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Abstract

Global warming will cause unprecedented changes to the world. Predicting events such as food insecurities in specific
earth regions is a valuable way to face them with adequate policies. Existing food insecurity prediction models are
based on handcrafted features such as population counts, food prices, or rainfall measurements. However, finding
useful features is a challenging task, and data scarcity hinders accuracy. We leverage unsupervised pre-training of
neural networks to automatically learn useful features from widely available Landsat-8 satellite images. We train
neural feature extractors to predict whether pairs of images are coming from spatially close or distant regions on the
assumption that close regions should have similar features. We also integrate a temporal dimension to our pre-training
to capture the temporal trends of satellite images with improved accuracy. We show that with unsupervised pre-
training on a large set of satellite images, neural feature extractors achieve a macro F1 of 65.4% on the Famine Early
Warning Systems network dataset—a 24% improvement over handcrafted features. We further show that our pre-
training method leads to better features than supervised learning and previous unsupervised pre-training techniques.
We demonstrate the importance of the proposed time-aware pre-training and show that the pre-trained networks can
predict food insecurity with limited availability of labeled data.

Impact Statement

This study shows that satellite images and deep learning can be used to drastically improve predictions of food
insecurity compared to existing predictors in countries or regions where food insecurity is mainly caused by
agricultural or weather-related factors. Vast amounts of unlabeled and publicly available satellite image data can
be used to pre-train a neural network using the method proposed in this study. This further improves predictions,
but also decreases the amount of labeled food insecurity data needed for training in order to obtain accurate
predictions. This is useful since accurate food insecurity data to train models might be hard or costly to obtain. To
increase the impact of this work, it would be valuable to research how to improve forecasts of food insecurity in
the future, which remains hard.

1. Introduction

Satellite imagery has been a precious source of information for many different fields and for many
years. Satellite images are, for instance, essential for weather prediction, agricultural observations,
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oceanography, cartography, biodiversity monitoring, and many more. Since the first orbital satellite
images obtained in 1959, there are now over 150 earth observation satellites in orbit. With an
abundance of satellite imagery available both across time and space, many studies (Mohanty et al.,
2020) have searched for efficient ways to process this data to gain useful insights. In recent years, deep
convolutional neural networks (CNNs) have increasingly been used to analyze such imagery (Jean
et al., 2016; Kussul et al., 2017; Nevavuori et al., 2019; Yeh et al., 2020). However, training deep
neural networks from scratch in a supervised way requires a large amount of labeled data, which is
costly to obtain.

A variety of contrastive self-supervised pre-training methods has been proposed to deal with this
problem (Jean et al., 2019; Ayush et al., 2021a; Kang et al., 2021; Manas et al., 2021). These methods
pre-train neural networks on large amounts of unlabeled satellite imagery so they learn useful
parameters. They typically are contrastive, which means they maximize the mutual information
between pairs of similar samples (tiles of satellite imagery) while minimizing mutual information
between dissimilar pairs. The learned parameters can then be used as a starting point for the supervised
training of different downstream tasks, for which little labeled data might be available, and often prove
to be more effective than using randomly initialized neural networks. Yet, existing methods completely
ignore the temporal dimension of satellite imagery (Jean et al., 2019; Kang et al., 2021) or learn only
highly time-invariant and highly spatially variant representations in a non-flexible manner (Ayush et al.,
2021a; Manas et al., 2021).

This is problematic since downstream tasks may range from being highly variant to highly invariant
against spatial, or independently, temporal distance. For instance, models for weather or rainfall
forecasting might benefit from sensitivity to changes that typically occur on a timescale of days, while
for land cover classification, it might be beneficial to abstract those exact same changes away and focus on
changes occurring over years. This study explores the use of relational pre-training (Patacchiola and
Storkey, 2020), a state-of-the-art contrastive pre-training method for satellite imagery. During pre-
training, both similarities between the same satellite image tile over time and similarities between
geographically neighboring image tiles are taken into account. Importantly, this framework allows the
implementer to easily and independently specify the degree of temporal and spatial sensitivity needed for
a certain downstream task by choosing thresholds that determine which pairs in the contrastive pre-
training are considered similar and which pairs dissimilar.

We use freely available LANDSAT-8 imagery, from which we construct representations that serve as
an input to predict food insecurity in Somalia. Although several studies explore the use of satellite
imagery for predicting poverty, food insecurity is a relatively unexplored topic. Yet, in 2019, as much as
8.9% of the world’s population was undernourished, and 10.10% lived in severe food insecurity (Roser
and Itchie, 2019). Existing early-warning systems, as Andree et al. (2020) note, suffer from high false-
negative rates. Therefore, automating and improving warning systems can be of great humanitarian
value.

Our hypothesis is that useful information can be drawn from satellite imagery to predict Famine Early
Warning Systems (FEWS) Integrated Phase Classification (IPC) food insecurity scores (Korpi-Salmela
et al., 2012) due to, for instance, environmental changes and increasing droughts.

Our research questions are:

1. Can pre-trained representations of satellite images improve food insecurity prediction accuracy?
2. How do different temporal and spatial relationship prediction settings as pre-training influence
downstream task performance?

We analyze the effect of relational pre-training on satellite imagery representations by comparing
different temporal and spatial similarity thresholds. We compare the performance of our pre-trained model
with a pre-trained baseline and with fully supervised networks for a range of training set sizes. We include
the predictions of our model in the input for an existing food crises predictor (Andree et al., 2020) to test if
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this improves performance. We test out-of-domain food insecurity prediction in regions that weren’t
included in pre-training data.

Our findings suggest that using spatially and temporally linked images as positive pairs for relational
pre-training can outperform (1) a randomly initialized network without pre-training, (2) pre-training on
standard data augmentations as in Patacchiola and Storkey (2020), (3) a network that has been pre-trained
on ImageNet (Deng et al., 2009), and (4) a strong contrastive baseline pre-trained on the same satellite
imagery (Jean et al., 2019). Our pre-trained model also outperforms a random forest classifier based on
previously used manually selected features (Andree et al., 2020). We show that our pre-trained model
needs little labeled data to learn to make good predictions and that the model’s predictions are not
reducible to predicting the season of the acquisition of a satellite image. We compare the importance of the
input LANDSAT-8 bands. We find that forecasting future food insecurity remains hard for all of the
considered methods.

2. Related work
2.1. Self-supervised image representation learning

Large amounts of labeled data are needed for training neural networks in a supervised way. Since labeled
data are scarce and expensive to collect compared to unlabeled data, specific methods have been
developed to leverage unlabeled data. A model can be trained in two stages.

First, the model is trained on a large, unlabeled dataset in a self-supervised manner. In self-supervised
learning (SSL), pseudo-labels are constructed automatically from the unlabeled data, which reframes
unsupervised learning as supervised learning and allows the use of standard learning techniques like
gradient descent (Dosovitskiy et al., 2016; Zhang et al., 2017). The goal of this first stage is to obtain a
neural network that produces informative, general-purpose representations for input data (Bengio et al.,
2013).

In a second stage, models are finetuned for specific downstream tasks, for which (often little) labeled
data are available, in a supervised way. By leveraging large amounts of unlabeled data, pre-trained models
often outperform their counterparts that have only been trained on the smaller labeled dataset in a
supervised manner (Schmarje et al., 2021). Such techniques are used in many machine learning
(ML) application domains, like in natural language processing, image recognition, video-based tasks,
or control tasks (Mikolov et al., 2013; Devlin etal., 2019; Florensa et al., 2019; Rouditchenko et al., 2019;
Han et al., 2020; Liu et al., 2023; Qian et al., 2021).

Our work uses contrastive learning for learning image representations in a self-supervised way
(Chopra et al., 2005; Le-Khac et al., 2020; Jaiswal et al., 2021). We train a model to project samples
into a feature space where positive pairs are close to and negative pairs are far from each other. Contrastive
pre-training has been used to learn image representations with great success recently, for instance, by van
den Oord et al. (2018), Wu et al. (2018), Chen et al. (2020), Grill et al. (2020), He et al. (2020), Misra and
van der Maaten (2020), and Patacchiola and Storkey (2020), who used different notions of distance and
different training objectives.

Our study builds upon the relational reasoning framework for contrastive pre-training proposed by
Patacchiola and Storkey (2020), but adapts it to satellite images by using spatial and temporal information
to define similar and dissimilar image pairs, instead of images and data augmentations.! We chose this
approach because of its state-of-the-art results and interpretability. We are not the first to use spatial and
temporal information for contrastive pre-training: for instance, Qian et al. (2021) proposed a method for
pre-training video representations, but their application domain of videos of daily human actions was
quite different from our setting, their contrastive samples were video fragments, and they did not use
spatial neighborhoods for defining positive or negative pairs.

! Data augmentations are generations of new samples from a base sample, with a transformation, such as a random crop or color
distortion.
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2.2. Learning representations of satellite imagery

The large amounts of publicly available remote-sensing data from programs such as LANDSAT
(Williams et al., 2006) and SENTINEL (The European Space Agency, 2021) make this an interesting
area of application for self-supervised pre-training techniques. Additionally, metadata like the spatial
location or timestamps of images can be used to construct the distributions from which positive and
negative pairs for contrastive learning are sampled.

Deep learning has, for instance, been used on satellite imagery for land cover and vegetation type
classification (Kussul et al., 2017; Rustowicz et al., 2019; Vali et al., 2020), various types of scene
classification (Cheng et al., 2017), object or infrastructure recognition (Li et al., 2017, 2020), and change
detection (Kotkar and Jadhav, 2015; Chu et al., 2016; Gong et al., 2016; de Jong and Bosman, 2019).

Several studies have proposed the use of self-supervised pre-training on satellite images. Jean et al.
(2019) proposed a triplet loss that pulls representations of spatially close tiles toward each other and
pushes representations of distant tiles away from each other. Wang et al. (2020b) additionally used
language embeddings from geotagged customer reviews. Kang et al. (2021) and Ayush et al. (2021a) also
defined positive pairs based on geographical proximity and used momentum contrast (He et al., 2020) for
a larger set of negative samples.

However, most recent works ignore the additional information that could be obtained from the
temporal dimension of satellite images: satellites usually gather images of the same locations across
multiple points in time. Ayush et al. (2021a) take images of the same location from distinct points in time
as positive pairs, which causes their representations to be inevitably time-invariant. Manas et al. (2021)
also proposed a contrastive pre-training method for satellite imagery using the temporal dimension. Both
studies obtained representations that are maximally spatially variant, in the sense that only tiles of exactly
the same location are considered similar. Neither method allowed to flexibly set different thresholds and
consequently obtain different degrees of temporal and spatial variance.

In this work, we apply the state-of-the-art relational reasoning method of Patacchiola and Storkey
(2020) to satellite images for the first time. This allows us to flexibly define and test several rules for
positive/negative pair sampling, including rules that define images of the same location from distinct
moments as dissimilar, and images from the same moments of nearby but not exactly the same locations as
similar, which could result in relatively more space-invariant but time-variant representations, compared
to Ayush et al. (2021a) and Manas et al. (2021).

2.3. Food insecurity prediction

Numerous studies have attempted to predict socioeconomic variables from satellite images. The predicted
variables most often concern poverty, economic activity, welfare, or population density (Townsend and
Bruce, 2010; Jean et al., 2016; Goldblatt et al., 2019; Hu et al., 2019; Bansal et al., 2020; Yeh et al., 2020;
Ayush et al., 2021b; Burke et al., 2021). Some studies used additional data sources such as geotagged
Wikipedia articles (Sheehan et al., 2019; Uzkent et al., 2019). Researchers have also predicted crop yields
from satellite images (Wang et al., 2018; Nevavuori et al., 2019), which is closer to food insecurity
prediction, with the main difference being that food insecurity might also be caused by different factors
such as political instability.

Other studies also predicted food insecurity using ML, but none used satellite imagery directly.” The
World Bank has published two studies that predicted food insecurity from data in addition to defining a
food insecurity score. Wang et al. (2020a) used a panel vector-autoregression (PVAR) model to model
food insecurity distributions of 15 Sub-Saharan African countries on longer time horizons. Andree et al.
(2020), on the other hand, used a random forest (Breiman, 2001) to model food insecurity on a shorter time
horizon, with multiple handcrafted features as input: (1) structural factors such as spatial and population

2 Andree et al. (2020) use the normalized difference vegetation index (NDVI) as an input feature, which is computed from satellite
images as the normalized difference of images in two different spectral bands, but this simple scalar value cannot convey as much
information as an entire image.
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trends, ruggedness, and land use shares, (2) environmental factors such as the normalized difference
vegetation index (NDVI), rainfall, and water balance equation, (3) violent conflict information, and
(4) food price inflation. We mainly compare with the shorter-term predictions of Andree et al. (2020).

Lentz et al. (2019) predicted different food insecurity scores for Malawi from various input variables
using linear and log-linear regression models.

3. Spatiotemporal SSL

Contrastive learning methods enable representation learning without annotated data. Instead, they rely on
the intrinsic structure of data. For example, different patches from the same image are likely to be similar
to each other and dissimilar to patches from other images. Training image representations to enable this
discrimination should lead to useful image features.

Here we leverage the contrastive framework proposed by Patacchiola and Storkey (2020), who
formulated this principle with an explicit relation prediction. They mapped each image / to augmentations
A(I) (e.g., patches) and jointly trained an image encoder ¢ and a relation prediction network p to predict
whether augmentations come from the same image:

y=p(p(AI:)).4(A(L)))). (1)

where y should be close to 1 when i = and close to 0 otherwise. We use the same loss as Patacchiola
and Storkey (2020):

N
L(5.y) =~ > wiCrossEntropy (y,.5,), @)
=1

13

1

N

where w; is the focal factor that modulates the loss according to the prediction confidence through a
hyperparameter y:

1

Wizi[(l =Yy +y(1=3)). ®

If y> 1, uncertain predictions have a greater effect on the training loss.

Patacchiola and Storkey (2020) only rely on standard spatial image augmentations (horizontal flip,
random crop-resize, conversion to grayscale, and color jitter). Where for natural images it makes sense to
assume different images will be semantically different, since they are likely to depict different objects or
scenes, satellite image tiles could be seen as a patchwork that forms a single large image, evolving over
time, from the same object, that is, the Earth. The division of satellite imagery into smaller image tiles
follows arbitrary boundaries determined by, for example, latitude/longitude coordinates, and not actual
semantic boundaries, hence the resulting neighboring tiles are not necessarily likely to vary semantically.
However, as spatial distance between satellite image tiles or time between when satellite images are taken
increases, so does the likelihood that what is depicted changes semantically. Therefore, we define new
augmentations based on temporal and spatial distances, and we consider far-away patches as if they came
from a different image. In the next section, we evaluate this idea and compare different similarity criteria.
We call our pre-training method spatiotemporal SSL (SSSL).

For this purpose, we introduce different thresholds D, and D, of respectively geographic distance and
temporal distance in order to define positive pairs. D, is measured in degrees of longitude/latitude, and D,
in months. Let x; be a sampled anchor observation characterized by time ¢;, latitude lat;, and longitude lon;.
Positive (similar) pairs include images x; for which the following constraints apply:

t;i—D;<t; <t;+D,, (4a)

lat,» — Dg < latj < lat,- + Dg, (4b)
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>

Figure 1. SSSL: for one sample, positive samples are those that are closer in time to the image than the
temporal threshold, and are closer in space to the sample than the spatial threshold.

lon; — Dg <lon; <lon; +Dj,. (4c)

Figure 1 illustrates this constraint. When D; is arbitrarily high, and D, ~ 0, the positive pairs are similar
to the positive pairs defined by Ayush et al. (2021a). This would result in spatially variant but time-
invariant representations and reduce the effect of seasonality or other temporal trends on the represen-
tation. When D, <f, on the other hand, with f the temporal frequency of the imagery, positive pairs are
purely location-based. This is similar to the strategy of Tile2Vec (Jean et al., 2019. In addition to fixed
thresholds of Dy as in Egs. (4b)—(4c), we also define spatial positive pairs as images that correspond to the
same predefined area (administrative unit, AU).

4. IPC score prediction

We approach the downstream task of predicting food insecurity as a classification problem of satellite tiles
I (or a collection thereof) into one out of five possible IPC scores s corresponding to different levels of
food insecurity. We chose to approach IPC score prediction as a classification problem following Andree
et al. (2020).

An image encoder ¢ (cf. Eq. (1)), possibly pre-trained as described in the previous section, projects a
tile onto a tile embedding ¢(7). A multilayer perceptron (MLP) with 1 hidden layer then projects the tile
embedding to a probability distribution over the IPC scores: 5 ~ MLP(4(1)).

We train the classification MLP and potentially the image encoder ¢ with a cross-entropy loss to assign
the highest probability to the IPC score of the AU to which the location of a tile belongs to, on the date of
the satellite image. Unless otherwise stated, we predict the IPC score gathered by FEWS NET for the same
date as the satellite image was taken. In one experiment, we will forecast future IPC scores, gathered for
dates up to 12 months after the date of the satellite image that was used as input.

4.1. Score aggregation

Since IPC scores are defined in AUs, and since one AU contains many different locations and hence
satellite image tiles, we need a way to aggregate our network’s predictions per tile into one prediction per
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AU.If M tiles {I;},_,  ,; € AUy, where AU, is an AU, we need a single predicted IPC score 52V for the
whole unit, based on the predicted IPC score §%"° per tile /;:

AAU Agg({mle} ’M>’

where §''° = argmax(MLP(¢(I,)),

)

and where Agg : {s“le ..., sl } 35U is an aggregation function. We consider three aggregation methods:

1. Majority voting: the predicted score for the AU is the score that has been predicted most often for
tiles within that AU.

2. Maximum voting: the predicted score for the AU is the maximum of the predicted tile scores.

3. Individual tiles: predicting and evaluating the IPC scores on a per-tile basis, which is arguably
harder since a tile’s IPC score may be determined by another location in the AU.

5. Experiments
5.1. Data

5.1.1. Pre-training

We make use of publicly available imagery from the LANDSAT-8 satellite® (Roy etal., 2014). LANDSAT
is the longest-running satellite photography program and is a collaboration between the US Geological
Service (USGS) and the National Aeronautics and Space Administration (NASA). The satellite captures
landscapes from all over the world with a spatial resolution of 30 m per pixel and a temporal resolution of
16 days. To reduce the impact of clouds on the satellite images, we use Google Earth Engine* (GEE;
Gorelick etal., 2017) to generate composite images comprised of individual images spanning 3—4 months,
matching the temporal frequency of the downstream food insecurity samples. We use all seven available
surface reflectance spectral bands: one ultra-blue, three visible (RGB), one near-infrared, and two short-
wave infrared. We use images of the entire surface area of Somalia (640K km?), which were captured
between May 2013 (earliest LANDSAT-8 data availability in GEE) and March 2020 (latest available IPC
score), resulting in 10 three-month and 13 four-month composites. We divide the images into tiles of
145x%145 pixels so they can be processed by a CNN. Figure 2 shows the visible RGB bands of three such
tiles. One tile corresponds to almost 19 km?. We end up with 800K tiles, consisting of 35K locations
across 23 moments in time.

5.1.2. Food insecurity prediction
We use the data on food insecurity in 21 developing countries made available by Andree et al. (2020) to
finetune our results. FEWS NET®, an information provider that monitors and publishes data on food
insecurity events, defines the target variable: the IPC score. The IPC score has five possible values:
(1) minimal, (2) stressed, (3) crisis, (4) emergency, and (5) famine. The scores are measured using the [PC
system, which is an analytical framework to qualitatively assess the severity of a food crisis and
consecutively recommend policies to mitigate and avoid crises (Hillbruner and Moloney, 2012). IPC
scores are given per AU, of which the boundaries are set by the UN Food and Agriculture Organization.
Figure 3 shows the IPC score distribution per country and for Somalia per year. The classes are heavily
imbalanced: the relative frequencies of IPC scores 1, 2, 3, and 4 are 14%, 71%, 13%, and 1.6%,
respectively.

To limit resource usage, we chose to focus on IPC score prediction for Somalia, since four out of five
possible IPC scores occur in Somalia between 2013 and 2020, and because food insecurity in Somalia is

3 https://www.usgs.gov/core-science-systems/nli/landsat/Landsat-8.
“ https://earthengine.google.com/.
> https://fews.net/IPC.
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(b) IPC score (2): stressed.

60 80 100 120 140 0 20 40 60 80 100 120 140

(c) IPC score (3): crisis. (d) IPC score (4): emergency.

Figure 2. Examples of 145 x 145 pixel tiles taken from composite LANDSAT-8 images of Somalia,
exported from GEE (only RGB bands visualized), with corresponding IPC scores. Note that the difference
between images with different IPC scores is not easily discernible.
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Figure 3. IPC score distribution (a) for each country in the dataset from 2009 to 2020 and (b) for Somalia
per year from 2013 until 2020. Note that IPC score 5 does only occur in 2011 in Somalia.

mainly caused by agricultural and rainfall factors (Andree et al., 2020). We also experimented with
predicting IPC scores for South Sudan, but results were far worse. This can be explained by the fact that
food insecurity in South Sudan in 2013-20 was caused by non-environmental factors such as markets and
conflicts (Andree et al., 2020). The timeframe of the IPC score extends from August 2009 to February
2020. The score is reported at quarterly frequency from 2009 to 2016, and three times per year from 2016 to
2020. We limit our timeframe to August 2013 until March 2020 as for the pre-training images. The 3- or
4-month satellite image composite start and end dates (e.g., May 2013 to August 2013) are chosen so that
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Pre-train splits Downstream splits

[ Out-of-domain
[ Validation
3 In-domain test

I Out-of-domain
[ Validation

(a) (b)

Figure 4. (a) Geography of pre-train data splits: train data are used for SSSL pre-training, validation
data are used to select the best checkpoint after pre-training, and out-of-domain data are set aside.
(b) Geography of downstream IPC score prediction data splits: train data are used for IPC score
classification, validation data are used for early stopping and selecting the best checkpoint, out-of-
domain and in-domain test data are used for evaluation.

the end date always corresponds to a date for which an IPC score is available. A composite (and the
145 x 145 tiles it is split into) is matched to the IPC score gathered by FEWS NET in the month of the
composite end date: for instance, tiles generated out of a composite of satellite images taken between May
2013 and August 2013 are matched to the IPC score gathered in August 2013.

5.1.3. Data splits

We take 4 of the 74 AUs as out of domain: all 44K tiles belonging to 1.9K locations within these AUs,
together with these regions’ 92 IPC scores (one per region per date), form the out-of-domain test set D},
These tiles are not included in pre-training data.

For pre-training, we divide all locations in the 70 remaining AUs over two data splits: the training set
DI (31K locations, 712K tiles) and the validation set D¥;; (1.9K locations, 43K tiles, or little more than
5%). All tiles (timestamps) belonging to one location are always in the same split, but the train-val split
does not necessarily respect AU boundaries. The validation split consists of a number of contiguous
square areas randomly spread over Somalia in order to make sure that every location has a sufficiently
large spatial neighborhood to sample positives from (for contrastive learning). Figure 4a shows the spatial
division of the pre-training data.

For the downstream task (IPC score prediction) of training and evaluation, we take 7 out of the 70 AUs
(74 minus 4 for the out-of-domain split) for the validation set Df;, (3.1K locations, 72K tiles, 161 IPC
scores) and another 7 for the in-domain test set D (4.6K locations, 105K paths, 161 IPC scores). The
remaining 56 AUs make up the training set D. (25K locations, 578K tiles, 1.3K IPC scores). Figure 4b
shows the geography of the downstream task splits. To test performance when the amount of available
labeled data for supervised downstream task training decreases, we also construct training sets with a

decreasing number of AUs: 70%, 50%, 20%, 5%, and 1% of the full training set D

train*
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Table 1. Comparison of (pre-training) dataset sizes in related work

Number of  Pixels per Total number

Study Dataset name images image of pixels
This study Total 799K 145 x 145 17B
D 712K 145 x 145 15B
Relational reasoning CIFAR-10 and CIFAR 60K 32x32 61M
(Patacchiola and Storkey, 100
2020) Tiny-ImageNet 100K 64 % 64 409M
Tile2Vec (Jean et al., 2019)  NAIP 12B
LANDSAT-8: American 60M
cities
LANDSAT-7: Uganda 16K 145 x 145 344M
DigitalGlobe 2.9B
Geography-aware SSL Functional map of the 417K 224 x 224 21B
(Ayush et al., 2021a) world

Table | compares the total number of pixels of our data splits with those used by other self-supervised
pre-training for (satellite) image studies and shows that we match the order of magnitude of the most large-
scale study of Ayush et al. (2021a).

5.2. Experimental setup and methodology
5.2.1. SSSL pre-training
To define positive and negative pairs of patches for SSSL pre-training, we explore spatial resolutions D,
0f0.15°,0.4°, and entire AUs, and temporal resolutions D, of 1 (meaning only tiles from the same date are
considered similar), 4, 12, 36, or 84 months (the length of our entire timeframe, which means spatially
nearby tiles are considered similar regardless of their date). When D, equals 84 months and D, is small
enough, our positive and negative pairs are similar to those used by Ayush et al. (2021a) (their spatial
threshold is actually so small that only the exact same location is considered similar, while our smallest
spatial threshold of 0.15° still considers for nearby but not identical locations to be similar). Jean et al.
(2019) used positive pairs determined by spatial locality (with a small spatial threshold), which resemble
our pairs when D; equals 1 month and D, is small but large enough to include more than a single location.
Baselines. We compare SSSL with the following pre-training baselines. The best pre-training check-
points are chosen based on IPC score prediction performance from the frozen checkpoint weights, but we
perform further evaluations involving both frozen and finetuned pre-trained weights.

1. The relational reasoning method of Patacchiola and Storkey (2020), which uses image augmen-
tations of the anchor images like random flips, random crops, etc., to define positive instead of
spatial and temporal thresholds.

2. The Tile2Vec contrastive pre-training method for satellite imagery, which uses a triplet loss to pull
an anchor tile’s representation closer to a nearby positive tile’s representation in feature space while
pushing it away from a far-away negative tile (Jean et al., 2019). We adjust the algorithm to work
with a configurable spatial threshold instead of a fixed one. We add a configurable temporal
threshold, so we can directly compare this baseline to our SSSL pre-training for different spatial and
temporal thresholds D, and D;,.

We chose Tile2Vec as baseline that uses contrastive pre-training specifically designed for satellite imagery

since it is more easily extendable to configurable spatial and temporal thresholds and to limit the resources
required for our study. The methods proposed by Ayush et al. (2021a) and Manas et al. (2021) explicitly
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rely on fixed thresholds that only consider tiles of the exact same location across time to be similar to arrive
at temporally invariant and spatially variant representations, so they cannot be as naturally extended to our
flexible threshold setting.

Hyperparameters and settings. We use a total number of positive (and negative) pairs K = 8 for SSSL,
and batch size N = 50 for both SSSL and Tile2 Vec pre-training. Minibatches are constructed by sampling
N anchor samples from the dataset, and adding K — 1 =7 for SSSL and 1 for Tile2Vec positives per
anchor to the batch. For each anchor, random other anchors or other anchors’ positives from the same
minibatch are used as negatives.

We pre-train all CNN backbones on DPs for a fixed number of epochs and save all intermediate
checkpoints for later evaluation (one per epoch). We stopped SSSL pre-training after 10 epochs, and
Tile2 Vec pre-training after 20 (40 would have been in some sense more fair since Tile2 Vec only sees one
positive and one negative per sampled anchor tile, while SSSL sees K — 1 = 7 positives and negatives per
anchor tile, so SSSL batches are 4 X larger than Tile2Vec batches, but we noticed that downstream task
performance steadily decreased after 10 epochs, while the needed training time for 20 epochs of Tile2 Vec
training was already significantly more than 10 epochs of SSSL pre-training, due to increased overhead).

We use the ResNet-18 architecture as CNN backbone for all experiments to balance performance with
resource usage (He et al., 2016). We also tested the Conv4 network that Patacchiola and Storkey (2020)
used, but results were much worse. We use the Adam optimizer (Kingma and Ba, 2015) with learning rate
le—4 and (B,,f,.¢) = (0.9,0.999,1e — 6). We set y=2.0 in the focal factor (Eq. (3)) and use a weight
decay factor of 1e —4 for SSSL. For Tile2Vec, we set the margin for the triplet loss to 1.0 and the L2
regularization weight to 0.01.

We used a 16 GB NVIDIA Tesla P100 GPU for all pre-training and downstream task runs. SSSL pre-
training on DX took on average 36 h. Tile2Vec pre-training took on average 51 h. Neural network

train
training and evaluation was implemented with PyTorch (Paszke et al., 2019).°

5.2.2. Downstream task: IPC score prediction )
After pre-training, we train a single-layer MLP on D['; to predict IPC scores from the frozen image
features of the CNN backbone of each pre-training checkpoint until macro F1 on the validation set D7
converges. We use these validation scores to choose the best pre-training checkpoint for every pre-training
run and to choose the best performing spatial and temporal thresholds and the best performing score
aggregation method. We then use the best checkpoints (best validation performance) of the pre-training
runs with the best spatial and temporal thresholds for further evaluations.

We report macro F1 scores since higher IPC scores (indicating a higher degree of food insecurity) occur
much less frequently than lower scores, but are at least as important (if not more important) to detect. The
macro F1 weighs all IPC scores equally, as opposed to micro averaged metrics that would give more
weight to more frequent IPC scores.

Baselines. In addition to the pre-training baselines, for which we used the checkpoints to initialize an
IPC score predictor as described in the beginning of this section, we consider the following IPC prediction

baselines that don’t need manual pre-training.

1. A randomly initialized CNN backbone, without any pre-training.

2. A CNN pre-trained on ImageNet classification (Deng et al., 2009; He et al., 2016). Since ImageNet
images consist of three RGB channels instead of seven like our LANDSAT-8 images, we copy the
convolution weights of the RGB channels from the pre-trained checkpoint but add randomly
initialized weights for four additional channels.

3. A random forest, like the one proposed by Andree et al. (2020).

®Upon acceptance, we will publish all training, evaluation and data preprocessing code, as well as the scripts used to export
satellite images from GEE, and trained checkpoints of our models.
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Random forest. We compare our neural network’s food crisis predictions to those of a random forest
classifier, as used by Andree et al. (2020). Andree et al. (2020) merged the five IPC score categories into
two—food crisis or not—and trained a binary classifier. They used the following input variables for
20 developing countries from 2009 until 2020:”

* the coordinates of the central points;

« the district size;

* the population;

* the terrain ruggedness;

* the cropland and pastures area shares;

» the NDVI—a measure of the “greenness,” relative density, and health of vegetation of the earth’s
surface;

« the rainfall;

* the evapo-transpiration (ET);

« conflict events;

 food prices.

For a fair comparison, we only use the data for Somalia and the 2013-20 timeframe. We perform food
insecurity prediction under two setups: binary classification, following Andree et al. (2020), and multi-
class classification with the five possible IPC scores, as described thus far. Our random forests consist of
50 decision trees. A leaf node needs to contain at least three samples to be considered during training, and
it needs to contain at least 10 samples to be split into new leaf nodes. Out of the 11 features a sample has,
three are considered per split point. Trees have a maximum depth of six nodes. The class weights for
random forest training are inversely proportional to their frequency.

After comparing the learned image encoder features with handcrafted features, we also combine both
by adding the neural network predictions as additional input features to assess their complementarity.

Hyperparameters and settings. Again, we use the Adam optimizer, now with the weight decay factor
setto 0.01. If the pre-trained CNN backbone is not frozen during downstream task training, but finetuned,
its weights are updated with a lower learning rate of 1e — 5 than the classification MLP (which is updated
with learning rate 1e — 4). We use early stopping on the validation macro F1 score of predictions that use
majority voting as aggregation method and reduce the learning rate when the validation macro F1 reaches
a plateau. To counteract class imbalance, we weigh the IPC classes in the cross-entropy loss inversely
proportional to their frequency in the training data.
Training for the downstream task Dj. took approximately 4 h when freezing the pre-trained CNN
backbone, and 8 h when finetuning it. We used Scikit-learn to implement the random forest (Pedregosa
etal., 2011).

6. Results
6.1. Spatial and temporal thresholds

Figure 5 shows the validation macro F1 on the downstream task for different combinations of spatial and
temporal threshold values for positive pair selection, as well as for different aggregation methods, after
pre-training with SSSL on images in D} .

It is clear that the best performing configurations use a small temporal threshold, with by far the best
performance when using D; = 1 month (so only spatially nearby tiles of the same 3- or 4-month composite
are considered similar). This makes the representations time-variant by minimizing mutual information

between image representations of the same location at different times. Since our downstream task is time-

”We do not use time data like the month and the year of an IPC measurement as input for the random forest, since the test and
validation sets are spatially but not temporally separated, and since the neural networks also do not have access to this information.
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Figure 5. Macro F1 on validation set ’Di‘:fl using different configurations of positive and negative pairs
(determined by temporal threshold D, and spatial threshold D,) for SSSL pre-training, with D; and D,
denoted on the x-axis. The baseline in this plot always predicts the majority class. “admin’ means using

administrative units instead of longitude/latitude to define spatial positive pairs.

dependent as well (regions might be food-insecure during certain time periods but not during others), this
is not surprising.

Using a fixed spatial threshold D, of either 0.15" or 0.4° usually gave better results than defining spatial
positive pairs based on AUs. This means it is desirable to maximize mutual information between image
representations of locations that share a medium-sized vicinity, but not when this vicinity’s size increases
or decreases too much. This is somewhat surprising because the granularity of one AU corresponds
exactly to the granularity of the IPC scores, and one might thus expect maximizing information between
image representations of locations that share an IPC score to work best. But while patches in one AU share
one IPC score, AUs can be quite large (>10K km?), and patches might thus be quite different. If the
patches are too different, or if they do not share the properties informative to IPC score prediction, the
network might thus be forced to ignore important properties.

6.2. Score aggregation

“Individual tiles” in Figure 5 means predicting an entire AU’s IPC score from a single patch, which is
inherently difficult since the IPC score might be determined by much more information than a single patch
contains.

Majority voting almost always performed best. Maximum voting performed much worse, which could
be caused by FEWS NET not giving an AU the worst IPC score of its subregions, and by the fact that a
single incorrect patch prediction is more likely to change the entire AU prediction with maximum voting
than with majority voting.

The rest of the experiments use SSSL with one configuration of positive pairs: a temporal threshold D,
of 1 month and a spatial threshold D, of 0.4°, with majority voting as aggregation method. Conclusions
for different spatial and temporal thresholds for Tile2Vec pre-training are largely similar, with the best
performing setting D; =1 and D, =0.15" (see Figure Al in Appendix A).

6.3. SSSL vs. baselines
Table 2 compares the macro F1 on the in-domain and out-of-domain test sets of the best pre-training

settings for SSSL and Tile2Vec to the original pre-training proposed by Patacchiola and Storkey (2020)
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Table 2. Macro FI on the in-domain and out-of-domain test set of the SSSL model with spatial and
temporal positive pairs vs. baselines: Tile2Vec (also with spatial and temporal pairs), the data
augmentation-based model of Patacchiola and Storkey (2020), ImageNet pre-training, random

initialization, and the random forest (RF) of Andree et al. (2020). The best result
per column is marked in bold.

D, Do

Pairs Frozen Unfrozen Frozen Unfrozen
Maj. baseline 0.201 0.205

RF 0.398 0.390

Random init. 0.278 0.422 0.356 0.369
ImageNet 0.444 0.483 0.347 0.456
Tile2Vec 0.356 0.484 0.393 0.407
Data aug. 0.392 0.478 0.358 0.387
SSSL 0.543 0.654 0.477 0.542

Note: Results of CNN backbones with both frozen backbone weights and unfrozen backbone weights during supervised training are reported. Maj.
baseline corresponds to always predicting the majority class.

that uses data augmentations (color jitter, resized crop, etc.) instead of our spatiotemporal model. It also
shows the results of a model that does not integrate pre-training (i.e., starting from randomly initialized
weights and training these only during the supervised training of food insecurity prediction), of pre-
training on ImageNet (Deng et al., 2009; He et al., 2016) (i.e., starting the supervised training with the
convolutional weights initialized to publicly available weights that were trained on the ImageNet
classification dataset), and of a random forest that uses handcrafted features (Andree et al., 2020). We
consider both freezing and not freezing the CNN backbone’s weights in the supervised stage.

SSSL significantly outperforms all baselines in all settings, with 21-39% relative improvement over
the second best model. All neural network-based models (bottom five rows) scored better than the
randomly initialized neural network baseline across all settings, although in some cases only marginally,
especially on the out-of-domain test set. Tile2Vec and data augmentations showed comparable perform-
ance, and only outperformed the random forest baseline when their CNN weights were finetuned.
Surprisingly, ImageNet outperformed Tile2Vec and data augmentations with frozen backbone weights
on the in-domain test set D;’, even though the CNN backbone had only seen images of daily scenes like
cats and dogs during ImageNet pre-training, while the latter two baselines were pre-trained on satellite
images in the D dataset. Finetuning the CNN weights improved performance compared to freezing

~ “train
them, often significantly.

6.4. Transferability

Performance generally drops on the out-of-domain test set, but stays well above the random and majority
baselines. This shows that it is harder but still feasible to make good IPC score predictions for locations for
which no imagery was included in the pre-training data. Note that none of the images and IPC scores in

Digg; or Doy were included in the downstream task training set D>, but images in Digg, might have been
included in the pre-training data D" | while images in D, were definitely not. Also note that this only
makes a difference for SSSL, Tile2Vec, and data augmentations, since the other models were not pre-
trained on D}, anyway.

Therefore, our model could be used not only to predict food insecurity for locations for which no
labeled data are available, but also for locations on which it has not been pre-trained (although it is

preferable to pre-train on all locations for which IPC predictions need to be made). The out-of-domain
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Figure 6. Test macro FI on DZSC, with frozen (a) and unfrozen (b) CNN backbone weights for models with
different weight initializations using increasing amounts of labeled training data.

locations in Dgfd are in separate AUs, but of course still in the same country as and adjacent to AUs in pre-
training and downstream training data. Some degree of similarity can thus still be expected. It would be
interesting to test how performance degrades when distance or dissimilarity between out-of-domain test

data and training data increases, for example, on locations in different countries or climates.

6.5. Decreasing labeled dataset size

Figure 6 shows the macro F1 on the in-domain test set Dby for models with different weight initializations
for different amounts of labeled data used to train for the downstream task. As expected, macro F1
decreases with decreasing training set sizes, but it does so gradually, not disproportionately. This is the
case both for SSSL and most baselines, except for Tile2Vec when freezing its CNN’s weights, for which
performance drops rapidly to the majority baseline. Performance starts falling sharply when decreasing
the training set size further than 20% of its original size, but up until a decrease to 5% of available data, all
models perform better than the majority baseline. SSSL pre-training outperforms the baselines for training
set sizes above 5%, both with finetuned and frozen weights.

The random forest performed better than neural baselines (but not SSSL) with frozen weights and
performed equally well or better than neural baselines (but not SSSL) with unfrozen weights, for 50-70%
of training data, meaning that it is more robust to slight decreases in training set size. Surprisingly, its
performance when trained on all data drops compared to when trained on 50-70%, which might be
explained by some samples being excluded from training data that are “harder” or more dissimilar to
test data.

Although overall performance with unfrozen CNN weights is better than with frozen weights, the latter
is more robust to decreasing training set size. This could be explained by the fact that not updating the
representations reduces the number of trainable parameters vastly, and hence the risk to overfit a small
labeled training set. We noticed some training instability on the smaller training sets when freezing the
CNN weights (shown, e.g., by the unexpected bump in Random init. performance for 20% of the training
data).

Figure B1 in Appendix B shows the same plots but for the out-of-domain test set D", instead of the
in-domain test set (of which the satellite image tiles were not included in pre-training data). The gap
between SSSL and baseline is smaller with frozen weights. For unfrozen weights, SSSL performance
drops below baselines when trained on 50% or less of labeled data.

We can conclude from these experiments that (1) contrastive SSSL pre-training and (2) defining rules
for positive/negative pair selection that are tailored to satellite images, by making use of their spatial and
temporal dimensions instead of data augmentations, will improve results for varying amounts of labeled
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Figure 7. Test macro F1 on Dzscftemp with frozen (a) and unfrozen (b) CNN backbone weights for neural
networks with different weight initializations and a random forest when predicting an increasing number
of time steps into the future (one step corresponds to 3—4 months, two to 6—8 months, and three to 9—
12 months).

training data. Little labeled data are needed for finetuning to a downstream task. Performance with
decreasing training set size is better retained when the model has seen the locations during its pre-training
stage.

6.6. Forecasting food insecurity in the future

Figure 7 shows the macro F1 on a different, temporally separated test set Dby, ™ for different models
(with frozen (7a) and unfrozen (7b) CNN weights), when forecasting food insecurity in the future. Here
the future means a later relative point in time than the date the input satellite image was acquired. To allow
time for preventive political measures or timely humanitarian action, a system that warns about food
insecurity more than 3—4 months before it actually occurs would be useful. Hence we train and evaluate
models for predicting the next gathered IPC score for every location (N = 1, which corresponds to 3—
4 months later), the one after that (N =2, 68 months later), and the one after that (N =3, 9-12 months
later). While pre-training remains the same, we no longer use the geographically separated
DY DY, D for finetuning. Instead we separate all the in-domain data temporally (exclusively for
the experiments in this section): we use the IPC scores from March 2020 for validation (i.e., the last
available IPC scores at the time of the start of this study, corresponding to the date of the last LANDSAT-8
tiles that were included in pre-training). We train on the IPC scores up to November 2019 (up until one step
before the validation scores). The first IPC scores used for training are chosen so that all of the training sets
for this experiment (i.e., corresponding to a different number of steps into the future) are of equal size. The
test IPC scores are from June 2020 and have been published by FEWS NET since the start of this study.
This means that no satellite imagery corresponding to the time of the test IPC scores has been used for pre-
training. Note that for the experiments in this section, predicting 0 steps into the future (N = 0) still uses
the temporally instead of geographically separated splits, and is therefore not identical to previously
discussed runs. The same temporal splits are used to obtain the train, validation, and test set for the random
forest.

Figure 7 shows that forecasting into the future is difficult for any of the considered methods, and that
generally performance decreases when forecasting further into the future. We consider the sudden
increase in macro F1 when forecasting three steps into the future with the random forest an anomaly:
since only one IPC score and corresponding covariates have been collected per AU per timestep, the data
sets to train and evaluate the random forest are relatively small. With frozen weights, SSSL pre-training
performs comparable to the random forest as used by Andree et al. (2020), better than the majority
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Figure 8. Test macro FI on Db, of the SSSL model with unfrozen CNN weights (magenta line, right
vertical axis), and ground truth (ved) and predicted (blue) IPC score distributions (violin plots, left
vertical axis), both versus the season of the IPC score measurement (x-axis). Note that only four IPC
scores are depicted, since only four out of five possible IPC scores occur in Somalia between 2013 and

2020.

baseline (although barely for N > 2) and better than the other methods (which drop below the majority
baseline for more than one or two timesteps into the future). With unfrozen weights, SSSL performs best
when forecasting N = 1 steps into the future, and slightly worse than ImageNet for N =2.

To verify to what extent models are able to predict future IPC scores that do not change over time, we
compute the macro F1 on the subset of AUs whose IPC scores actually changed since the acquisition of the
image. Performance dropped significantly: for N =1, SSSL performance dropped from 0.351/0.361 to
0.217/0.262 with frozen/unfrozen weights, but stayed above the baselines’ performance (e.g., the random
forest scored 0.075 on this subset).

6.7. Seasons

To rule out the possibility that IPC scores correlate heavily with seasons, and that the model relies on this
correlation to predict IPC scores by predicting which season an image was taken. Figure 8 shows the
macro F1 of the best SSSL model per season, as well as the distribution of both ground truth and predicted
IPC scores in the geographically separated test set Db, during that season.

Note that there are far fewer available IPC labels during spring, since these were only collected every
3 months between 2013 and 2015, and after that every 4 months, hence skipping spring. The figure shows
that different IPC labels occur in different seasons, so that making accurate IPC predictions cannot be
reduced to predicting a satellite tile’s season. It also shows that the model does predict different IPC scores
during different seasons, hence the model does not attempt to shortcut IPC score prediction by predicting a
tile’s season.

6.8. Feature importance

We compute the importance of input features with the SHAP framework’s version of DeepLIFT
(Lundberg and Lee, 2017; Shrikumar et al., 2017), a method that attributes the output of a neural network
to its individual input features by backpropagating the activations of neurons to the input, and comparing
each neuron’s activation to a reference activation for that neuron. The reference activations are computed
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Figure 9. Mean SHAP values per LANDSAT-8 band for 100 tiles per IPC score. A positive mean SHAP
value for one band and one predicted IPC score means that strong activations for features in this band
make the prediction of this IPC score more likely.

from 700 randomly sampled image tiles per IPC score, and the importance values (SHAP values) are
computed for 100 tiles per score against those reference tiles.

Figure 9 shows the importance values per LANDSAT-8 band, where the SHAP values are averaged
across the pixels and across all 400 (100 x 4) tiles. It shows that the neural network learns physically
sensible patterns: activated infrared bands (NIR and SW-IR wavelengths are reflected by healthy
vegetation) contribute positively to lower predicted IPC scores and negatively to higher predicted IPC
scores. It further shows that the network does not only look at vegetation greenness: for example, the blue
and ultra-blue bands have high SHAP values. Figure C1 in Appendix C shows examples of image tiles and
the magnitude and direction of each pixel’s contribution toward an IPC score prediction. It shows that
pixels portraying vegetation or a river contribute positively toward lower IPC scores.

6.9. SSSL vs. random forest food insecurity predictor

Table 3 reports the performance of SSSL and ImageNet pre-training versus the random forest models
based on Andree et al. (2020), both on multiclass IPC prediction (with five IPC scores) and on binary IPC
prediction (where five IPC scores are mapped into two classes: risk or no risk). The first row represents the
random forest using only the handcrafted input features as input. As shown already, the neural networks
outperformed the random forest significantly, the unfrozen SSSL model giving relative improvements of
64% (multiclass) and 46% (binary) in macro F1. This is a striking result: in absolute percentage points
25% more accurate results can be obtained by only analyzing widely available raw satellite images,
instead of a set of handcrafted features from different sources.

The last two rows represent the same random forest, now using the majority voted IPC prediction per
AU per date by the frozen or unfrozen SSSL model as extra input feature. This combination improves the
random forest’s performance up to more or less the level of the neural network, but not more. The
handcrafted features from Andree et al. (2020) and the LANDSAT-8 tiles do not appear to be comple-
mentary in this setting. We noticed that when using IPC prediction by the unfrozen SSSL pre-trained
neural network as a feature for the random forest, the random forest often copies the neural network
prediction, resulting in very similar scores.

Note that the random forests get the pre-computed NDVI feature as input, and yet are significantly
outperformed by the neural networks, which means the neural networks manage to extract more useful
information than simply an NDVI proxy from the seven satellite image bands.
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Table 3. Random forest performance for binary and multiclass predictions compared to pre-trained
neural networks. The best result per column is marked in bold.

Model Multiclass F1 Binary F1
Random forest with handcrafted features 0.398 0.562
only (Andree et al., 2020)
ImageNet frozen 0.444 0.575
ImageNet unfrozen 0.483 0.720
SSSL frozen 0.587 0.733
SSSL unfrozen 0.654 0.823
Random forest with handcrafted features and predictions 0.645 0.787
of frozen SSSL model
Random forest with handcrafted features and predictions 0.679 0.811

of unfrozen SSSL model

7. Conclusion

Several conclusions can be drawn from this study. We showed that the remote-sensing data and neural
networks improve predictions vastly compared to using handcrafted input variables. One important
remark is that this conclusion is only valid for regions in which food insecurity is actually linked to
phenomena that are observable from satellite images.

Next, we showed that compared to not pre-training or using different weight initialization or pre-
training paradigms, the relational reasoning framework of Patacchiola and Storkey (2020) for contrastive
pre-training improves predictions significantly, especially when using the spatial and temporal dimen-
sions that are inherent parts of satellite imagery. Self-supervised pre-training fits the domain of satellite
imagery especially well, as vast amounts of unlabeled data are (publicly) available. We showed that using
spatial and temporal thresholds is preferred over using data augmentations as in Patacchiola and Storkey
(2020). The study also found that, unlike Ayush et al. (2021a), using a non-zero spatial threshold and a
small temporal threshold would work best on food insecurity prediction. These conclusions remain valid
for varying amounts of available labeled data, and in fact, we found the required amount of labels to be
low. Our model generalizes to locations that it has not seen during pre-training and/or finetuning, but
performance was better and fewer labeled data were needed for locations the model was pre-trained on.

We found that forecasting future food insecurity is difficult, but our proposed model is competitive
with baselines. We analyzed whether ground truth and predicted IPC score distributions follow seasons
and conclude that food insecurity prediction cannot be reduced to detecting the season. We also analyzed
the importance of the satellite’s bands and found that the model does not only look at vegetation
greenness. We hope this work paves the way for further research into using satellite images to predict
food insecurity (and potentially other socioeconomic indicators).

7.1. Future work

The first way in which future work could built upon our work is by using more data. Because of
computational resource limitations, we focused our study on satellite images and IPC scores only of
Somalia during 7 years. However, LANDSAT-8 images are available for the entire world and continu-
ously since 2013, meaning pre-training data comparable to ours is available in greater quantities by
several orders of magnitude. Besides, satellites other than LANDSAT-8 also provide publicly available
images. The World Bank also made available much more IPC score data: for 21 developing countries
since 2009, meaning much more data are available to test finetuning strategies and food insecurity
prediction. These data would be interesting not only to potentially improve the model’s performance but
also to pinpoint the countries in which satellite images help food insecurity prediction. Although the
number of pixels we use exceeds that of Patacchiola and Storkey (2020), as with all deep-learning
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applications, and even more so with self-supervised pre-training, it can be expected that the more data are
used, the better the performance of the model.

A methodological limitation of this study is that we did not have the resources to do multiple runs for
each configuration in each experiment, which would have canceled out some of the inherent stochasticity
of training deep-learning models. It would be valuable to test other image encoders, like larger CNNs or
different architectures, and more contrastive pre-training baselines, like the methods proposed by Manas
et al. (2021) and Ayush et al. (2021a).

The satellite images we used were derived from the LANDSAT-S satellite and have a resolution of 30 m
per pixel. More modern satellites provide images with much higher resolutions of <1 m per pixel, albeit
often commercial and not producing publicly available data.® Whereas our experiments showed that it is
possible to detect food insecurity from relatively low-resolution satellite images, if it is caused by
agricultural factors (like in Somalia), presumably since these factors have a detectable effect on the
images, experiments also showed that it was not possible to detect food insecurity in regions where it is
caused by political or economical factors (like South Sudan), presumably because these factors do not
have a detectable effect on the low-resolution images. However, it seems plausible that some effects of
political or economic instability could be detectable from higher-resolution images, like the presence of
military vehicles, large civil protests, abandoned factories, and so forth. Hence, future work could test
whether food insecurity driven by other factors than agricultural or weather-related ones could be
predicted from higher-resolution images.

It would also be interesting to further test the generalization capabilities of the method, like testing how
different degrees of distance or dissimilarity to training regions impact performance. Future work could
also apply SSSL to different downstream tasks. It would be particularly worthwhile to evaluate SSSL for
tasks that require different degrees of temporal and spatial variance by matching the spatiotemporal
thresholds accordingly.
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Appendix A: Thresholds and score aggregation—Extra figures.

Thresholds & aggregation: Tile2Vec
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Figure Al. Macro F1 on validation set D, using different configurations of positive and negative pairs

for Tile2Vec pre-training, with Dy and D, denoted on the x-axis. The baseline in this plot always predicts

the majority class. “admin” means using administrative units instead of longitude/latitude to define

spatial positive pairs.

Appendix B: Performance on out-of-domain test set with decreasing training set size

Training set size vs OOD Macro F1 with frozen weights ~ Training set size vs OOD Macro F1 with unfrozen weights
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Figure B1. Test macro F1 on out-of-domain test set D with frozen (a) and unfrozen (b) CNN backbone

ood
weights for models with different weight initializations using increasing amounts of labeled training data.
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Appendix C: Importance of input features: Geographical

SHAP values for example images
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Figure C1. Rows show example images with ground truth IPC scores in ascending order (first row shows
an image with IPC score 1, etc.), and the last four columns show the SHAP values for the red, near-
infrared, and the first shortwave infrared input bands for an output IPC score prediction of 1-4. The pixel
contributions follow image features like vegetation, and one pixel contributes in opposite direction to

different IPC scores.
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