of which are implemented in the Cambridge Advanced Modeller (CAM). Additionally, 

the extended MDL (GA) based clustering was applied (see Section 2.1). 

An artificial binary test system (ATS) was also modelled. This is illustrated in the bottom row of 

Figure 1. Various reasonable clustering options are highlighted in ATS I to III. All three clusterings 

include all modelled connections within the clusters and thus represent theoretically ideal clustering 

solutions. A preference for a particular clustering cannot be expressed without knowing the context.  

 
Figure 1. Use case of a hand drilling machine model (NZF = 58.3 %) that was clustered using 
three different algorithms. An artificial binary test system (NZF = 77.8 %) shows potentially 

ideal clusters, neglecting the context. Different clustering solutions are indicated by the 
coloured boxes. 

Two key problems occur when clustering the highly connected systems of an HDM or ATS. First, 

there are no guidelines for selecting an algorithm (including an abstract measure of modularity) to 

cluster highly connected systems. As clustering algorithms differ greatly, detected clusterings can be 

very different, too (cf. Figure 1). This shows that selecting the right clustering algorithm for 

characterising dense matrices requires knowledge of the system's structure. However, such knowledge 

is often not available prior to clustering. This limitation is not unique to highly connected systems, but 

it is reinforced by the density of the DSMs. The challenge of selecting a modularity metric is down to 

the major differences that exist between the individual measures (Hölttä-Otto et al., 2012). The chosen 

objective function has a major impact on the results of the analysis. Overlapping clusters represent a 
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further level of complexity, aggravating the clustering. However, to make the best use of modularity in 

mechanical systems, overlaps need to be considered and selected early in the design process (Helmer 

et al., 2010). A system's modularity also depends on the granularity chosen for a model (Chiriac, 

2011). The concept of granularity thereby connects the modelling process (including the information 

collected and contained in the model) with cluster analyses and their results. Pre-processing the data 

can also change the granularity, and it can impact results when searching for structures. As a state of 

the art approach for clustering DSMs, the generation and comparison of different clustering solutions 

is generally recommended before a result is accepted (Eppinger and Browning, 2012). 

The second problem is that even with the same algorithm, the results require interpretation; they do 

not represent robust solutions free of uncertainty (here referred to as ambiguous clustering solutions). 

Even if clustering solutions are detected in each clustering run (conducted to produce Figure 1), it is 

necessary to decide whether the resulting solutions are reasonable. If a system is highly connected, 

available methods often fail to deliver reliable clustering results, as multiple (pareto optimal) structural 

interpretations of a model potentially exist, even if the same algorithm is used. The most appropriate 

solution is often dependent on the context and follows interpretations and modifications. Whereas 

some algorithms do not scan the entire solution space (Behncke et al., 2015), others miss 

configurations due to a path dependency (Sharman and Yassine, 2004). Manual clustering therefore 

generally follows the application of an algorithm to reveal comparable or possibly even better 

clusterings (Behncke et al., 2015). 

4. An approach for clustering dense matrices 
In the big picture of clustering highly connected systems, the overall aim within Section 4 is to test 

different measures in the clustering procedure and their effects on clustering results, to make best use 

of the information available in models and beyond (e.g. context, modelling approach, etc.).  

Therefore, in the following three sources of density are introduced. They can be used to broadly 

categorize highly connected systems, which provides a baseline to classify dense matrices representing 

technical or socio-technical systems. The use of information at various steps in the clustering 

procedure is then investigated. For pre-processing, various thresholds are applied and their respective 

effects on the detected modular structure compared, based on the limitations discussed above. This is 

followed by the investigation of manual interpretations of clustering results for post-processing. 

Therefore, an optimisation was performed to enhance visual clarity of the DSM test case of the HDM. 

Finally, three simple guidelines are given for interpreting clusterings a posteriori.  

4.1. Sources of density 

Figure 2 presents the categories for the sources of density. In the first category, 'unequal cluster sizes', 

interpretation and modularisation of the system is a simple matter, due to the clear borders between the 

individual chunks. The second category, 'modular overlap', refers to a group of systems defined by the 

existence of overlapping clusters, i.e. elements that are assigned to more than one cluster (see Section 

2.1). A clustering algorithm will still easily be able to detect the modules, frameworks, and buses, but 

it will be increasingly dependent on its parameters being set a priori. There might also be multiple 

reasonable clustering solutions, which means that more than one detected structure is likely to exist 

with the best (or close to best) value for a chosen objective function. The third category, 'random 

links', stems from a mix of modules and single dependencies between elements. Detecting clusters by 

simply looking at the DSM visualisation generally does not produce sufficient solutions, but 

automated cluster detection algorithms might also result in structures with 'imperfect clusterings', i.e., 

blank spaces (non-existent dependencies) in a DSM assigned to a cluster, or very small and unrealistic 

clusters. This type of system is usually the most challenging for cluster detection.  

If a system is highly connected, one of these categories will usually apply. A review of the system's 

element and interaction types, as well as its environment may reveal the prevalence of one of the 

categories introduced. Knowing the source of density facilitates understanding the structure of a 

system. It enables a more appropriate choice of objective function (or clustering algorithm and its 

parameters), as well as reasonable pre-processing.  
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Figure 2. Source categories for highly connected systems represented as binary DSMs. 

4.2. Pre-processing via thresholds 

Pre-processing is the first step of a clustering procedure in which an interpretation of the modelled 

information is feasible. Thereby we examined whether a suitable pre-processing via threshold allows a 

better detection of the underlying structure, as a reduction of existing dependencies is expected to 

result in sparser matrices and thus reduced ambiguity in clustering solutions. A threshold follows the 

assumption that low dependency weights can be 'ignored' when searching for an underlying structure, 

as weak connections in a network are eliminated. In the following, two different types of thresholds 

are applied as a filter, with common values chosen for the threshold 't'. In the case of a numerical 

threshold, interactions between elements are eliminated below the threshold value and retain their 

initial value above it. Applying a binary threshold results in a binary DSM, as all dependency weights 

above and equal to the threshold value are set to one, whereas all other dependencies are removed, i.e. 

set to zero. 

To investigate the effects of a threshold, an experiment was carried out based on the HDM system in 

Section 3. Since it is not possible to prescribe an ideal or correct clustering for a real system (as 

already shown, there are only opportunities or proposals), the clustering is evaluated as a comparison 

between two consecutive solutions, in which a distance measure expresses the difference between the 

two clusterings. With each threshold setting, the MDL-based clustering algorithm was applied 51 

times. If the structure of a system is clearly defined, the same clustering solution can be expected, 

resulting in a mean for the measured distance of zero. If there is ambiguity in the clustering solutions 

for an applied threshold, the distances between consecutive clusterings found for the same system are 

expected to increase, leading to the higher distance averages shown in Table 1. The similarity of the 

solutions can thus be expressed and compared for the different thresholds. Measures for similar 

clusterings are performed in line with Goldberg et al. (2010), who examined dynamics in a social 

network by comparing clusterings found at different time steps. The best match for each cluster in one 

clustering C1 (i.e., a set of clusters) is searched for in the other clustering C2 and vice versa. The 

distance measure used is based on information theory, as introduced by Lancichinetti et al. (2009). For 

more details on cluster comparison, the reader is referred to (Goldberg et al., 2010) and (Lancichinetti 

et al., 2009). 

The results of the study are presented in Table 1. There are generally two reasons for any variance in 

clustering results. It can stem either from the probabilistic nature of the genetic algorithm or from the 

ambiguity added in the clustering procedure. Interpretation of the distance measures shown in Table 1 

is, however, feasible, as identical results were found in multiple runs. 

4.2.1. Binary thresholds  

The binarisation of dependency weights led to variance in the clustering results. In such cases, 

multiple runs can reveal different clustering opportunities for the same system. Of course, the results 

depend on the system modelled (here, a HDM). Compared to the clustering of the original system, 

corresponding to a numerical threshold of value 0.00, the ambiguity in the clustering solutions 

increased when a binary threshold was applied, even if the number of dependencies in the DSM and, 

in turn, the density of the matrix, was reduced. How great the difference between the solutions found 

was, can be seen in the mean of the distance measures in Table 1.  
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Table 1. Effects of different (pre-processing) threshold types and values on the variance of 
clustering solutions found for the HDM. 

Thres-

hold 

value 

t 

Binary threshold Numerical threshold  

Frequency of different 

clusterings detected in 

subsequent analyses 

Mean of distance 

measures greater 

than zero 

Frequency of different 

clusterings detected in 

subsequent analyses 

Mean of 

distance 

measures greater 

than zero 

0.00 38/50  0.34 0/50* - 

0.33 30/50  0.36 0/50 - 

0.66 37/50 0.38 0/50 - 

* corresponds to a clustering of the initial system 

Only a slight increase was noted for greater threshold values, and it is use-case-specific (e.g. there are 

several dependencies which are smaller or equal to 0.3). Generally, binarisation always led to multiple 

optimal clustering solutions and thus increased the level of ambiguity in the clustering.  

In practice, whether or not a binary threshold is reasonable greatly depends on the type of interactions 

modelled. Binarisation leads to a significant loss of information, when the context of modelled data is 

not known. However, it might be used to explore further clustering opportunities or to compensate for 

modelling inconsistencies. 

4.2.2. Numerical threshold 

It can also be seen from Table 1 that when a numerical DSM was processed, the clustering algorithm 

always detected the same solution for the corresponding system (0/50). However, it should be noted 

that different threshold values resulted in different clusterings (not shown in Table 1). The threshold 

applied changes the structure of the system; in a real-world application, practitioners would need to 

decide (prior to knowing the structure of a system) which links in the network are irrelevant, i.e. where 

to set the threshold value. Even if the detected clusterings seem correct (the same structure is detected 

in all fifty comparisons), a different threshold might lead to a very different, yet optimal, solution. 

Unfortunately, in most cases, a reliable decision regarding how to use the information in a system for 

eliminating weak connections is not possible, as any changes will only have an effect later on in the 

procedure (during clustering) and lead to different structures. In the case of the HDM, it might be 

reasonable to conduct a manual evaluation of the resulting clusterings, although manual clustering is 

not always easy to perform in socio-technical or larger systems. It is of fundamental importance to 

decide whether low-dependency weights (or interaction strengths) can be interpreted as irrelevant 

prior to determining a reasonable structure of the system.  

4.2.3. Summary of the threshold study 

To sum up, we found that a pre-processing step using thresholds can decrease the reliability of a 

clustering in two ways. The first impact resulted from the reduced information content (from 

binarisation) of the model, leading to various optimal clusterings (exacerbating the first problem 

addressed in Section 3). This was only observed in the present experiment with the binary threshold, 

but can theoretically occur for numerical thresholds, too. The second loss of reliability stems from the 

early interpretation of the information modelled, prior to a structure definition. Even though the 

threshold creates a system with a unique clustering solution, this solution may be biased by a user who 

defines a threshold value prior to clustering. Setting this value without knowing the structure (the 

reason why the clustering is actually being performed) is challenging and strongly influences the 

structure detected in the next step of the clustering procedure. Both types of thresholds are therefore 

considered non-beneficial with respect to the two problems defined in Section 3 when information on 

the context is missing. 

4.3. Post-Processing: Improving the manual cluster exploration  

Decision makers, like managers or product developers, generally take into consideration further 

implications and constraints relating to a system (information not explicitly contained in the model), 
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leading to clustering solutions that are comparable with or even better than those detected by 

algorithms (Behncke et al., 2015). In addition, experience of a method combined with prior knowledge 

of the system enables enhanced extraction of information from a network modelled as a DSM (Keller 

et al., 2006). Schöttl and Lindemann (2015) combined a system's engineering perspective with 

fundamentals of psychology, defining complexity as "a perceived parameter in socio-technical 

systems" (Schöttl and Lindemann, 2015). Especially for managing processes a visualisation of the 

model is one of the key factors determining the success of an implementation (Heisig et al., 2009). For 

clustering DSMs, often a manual processing of the clusters found is added at the end of a cluster 

analysis (Behncke et al., 2015). If automated clustering procedures still require a human being to 

process the DSM, the question can be raised, if skipping the clustering (usually based on abstract 

metrics) is reasonable. Thus, an investigation follows next, where the order of elements is not 

determined by an artificial abstract value (e.g. defined as modularity), but rather fulfils the purpose of 

clearly visualising chunks in the DSM. Especially for systems specified as 'Random links' as the origin 

of density, a manual clustering is expected to improve clustering results, if elements are ordered to 

enhance clarity in the visualization (Section 4.3.1). Additionally, literature reviews reveal a lack of 

guidelines for clustering interpretations. A systematic guidance, using in- and external information of 

a model, is therefore introduced in Section 4.3.2, to improve clusterings in the post-processing. 

4.3.1. Enhancing clarity: Transition reduction algorithm (TRA) 

To facilitate manual clustering, we assumed that if borders between modules are clearly observable 

and blank spots in a DSM are brought together, the system would have a very 'clear' (or better, 'clearly 

observable') structure. Hence, an algorithm was developed to minimize the 'transitions' within a DSM 

by reordering elements. A transition value (TV) is defined as the absolute difference between two 

neighbouring dependency weights in the matrix, vertically and horizontally. A factorial design was 

chosen, in which all possible orders (n! = 9! = 362,880) for a system with nine elements were formed 

and the TV calculated. After 13.4 seconds, the transition value was calculated for all orders. The 

resulting DSMs, with elements ordered for minimum TVs, are then shown to a user for manual 

clustering explorations. Applying the TRA to the test system of the HDM, four orders of elements 

with minimum sums of TVs were found. One such solution is presented in Figure 3. 

 
Figure 3. An ordered DSM, in which the minimized objective function is the sum of all absolute 

TVs. A single TV is highlighted with an arrow as an example. 

As shown in Figure 3, the TRA by ordering elements visualises the DSM in a way that makes it easier 

for humans to search the system for clusters. To evaluate the results of this visual inspection, 

components are divided into mechanical and electrical elements, in which the purely visualisation-

based algorithm enables reliable detection of the domain-specific modules (e.g. light, speed control 
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and battery as electric modules). Since elements located on the outside do not have any neighbours, 

the algorithm also presents suggestions for frameworks (see motor and/or housing as a framework). A 

user is able to observe different clustering opportunities at first sight, without the need for any abstract 

measure (such as a modularity metric) being defined mathematically prior to the analysis. For 

example, the upper left-hand corner could be clustered as two overlapping, but smaller, modules, or as 

one with zero-dependencies within the module. This facilitates the interpretation of interfaces, 

overlaps and opportunities for structuring the system. However, already small threshold values would 

eliminate important information in the electric domain, consisting of dependency weights between 0.2 

and 0.6. Some of these dependencies were removed in Section 4.2, when a threshold value of 0.3 was 

applied to the model prior to the algorithmic clustering. Another optimisation strategy (e.g. a GA) is 

recommended if applying the TRA to larger systems. However, if clusters exist, it will not be 

necessary to search the entire solution space. For example, in the 'unequal cluster sizes' matrix (see 

Figure 2), the order 'A-B-C-D-…' w               ame sum of TVs as 'B-A-C-D-…' and allow the 

same interpretation. It is therefore the case that the TRA performs particularly well for dense systems. 

4.3.2. Clustering interpretations 

As shown previously, if there are multiple options for optimally clustering a system, human post-

processing is inevitable. There are three principles according to which modelled and non-modelled 

information can be used later in a clustering procedure for interpreting clustering solutions from 

algorithmic analyses. Further guidelines will form the subject of subsequent research. 

 Awareness of limitations  

Since a model is by its nature an abstraction of a target system, the inevitable differences between the 

real world and the modelled system lead to limitations in clustering. Knowing these differences can be 

used to exclude potential clustering solutions that do not appropriately depict reality. For example, the 

clustering of a binary system might be limited because an algorithm treats each dependency the same 

way while differences in the real target system might exist. A pairwise comparison of two 

opportunities for clustering a system might help to prioritize clustering solutions a posteriori and 

overcome modelling uncertainties. 

 Adding (domain) knowledge 

If clustering pursues a certain purpose, information about a system usually exist which is not explicitly 

contained in the model. Clustering might be improved by using this knowledge, which can, for 

example, relate to interactions modelled, element types, domains, or the environment in which the 

system is embedded. Also, a realistic view of indirect dependencies can support the rating of 

clustering solutions (if 'A' follows 'B', and 'B' follows 'C', does 'A' also follow 'C'?). This domain 

knowledge can help to pre-process and interpret models in an appropriate manner. 

 Accepting suboptimal solutions 

Frequently, there are several answers to the question of what constitutes ideal clustering for a certain 

system. There are several algorithms that can be used to explore different possibilities. Since an 

optimal structure found using an objective function may be different to the optimal structure of the 

real system, 'optimal clusterings' must always be defined by an appropriate context. Sometimes it is 

beneficial to accept 'non-ideal solutions', i.e. clusters in a DSM with blank spots included. An example 

of these suboptimal clustering solutions can be seen in Figure 1, where the MDL and modularity 

strength algorithm provided solutions that contained clusters of elements that included zero-weighting 

interactions. The density within the clusters may be mathematically suboptimal, i.e. in terms of a 

different abstract modularity metric, yet potentially depicts reality well enough. 

5. Discussion 
Highly connected systems require special attention when searching for underlying structures by 

applying cluster analyses. The aim of this paper is to seek strategies to use of the information contained 

in dense matrices along with external knowledge of the modelled system and its environment. A 

distinction is proposed between information content and information value. Applying pre- and post-
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processing techniques to a model enables available information to be used, thus enhancing its value and 

importance. On investigating several measures within a clustering procedure, post-processing and 

results interpretation were found to be the preferred steps at which to process and analyse models if no 

context is known and external knowledge is not availabe. Interpretations of modelled information in 

pre-processing (for example by applying a threshold) can be misleading, as the characteristics of the 

system (modularity, etc.) are still unknown at this stage, even if they are required so as to enable an 

appropriate choice of threshold values. Once clustering opportunities have been found, the user can 

make systematic use of modelled and non-modelled information in post-processing. The power of 

manual clustering interpretation was shown using the TRA, where the clear visualization helped to 

investigate the underlying structure of the model, without the need to detect clusters algorithmically.  

The modelling context also plays a major role in defining when and how to apply measures in the 

course of the clustering procedure. All steps (pre-processing, algorithmic search for (an usually 

abstract) modularity, and post-processing) offer the potential to interpret and make use of information 

affecting the clustering results. However, reducing the information content in a model at an early stage 

of the clustering procedure can have a significant effect on the structure detected by an algorithm (e.g. 

deleting low dependency weights when applying thresholds). A more holistic view is required, along 

with information on both the modelling and the system environment, to decide whether an early 

measure, such as a threshold, is reasonable. A trial and error approach to investigating various pre- and 

post-processing measures and clustering techniques can still be considered a reasonable, if time-

consuming, procedure. The assumption that decreasing density (NZF) will reduce the dependence of a 

clustering solution on the chosen algorithm could not be proven. Rather, the application of thresholds 

resulted in the detection of different structures. It was noted that binary thresholds amplified the 

second challenge of clustering dense matrices, that is the increased number of optimal clusterings.  

To enable a structured interpretation of clustering solutions, the awareness of limitations, non-modelled 

knowledge, as well as thoughts on imperfect clusters were helpful when enhancing clustering solutions 

a posteriori. These approaches do not claim to be comprehensive but should be regarded as a basis for 

discussing clustering results in post-processing and for further research and case studies. 

6. Conclusion 
Two problems were identified in the context of clustering highly connected systems. First, the 

selection of an appropriate algorithm, including an abstract modularity metric (as an objective 

function), is a challenging task. Second, dense matrices bear an increased likelihood of finding pareto 

optimal clusterings. At different stages in the clustering procedure information were used to improve 

results. It was found, that a binarisation is rather suitable for structural explorations, whereas 

numerical thresholds can reduce ambiguity in detecting structures. However, for interpreting modelled 

information early in the clustering process, knowledge on the system, its context or the modelling is 

required. The higher the connectivity of a system is, the greater is the need for a manual interpretation 

of a resulting clustering. This post-processing can be enhanced by introduced guidelines and clear 

DSM visualizations. Generally, a holistic view and careful use of analytical tools within a clustering 

procedure is recommended. By this means clustering results are obtained faster, and the potentials of 

using DSMs are further exploited to better manage complexity in highly connected systems. 
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