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Abstract

Brun’s constant is the summation of the reciprocals of all twin primes, given by

B =
∑
p∈P2

( 1
p
+

1
p + 2

)
.

While rigorous unconditional bounds on B are known, we present the first rigorous bound on Brun’s
constant under the assumption of GRH, yielding B < 2.1594.

2020 Mathematics subject classification: primary 11Y60; secondary 11N36.

Keywords and phrases: Brun’s constant, twin primes, sieve methods, analytic number theory.

1. Introduction

Brun’s constant is a fundamental constant, arising in the study of twin primes, that is,
pairs of prime numbers that differ by 2. Set P2 := {p prime : p + 2 is prime}. Unlike
the sum of the reciprocals of all prime numbers which diverges, the sum of the
reciprocals of twin primes converges to a finite value, known as Brun’s constant. This
result was first established in 1919 by Brun [1].

Brun’s proof did not yield a numerical upper bound for B. The first such bound,
B < 2.347, was established by Crandall and Pomerance [3]. Since then, improvements
have been made, with the current best unconditional bound B < 2.288 51 obtained
by Platt and Trudgian [11]. Nicely [9] conjectured that B = 1.902 160 583 209 ±
0.000 000 000 781, demonstrating the scope of potential improvements to be made.

One approach to refining these bounds is to assume the generalised Riemann
hypothesis (GRH). This method was employed by Klyve to derive the bound
B < 2.1754 [7], and it will be the approach taken here. Although our improvement
is small, Klyve never published his result, and utilised numerical integration to
calculate his subsequent bound on B. To our knowledge, our work represents the
first mathematically rigorous upper bound on B assuming GRH.
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2 L. Dunn [2]

THEOREM 1.1. Assume GRH. Then B < 2.1594.

To achieve this, we combine previously computed values of B (up to a fixed
threshold x0), along with the estimation of the tail end of the sum provided by Selberg’s
sieve. This estimation proceeds by computing the intermediate sums

B(mi, mi+1) :=
∑
p∈P2

mi<p≤mi+1

( 1
p
+

1
p + 2

)

where m1 = x0 and i = 1, . . . , k. These sums are then combined to evaluate B(m1,∞).
This intermediate sum approach is advantageous due to its flexibility, as different

methods of estimating B may yield tighter bounds over different regions. By combining
these results, a sharper overall bound can be obtained. To facilitate further improve-
ments, we provide explicit bounds for each B(mi, mi+1).

The structure of this paper is as follows. Section 2 introduces the sieve framework,
defines key notation, and derives a bound for the twin prime counting function.
Section 3 extends this bound to Brun’s constant using partial summation. Section 4
focuses on parameter optimisation and presents the numerical computations. Finally,
Section 5 discusses potential refinements and further improvements to this method.

2. Upper bound on π2(x)

To calculate B, we require an upper bound on the twin prime counting function
π2(x) := #{p prime : p + 2 also prime}. We derive this bound using Selberg’s sieve by
sieving on the set of odd numbers n such that n − 2 is prime. If n is removed by the
sieve (that is, n is not prime), then (n − 2, n) cannot form a twin prime pair.

2.1. Preliminaries. For an introduction to Selberg’s sieve, see [5]. We begin by
defining some preliminary notation. Our set of twin prime candidates is given by

A = {n ≤ x + 2 : n odd with n − 2 prime}

and our set of sieving primes by

P = {p > 2 : p prime}.

We will be sieving using odd primes less than or equal to z, and so we set

Pz =
∏
p∈P
p≤z

p.

Next, Ad is the set of twin prime candidates that are divisible by a specific prime d,
and

Ad = |{n ≤ x + 2 : d | n and n − 2 is prime}| = π(x; d,−2).
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[3] Brun’s constant 3

By the prime number theorem in arithmetic progressions, we can estimate π(x; d,−2)
by li(x)/ϕ(d), and so we define the error in our estimation to be

E(x; d) := π(x; d,−2) − li(x)
ϕ(d)

,

where

li(x) :=
∫ x

2

dt
log t

.

As we take li to be truncated at 2, it will be useful to define the offset as

li2 :=
∫ 2

0

dt
log t

.

The twin prime constant is

π2 :=
∏
p>2

p(p − 2)
(p − 1)2 .

Following Klyve [7, page 128], we take

V(z) =
∑
d≤z
d|Pz

1∏
p|d (p − 2)

.

And finally, we set

[d1, d2] := lcm(d1, d2).

THEOREM 2.1 [7, Theorem 5.7]. For 0 < z < x,

π2(x) ≤
∣∣∣∣∣A \
⋃
p|Pz

Ap

∣∣∣∣∣ = S(A,P, z) ≤ li(x)
V(z)

+ R(x, z),

where we have defined

R(x, z) :=
∑

d1,d2≤z
d1,d2 |Pz

|E(x; [d1, d2])|.

2.2. Bounding V−1(z). We need to provide an upper bound on V−1(z) for all z. As z
increases, computing V(z) directly becomes infeasible, requiring a trade-off between
accuracy and efficiency. To address this, we will consider three separate intervals
(separated by values L1 and L2), with different bounds on V(z) for each interval. For
our calculations, we set L1 = 108 and L2 = 1010.

For the first interval (z < L1), we compute V(z) exactly. For the second interval
(L1 < z ≤ L2), we compute V(z′) exactly, where z′ ∈ {L1 < z ≤ L2 : z = k · 104, k ∈ N}
(that is, every 104th number). For the values of z such that 104 � z, we can round z
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down to the nearest z′ to give an upper bound on V−1(z). For the third interval, we will
use the approximation of V(z) derived in [7, Section 5.5.2], namely

V(z) ≥ V(L2) +
log z − log L2

2π2
+ D(L2, z)

where

D(L2, z) = 12.6244
( 3
√

z
− 9
√

L2

)
.

The following lemma summarises these arrangements.

LEMMA 2.2. For any z, we have

V(z) ≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

V(L2) +
log z − log L2

2π2
+ D(L2, z) for z > L2

V(z′) for L1 < z ≤ L2

V(z) for z ≤ L1.

2.3. Bounding R(x, z). Next, we need an upper bound on R(x, z) for all x and z. We
will start by proving an inequality that will allow us to bound one of the terms of
R(x, z). This inequality holds for any fixed prime p, but becomes less useful as the size
of p increases relative to the size of z. We have excluded some slight optimisations on
the order of z1/2 for the sake of readability, and the range of permissible values of z
can be lowered at a similar cost. For our case, we will be setting p = 2.

PROPOSITION 2.3. Let p be a prime and z ≥ 2 768 896. Then
∑
d≤z

gcd(p,d)=1

μ2(d) ≤
( p

p + 1
· 6
π2

)
z +
( 6
π2

(
1 +

1
√

p

)
+ 2
)√

z +
(
3.12 ·

(
1 +

1
p1/4

))
z1/4.

PROOF. To start, note that we can write
∑
d≤z

gcd(p,d)=1

μ2(d) =
∑
k≤√z

gcd(p,k)=1

μ(k)
[ z
k2

]
−
∑

k≤
√

z/p
gcd(p,k)=1

μ(k)
[ z

pk2

]

≤
∑
k≤√z

gcd(p,k)=1

μ(k)
z
k2 +

∑
k≤√z

gcd(p,k)=1

1 −
∑

k≤
√

z/p
gcd(p,k)=1

μ(k)
z

pk2 +
∑

k≤
√

z/p
gcd(p,k)=1

1

≤
∑
k≤√z

gcd(p,k)=1

μ(k)
z
k2 −

∑
k≤
√

z/p
gcd(p,k)=1

μ(k)
z

pk2 + 2
√

z

= M(z)z + 2
√

z,
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[5] Brun’s constant 5

where we have taken

M(z) :=
∑
k≤√z

gcd(p,k)=1

μ(k)
k2 −

∑
k≤
√

z/p
gcd(p,k)=1

μ(k)
pk2 .

Also, for p′ any prime number,

M(z) +
∑
k>
√

z
gcd(p,k)=1

μ(k)
k2 −

∑
k>
√

z/p
gcd(p,k)=1

μ(k)
pk2 =

∞∑
k=1

gcd(p,k)=1

μ(k)
k2 −

∞∑
k=1

gcd(p,k)=1

μ(k)
pk2

=

(
1 − 1

p

) ∞∑
k=1

gcd(p,k)=1

μ(k)
k2

=

(
1 − 1

p

)∏
p′�p

(
1 − 1

(p′)2

)

=
(1 − 1/p)
(1 − 1/p2)

· 6
π2 =

p
p + 1

· 6
π2 .

Now we can bound the difference

∣∣∣∣∣
∑
k>
√

z
gcd(p,k)=1

μ(k)
k2 −

∑
k>
√

z/p
gcd(p,k)=1

μ(k)
pk2

∣∣∣∣∣ ≤
∑
k>
√

z

μ2(k)
k2 +

1
p

∑
k>
√

z/p

μ2(k)
k2 .

We now apply explicit bounds on the square-free summation function provided in [2],
in conjunction with partial summation, to note that

∑
k>x

μ2(k)
k2 ≤ − 1

x2

( 6
π2 x − 1.333

√
x
)
+ 2
∫ ∞

x

( 6
π2 t + 1.333

√
t
) dt

t3 .

Applying this substitution, and simplifying terms, we conclude that

∣∣∣∣∣
∑
k>
√

z
gcd(p,k)=1

μ(k)
k2 −

∑
k>
√

z/p
gcd(p,k)=1

μ(k)
pk2

∣∣∣∣∣ ≤ 6/π2

√
z
+

3.12
z3/4 +

1
p

( 6/π2√
z/p
+

3.12
(z/p)3/4

)

=
6/π2

√
z
+

3.12
z3/4 +

6/π2

√
zp
+

3.12
z3/4 p1/4 .

Combining this result with the first inequality proves the lemma. �
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6 L. Dunn [6]

In a similar manner to V(z), the sum
∑

d≤z, gcd(2,d)=1 μ
2(d) becomes infeasible to

compute for large values of z. We employ a similar technique of approximating∑
d≤z, gcd(2,d)=1 μ

2(d) for z larger than a specific cut-off value L3 (using Proposition 2.3),
and calculating it exactly for the remaining values. We take L3 = 107 for our
calculations.

LEMMA 2.4. For any z,

∑
d≤z

gcd(2,d)=1

μ2(d) ≤ r(z) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
d≤z

gcd(2,d)=1

μ2(d) for z ≤ L3

4
π2 z + 3.038

√
z + 5.744z1/4 for z > L3.

THEOREM 2.5. Assuming GRH, for x ≥ 4 · 1018 and z < x1/4,
∑

d1,d2≤z
d1,d2 |Pz

|E(x; [d1, d2])| ≤ r2(z)cπ(x)
√

x log x

where

cπ(x) :=
3

8π
+

6 + 1/π
4 log x

+
6

log2 x
+

li2√
x log x

.

PROOF. We will use [6, Lemma 5.1] to bound under GRH, noting that for z < x1/4,
[d1, d2] < d1d2 < z2 <

√
x. Thus, for x ≥ 4 · 1018 and z < x1/4,

∑
d1,d2≤z
d1,d2 |Pz

|E(x; [d1, d2])| <
∑

d1,d2≤z
d1,d2 |Pz

cπ(x)
√

x log x = cπ(x)
√

x log x
∑

d1,d2≤z
d1,d2 |Pz

1

= cπ(x)
√

x log x
(∑

d≤z
d|Pz

1
)2

= cπ(x)
√

x log x
( ∑

d≤z
gcd(2,d)=1

μ2(d)
)2

= r2(z)cπ(x)
√

x log x,

by applying Lemma 2.4 on the second last line. �

3. Upper bound on B

From [11, Lemma 6],

B(2, 4 · 1018) ≤ 1.840 518.
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[7] Brun’s constant 7

Now, using our bound on π2(x), we can apply partial summation to calculate B(m1,∞).
Let zi be fixed for each interval [mi, mi+1] (the values of each zi and the intervals
[mi, mi+1] will be determined later).

LEMMA 3.1. Assuming GRH, for m1 ≥ 4 · 1018 and zi < m1/4
i ,

B(mk) − B(m1) < 2
k−1∑
i=1

(c1(mi, mi+1)
V(zi)

+ cπ(mi)r2(zi)c2(mi, mi+1)
)

+ 2
(
π2(mk)

mk
− π2(m1)

m1

)
,

where

liup(x) :=
x

log x

(
1 +

1
log x

+
2

log2 x
+

7.32
log3 x

)
+

√
x log x
8π

+ li2,

lilow(x) :=
x

log x

(
1 +

1
log x

+
2

log2 x

)
−
√

x log x
8π

− li2,

c1(mi, mi+1) :=
(

log log mi+i −
lilow(mi+1) − li2

mi+1

)
−
(

log log mi −
liup(mi) − li2

mi

)
,

c2(mi, mi+1) :=
(−2 log mi+1 − 4

√
mi+1

)
−
(−2 log mi − 4

√
mi

)
.

PROOF. We have

B(mk) − B(m1) =
∑

m1<p≤mk
p,p+2 prime

( 1
p
+

1
p + 2

)

< 2
∑

m1<p≤mk
p,p+2 prime

1
p

= 2
(
π2(mk)

mk
− π2(m1)

m1
+

∫ mk

m1

π2(t)
t2 dt

)

= 2
k−1∑
i=1

( ∫ mi+1

mi

π2(t)
t2 dt

)
+ 2
(
π2(mk)

mk
− π2(m1)

m1

)
.

The value of π2(mk)/mk will cancel in a further calculation, and the value of π2(m1)/m1
can be calculated exactly using the computations performed by Oliveira e Silva [10].
For the remaining term, we proceed by

2
k−1∑
i=1

( ∫ mi+1

mi

π2(t)
t2 dt

)
< 2

k−1∑
i=1

( ∫ mi+1

mi

li(t)
V(zi) · t2 dt +

∫ mi+1

mi

r2(zi)cπ(t)
√

t log t
t2 dt

)
.
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8 L. Dunn [8]

We now apply some simplifications to these integrals to allow us to compute
them analytically. Firstly, note that V(zi) and r(zi) are fixed for each interval
[mi, mi+1]. Also, note that cπ(t) is monotonically decreasing and so cπ(t) ≤ cπ(mi) for
x ∈ [mi, mi+1]. Consequently,

B(mk) − B(mi) < 2
k−1∑
i=1

(
V(zi)−1

∫ mi+1

mi

li(t)
t2 dt + cπ(mi)r2(zi)

∫ mi+1

mi

√
t log t
t2 dt

)
.

In computing the integral we note that

V(zi)−1
∫ mi+1

mi

li(t)
t2 dt = V(zi)−1

[(
log log mi+1 −

li(mi+1) − li2
mi+1

)

−
(

log log mi −
li(mi) − li2

mi

)]
.

To avoid computing li(x) directly, we use Schoenfeld’s bound on |π(x) − li(x)| assuming
the Riemann hypothesis [13, (6.18)], and Dusart’s bounds on π(x) [4, Theorem 5.1 and
Corollary 5.2], to find (for x ≥ 4 · 109) that

li(x) ≤ liup(x) =
x

log x

(
1 +

1
log x

+
2

log2 x
+

7.32
log3 x

)
+

√
x log x
8π

+ li2

li(x) ≥ lilow(x) =
x

log x

(
1 +

1
log x

+
2

log2 x

)
−
√

x log x
8π

− li2.

And so

∫ mi+1

mi

li(t)
t2 dt ≤

(
log log mi+i −

lilow(mi+1) − li2
mi+1

)
−
(

log log mi −
liup(mi) − li2

mi

)

and finally,

cπ(mi)r2(zi)
∫ mi+1

mi

√
t log t
t2 dt = cπ(mi)r2(zi)

[(−2 log mi+1 − 4
√

mi+1

)
−
(−2 log mi − 4

√
mi

)]
.

Combining the above equations gives the desired result. �

LEMMA 3.2. We have

B − B(mk) <
16π2

log mk
+

8
√

mk
. (3.1)
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[9] Brun’s constant 9

PROOF. We use [11, Lemma 3] to bound the tail end of B, so that

B − B(mk) ≤ −2
π2(mk)

mk
+

∫ ∞
mk

( 32π2

t log2 t
+ 4t−3/2

)
dt = −2

π2(mk)
mk

+
32π2

log mk
+

8
√

mk
.

�

Combining the above two lemmas with [11, Lemma 6] gives the following result.

THEOREM 3.3. We have

B ≤ 1.840 518 + 2
k−1∑
i=1

(c1(mi, mi+1)
V(zi)

+ cπ(mi)r2(zi)c2(mi, mi+1)
)

+
32π2

log mk
+

8
√

mk
− 2

π2(m1)
m1

.

4. Calculating B

The final step is to determine the optimal parameters for the theorem. This involves
selecting appropriate intervals [mi, mi+1] and choosing corresponding values of zi
for each interval. Generally, increasing the number of intervals reduces the overall
error, though with diminishing returns as the interval size decreases. Based on this
principle, we set mi ∈ {4 · 1018} ∪ {10i : i = 19, 19.2, . . . , 1999.8, 2000}. To determine
zi, we employ the Optim package in Julia [8] to optimise zi within a specified
domain. Since the optimal value of zi increases with i, we can restrict the search
domain accordingly. Finally, all of the computations for B were performed using the
IntervalArithmetic package in Julia [12], ensuring rigorous explicit bounds.

A subset of the optimised parameter ranges is presented in Table 1. The full set
of intermediate calculations, along with the optimised values of zi for each inter-
val, is available in the linked GitHub repository (https://github.com/LachlanJDunn/
B_Under_GRH). This repository also includes the functions used to compute B and
perform the parameter sweep. Additionally, it provides a method for estimating bounds
on B(a, b) for 4 · 1018 ≤ m1 ≤ a < b ≤ mk, by computing B(mi, mj) for the smallest
interval that fully contains [a, b].

5. Potential improvements

We conclude by discussing several potential improvements to the presented method
of bounding B.

• As discussed earlier, splicing together different bounds for B over disjoint intervals
could provide stronger estimates than restricting to only one method. The intermedi-
ate sums computed in this paper have been made available to facilitate this.
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10 L. Dunn [10]

TABLE 1. B(mi, mi+1) for chosen intervals (rounded to 4 significant figures).

Interval B(mi, mi+1) Range of zi values

[4 · 1018, 1020] 0.0256 [725, 1263]
[1020, 1025] 0.0662 [1377, 13 948]
[1025, 1030] 0.0423 [15 598, 173 542]
[1030, 1040] 0.0506 [191 170, 3.02 · 107]
[1040, 1050] 0.0290 [3.35 · 107, 6.01 · 109]
[1050, 10100] 0.0547 [6.69 · 109, 4.53 · 1021]
[10100, 102000] 0.0471 [5.06 · 1021, 1.04 · 10494]

• Computing B(x0) for a larger x0 would reduce approximation errors, leading to a
more precise bound.

• Refining the choices of parameters {mi} and {zi} could potentially yield a more
accurate result.
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