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Abstract

In this paper, the ordering properties of convex and increasing convex orders of the dependent random variables are
studied. Some closure properties of the convex and increasing convex orders under independent random variables
are extended to the dependent random variables under the Archimedean copula. Two applications are provided to
illustrate our results.

1. Introduction

Various concepts of stochastic ordering provide a variety of useful comparisons in insurance actuarial
science [3, 8-10, 28], risk management [5, 12], and reliability [14, 20, 21, 24], etc. Many researchers
have studied convex order and its related orders. These researches mainly focus on stochastic com-
parisons of independent random variables. For example, Alain and Liu [1] studied the relationships of
their random partial sums among the stochastic ordering of independent random variables. Pellerey [25]
considered the invariance under convolutions and mixing of the increasing convex order based on inde-
pendent random variables. Denuit et al. [13] obtained the comparison properties of the m-convex order
for compound sums based on nonnegative independent and identically distributed random variables.
In the real world, interdependent random variables are often encountered. For this reason, it is impor-
tant to investigate stochastic comparisons of dependent random variables. Copula is widely applied to
describe the dependence relationship among random variables because it provides the dependence struc-
ture of random variables. Archimedean copulas are a very important class of copulas, which are widely
used in many fields of society. For a comprehensive review of copulas and their applications, see [6,
7, 11]. Under the Archimedean copula, Zuo et al. [29] established a bivariate joint model on the basis
of the marginal distributions. Ji and Liu [18] made use of the three-dimensional Archimedean copula
method to assess the PM» 5 pollution risk. Fang and Huang [16] used the Archimedean copula for two
random vectors to study two inequalities based on majorization. For series-parallel and parallel-series
systems, Fang et al. [15] investigated various stochastic comparisons based on the Archimedean cop-
ula, and Barmalzan et al. [4] investigated the hazard rate order and reversed hazard rate order when
these components conforming to the general scale model have the dependence under the Archimedean
copula. Fang et al. [17] discussed stochastic comparisons of the largest order statistics arising from two
sets of distribution-free random variables under the Archimedean copula. Ariyafar et al. [2] compared
the aggregation and minimum of these portfolios with respect to the Laplace transform order using
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Archimedean copulas. We find that for dependent random variables, fewer researches considered the
properties of convex order and increasing convex order. We consider these issues in this paper.

The rest of this article is organized as follows. Section 2 introduces some related definitions. The
closure properties and characterizations of the convex order and increasing convex order under the
Archimedean copula dependence, which are the generalizations of some theorems in Shaked and
Shanthikumar [26] to dependent case, are developed in Sections 3 and 4. In Section 5, two applications
are given. In Section 6, some conclusions are provided.

2. Preliminaries

In this section, we recall the concepts of copula, convex order, increasing convex order. Let R = (—o0, 00)
and R* = [0,00), R" = {(21,...,24) : zi € (—00,00), for all i}. In this paper, we assume that all
expectations exist wherever they are given.

2.1. Copula

Definition 2.1. ([27]): If for all t € (a,b), all of derivatives of a function h(t) exist and satisfy
(=D (1) > 0,k € {0,1,...}, where h'®)(-) denotes the kth derivative of h(-). Then h(-) is said
to be completely monotone on an interval (a,b), a,b € R.

Definition 2.2. For a completely monotone function ¢ : (0,1] — [0, c0) with ¢(1) = 0 and ¢(0) = oo,
then Cy : [0,1]" — [0,1], Cy(u) = ¢~ (¢ (uy) + -+ ¢ (u,)) is called an Archimedean copula with
strict generator ¢, where ¢~ (u) is the pseudo-inverse of ¢.

Let F be an n-dimensional distribution function with marginal distributions Fi, ..., F,. A copula
associated with F is a distribution function C : [0, 1]" — [0, 1] satisfying

F(xt,....,%,) =C(F1 (x1),...,F,(xn)).

Similarly, a survival copula associated with F is a survival function C : [0,1]" — [0, 1] satisfying:
F(x1,...,x,) = C(Fi(x1),...,F,(x,)). For comprehensive discussions on “copula,” one may refer to
Widder [19, 23, 27].

According to the Bernstein’s Theorem 12a in Widder [27], we know that, if ¢~! is a completely
monotone function, then there must be a distribution function L e such that:

o' (x) = /O e”dLy1 (a).

Therefore, we have
co N
C(ﬁ(u)zf0 ]_[e—mf’(“f)de(a). (1
i=1

2.2. Stochastic orders

In this subsection, we give the definitions of the convex order and the increasing convex order.

Definition 2.3. The random variable X is said to be smaller than the random variable Y in the convex
order, written X <., Y, if E[W(X)] < E[¢(Y)] for all convex functions y : R — R.
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Definition 2.4. The random variable X is said to be smaller than the random variable Y in the increasing
convex order, written X <i., Y, if E[W(X)] < E[Y(Y)] for all increasing convex functions ¢ : R — R,

Comprehensive discussion on various stochastic orderings and relations between them may refer to
[22, 26].

3. The convex order

In this section, some results of convex order under independent random variables are extended to the
case of dependent random variables with the Archimedean copula. In order to extend those results, we
need the following lemmas.

Lemma3.1. Let C(Fy,(u,)) be the joint survival function of (Uy, . . ., U,), where Cis the Archimedean
copula with generator ¢. For i = 1,...,n, let Ui(a)’s be independent random variables with survival
Sunctions exp {—a¢(Fy,)}. Then, for all @ > 0 and all continuous functions g : R" — R, we have

Elg(Ur,....Uy)] =/0 Elg(Ui(@). .., Un(a))] dLy-1 (@),

Proof. Using Eq. (1), for all @ > 0, the joint survival function of (Uj, ..., U,) can be written as:
Fu,..u, (s o) = ¢~ (@(Fy, (1)) +- - + ¢(Fu, (un)))
_ / I s @ Fu ) g (o), @)
0

Considering that the derivative of the survival function is a negative probability density function,
therefore the probability density function of (Uy, ..., U,) is given by:

n

u 0
S W1 t) = (1)

_ / [ 1o, (e @)Ly ().
0 k=1

FU],...,U,,(“I’ .. ’un)

where

hy, (u; @) = —afy, (u) exp (~a¢(Fy, (u)))¢ (Fy, (ue)), 1 < k < n.

Clearly, for all >0, hy, (u;; @) is the probability density function of U;(a). Hence for any
continuous function g : R” — R, we have

E[g(Ul,...,U,,)]=/ .../g(ul,...,u,,)/ l—th,.(ui;oz)dL¢-1(a/)du1...du,,
uj Uy 0 i=1

0 n
:/ / / g(”l:“-’un)l_[hU,‘ (ui;a/) dbtl ...dundL¢—l((I)
0 Ui Un i=1

- /0 Elg(Ui(@). .., Up(a))]dLy-1 (@), 3)
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where we use the Fubini theorem in the second equation and the definition of expectation in the third
equation.
Theorem 4.A.8 in Shaked and Shanthikumar [26] provided the following result. O

Lemma 3.2. Let X, Y, and ® be random variables such that, for all 0 in the support of ®, we have that
[X ]| ®=0] <iex [Y | ® =0]. Then X <iex Y. That is, the increasing convex order is closed under
mixtures.

The following theorem shows that the convex order is still closed to convolution operation under the
Archimedean copula, and it is an extension of Theorem 3.A.12(d) in Shaked and Shanthikumar [26].

Theorem 3.3. Let C(Fy,(u,)) and C(Fy,(v,)) be the joint survival functions of (Uy,...,U,) and
(V1,...,Vy) respectively, where C is the Archimedean copula with generator ¢. For all a >0, let
the random variables U)(a@), ..., U,(a) [Vi(@),...,V,(@)] be independent, and the survival func-
tion of Ui(a) [Vi(a)] be exp{—a¢(Fuy,)}exp{-ad(Fv,)}], respectively. If Ui(a) <. Vi(a) for
i=1,2,...,n, then

n n
DUz Y Vi
i=1 i=1

Proof. Since U;(@) <. Vi(a)fori=1,2,...,n,itcan be obtained from Theorem 3.A.12(d) in Shaked
and Shanthikumar [26] that:

i Ui(a') <ex i Vi(a')-
i=1 i=1

Therefore for all convex functions ¢, we have:

Zn: Ui(a)
=1

Using Lemma 3.1 and Eq. (4), we have:

=/E
0

Ele <FE

¢ (Z Vi(a))l : @)
i=1

n

S

i=1

n

Z Ui(a)

i=1

> V,-(a')) dLy1 (@)
i=1

i=1
The proof is completed.
Now we extend Theorem 3.3 to random sums case. O

Elg @ dL4-1 (@)

N

=F , for all convex functions ¢.

AS)
—_
=

Theorem 3.4. Suppose that {U;, i > 1} and {V;, i > 1} are two sequences of random variables,
C(Fy,(u,)) and C(Fy,(v,)) are the joint survival functions of (Uy,...,Uy,) and (Vi,...,V,) respec-
tively, where C is the Archimedean copula with generator ¢. For all a > 0, let the random variables
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{Ui(@),i = 1} [{Vi(a),i = 1}] be independent, and the survival function of U;(a) [Vi(@)] be
exp {—a¢(Fy,)}exp {—ad(Fy.)}], respectively. Assume that the nonnegative integer-valued random
variable N is independent of U;’s, V;’s, U;(a)’s and V;(@)’s, respectively. Then

N N
Ui(a) Sec Vi@), i=1,2,..2 3 Ui e Y Vi
i=1 i=1

Proof. Since U;(@) <. Vi(@),i=1,2,..., we have from Theorem 3.3 that for all convex functions ¢,
El|o ZUi <E go(ZVi , n=1,2,....
i=1 i=1
Therefore, we have that for all convex functions ¢,
N =) n
Elo ZU,» :ZP(N—n)E o > U
i=1 n=1 i=1
< Z P(N=n)E|¢|> Vi
n=1 i=1
N
=E|¢ Z Vi)
i=1

This shows that Zf; Ui Sex Zfi 1 Vi
The following theorem shows that Theorem 3.A.13 in Shaked and Shanthikumar [26] can be extended
to the Archimedean copula case. m}

Theorem 3.5. Suppose that {U;,i > 1} and {V;,i > 1} are two sequences of nonnegative identi-
cally distributed random variables, C(Fy,(u,)) and C(Fvy,(v,)) are the joint survival functions of
(Uy,...,Uy) and (Vy,...,V,) respectively, where C is the Archimedean copula with generator ¢.
For all a >0, let the random variables {U;(«@),i > 1} [{Vi(a),i > 1}] be independent, and the sur-
vival function of U;(a) [Vi(@)] be exp {—a¢(Fy,)}[exp {—ad(Fy,)}], respectively. Let N; and N> be
two positive integer-valued random variables that are independent of U;’s, V;’s, Ui(a)’s, and Vi(a)’s,
respectively. If Uj(a) <. Vi(a) fori=1,2,..., and N; <. N,, then

N Ny
NI
i=1 i=1

Proof. To prove this theorem, we know from Theorem 3.4 that we only need to show:

Let i be a convex function, T, = 3.7 U; and define g(n) = E [k (T,)]. Then

g(n+ 1) —g(n) :E[h(Tn+ Un+1) _h(Tn)] .
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Note that 4 is a convex function, and

E[h(Ty+ Unw1) —h(T)| Ty =2l = E[h(z+ Ups1) —h(2)]
= f(2)(say),
then f(z) is increasing in z. Since 7, increases in n in the usual stochastic order, it can be obtained

that g(n+ 1) — g(n) = E [f (T,)] increases in n. Hence, g(n) is a convex function of n. Therefore, for
Ny < N3, we have:

Ny

S

i=1

<E|h

That is,

Ny N>

Ui <ex Ui- (5)
IEEDY
i=1 i=1

The proof is completed. In particular, taking V; = U; in Theorem 3.5, we obtain the following
corollary. O

Corollary 3.6. Suppose that {U;,i > 1} is a sequence of nonnegative identically distributed random

variables, C(Fy, (uy,)) is the joint survival function of (Ui, . . ., U,), where C is the Archimedean copula
with generator ¢. Let N; and N, be two positive integer-valued random variables, and be independent
of U;’s. Then

N N>
Ni £ex N, = Z Ui <¢x Z U..
=1 i=1

Remark 3.7. Corollary 3.6 is the generalization of Theorem 8.A.13(b) in Shaked and Shanthikumar
[26].

Corollary 3.8. Under the setup of Theorem 3.5, if there is some positive integer k such that:

k
Z Ui(a) <ex Vl (Cl) and Nl <cx sz,
i=1

then
Nj N>
2,Ur e 2
j=1 j=1

Proof. Note that N| <., kN,, by Corollary 3.6, we have Z;.VZ]I U <. Zjlfivlz U;. It is observed that

Zfivf Ui = Zg\fl ]]'Zk(i—l)+1 U;. Under the condition that Z;(:l U;(@) < Vi(a@), using Theorem 3.4, we

Ny ki N
obtain 3.7 j;k(i—1)+1 Uj <ex 2,2, Vi. Therefore,

N N>
Z U <ex Z V"
j=1 j=1

which is the desired result.
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The above corollary is an extension of Theorem 3.A.14 in Shaked and Shanthikumar [26]. Similarly,
Theorem 3.A.15 and 3.A.16 of Shaked and Shanthikumar [26] can be extended to the Archimedean
copula case. These results are not stated. O

4. The increasing convex order

In this section, some increasing convex order results under independent random variables are extended
to the case of dependent random variables with the Archimedean copula.

Theorem 4.1. Let C(Fy,(u,)) and C(Fy, (v,)) be the joint survival functions of (Uy,...,U,) and
(V1,...,Vy) respectively, where C is the Archimedean copula with generator ¢. For all a >0, let
the random variables U (), ..., U,(@) [Vi(@),..., V,(@)] be independent, and the survival func-
tion of Ui(@) [Vi(@)] be exp{-a¢(Fy,)}[exp{-ad(Fv,)}], respectively. If Ui(a) <icx Vi(a) for
i=1,2,...,n, then

n n
Z Ui <iex Z Vi.
i=1 i=1

The above theorem is the generalization of Theorem 4.A.8(d) in Shaked and Shanthikumar [26]. The
proof of this theorem is similar to the proof of the Theorem 3.3, so it is omitted. Furthermore, we have
the following result.

Theorem 4.2. Let C(Fy,(u,)) and C(Fy,(v,)) be the joint survival functions of (Uy,...,U,) and
(V1,...,Vy) respectively, where C is the Archimedean copula with generator ¢. For all a > 0, let the
random variables Uy (@), . .., U,(@) [Vi(a@), ..., V,(a)] be independent, and the survival function of
Ui(a) [Vi(@)] beexp {—a¢(Fu,) }exp {—ad(Fy,)}], respectively. Assume that the nonnegative integer-
valued random variable N is independent of U;’s, V;’s, Ui(a)’s and Vi(a)’s, respectively. Then

N N
U,-(a) <iex V,-(a), i=12,...=> ZU,’ <icex ZVZ'.
i=1 i=1
Proof. Note that the condition that:

Ui(a') <iex Vi(a’),iz 1,2,. ...,

by Theorem 4.1, we have:

=
=

for each n € {1,2,...}. This means,

N N
DIUIN = n) Siex (Z ViIN = n) ,
i=1 i=1

foreachn € {1,2,...}. Using Lemma 3.2, the desired result is immediately obtained.
In addition, we can extend Theorem 4.A.9 in Shaked and Shanthikumar [26]. The proof is similar to
the proof of Theorem 3.5, so it is omitted. O
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Theorem 4.3. Suppose that {U;,i > 1} and {V;,i > 1} are two sequences of nonnegative identi-
cally distributed random variables, C(Fy,(u,)) and C(Fy,(v,)) are the joint survival functions of
(U1, ...,Uy) and (Vy,. .., V,) respectively, where C is the Archimedean copula with generator ¢. For
all a > 0, let the random variables Uy («), Uz(@), ... [Vi(@), Va(a@), .. .] be independent, and the sur-
vival function of U;(a) [Vi(a)] be given by exp {—a¢(Fy,)}[exp {—a¢(Fy,)}], respectively. Let N,
and N, be two positive integer-valued random variables, and be independent of U;’s, V;’s, U;(a)’s and
Vi(a)’s, respectively. If Ui(@) <ix Vi(@) fori=1,2,..., and N\ < N, then
N Ny

Z Ui <icx Z Vi-

i=1

1
i=1

Particularly, taking Vi = Uy in Theorem 4.3, we obtain the following result, which is the extension
of Theorem 8.A.13(a) in Shaked and Shanthikumar [26].

Corollary 4.4. Suppose that {U;,i > 1} is a sequence of nonnegative identically distributed random

variables, C(Fy, (u,)) is the joint survival function of (Uy, . . ., U,), where C is the Archimedean copula
with generator ¢. Let N; and N, be two positive integer-valued random variables that are independent
of U;’s. Then

N Na
N Siex Ny = Z Ui <icx Z U;.
i=1 i=1

Corollary 4.5. Under the setup of Theorem 4.3, if there is some positive integer k such that:

k
Z Ui(a) <iex Vi ((I) and Ny <iex kNZ,

i=1

then
Nj N>
2, U i 2 Vr
J=1 J=1

The above corollary is an extension of Theorem 4.A.12 in Shaked and Shanthikumar [26]. Similarly,
Theorem 4.A.13 and 4.A.14 of Shaked and Shanthikumar [26] can be extended to the Archimedean
copula case. These results are not stated.

The following theorem shows that Theorem 4.A.15 in Shaked and Shanthikumar [26] can be extended
to the Archimedean copula dependent case.

Theorem 4.6. Let C(Fy,(u,)) and C(Fy,(v,)) be the joint survival functions of (Uy,...,U,) and
(V1,...,Vy) respectively, where C is the Archimedean copula with generator ¢. For all a >0, let
the random variables U (a), ..., Uy(@) [Vi(@),...,V,(a@)] be independent, and the survival func-

tion of Uij(a) [Vi(a)] be exp{—a¢(Fy,)}[exp{—ad(Fy,)}], respectively. If Ui(a) <ix Vi(a) for
i=1,2,...,n, then for every increasing and componentwise convex function g, we have:

g (Ul’ U2a R ] Un) Sl'C)C g(V19V29 e ,Vn) .
Proof. For any increasing convex function ¢, according to Lemma 3.1, we have:

E{elg(Ui,....U)]} = /0 E{plg(Ui(a),...,Up(@)]}dLs-1(a), (6)
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and

E{elg(Vi,....V)]} = /0 E{plg(Vi(a),...,Va(@)]}dLs-1(a). @)

Because Uy (@) <icx Vi(a@),1 < k < nfor all @ >0, we get from Theorem 4.A.15 in Shaked and
Shanthikumar [26] that

g (Ui(a),...,Un(@)) Sicx g (Vi(@), ..., Va(a)).
This means that for any increasing convex function ¢, we have:
Ele(g(Ui(a),....Un(a))] < E[e (g (Vi(@),...,Va()))]. ®)
Using (6), (7) and (8), we obtain:

Ele(gW,....U)] <E[p(g(Vi,....Vi)].

Hence we have g (Uy,...,U,) <iex € (Vi,..., V).
In particular, Theorem 4.1 can be obtained by taking g (Uy, ..., U,) = X', U;. Similarly, we can
extend Theorem 4.A.16 in Shaked and Shanthikumar [26]. The proof is omitted. ]

Corollary 4.7. Under the setup of Theorem 4.6. Then
Ui(a) iy Vi(e), i=1,2,...,n= max{U, Uy, -+ ,U,} <icx max{Vy,Va,---,V,}.

The following corollary shows the comparison results of the sums and products of the dependent
random variables, which have very important applications in the fields of finance and insurance.

Corollary 4.8. Under the setup of Theorem 4.6, assume that ay, . . ., a, are nonnegative real numbers,
and U;(@) <jex Vi(@),i=1,2,...,n Then

(i) Ypey Uk Siex 2oy Vi
(ii) if (Uy,...,Uy) and (Vy,. .., V,) are nonnegative, we have: [1;_; axUx <iex [T}, axVi.

Remark 4.9. It should be emphasized that all the above theorems and corollaries still hold if
C(Fy,(u,)) and C(Fy,(v,)) are replaced by the joint distribution functions C(FUn (u,,)) and
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C (Fy, (v,)), and the survival functions of U;() and V;(«) are replaced by the distribution functions
exp {—a¢ (Fy,)} and exp {—a¢ (Fv,)}.

5. Two applications

In this section, two potential applications of our results are presented. One application is to compare
the lifetimes of two systems subjected to shocks. Compound Poisson processes are usually used to
describe the wear accumulated by systems during time. Suppose that the system is subjected to shocks
arriving according to the Poisson process {N(¢),7 > 0}, and that the ith shock causes a nonnegative
damage U; [V;]. Then Z,{i(lt) U; and Z?i(lt) Vi denote the total wear accumulated up to time ¢ by the
two systems, respectively. It is usually assumed that {U;, U, ...} [{V1, Va,...}] is the sequence of
independent random variables. In practice, however, this assumption of independence often fails. The

following theorem, which is obtained by using Theorem 3.4, can be used to compare these two totals.

Theorem 5.1. Suppose that {U;, i > 1} and {V;, i > 1} are two nonnegative dependent sequences
of random variables, C(Fy,(u,)) and C(Fy,(v,)) are the joint survival functions of (U, ...,U,)
and (Vy,...,V,) respectively, where C is the Archimedean copula with generator ¢. For all a >0,
let the random variables {U;(«@), i > 1} [{Vi(a), i > 1}] be independent, and the survival function
of Ui(@) [Vi(a)] be exp {—a¢(Fy,(u;))} [exp {—ad(Fy,(v;))}], respectively. Assume that the Poisson
process N(t) is independent of U;’s, V;’s, Uj(@)’s and V;(a)’s, respectively. Then,

N(t) N(t)
Ui(@) <o Vi@), =122 Y Ui <a ) Vi
i=1 i=1

Another application is to compare the average life span of two populations. Assume that each popula-
tion has n individuals. U; [V;] denotes the life span of the ith individual. Then })? | U;/nand .7, Vi/n
denote the average life span of the two populations. Similar to the first application, we assume that
Uy,...,U,[V1,...,V,] are dependent. We apply Theorem 4.1 to obtain the following result for the
comparison of two populations in the sense of the increasing convex order.

Theorem 5.2. Suppose that {U;,n > i > 1} and {Vi,n > i > 1} are two sequences of nonnegative
random variables, C(Fy,(u,)) and C(Fvy,(v,)) are the joint survival functions of (Uy,...,U,) and
V1, ..., Vy) respectively, where C is the Archimedean copula with generator ¢. Let the random vari-
ables Ui(a), Uz (), ... [Vi(a), Va(a@),...] be independent, and the survival function of U; (@) [V;i(a)]
be given by exp {—a¢(Fy,(u;))} [exp {—ad(Fy,(v;))}], respectively, for all a > 0. If Ui(@) <iex Vi(@)
fori=1,2,...,n, then:

Zn: Ui/n Sicx Zn: Vi/n.
im1 i=1

6. Conclusions

It is an important issue to compare the stochastic ordering for the functions of random variables espe-
cially in the insurance and economic context for the close relationship between stochastic orders and risk
measurement. Among various stochastic orders, convex order and increasing convex order have many
applications in the fields of finance and insurance. Given that Archimedean copulas are often used to
describe the dependence of the risk factors and claim amounts, it is meaningful to study the properties
of convex order and increasing convex order under the Archimedean copula dependence.
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Under the Archimedean copula, the results of some well-known independent random variables on
convex order and increasing convex order are generalized to the dependent case, which include the
functions and random sums of dependent random variables. Two applications in reliability are also
provided to illustrate the main results.
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