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Abstract Let σ be a stability condition on the bounded derived category Db(CohW ) of a Calabi–Yau
threefoldW andM a moduli stack parametrizing σ-semistable objects of fixed topological type. We define
generalized Donaldson–Thomas invariants which act as virtual counts of objects in M, fully generalizing
the approach introduced by Kiem, Li and the author in the case of semistable sheaves. We construct an

associated proper Deligne–Mumford stack ˜MC
∗
, called the C∗-rigidified intrinsic stabilizer reduction of

M, with an induced semiperfect obstruction theory of virtual dimension zero, and define the generalized

Donaldson–Thomas invariant via Kirwan blowups to be the degree of the associated virtual cycle [˜M]vir ∈
A0(˜M). This stays invariant under deformations of the complex structure of W. Applications include
Bridgeland stability, polynomial stability, Gieseker and slope stability.

1. Introduction

1.1. Brief historical background

Donaldson–Thomas (abbreviated as DT from now on) invariants constitute one of the
main approaches for curve counting on Calabi–Yau threefolds. They naturally appear

in many enumerative problems of interest in algebraic geometry and string theory and

are conjecturally equivalent with other counting invariants, such as Gromov–Witten
invariants, stable pair invariants [PT09] and Gopakumar–Vafa invariants [MT18]. These

relations have now been proven in many cases (for example, in [MNOP06a, MNOP06b,

Tod10]).
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Let W be a smooth, projective Calabi–Yau threefold and γ ∈H∗(W,Q). Classical DT

theory was introduced in [Tho00] in order to obtain virtual counts of stable sheaves on

W of Chern character γ. More precisely, Thomas considered the (coarse) moduli space
M := Mss

L (γ) parameterizing Gieseker semistable sheaves on W of positive rank, fixed

determinant L and Chern character γ. Assuming that every semistable sheaf is stable,M is

proper and admits a perfect obstruction theory in the sense of Li-Tian [LT98] or Behrend–
Fantechi [BF97] of virtual dimension zero. Thus, there exists a virtual fundamental cycle

[M ]vir ∈A0 (M) and the classical DT invariant is defined as

DT(M) := deg [M ]vir.

One of its important properties is its invariance under deformation of the complex

structure of W.
Another important feature of DT invariants is their motivic nature. Behrend [Beh09]

showed that the obstruction theory of M is symmetric in a certain sense and established

an equality

DT(M) = deg [M ]vir = χ(M,νM ) =
∑
n∈Z

n ·χtop(ν
−1
M (n)), (†)

where νM : M → Z is a canonical constructible function on M and the right-hand side a
weighted Euler characteristic.

However, when stability and semistability of sheaves do not coincide, the above

methods do not suffice and new techniques are required in order to define generalized
DT invariants counting semistable sheaves. A main obstacle is that strictly semistable

sheaves can have more automorphisms beyond C∗-scaling and, as a result, the stacks

Mss(γ) parameterizing semistable sheaves are generally Artin and no longer Deligne–
Mumford (after rigidifying C∗-scaling, cf. Subsection 6.3). This is necessary for the

standard machinery of perfect obstruction theory and virtual cycles to apply.

In [JS12], Joyce and Song constructed generalized DT invariants of moduli stacks

Mss(γ) taking advantage of the above motivic behaviour and using motivic Hall algebras
to obtain a generalization of the right-hand side of equation (†). Their DT invariant is

easy to work with and amenable to computation. However, the proof of its deformation

invariance is indirect and proceeds via wall-crossing to a stable pairs theory where
semistability and stability coincide and thus a virtual cycle exists. Kontsevich and

Soibelman [KS10] have also defined motivic generalized DT invariants using similar ideas.

We also mention the related work of Behrend and Ronagh [BR19, BR16].
In [KLS17], the authors develop a new direct approach towards defining generalized

DT invariants of such a moduli stack Mss(γ). Their method adapts Kirwan’s partial

desingularization procedure [Kir85] to define an invariant as the degree of a zero-

dimensional virtual cycle in an associated Deligne–Mumford stack M̃. The constructed

invariant is called the generalized DT invariant via Kirwan blowups (or DTK invariant

for short) and is a direct generalization of the left-hand side of equation (†). By the usual
properties of virtual cycles, they establish the deformation invariance of DTK invariants.

We make a final comment on the need for orientation data in the above approaches.

Since motivic DT invariants are more refined, Kontsevich and Soibelman do need to
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assume the existence of such data to define their invariants. This assumption has been
recently proved to hold in [JU21]. Orientation data are not necessary for the definition of

numerical generalized DT invariants given in [JS12] and [KLS17]. This will be the case

for the DTK invariant defined in this paper as well.

1.2. Statement of results

This paper serves as a sequel to [KLS17]. We generalize the construction of DTK

invariants to the case of moduli stacks M := Mσ−ss(γ) parametrizing σ-semistable

objects of Chern character γ in the derived category Db(CohW ) of coherent sheaves
on W, where σ is one of the following stability conditions:

1. A Bridgeland stability condition [Bri07], as considered by Piyaratne–Toda [PT19]
and [Li19].

2. A polynomial stability condition [Bay09], as considered by Lo [Lo11, Lo13].

3. Gieseker and slope stability of sheaves. These are examples of weak stability

conditions on CohW in the sense of Joyce–Song [JS12].

More generally, σ can be any nice stability condition (cf. Definition 6.1 and Defini-
tion 6.2).

Our main results are summarized in the following theorem, giving a definition of DTK

invariants counting σ-semistable complexes.

Theorem. Let W be a smooth, projective Calabi–Yau threefold, σ a stability condition

on Db(CohW ) as in Definition 6.2 and M := Mσ−ss(γ) be the (C∗-rigidified) moduli

stack parametrizing σ-semistable complexes of Chern character γ. Then there exist:

1. [Theorem-Construction 4.9, Theorem-Definition 6.6]

A canonical proper Deligne–Mumford stack M̃C
∗ → M, called the C∗-rigidified

intrinsic stabilizer reduction of M. M̃C
∗
is isomorphic to M over the open σ-stable

locus Mσ−s(γ)⊆M.

2. [Theorem 5.11, Theorem-Definition 6.8]

A natural semiperfect obstruction theory of virtual dimension zero on M̃C
∗
, which

extends the symmetric obstruction theory of the Deligne–Mumford stack Mσ−s(γ).

We thus have a virtual fundamental cycle

[M̃C
∗
]vir ∈A0(M̃C

∗
)

and the generalized Donaldson–Thomas invariant via Kirwan blowups of M is defined as

DTK(Mσ−ss(γ)) := deg [M̃C
∗
]vir ∈Q.

By Theorem 6.12, this is invariant under deforming the complex structure of W.

1.3. Brief review of the case of sheaves and sketch of construction

We first give a brief account of the results of [KLS17] and then explain the necessary

adjustments in order to generalize their approach.

https://doi.org/10.1017/S1474748023000142 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000142


1990 M. Savvas

Let M be an Artin stack parametrizing Gieseker semistable sheaves of a fixed Chern
character on a smooth, projective Calabi–Yau threefold. By construction (see [HL10]),

M is obtained by geometric invariant theory (GIT) (see [MFK94]), meaning that it is a

quotient stack of the form

M= [X/G], (1.1)

where G is a reductive group acting on a projective space PN via a homomorphism

G→ GL(N +1,C) and X is an invariant closed subscheme of the GIT semistable locus

X ⊆ (PN )ss.
In order to define an invariant out of M, the first step in [KLS17] is the construction

of a proper Deligne—Mumford (DM) quotient stack M̃ := [X̃/G] over M, called the

intrinsic stabilizer reduction of M. This is produced by an iterative blowup procedure,
which successively resolves the loci of closed G-orbits in X with stabilizer groups of

maximum dimension. This procedure is an adaptation of Kirwan partial desingularization

construction [Kir85] to singular GIT quotient stacks, using the notion of intrinsic blowup
introduced in [KL13] and suitably generalized in [KLS17].

The second step is to endow M̃ with a semiperfect obstruction theory [CL11] of virtual

dimension zero. This is a usual perfect obstruction theory in the sense of Behrend–
Fantechi [BF97] defined on an étale cover of M̃ together with compatibility data which

play the role of suitable descent data. It is at this step where the existence of a virtual

structure on M plays a crucial role. More precisely, by [PTVV13], M is the truncation
of a (−1)-shifted symplectic derived Artin stack and it then follows that M is a d-critical

stack [Joy15]. In particular, applying Luna’s étale slice theorem [Dré04] and using the

theory of d-critical loci developed in [Joy15], we can obtain an explicit local description of
M: For every closed point x∈M with (reductive) stabilizer H, there exists a smooth affine

scheme V with an H -action, an invariant function f : V → A1 and an étale morphism

[U/H]→M, (1.2)

containing x in its image, where U = {df = 0} ⊂ V is the scheme-theoretic critical locus
of f. Any two such local presentations can be compared as they give the same d-critical

structure on M in the sense of [Joy15].

To obtain the semiperfect obstruction theory of M̃, consider the following H -equivariant
four-term complex on U :

h= Lie(H)−→ TV |U
d(df)−−−→ FV |U =ΩV |U −→ h∨. (1.3)

Around u∈U with finite stabilizer group, this complex is quasi-isomorphic to a two-term
complex which gives a symmetric perfect obstruction theory of [U/H] and thus of M
near u.

The intrinsic stabilizer reduction algorithm produces lifts of the étale morphisms (1.2)
to give an étale cover

[T/H]→M̃, (1.4)
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where T = {ωS = 0} ⊆ S for S a smooth affine H -scheme and ωS ∈H0(S,FS) an invariant

section of an H -equivariant vector bundle FS on S. Moreover, there exists an effective
invariant divisor DS such that equation (1.3) lifts to a four-term complex

h= Lie(H)−→ TS |T
dωS−−→ FS |T −→ h∨(−DS) (1.5)

whose the first arrow is injective with locally free cokernel and the last arrow is surjective.

Therefore, equation (1.5) is quasi-isomorphic to a two-term complex, whose dual can be

shown to be a perfect obstruction theory on [T/H].
In [KLS17], it is shown that these perfect obstruction theories satisfy the axioms of a

semiperfect obstruction theory on M̃ of virtual dimension zero.
Since, as usual, semiperfect obstruction theories produce virtual cycles, M̃ admits a

virtual cycle [M̃]vir ∈A0(M̃) whose degree defines the DTK invariant counting Gieseker

semistable sheaves parametrized byM. A relative version of the above construction, using
derived symplectic geometry, implies its deformation invariance.

In the present paper, we work with moduli stacks M of semistable perfect complexes.

These are truncations of (−1)-shifted symplectic derived Artin stacks as before; however,

they are not global quotient stacks obtained by GIT of the form (1.1).
Our main contribution is to remove this assumption. To do this, we use several recent

major technical results on the étale local structure of stacks [AHR19, AHR20], moduli

spaces of objects in abelian categories [AHH18] and stability conditions in families
[BLM+21].

We generalize the requirement of a GIT presentation to the condition that M
admit a good moduli space morphism [Alp13]. We show that such stacks (under

additional reasonable assumptions) admit an intrinsic stabilizer reduction M̃, which is a

Deligne–Mumford stack and of independent interest in its own right (see Subsection 1.4

below).
We then proceed to show that if in addition M is the truncation of a (−1)-shifted

symplectic derived Artin stack, then the above statements about local models of M and

their comparison data carry over, using the main structural result of [AHR20] in place of
Luna’s étale slice theorem. This allows us to define a semiperfect obstruction theory on

M̃ and the associated DTK invariant.

Our approach thus works for a wide class of Artin stacks, which we call stacks of DT

type (see Definition 3.4). Based on our discussion here, their two main characteristics can
be summarized as the existence of a good moduli space and a derived enhancement that

is (−1)-shifted symplectic.

Moduli stacks of semistable complexes fit into this context. This is the case by the recent
results of [AHH18], which combine the theory of good moduli spaces with the notion of

Θ-reductivity introduced in [Hal14] and apply to the stacks considered in the present

paper.
Finally, the deformation invariance of the DTK invariant follows from the compatibility

of the intrinsic stabilizer reduction with base change and the recent results on stability

conditions in [BLM+21].
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1.4. Relation to derived algebraic geometry

At the time of writing of this paper, intrinsic blowups and the intrinsic stabilizer reduction

procedure were expected to be the classical shadow of a corresponding construction in

derived algebraic geometry.

Subsequently, derived blowups were first defined in full generality in the work of
Hekking [Hek21] and this expectation has recently been materialized by the results

of [HRS22], also using some of our results. Namely, the intrinsic blowup notion used

in the present paper coincides with the classical truncation of an appropriate derived
blowup of a derived scheme with a G-action along its derived fixed locus by the group G.

Therefore, the intrinsic stabilizer reduction construction is indeed the classical truncation

of a derived version of the Kirwan partial desingularization algorithm in GIT [Kir85]
and its generalization to stacks with good moduli spaces by Edidin–Rydh [ER21], called

derived stabilizer reduction. Moreover, the semiperfect obstruction theory constructed

here is closely related to the derived cotangent complex of the stabilizer reduction of a

(−1)-shifted symplectic derived stack.

1.5. Layout of the paper

In §2, we review background material on d-critical loci and (−1)-shifted symplectic

structures. In §3, we define the notion of stacks of DT type and establish their main

properties that will be used throughout. §4 reviews the intrinsic stabilizer reduction
procedure for GIT quotient stacks and generalizes it to stacks with good moduli spaces.

In §5, we explain how to construct a semiperfect obstruction theory on stacks of DT

type by following the arguments of [KLS17]. Finally, in §6, we construct DTK invariants

of semistable complexes by combining the above with the results of [AHH18] and Gm-
rigidification for Artin stacks and discuss their deformation invariance using recent work

of [BLM+21].

1.6. Notation and conventions

Here are the various notations and other conventions that we use throughout the paper:

– All schemes and stacks are defined over the field of complex numbers C or a smooth
C-scheme C, unless stated otherwise. For this reason, reductive group schemes will
be linearly reductive automatically.

– M typically denotes an Artin stack, of finite type, with affine stabilizers and
separated diagonal unless stated otherwise.

– W denotes a smooth, projective Calabi–Yau threefold over C and Db(CohW ) its
bounded derived category of coherent sheaves.

– C denotes a smooth quasi-projective scheme over C.
– G, H denote complex reductive groups. Usually, H will be a subgroup of G. T

denotes the torus C∗.
– If x∈M,Gx denotes the automorphism group/stabilizer of x. We will only consider

stabilizers of closed points x ∈ M. These will be reductive for most stacks of
interest in this paper.
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– If U ↪→ V is a closed embedding, IU⊆V or IU (when V is clear from context)
denotes the ideal sheaf of U in V.

– For a morphism ρ : U → V and a sheaf E on V, we systematically use E|U to
denote ρ∗E, suppressing the pullback from the notation.

– If V is a G-scheme, V G is used to denote the fixed point locus of G in V.
– If U is a scheme with a G-action, then Û is used to denote the Kirwan blowup of

U with respect to G. Ũ denotes the intrinsic stabilizer reduction of U.
– The abbreviations DT, DM, GIT, whenever used, stand for Donaldson–Thomas,

Deligne–Mumford and geometric invariant theory, respectively.

2. D-Critical loci and (−1)-shifted symplectic derived stacks

This section collects background material and terminology that will be used throughout
the rest of the paper.

We first briefly recall Joyce’s theory of d-critical loci, as developed in [Joy15], and

establish some notation and then proceed to quickly review shifted symplectic structures

on derived stacks.

2.1. D-critical schemes

We begin by defining the notion of a d-critical chart.

Definition 2.1 (d-critical chart). A d-critical chart for a scheme X is the data of
(U,V ,f,i) such that: U ⊆X is Zariski open, V is a smooth scheme, f : V →A1 is a regular

function on V and U
i−→ V is a closed embedding so that U = {df = 0} = Crit(f) ⊆ V is

the scheme-theoretic vanishing locus of the derivative of f.
If x ∈ U , then we say that the d-critical chart (U,V ,f,i) is centered at x.

Joyce defines a canonical sheaf SX of C-vector spaces with the property that for any
Zariski open U ⊆X and an embedding U ↪→ V into a smooth scheme V with ideal I, SX

fits into an exact sequence

0−→SX |U −→OV /I
2 d−→ ΩV /I ·ΩV . (2.1)

For example, for a d-critical chart (U,V ,f,i) the element f + I2 ∈ Γ(V ,OV /I
2) gives a

section of SX |U .

Definition 2.2 (d-critical scheme). A d-critical structure on a scheme X is a section

s ∈ Γ(X,SX) such that X admits a cover by d-critical charts (U,V ,f,i) and s|U is given

by f + I2 as above on each such chart. We refer to the pair (X,s) as a d-critical scheme.

2.2. Equivariant d-critical loci

For our purposes, we need equivariant analogues of the results of Subsection 2.1. The

theory works in parallel as before (cf. [Joy15, Section 2.6]).

Definition 2.3 (Good action). Let G be an algebraic group acting on a scheme X. We

say that the action is good if X has a cover {Uα}α∈A, where every Uα ⊆X is a G-invariant

Zariski open affine subscheme.
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Remark 2.1. If X is affine, then trivially every action of G on M is good.

Suppose now that a scheme X admits a good action by a reductive group G. Defini-

tions 2.1, 2.2 extend naturally to this equivariant setting (cf. [Joy15, Definition 2.40]) as

follows: A G-invariant d-critical chart is given by the data (U,V ,f,i) of Definition 2.1,

where U ⊆X is a G-invariant Zariski open subscheme, V is a smooth scheme with a G-
action, i : U → V an equivariant closed embedding and f : V →C a G-invariant function.

The sheaf SX inherits a G-action by using a cover of X by G-invariant open subschemes

U ⊆X in equation (2.1). Then we say that the d-critical scheme (X,s) is G-invariant if
s ∈ Γ(X,SX)G is a G-invariant global section of the sheaf SX .

Proposition 2.2 [Joy15, Remark 2.47]. Let G be a complex reductive group with a good

action on a scheme X. Suppose that (X,s) is an invariant d-critical scheme. Then for any
x∈X fixed by G, there exists an invariant d-critical chart (U,V ,f,i) centered at x, that is,

an invariant open affine U � x, a smooth scheme V with a G-action, an invariant regular

function f : V → A1 and an equivariant embedding i : U → V so that U =Crit(f)⊆ V .

Remark 2.3. If G is a torus (C∗)k, then Proposition 2.2 is true without the assumption
that x is a fixed point of G.

Remark 2.4. One may replace Zariski open morphisms by étale morphisms without any

difference to the essence of the theory. Another option is to work in the complex analytic
topology.

2.3. D-critical Artin stacks

The theory of d-critical loci extends naturally to Artin stacks. For more details, we point

the interested reader to Section 2.8 of [Joy15]. We mention the following definition and

basic properties which we will need in the form of remarks.

Definition 2.4 [Joy15, Corollary 2.52, Definition 2.53]. Let M be an Artin stack. For
every smooth morphism φ : U →M, where U is a scheme, the assignment S(U,φ) := SU

defines a sheaf SM of C-vector spaces in the lisse-étale topology of M.

A d-critical structure on M is a global section s∈H0(M,SM). We then say that (M,s)
is a d-critical Artin stack.

Remark 2.5 [Joy15, Example 2.55]. A d-critical structure can be equivalently described

in terms of a groupoid presentation of M. It follows that d-critical structures on quotient
stacks [X/G] are in bijective correspondence with invariant d-critical structures on X.

If M′ →M is a smooth morphism of Artin stacks and M is d-critical, then one may

pull back the d-critical structure on M making M′ d-critical as well.

2.4. Shifted symplectic structures

Let cdga≤0
C

be the category of nonpositively graded commutative differential graded
C-algebras.
There is a spectrum functor Spec : cdga≤0

C
→ dStC to the category of derived stacks

(see [TV04, Definition 2.2.2.14] or [Toë09, Definition 4.2]). An object of the form SpecA
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is called an affine derived C-scheme. Such objects provide the Zariski local charts for
general derived C-schemes ; see [Toë09, Section 4.2]. An object M in dStC is called a

derived Artin stack if it is m-geometric (cf. [Toë09, Definition 1.3.3.1]) for some m and its

‘classical truncation’ t0(M) is an Artin stack (and not a higher stack). A derived Artin
stack M admits an atlas, that is, a smooth surjective morphism U →M from a derived

scheme. For a derived Artin stack M, there exists a cotangent complex LM of finite

cohomological amplitude in [−m,1] and a dual tangent complex TM. Both are objects in

a suitable stable ∞-category Lqcoh(M) (see [Toë09] or [TV04] for its definition).
Shifted symplectic structures on derived Artin stacks were introduced by Pantev–Toën–

Vaquié–Vezzosi in [PTVV13]. The definition is given in the affine case first and then

generalized by showing the local notion satisfies smooth descent. We recall the local
definition: Let us set M = SpecA so that Lqcoh(M) ∼=D(dg-ModA). For all p ≥ 0, one

can define the exterior power complex (ΛpLM,d) ∈ Lqcoh(M), where the differential d is

induced by the differential of the algebra A. For a fixed k ∈Z, define a k -shifted p-form on
M to be an element ω0 ∈ (ΛpLM )k such that dω0 = 0. To define the notion of closedness,

consider the de Rham differential ddR : ΛpLM → Λp+1LM . A k -shifted closed p-form is a

sequence (ω0,ω1, . . .), with ωi ∈ (Λp+iLM )k−i such that dω0 = 0 and ddRω
i+dωi+1 = 0.

When p= 2, any k -shifted 2-form ω0 ∈ (Λ2LM )k induces a morphism ω0 : TM → LM [k]
in Lqcoh(M), and we say that ω0 is nondegenerate if this morphism is an isomorphism in

Lqcoh(M).

Definition 2.5 [PTVV13, Definition 1.18]. A k -shifted closed 2-form ω = (ω0,ω1, . . .) is

called a k -shifted symplectic structure if ω0 is nondegenerate. We say that (M,ω) is a

k -shifted symplectic (affine) derived scheme.

When k=−1, it is shown in [BBBBJ15] that if M is the classical truncation of a (−1)-
shifted symplectic derived Artin stack, then M admits an induced d-critical structure.

Theorem 2.6 [BBBBJ15, Theorem 3.18]. Let (M,ω) be a (−1)-shifted symplectic
derived Artin stack. Then the underlying classical Artin stack M = t0(M) extends in

a canonical way to a d-critical Artin stack (M,s). This defines a ‘truncation functor’ τ

from the ∞-category of (−1)-shifted symplectic derived Artin stacks to the 2-category of
d-critical Artin stacks.

3. Stacks of DT type

In this section, we first give an account of results regarding the étale local structure of

Artin stacks and the theory of good moduli spaces. We then proceed to define stacks of

DT type, develop standard local models for them and describe how to compare these
models.

3.1. Local structure of Artin stacks

The following theorem is an étale slice theorem for stacks, which generalizes Luna’s étale

slice theorem [Dré04]. It states that Artin stacks are étale locally quotient stacks.
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Theorem 3.1 [AHR20, Theorem 1.2]. Let M be a quasi-separated Artin stack, locally

of finite type over C with affine stabilizers. Let x ∈M and H ⊆Gx a maximal reductive

subgroup of the stabilizer of x. Then there exists an affine scheme U with an action of H,
a point u ∈ U fixed by H and a smooth morphism

Φx : [U/H]→M

which maps u 
→ x and induces the inclusion H ↪→Gx of stabilizers at u. Moreover, if Gx

is reductive, the morphism is étale. If M has affine diagonal, then Φx can be taken to be

affine.

3.2. Good moduli spaces

We now collect some useful results about the structure of a certain class of Artin stacks,

namely those with affine diagonal admitting a good moduli space, following the theory
developed by Alper ét al. All the material of the section can be found in [Alp13] and

[AHR20].

We have the following definition of a good moduli space.

Definition 3.1 [Alp13, Definition 4.1]. A morphism q : M → Y , where M is an Artin

stack and Y an algebraic space, is a good moduli space for M if the following hold:

1. q is quasi-compact and q∗ : QCoh(M)→QCoh(Y ) is exact.

2. The natural map OY → q∗OM is an isomorphism.

The intuition behind the introduction of the notion of good moduli space is that stacks
M that admit good moduli spaces behave like quotient stacks [Xss/G] obtained from

geometric invariant theory (GIT) with good moduli space morphism given by the map

[Xss/G]→X//G. In this sense, it is a generalization of GIT quotients for stacks.
We state the following properties of stacks with good moduli space.

Proposition 3.2 [Alp13, Proposition 4.7, Lemma 4.14, Theorem 4.16, Proposition 9.1,

Proposition 12.14]. Let M be locally noetherian over C and q : M→ Y be a good moduli
space. Then:

1. q is surjective.

2. q is universally closed.

3. Two geometric points x1,x2 ∈M(k) are identified in Y if and only if their closures

{x1} and {x2} in M×SpecC Speck intersect.

4. Every closed point of M has reductive stabilizer.

5. Let y ∈ |Y | be a closed point. Then there exists a unique closed point x ∈ |q−1(y)|.
6. If Z is a closed substack of M, then the morphism Z → q(Z) = im(Z) is a good

moduli space morphism.
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7. Let

M′ ��

��

M

��
Y ′ �� Y

be a Cartesian diagram of Artin stacks such that Y ,Y ′ are algebraic spaces.
(a) If M→ Y is a good moduli space, then M′ → Y ′ is a good moduli space.

(b) If Y ′ → Y is fpqc and M′ → Y ′ is a good moduli space, then M→ Y is a good

moduli space.

8. If M is of finite type, then Y is of finite type.

The following notions will be useful for us.

Definition 3.2 [Alp13, Definition 6.1, Remark 6.2]. Let M be a locally noetherian Artin

stack with a good moduli space q : M → M . A Zariski open substack U ⊆ M is called

saturated if q−1(q(U)) = U .
If U is saturated, the morphism U → U := q(U) gives a good moduli space for U fitting

into a Cartesian diagram

U

��

�� M
q

��
U �� M,

where U →M is an open embedding.

Definition 3.3 [AHR19, Definition 3.13]. Let M′, M be Artin stacks with good moduli

space morphisms q′ : M′ → M ′, q : M → M . A morphism M′ → M is called strongly
étale if the induced morphism M ′ →M is étale and the diagram

M′ ��

q′

��

M
q

��
M ′ �� M

is Cartesian.

Remark 3.3. In the sequel, we will be using the fact that strongly étale morphisms are
stabilizer-preserving.

We have the following theorem regarding the étale local structure of good moduli space

morphisms for stacks with affine diagonal.

Theorem-Definition 3.4 ((Quotient chart) [AHR20, Theorem 4.12]). Let M be a locally
noetherian Artin stack with a good moduli space q : M→M such that q is of finite type

with affine diagonal. If x ∈M is a closed point with (reductive) stabilizer Gx, then there

exists an affine scheme U with an action of Gx and a Cartesian diagram
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[Ux/Gx]
Φx ��

��

M
q

��
Ux//Gx

�� M

(3.1)

such that Φx has the same properties as in Theorem 3.1, is affine and Ux//Gx is an étale

neighbourhood of q(x).
We refer to any choice of data (Ux,Φx) such that Φx : [Ux/Gx]→M is étale, affine and

stabilizer-preserving as a quotient chart for M centered at x. We say that the quotient

chart is strongly étale if the morphism Φx is strongly étale.

3.3. Stacks of DT type

We start with the following definition.

Definition 3.4 (Stack of DT type). Let M be an Artin stack. We say that M is of DT

type if the following are true:

1. M is quasi-separated and finite type over C.

2. There exists a good moduli space q : M→M , where q is of finite type and has affine

diagonal.

3. M is the classical truncation of a (−1)-shifted symplectic derived Artin stack M.

Remark 3.5. By Theorem 2.6 a stack M of DT type admits a canonical d-critical

structure s ∈H0(M,SM).

Definition 3.5 (d-critical quotient chart). Let x ∈ M and Φ: [Ux/Gx] → M be as in

Theorem-Definition 3.4. We say that (Ux,V ,f,Φx) is a d-critical quotient chart centered

at x if there exists a Gx-invariant d-critical locus determined by data (Ux,V ,f,i).

A variant of the following proposition first appeared and was used in [Tod16].

Proposition 3.6. Let M be a stack of DT type and x ∈M a closed point. Then there

exists a d-critical quotient chart for M centered at x, which can be taken to be strongly

étale.

Proof. By Theorem-Definition 3.4, we have a quotient chart Φx : [U
′′
x /Gx] → M. By

Proposition 2.2, Definition 2.4 and Remark 2.5, there exists a Gx-invariant open affine
x ∈ U ′

x ⊆ U ′′
x and an invariant d-critical chart (U ′

x,V
′,f,i). We obtain a commutative

diagram

[U ′
x/Gx]

Φx ��

q′

��

M

��
U ′
x//Gx

�� M.
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Applying the fundamental lemma [Alp10, Theorem 6.10] at x, there exists a Zariski open

subscheme R⊆ U ′
x//Gx such that the induced diagram

(q′)−1(R)
Φx ��

q′

��

M

��
R �� M

is Cartesian and Φx is strongly étale.
Since U ′

x//Gx is affine, we may take R to be affine as well. It is straightforward to check

then that (q′)−1(R) = [Ux/Gx], where Ux is a Gx-invariant Zariski open affine subscheme

of U ′
x, containing x, and also R= Ux//Gx.

Setting V = V ′ \(U ′ \Ux), we have the d-critical chart (Ux,V ,f |V ,i). This concludes the
proof.

We now obtain the following key lemma, which gives a way to compare two choices of

d-critical quotient charts.

Lemma 3.7. Let M be a stack of DT type. Let

(Uα,Vα,fα,Φα), (Uβ,Vβ,fβ,Φβ)

be two d-critical quotient charts with Vα,Vβ affine and z ∈ [Uα/Gα]×M [Uβ/Gβ ] a closed

point with stabilizer G :=Gz. Let xα ∈ [Uα/Gα] and xβ ∈ [Uβ/Gβ ] be the two projections

of z. Then the following hold:

1. We have G-equivariant commutative diagrams for λ= α,β

Tαβ
��

iλ

��

Sαβ

θλ

��
Uλ

�� Vλ,

(3.2)

where the vertical arrows are unramified morphisms, the horizontal arrows are

embeddings, t ∈ Tαβ maps to xλ ∈ Uλ and Tαβ,Sαβ are affine.

2. We have an induced diagram with étale arrows:

[Tαβ/G]

����
���

���
��

�����
���

���
�

[Uα/Gα]

����
���

���
��

[Uβ/Gβ ]

�����
���

���
�

M.

(3.3)

3. There exists a d-critical G-invariant quotient chart (Tαβ,Sαβ,fαβ,Φαβ) for M with

t ∈ Tαβ fixed by G.
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4. I := (θ∗λdfλ) = (dfαβ) as ideal sheaves in OSαβ
and θ∗λfλ+I2, fαβ +I2 give the same

invariant section s|Tαβ
∈ Γ(Tαβ,STαβ

)G, where θλ are the morphisms defined above
in diagram (3.2).

Proof. It follows by the second condition in Definition 3.4 that M must have affine

diagonal. In particular, the Cartesian diagram

Uα×MUβ

��

�� M

ΔM

��
Uα×Uβ

�� M×M

implies that Uαβ := Uα×MUβ is affine.

Let us write Gαβ = Gα ×Gβ . Since Uαβ and Vα × Vβ are affine and the product
embedding Uα ×Uβ ↪→ Vα × Vβ is Gαβ-invariant, there exists a smooth affine scheme

Vαβ and a Gαβ-equivariant embedding fitting into a commutative diagram

Uαβ

��

�� Vαβ

��
Uα×Uβ

�� Vα×Vβ .

Concretely, we may choose any Gαβ-equivariant embedding Uαβ ↪→ AN for big enough

N and then take Vαβ = Vα×Vβ ×AN with the obvious choices of morphisms that make

the above diagram commute.
Let t∈Uαβ a representative of the point z ∈ [Uα/Gα]×M [Uβ/Gβ ]� [Uαβ/Gαβ ] (we are

liberally abusing notation at this point). Using Luna’s étale slice theorem, take Sαβ ⊆ Vαβ

to be an affine étale slice for t in Vαβ and Tαβ := Sαβ ∩Uαβ the induced affine étale slice
for t ∈ Uαβ .

It is clear that conditions (1) and (2) are now satisfied and remain so even after G-

invariant shrinking of Sαβ around t.
For conditions (3) and (4), notice that by diagrams (3.2) and (3.3) and the properties

of d-critical structures, [Tαβ/G] is a d-critical stack and thus, up to possibly shrinking

Sαβ G-invariantly around t, there exists an induced d-critical G-invariant quotient chart

(Tαβ,Sαβ,fαβ,Φαβ) for M centered at t∈ Tαβ . Finally, since by construction Sαβ , Tαβ are
étale slices of Vλ,Uλ at t, we obtain that (dfαβ) = (θ∗λdfλ) as ideals and θ∗λfλ+I2,fαβ+I2

both represent the pullback of the d-critical structure of M to [Tαβ/G], which completes

the proof.

Remark 3.8. The above results only use the d-critical structure of M and not

the existence of its (−1)-shifted symplectic derived enhancement. In fact, using the
property that M is the truncation of a (−1)-shifted symplectic derived Artin stack M,

Proposition 3.6 may be strengthened. Since we won’t need this strengthening in this

paper, we are content with just making this remark.
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Remark 3.9. We finally make a remark on the conditions in Definition 3.4. The first
condition is there to ensure boundedness. The second condition implies the existence

of quotient charts as in diagram (3.1), which will be necessary in order to construct

the intrinsic stabilizer reduction M̃ and its good moduli space. The third condition
is necessary to induce a d-critical structure on M which is the crucial component in

obtaining a semiperfect obstruction theory for M̃.

4. Intrinsic stabilizer reduction

In this section, we review the notions of intrinsic and Kirwan blowups and then generalize
the construction of the intrinsic stabilizer reduction of a quotient stack obtained by GIT

given in [KLS17] to the more general setting of stacks with good moduli space.

4.1. Kirwan blowups for affine schemes

We recall the notion of Kirwan blowup developed in [KLS17].

Suppose that U is an affine scheme with an action of a reductive group G. For now, let
us assume that G is connected, as this will be the case when we take blowups throughout

the paper.

Suppose that we have an equivariant closed embedding U → V into a smooth affine

G-scheme V, and let I be the ideal defining U. Since U ⊆ V is G-invariant, G acts on I
and we have a decomposition I = Ifix⊕ Imv into the fixed part of I and its complement

as G-representations.

Let V G be the fixed point locus of G inside V, defined by the ideal generated by Omv
V ,

and π : blG(V )→ V the blowup of V along V G. Let E ⊆ blG(V ) be its exceptional divisor

and ξ ∈ Γ(OblG(V )(E)) the tautological defining equation of E.

G-equivariance implies that (cf. [KLS17, Section 2.2])

π−1(Imv)⊆ ξ ·OblG(V )(−E)⊆OblG(V ),

and consequently, ξ−1π−1(Imv) ⊆ OblG(V ), meaning that π−1(Imv) lies in the image of
the inclusion OblG(V )(−E)⊆OblG(V ), given by multiplication by ξ.

We define I intr ⊆OblG(V ) to be

I intr = ideal sheaf generated by π−1(Ifix) and ξ−1π−1(Imv). (4.1)

Definition 4.1 (Intrinsic blowup). The G-intrinsic blowup of U is the subscheme U intr ⊆
blG(V ) defined by the ideal I intr.

Lemma 4.1 [KLS17, Lemma 2.6]. The G-intrinsic blowup of U is independent of the

choice of G-equivariant embedding U ⊆ V , and hence is canonical.

Proof. We give a brief outline of the proof and refer the reader to the proof of [KLS17,

Lemma 2.6] and [KL13, Subsection 3.1] for details.

If UG = ∅, then Û = U , and there is nothing to show. So suppose this is not the case
and u ∈ UG.

Let U → V1, U → V2 be two equivariant embeddings of U into smooth G-schemes. By

composing with the equivariant inclusions V1×{u} ⊆ V1×V2 and {u}×V2 ⊆ V1×V2, we
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may reduce to the case of a sequence of equivariant embeddings U → V
Φ−→ W , where

V ,W are smooth G-schemes.

Applying the above construction using the two embeddings of U, we obtain G-intrinsic

blowups ÛV , induced by the embedding U → V , and ÛW , induced by the composite
embedding U →W .

Then an identical argument as in the proof of [KL13, Lemma 3.1] shows that Φ gives

rise to an isomorphism ÛV � ÛW , which moreover is independent of the choice of Φ

interpolating between the two embeddings U → V and U → W . This proves that Û is
indeed canonical.

Suppose U is an affine G-scheme with an equivariant embedding into a smooth affine

G-scheme V as above. We can make sense of the notion of semistability of points in U intr

without ambiguity as follows.

We first work on the ambient scheme V. As it is affine, we can think of all points of V

as being semistable (in the usual sense of GIT). For the blowup V intr := blG(V ), G acts
linearly on E =PNV G/V with respect to the natural G-linearization of OE(1) :=OE(−E),

and therefore we have a GIT notion of stability of points on the exceptional divisor E.

Definition 4.2. We say that v ∈ V is stable if its G-orbit is closed in V and its stabilizer

finite. A point ṽ ∈ blG(V ) is unstable if either ṽ ∈ E and ṽ is unstable with respect to
the linearization OE(1) or ṽ /∈E and its G-orbit closure meets the unstable locus of E. If

ṽ is not unstable, we say that it is semistable.

Thus, for any smooth affine G-scheme V, we can define its Kirwan blowup V̂ =

(blG(V ))
ss
. By [Kir85], it satisfies V̂ G = ∅.

Now, if we have an equivariant embedding V →W between smooth G-schemes, then

(W intr)ss∩V intr = (V intr)ss based on our description. Hence, we may define (U intr)ss :=

U intr∩ (V intr)ss for any equivariant embedding U → V into a smooth scheme V, which is
independent of the choice of U → V .

Definition 4.3 (Kirwan blowup). Let U be a possibly singular affine G-scheme with

nonempty G-fixed locus. The Kirwan blowup of U associated with G is the scheme

Û = (U intr)ss. It satisfies ÛG = ∅.

The notion of semistability above is exactly motivated by the corresponding notion in
GIT in Kirwan’s original blowup procedure in [Kir85]. This can be seen by the following

theorem of Reichstein, which asserts that the locus of unstable points on blG(V ) is exactly

the locus of unstable points in the sense of GIT for the ample line bundle OblG(V )(−E).

Theorem 4.2 [Rei89]. Let V as above, and let q : V → V//G denote the GIT quotient

map. The unstable locus of blG(V ) with respect to the line bundle OblG(V )(−E) is the

strict transform of the saturation q−1(q(V G)) of V G inside V.

We obtain the following corollary.

Corollary 4.3. Let π : Û → U be the Kirwan blowup of an affine G-scheme U with
nonempty G-fixed locus. Then the quotient stack [Û/G] admits a good moduli space,

denoted by q : [Û/G]→ Û//G.
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Proof. Let U → V be a G-equivariant embedding into a smooth affine G-scheme V. By
Theorem 4.2, [V̂ /G] admits a good moduli space V̂ //G, and therefore the same is true

for the closed substack [Û/G] by Proposition 3.2(6).

Example 4.1. Suppose that G = C∗ is the one-dimensional torus acting on the affine
plane V =C2

x,y with weights 1 and −1 on the coordinates x and y respectively and U ⊆ V

is the closed G-invariant subscheme cut out by the ideal I = (x2y,xy2).

V intr is the blowup of V along the fixed locus V G = {0}. The unstable points are the
punctured x -axis and y-axis together with the points 0,∞ of the exceptional divisor P1.

Thus, we have that V̂ =Spec[u,v,v−1], whereG acts on u,v with weights 1,−2 respectively

and the blowdown map V̂ → V is given on coordinates by x 
→ u,y 
→ uv.
Û ⊆ V̂ is the closed subscheme cut out by the ideal (u2) so that

Û = Spec
(
C[u,v,v−1]/(u2)

)
.

We now explain how one can proceed if G is not connected.
Suppose that U → V is a G-equivariant embedding into a smooth G-scheme V. Let,

as before, I be the ideal of U in V. Let G0 be the connected component of the identity.

This is a normal, connected subgroup of G of finite index. Let I = Ifix ⊕ Imv be the

decomposition of I into fixed and moving parts with respect to the action of G0. Using
the normality of G0, we see that the fixed locus V G0 is a closed, smooth G-invariant

subscheme of V and also Ifix, Imv are G-invariant.

Let π : blV G0V → V be the blowup of V along V G0 with exceptional divisor E and local
defining equation ξ. Then, as before, take I intr to be the ideal generated by π−1(Ifix) and

ξ−1π−1(Imv). Everything isG-equivariant and we define U intr as the subscheme of blV G0V

defined by the ideal I intr.
Finally, we need to delete unstable points. By the Hilbert–Mumford criterion (cf.

[MFK94, Theorem 2.1]) it follows that semistability on E with respect to the action

of G is the same as semistability with respect to the action of G0 since every 1-parameter

subgroup of G factors through G0, and hence we may delete unstable points exactly as
before and define the Kirwan blowup Û .

One may check in a straightforwardly analogous way that this has the same properties

(and intrinsic nature). It is obvious that if G is connected we recover Definition 4.3.

4.2. Kirwan blowups for GIT schemes

So far, we have defined Kirwan blowups for affine G-schemes (with nonempty fixed
locus of the G-action). We now generalize the construction to any G-scheme with a

G-action coming from GIT (see Definition 4.4 below) and the associated quotient stack,

as performed in [KLS17, Subsection 2.4].
We begin with an affine G-scheme whose G-fixed locus can now be possibly empty. Let

M= [X/G] be a quotient Artin stack, where X is an affine G-scheme.

Fix a G-equivariant closed embedding X → Y , where Y is a smooth affine G-scheme,
and write Y = [Y/G]. Let d be the maximum dimension of the stabilizers of closed

points x ∈X. By possibly equivariantly shrinking Y, we may assume that the maximum

dimension of stabilizers of closed points of Y is also equal to d.
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Kirwan’s partial desingularization, combined with Theorem 4.2, yields a smooth G-
scheme Ŷ by blowing up the locus Yd ⊆ Y consisting of points satisfying dimGy = d

and deleting unstable points. Ŷ satisfies the crucial property that its maximum stabilizer

dimension is strictly less than d.
Now, for any point x ∈X with closed G-orbit and dimGx = d, let Sx ⊆ Y be an étale

slice for the G-orbit of x in Y. The Kirwan blowups Ŝx (cf. Definition 4.3) of the slices

Sx associated with Gx provide natural strongly étale morphisms Ψx : Ŝx×Gx
G→ Ŷ . The

joint morphism

Ψ :=
∐

x∈Xd

Ψx :
∐

x∈Xd

Ŝx×Gx
G−→ Ŷ

is an étale cover of an open neighbourhood Ŷ ′ of the restriction E ×Yd
Xd of the

exceptional divisor E of Ŷ over the locus Xd ⊆ Yd.
Let Tx = X ∩Sx. Then Tx is an étale slice for the G-orbit of x in X, and we have

the Kirwan blowup T̂x using the closed Gx-equivariant embedding Tx ⊆ Sx. In [KLS17,

Proposition 2.12], it is shown that the closed embedding

∐
x∈Xd

T̂x×Gx
G−→

∐
x∈Xd

Ŝx×Gx
G

satisfies étale descent with respect to the morphism Ψ and thus defines a closed subscheme

X̂ ′ ⊆ Ŷ ′. X̂ ′ glues naturally with the preimage ofX−Xd in Ŷ under the blowup morphism
Ŷ → Y , defining a closed G-equivariant subscheme X̂ inside Ŷ .

Lemma 4.1 and the above discussion on stability imply that these are canonical and

independent of any choices made regarding the embedding X → Y and étale slices Sx.
If X is not affine, but is the GIT semistable locus of a G-scheme with a G-linearized

ample line bundle, then it admits a cover by G-invariant Zariski open, saturated, affine

subschemes U1, . . . ,Un ⊆X. Here, as in Definition 3.2, saturated means that the Ui fit in
Cartesian squares

[Ui/G] ��

��

X

��
Ui//G �� X//G.

We may thus apply the Kirwan blowup to each Ui. The Kirwan blowups Ûi glue to the
Kirwan blowup X̂ of X, and we are led to the following definition.

Definition 4.4. Suppose that [X/G] is a GIT quotient stack. Then we call X̂ and

M̂= [X̂/G] the Kirwan blowups of X and M= [X/G], respectively.

Remark 4.4. When X is not affine, we could also argue globally as in the affine case
using an equivariant closed embedding X → Y into a smooth G-scheme Y, afforded by

GIT. However, the more local argument using a cover by saturated, affine, G-invariant

open subschemes is closer in spirit to the proof of Theorem-Construction 4.9.
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4.3. Intrinsic stabilizer reduction for GIT quotient stacks

We quickly recall how the construction of the intrinsic stabilizer reduction works for GIT

quotient stacks and some useful properties in that setting.

Let X be a G-scheme coming from GIT and M= [X/G] the associated quotient stack.

Write M0 = M and X0 = X. Taking Kirwan blowups, we obtain X1 = X̂ and
M1 = [X̂/G]. The G-action on X̂ is still G-linearized, so M1 is a GIT quotient stack

of lower maximum stabilizer dimension compared to M0. Thus, we may iterate the

procedure to produce a canonical sequence of GIT quotient stacks

M0 = [X/G], M1 = [X1/G], . . . , M� = [X�/G],

where M� is a Deligne–Mumford stack since at each step the maximum stabilizer
dimension strictly decreases.

Definition 4.5. M̃ :=M� is called the intrinsic stabilizer reduction of M.

4.4. Intrinsic stabilizer reduction for stacks with good moduli spaces

We now generalize the procedure of intrinsic stabilizer reduction to the case of stacks

with good moduli spaces.

The following properties of Kirwan blowups will be useful, so we record them separately
in a proposition before our main construction.

Proposition 4.5. Let ϕ : G1 → G2 be a surjective homomorphism between reductive
groups, and Xi, i= 1,2, be affine Gi-schemes.

Suppose that f : X1 →X2 is a smooth morphism which is equivariant with respect to ϕ

and such that the induced morphism f : [X1/G1]→ [X2/G2] on quotient stacks is strongly
étale (cf. Definition 3.3).

Then there is a canonically induced smooth, affine morphism f̂ : X̂1 → X̂2, equivariant

with respect to ϕ such that the associated quotient morphism f̂ : [X̂1/G1] → [X̂2/G2] is
strongly étale and fits in a Cartesian square

[X̂1/G1]

��

̂f
�� [X̂2/G2]

��
[X1/G1]

f
�� [X2/G2].

Proof. Let x1 ∈X1 a point with closed G1-orbit and of maximum stabilizer dimension

and x2 = f(x1) ∈ X2. Since f is strongly étale, the G2-orbit of x2 is also closed, by

Proposition 3.2(5), and x2 is of maximum stabilizer dimension.
Up to G1-equivariant shrinking around x1, we can find smooth, affine Gi-schemes Yi,

i = 1,2 and a smooth morphism g : Y1 → Y2, equivariant with respect to ϕ, fitting in a

commutative diagram
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X1
��

f

��

Y1

g

��
X2

�� Y2,

(4.2)

where the horizontal arrows are equivariant closed embeddings. We may additionally
assume that the induced morphism g : [Y1/G1]→ [Y2/G2] is strongly étale. This is because

we can initially take g to map x1 to x2, be stabilizer-preserving at x1 and g to be étale at

x1, so using the fundamental lemma [Alp10, Theorem 6.10] at x1, after possible further
shrinking around x1, we may take g to be strongly étale.

By the intrinsic nature of intrinsic blowups, using an identical argument as the one

outlined in the proof of Lemma 4.1, one may consider diagram (4.2) as x1 varies to

obtain a canonical morphism f intr : X intr
1 →X intr

2 .
By construction, f intr is stabilizer-preserving and maps closed G1-orbits to closed G2-

orbits, as this is the case for gintr. It is moreover smooth and the associated quotient

morphism f intr : [X intr
1 /G1]→ [X intr

2 /G2] is étale. This can be seen as follows: Let T be
an affine, étale slice for the G1-orbit of x1 in X1, whose stabilizer we denote by H. By

the assumptions on the morphism f, we have a commutative diagram

T ×H G1

id×φ

��

�� X1

f

��
T ×H G2

�� X2

and the corresponding commutative diagram at the level of quotient stacks

[T/H]

id

��

�� [X1/G1]

f

��
[T/H] �� [X2/G2]

has all étale arrows.
By definition, these give rise to identical diagrams with T,X1,X2 replaced by their

intrinsic blowups. Varying x1, this immediately implies the smoothness and affineness

of f intr and étaleness of f intr. Moreover, a similar, straightforward local computation,
using the definition of intrinsic blowup and the arguments of the proof of Lemma 4.1 and

[KL13, Lemma 3.1], shows that the natural map X intr
1 →X1×X2

X intr
2 is an isomorphism.

Now, Corollary 4.3 lets us pass from intrinsic blowups to Kirwan blowups.
Finally, since f̂ is étale, stabilizer-preserving and maps closed points to closed points,

applying the fundamental lemma [Alp10, Theorem 6.10] at all closed points of [X̂1/G1],

we obtain that it is strongly étale. The existence of the isomorphism [X̂1/G1] →
[X1/G1]×[X2/G2] [X̂2/G2] is a direct consequence of the isomorphism X intr

1 → X1 ×X2

X intr
2 and the definition of stability (Definition 4.2). This concludes the proof.

Before extending the notion of Kirwan blowup to stacks with good moduli space, it will

be useful to generalize our definition of stability to this setting (cf. Definition 4.2).
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Definition 4.6. Let M be an Artin stack of finite type and q : M→M a good moduli
space morphism of finite type with affine diagonal. The prestable locus Mps ⊆M of M is

the (saturated) open substack whose closed points are the closed points x ∈M satisfying

|q−1(q(x))| = {x}. The stable locus Ms ⊆M is the saturated, open substack consisting
of prestable points with finite stabilizer group.

This agrees with Definition 4.2 by the following proposition, which also explains why

the stable locus is open and saturated since this is a property that can be checked strongly

étale locally.

Proposition 4.6. With the same notation as above, for any strongly étale morphism

[U/G]
Φ−→M, we have that Φ−1(Ms) = [Us/G], where Us is the open subscheme of u ∈ U

with closed G-orbit and finite stabilizer.

Proof. Any strongly étale morphism

[U/G]
Φ ��

qU

��

M
q

��
U//G �� M

induces an isomorphism of fibers q−1
U (qU (u)) � q−1(q(x)) whenever Φ(u) = x and we

identify u ∈ U with its G-orbit as a point u ∈ [U/G]. The conclusion is immediate by

Proposition 3.2(5) and the fact that Φ is stabilizer-preserving.

We can now construct the Kirwan blowup of an Artin stack with good moduli space.

Theorem-Construction 4.7. Let M be an Artin stack of finite type over C with affine

diagonal, which is not Deligne–Mumford. Moreover, suppose that q : M → M is a good

moduli space morphism with q of finite type and with affine diagonal.
Then there exists a canonical Artin stack M̂, called the Kirwan blowup of M, together

with a morphism π : M̂→M, such that:

1. M̂ is of finite type over C, has affine diagonal and admits a good moduli space
morphism q̂ : M̂→ M̂ with affine diagonal.

2. The maximum stabilizer dimension of closed points in M̂ is strictly smaller than

that of M.

3. For any strongly étale morphism [U/G] → M, the base change M̂×M [U/G] is
naturally isomorphic to the Kirwan blowup [Û/G].

4. π|π−1(Ms) is an isomorphism.

As is the case with Kirwan blowups of schemes, M̂ is a semistable locus M̂= (Mintr)ss,
an open substack of a canonical Artin stack πintr : Mintr →M, called the intrinsic blowup

of M.

Proof. Let Mmax be the substack of M whose points have stabilizers of the maximum

possible dimension. This is a closed substack of M with good moduli space Mmax (cf.
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[ER21, Appendix B] for details on the algebraic structure of Mmax). For any closed point

x ∈Mmax, applying Theorem-Definition 3.4, we have a Cartesian diagram

[Ux/Gx]
Φx ��

qx

��

M
q

��
Ux//Gx

�� M.

(4.3)

The morphisms Φx are affine, strongly étale and cover the locus Mmax. We may take the

Kirwan blowup of each quotient stack [Ux/Gx] to obtain good moduli space morphisms
[Ûx/Gx]→ Ûx//Gx.

We need to check that these glue to give a stack M̂ with a universally closed projection

M̂→M and a good moduli space M̂→ M̂ satisfying the same conditions as M and its
good moduli space morphism. By the properties of the Kirwan blowup, the maximum

stabilizer dimension of M̂ will be lower than that of M.

Suppose x,y are two closed points of M such that Gx,Gy are of maximum dimension.
We obtain a Cartesian diagram of stacks

[Ux×MUy/(Gx×Gy)] ��

��

[Uy/Gy]

��
[Ux/Gx] �� M,

(4.4)

where Uxy := Ux×MUy is an affine scheme. This is due to the Cartesian diagram

Ux×MUy
��

��

M

ΔM

��
Ux×Uy

�� M×M

and the fact that M has affine diagonal.

Using Proposition 4.5, we obtain a diagram

[Ûxy/(Gx×Gy)]

�����
���

���
��

		��
���

���
���

[Ûx/Gx] [Ûy/Gy]

(4.5)

with affine, strongly étale arrows and we have, moreover, canonical associated isomor-
phisms [Ûxy/(Gx ×Gy)] → [Ûx/Gx]×M [Uy/Gy] and [Ûxy/(Gx ×Gy)] → [Ux/Gx]×M
[Ûy/Gy].

Using the charts [Ûx/Gx] together with a cover of M\q−1(Mmax), we therefore obtain

an atlas for a stack M̂ with a map to M. By the canonical isomorphisms of the previous

paragraph, M̂ is independent of the particular choices of charts for M.
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Since the arrows in diagram (4.5) are strongly étale, we obtain a corresponding diagram

of étale arrows at the level of good moduli spaces of the Kirwan blowups

[Ûxy/(Gx×Gy)]

�����
���

���
��

		��
���

���
���

��

[Ûx/Gx]

��

[Ûy/Gy]

��

Ûxy//(Gx×Gy)

�����
���

���
��

		��
���

���
���

Ûx//Gx Ûy//Gy,

where both rhombi are Cartesian.

By Proposition 3.2, M\ q−1(Mmax)→M \Mmax is a good moduli space morphism.
Hence, the morphisms [Ûx/Gx] → Ûx//Gx for all x ∈ Mmax together with an atlas of

M\ q−1(Mmax) glue to give a morphism M̂ → M̂ . By Proposition 3.2 again, this is a

good moduli space morphism.
M̂ has affine diagonal since we have a Cartesian diagram

[Ûxy/(Gx×Gy)]

��

�� M̂

��
[Ûx/Gx]× [Ûy/Gy] �� M̂×M̂,

where the lower horizontal arrows give an étale cover of M̂×M̂ and the left vertical

arrow is affine.

To see that M̂→ M̂ also has affine diagonal, we consider the diagram

M̂ ��



�
��

��
��

��
� M̂×

̂M
M̂ ��

��

M̂

��
M̂×M̂ �� M̂ ×M̂,

where the right square is Cartesian. The diagonal of M̂ is separated [Sta23, Tag 04YQ].

Therefore, since the diagonal of M̂ is affine, it follows by the usual cancellation property
that M̂→ M̂ has affine diagonal.

M̂, M̂ and the morphism M̂→ M̂ thus have the same properties asM,M andM→M ,

as desired. This establishes property (1) of the statement.
Property (3) is true by construction and properties (2) and (4) can be checked strongly

étale locally. But by the definition of Kirwan blowups of quotient stacks, they are both

true in that case.
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Finally, the last assertion about the intrinsic blowup Mintr can be shown using the

same arguments. Since we won’t be needing Mintr, we leave the details to the reader.

Remark 4.8. The fact that M and q : M→M have affine diagonal is not crucial for the
above proof to go through. In fact, by [AHR19, Theorem 13.1] and [AHR19, Corollary

13.11], it is enough to assume that M has affine stabilizers and separated diagonal. Since

the stacks we are interested in will have affine diagonal, we make this assumption for

convenience of presentation.

As before, repeatedly applying the operation of Kirwan blowup we obtain the instrinsic
stabilizer reduction. By construction of the Kirwan blowup, the stable locus is preserved

at each step and hence stays invariant under the whole procedure.

Theorem 4.9. Let M be an Artin stack of finite type over C with affine diagonal, which

is not Deligne–Mumford. Moreover, suppose that q : M → M is a good moduli space
morphism with q of finite type and with affine diagonal. Then there exists a canonical

Deligne–Mumford stack M̃, called the intrinsic stabilizer reduction of M, together with a

morphism π : M̃→M which restricts to an isomorphism over the stable locus Ms ⊆M.
Moreover, M̃ admits a good moduli space M̃ and the good moduli space morphism

q̃ : M̃→ M̃ is proper.

Proof. We perform a sequence of Kirwan blowups by applying Theorem-Costruction 4.7

iteratively to get

M0 =M, M1 = M̂1, . . . , M� = M̂�−1.

At each step, the maximum stabilizer dimension strictly decreases, so we terminate as

soon as M� has finite stabilizers and is thus Deligne–Mumford. We define M̃ :=M�.
M̃→ M̃ admits a strongly étale cover by morphisms of the form [U/G]→ U//G, where

G is finite, so its diagonal is finite (cf. [MFK94, Proposition 0.8]). Thus, M̃ → M̃ is

separated and by Proposition 3.2 also universally closed, hence proper.

Remark 4.10. If Ms is nonempty, then we are guaranteed that the intrinsic stabilizer
reduction M̃ is nonempty. While this is sufficient, it is not necessary, as can be seen for

the quotient stack M= [U/G] in Example 4.1.

In general, if at some step of the procedure the stack Mi is a gerbe over a Deligne–

Mumford stack (i.e., Mi has constant stabilizer dimension and every point is prestable),

then M̂i is empty. We could elect to terminate the procedure at this step instead and

define M̃ := Mi. We choose not to do so as for our purpose of defining Donaldson–
Thomas invariants, setting M̃ = ∅ in this case seems more geometrically motivated and

better aligned with the BPS invariants considered in [JS12] and [DM20].

Remark 4.11. Edidin–Rydh have also developed a blowup procedure for stacks with

good moduli spaces in [ER21]. For smooth stacks, our stabilizer reduction is the same
as theirs. For singular stacks, Kirwan blowups can be phrased in their language of

saturated blowups; however, the resolution they obtain is a closed substack of the one

here. Nevertheless, our construction is closely related to the Edidin–Rydh resolution of
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stabilizers performed at the level of derived stacks, using the recently developed notion
of derived blowups in [Hek21] and the results of [HRS22].

5. Obstruction theory

In this section, we first recall the basic principles of semiperfect obstruction theories and

then explain how to construct such a gadget on the intrinsic stabilizer reduction of a stack

of DT type. Our discussion goes through the notion of a local model and its obstruction
theory, as used in [KLS17].

5.1. Semiperfect obstruction theory

This subsection contains background material about semiperfect obstruction theories and

their induced virtual cycles, as developed in [CL11].

Let U →C be a morphism, where U is a scheme of finite type and C denotes a smooth

quasi-projective scheme, which will typically be either a point or a smooth quasi-projective
curve. We first recall the definition of perfect obstruction theory [BF97, LT98].

Definition 5.1 (Perfect obstruction theory [BF97]). A (truncated) perfect (relative)
obstruction theory consists of a morphism φ : E → L≥−1

U/C in Db(CohU) such that

1. E is of perfect amplitude, contained in [−1,0].

2. h0(φ) is an isomorphism and h−1(φ) is surjective.

We refer to Obφ :=H1(E∨) as the obstruction sheaf of φ.

Definition 5.2 (Infinitesimal lifting problem). Let ι : Δ→ Δ̄ be an embedding with Δ̄

local Artinian such that I ·m= 0, where I is the ideal of Δ and m the closed point of Δ̄.
We call (Δ,Δ̄,ι,m) a small extension. Given a commutative square

Δ
g ��

ι
��

U

��
Δ̄ ��

ḡ

��	
	

	
	

C

(5.1)

such that the image of g contains a point p∈U , the problem of finding ḡ : Δ̄→U making

the diagram commutative is the ‘infinitesimal lifting problem of U/C at p’.

Definition 5.3 (Obstruction space). For a point p ∈ U , the intrinsic obstruction space

to deforming p is T 1
p,U/C := H1

(
(L≥−1

U/C )∨|p
)
. The obstruction space with respect to a

perfect obstruction theory φ is Ob(φ,p) :=H1(E∨|p).

Given an infinitesimal lifting problem of U/C at a point p, there exists by the standard

theory of the cotangent complex a canonical element

ω
(
g,Δ,Δ̄

)
∈ Ext1

(
g∗L≥−1

U/C |p,I
)
= T 1

p,U/C ⊗C I (5.2)

whose vanishing is necessary and sufficient for the lift ḡ to exist.
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Definition 5.4 (Obstruction assignment). For an infinitesimal lifting problem of U/C

at p and a perfect obstruction theory φ the obstruction assignment at p is the element

obU (φ,g,Δ,Δ̄) = h1(φ∨)
(
ω
(
g,Δ,Δ̄

))
∈Ob(φ,p)⊗C I. (5.3)

Definition 5.5. Let φ : E→L≥−1
U/C and φ′ : E′ →L≥−1

U/C be two perfect obstruction theories

and ψ : Obφ → Obφ′ be an isomorphism. We say that the obstruction theories give the

same obstruction assignment via ψ if for any infinitesimal lifting problem of U/C at p

ψ
(
obU (φ,g,Δ,Δ̄)

)
= obU (φ

′,g,Δ,Δ̄) ∈Ob(φ′,p)⊗C I. (5.4)

We are now ready to give the definition of a semiperfect obstruction theory.

Definition 5.6 (semiperfect obstruction theory [CL11, Definition 3.1]). Let M→ C be

a morphism, where M is a DM stack, proper over C, of finite presentation and C is a

smooth quasi-projective scheme. A semiperfect obstruction theory φ consists of an étale
covering {Uα}α∈A of M and perfect obstruction theories φα : Eα → L≥−1

Uα/C such that

1. For each pair of indices α,β, there exists an isomorphism

ψαβ : Obφα
|Uαβ

−→Obφβ
|Uαβ

so that the collection {Obφα
,ψαβ} gives descent data of a coherent sheaf on M.

2. For each pair of indices α,β, the obstruction theories Eα|Uαβ
and Eβ |Uαβ

give the
same obstruction assignment via ψαβ (as in Definition 5.5).

Remark 5.1. The obstruction sheaves {Obφα
}α∈A glue to define a sheaf Obφ on M.

This is the obstruction sheaf of the semiperfect obstruction theory φ.

Suppose now that M → C is as above and admits a semiperfect obstruction theory.
Then, for each α ∈A, we have

CUα/C ⊂NUα/C = h1/h0((L≥−1
Uα/C)

∨) ↪
h1/h0(φ∨

α)−−−−−−−→ h1/h0(E∨
α )−→ h1(E∨

α ),

where CUα/C and NUα/C denote the intrinsic normal cone stack and intrinsic normal sheaf

stack respectively, where by abuse of notation we identify a sheaf F on M with its sheaf

stack.

We therefore obtain a cycle class [cφα
]∈Z∗Obφα

by taking the pushforward of the cycle
[CUα/C ] ∈ Z∗NUα/C .

Theorem-Definition 5.2 [CL11, Definition-Theorem 3.7]. Let M be a DM stack, proper
over C, of finite presentation and C a point or a smooth quasi-projective curve such that

M → C admits a semiperfect obstruction theory φ. The classes [cφα
] ∈ Z∗Obφα

glue to

define an intrinsic normal cone cycle [cφ] ∈ Z∗Obφ. Let s be the zero section of the sheaf
stack Obφ. The virtual cycle of M is defined to be

[M,φ]vir := s![cφ] ∈A∗M,

where s! : Z∗Obφ → A∗M is the Gysin map. This virtual cycle satisfies all the usual

properties, such as deformation invariance.
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Remark 5.3. Observe that in Definition 5.6 it is not strictly necessary to take the Uα to
be schemes. It is straightforward to generalize the definition and the construction of the

associated virtual fundamental cycle to include étale covers by Deligne–Mumford stacks.

5.2. Local models, standard forms and their blowups

Let V be a smooth affine G-scheme. The action of G on V induces a morphism
g⊗OV → TV and its dual σV : ΩV → g∨⊗OV .

Setup-Definition 5.4 [KLS17, Setup-Definition 5.1]. Consider the quadruple
(V ,FV ,ωV ,DV ), where FV is a G-equivariant vector bundle on V, ωV a G-invariant

section with scheme-theoretic zero locus U = {ωV = 0} ⊂ V and DV ⊂ V an effective

invariant divisor, satisfying:

1. σV (−DV ) : ΩV (−DV )→ g∨(−DV ) factors through a morphism φV as shown

ΩV (−DV )−→ FV
φV−−→ g∨(−DV ); (5.5)

2. The composition φV ◦ωV vanishes identically;

3. Let R be the identity component of the stabilizer group of a closed point in V with
closed orbit. Let V R denote the fixed point locus of R. Then φV |V R composed with

the projection g∨(−DV )→ r∨(−DV ) is zero, where r is the Lie algebra of R.

We say that the data

ΛU = (U,V ,G,FV ,ωV ,DV ,φV )

give a local model structure for U. Thinking of the quotient stack, we say that [U/G] also

has a local model structure and denote the data by Λ[U/G].

Remark 5.5. Note that if f : V → A1 is a G-invariant function on V, then

(U,V ,G,ΩV ,df,0,σV ) give a local model for U, being equivalent to an invariant d-critical

chart (U,V ,f,i) for U. Therefore, an invariant d-critical locus is a particular case of a
local model.

Now, let ΛU = (U,V ,G,FV ,ωV ,DV ,φV ) define a local model structure on U. Since G is
reductive, we have a splitting

FV |V G = FV |fixV G ⊕FV |mv
V G .

Let now π : V̂ → V be the Kirwan blowup of V. Define F
̂V as the kernel of the composite

morphism π∗FV → π∗ (FV |V G)→ π∗ (FV |mv
V G

)
so that we have an exact sequence

0−→ F
̂V −→ π∗FV −→ π∗ (FV |mv

V G)−→ 0.

By equivariance, π∗ωV maps to zero under the second map and hence induces an invariant

section ω
̂V of F

̂V . A local computation shows the following.

Proposition 5.6. The zero locus of ω
̂V is the Kirwan blowup Û of U with respect to G.
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Proof. This is Proposition 2.11 in [KLS17].

Local model structures are preserved under the operations of Kirwan blowups and

taking étale slices.

Proposition 5.7. Let (U,V ,G,FV ,ωV ,DV ,φV ) be the data of a local model. Then there
exist induced data (Û,V̂ ,G,F

̂V ,ω̂V ,D̂V ,φ̂V ) of a local model on the Kirwan blowup Û . The

same is true for any étale slice T of a closed point of Û with closed G-orbit.

Proof. This is [KLS17, Lemma 5.3]. The fact that F
̂V is locally free is discussed shortly

after Definition 2.10 in [KLS17]. Denoting the Kirwan blowup map V̂ → V by π, the

divisor D
̂V is equal to π∗DV +2E, where E is the exceptional divisor of V̂ . Finally, φ

̂V

is induced by φV through a diagram chase and the definition of F
̂V . The reasoning for

étale slices is similar.

5.3. Obstruction theory of local model

Let

ΛU = (U,V ,G,FV ,ωV ,DV ,φV )

be the data of a local model structure. Consider the sequence

KU := [g→ TV |U
(dV ω∨

V )
∨

−−−−−−→ FV |U
φV−→ g∨(−DV )]. (5.6)

By [KLS17, Lemma 5.5], this defines a G-equivariant perfect complex on U that descends

to a perfect complex on [U/G], which we denote by K[U/G].

We have a morphism

E[U/G] :=K∨
[U/G] −→ L≥−1

[U/G] (5.7)

given by the diagram

g(DV )
φ∨
V ��

��

F∨
V |U

dV ω∨
V ��

ω∨
V

��

ΩV |U ��

��

g∨

��
0 �� I/I2

dV

�� ΩV |U �� g∨,

(5.8)

where I denotes the ideal sheaf of U in V. Observe that the diagram commutes since by

Setup-Definition 5.4(2), the composition φV ◦ωV is identically zero.

Let Us,V s denote the stable loci of U and V respectively (cf. Definition 4.2). We thus
have that σV |V s : ΩV |V s → g∨ is surjective. By Setup-Definition 5.4, it follows that φV |Us

is surjective and hence its dual is injective with locally free cokernel.

Therefore, K[Us/G] :=K[U/G]|[Us/G] is a two-term perfect complex, whose dual E[Us/G]

gives a perfect obstruction theory on the DM stack [Us/G] via the diagrams (5.7) and
(5.8).

Definition 5.7. Let (U,V ,G,FV ,ωV ,DV ,φV ) be the data of a local model structure. Then
E[Us/G] is the induced perfect obstruction theory on the stable locus [Us/G].
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5.4. Semiperfect obstruction theory of the intrinsic stabilizer reduction of a

stack of DT type

Let M be an Artin stack of DT type. We now explain how to construct a semiperfect

obstruction theory on its intrinsic stabilizer reduction M̃, one of the main results of this

paper.
We begin by recording and abstracting some of the data associated to a stack of DT

type.

Setup 5.8. For any closed point x ∈M, by Proposition 3.6, there exists a strongly étale

d-critical quotient chart for M centered at x. In particular, we obtain a strongly étale
cover ∐

x∈M
[Ux/Gx]−→M, (5.9)

where, by Remark 5.5, each quotient stack [Ux/Gx] is equipped with data of a local model

Λ[Ux/Gx] = (Ux,Vx,Gx,FVx
,ωVx

,DVx
,φVx

), (5.10)

with FVx
=ΩVx

, ωVx
= dfx, DVx

= 0 and φVx
= σVx

.

By Proposition 3.7, for any two closed points x,y ∈M we have an étale cover∐
z

[Tz/Gz]−→ [Ux/Gx]×M [Uy/Gy] (5.11)

by d-critical quotient charts centered at closed points z ∈ [Ux/Gx]×M [Uy/Gy] so that
we have local model structures on [Tz/Gz] given by the data

Λ[Tz/Gz ] = (Tz,Sz,Gz,FSz
,ωSz

,DSz
,φSz

), (5.12)

with FSz
=ΩSz

, ωSz
= dfz, DSz

= 0 and φSz
= σSz

.

For any morphism [Tz/Gz]→ [Ux/Gx] in equation (5.11), Proposition 3.7 also produces

the following data:

1. A commutative Gz-equivariant diagram

Tz
��

��

Sz

θzx

��
Ux

�� Vx,

where the horizontal arrows are closed embeddings and θzx is unramified, inducing
the étale morphism [Tz/Gz]→ [Ux/Gx] in equation (5.11).

2. A surjective Gz-equivariant morphism ηzx : FVx
|Sz

→ FSz
, compatible with the

morphisms φVx
|Sz

and φSz
such that ω′

z := ηzx(ωVx
|Sz

) and ωSz
are Ω-equivalent

(cf. [KLS17, Definition 5.9]).

3. An induced isomorphism

ηzx : h
1(K[Ux/Gx])|[Tz/Gz ] −→ h1(K[Tz/Gz ]).
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4. Isomorphisms

ψxy : h
1(K[Ux/Gx])|[Ux/Gx]×M[Uy/Gy ] −→ h1(K[Uy/Gy ])|[Ux/Gx]×M[Uy/Gy]

satisfying the cocycle condition and ψxy|[Tz/Gz ] = η−1
zy ◦ηzx.

We abstract this situation by saying that the data of a strongly étale cover (5.9)

equipped with a local model structure (5.10), an étale cover (5.11) with a local model

structure (5.12) and compatibility data described by items (1)–(4) above constitute a
virtual cycle (VC) package for an Artin stack M satisfying the conditions of Theorem-

Construction 4.7. Note that if M is an Artin stack of DT type then, by our discussion, we

may take the local model structures to correspond to invariant d-critical quotient charts;
however, in general we only require local models that satisfy the compatibilities (1)–(4).

For a detailed account of Ω-equivalence, we refer the reader to [KLS17, Section 5].
For the purposes of our discussion, it suffices to note that ω′

z being Ω-equivalent to ωSz

essentially means that we have another local model structure

Λ′
[Tz/Gz ]

= (Tz,Sz,Gz,FSz
,ω′

z,DSz
,φSz

)

on [Tz/Gz] such that the induced perfect obstruction theory E′
[T s

z /Gz ]
naturally has the

same obstruction sheaf and gives the same obstruction assignment with E[T s
z /Gz ].

The data of Setup 5.8 are preserved under Kirwan blowups and hence lift to the intrinsic

stabilizer reduction of a stack of DT type.

Theorem 5.9. Let M be an Artin stack of DT type. Then its intrinsic stabilizer reduction

M̃ admits a VC package.

Proof. By the discussion in Setup 5.8, M admits a VC package where moreover all local

models corresponds to d-critical quotient charts.

By the construction of M̃, it suffices to show that if a stack N (satisfying the conditions
of Theorem-Construction 4.7) admits a VC package, then its Kirwan blowup N̂ admits

a canonically induced VC package.

By the construction in the proof of Proposition 3.7, Proposition 4.5 and Theorem-
Construction 4.7, we may obtain new étale covers 5.9 and 5.11 for N̂ by replacing every

stack by its Kirwan blowup.

By Proposition 5.7, there are canonically induced local model structures on these étale

covers. It is moreover clear that condition (1) is satisfied.
Conditions (2)–(4) follow from [KLS17, Lemma 6.1]. This concludes the proof.

Now, a VC package on a Deligne–Mumford stack naturally provides data of a
semiperfect obstruction theory.

Theorem 5.10. Let M be a Deligne–Mumford stack equipped with a VC package. Then

M admits an induced semiperfect obstruction theory and thus a virtual fundamental cycle

[M]vir ∈A∗(M).
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Proof. Since M is Deligne–Mumford, all quotient stacks in equation (5.9) are also

Deligne–Mumford and satisfy [Ux/Gx] = [Us
x/Gx] since all closed points are now stable.

Thus, by Definition 5.7, the local model structures Λ[Ux/Gx] induce perfect obstruction
theories

Ex := E[Ux/Gx]
φx−−→ L≥−1

[Ux/Gx]

on each [Ux/Gx].
Conditions (3) and (4) of a VC package give descent data for the obstruction sheaves

h1(E∨
x ), while conditions (1) and (2) and the properties of Ω-equivalence imply that

these descent data are compatible with obstruction assignments of infinitesimal lifting
problems.

Using Remark 5.3 and Theorem-Construction 5.2, we obtain a semiperfect obstruction

theory on M and a virtual fundamental cycle [M]vir ∈A∗(M).

Combining the above two theorems, we arrive at the main result of this section.

Theorem 5.11. Let M be an Artin stack of DT type. Then the intrinsic stabilizer

reduction M̃ admits a semiperfect obstruction theory of virtual dimension zero and an
induced, canonical virtual fundamental cycle [M̃]vir ∈A0(M̃).

Proof. The existence of the semiperfect obstruction theory follows immediately from

Theorems 5.9 and 5.10.
The virtual dimension is zero since for a d-critical chart the rank of FV = ΩV is equal

to dimV and the virtual dimension dimV − rkFV is preserved under Kirwan blowups.

Finally, any two different étale covers (5.9) that are part of a VC package of M can be

refined to a common étale cover. It is routine to check that the virtual fundamental cycle
thus obtained is the same using this common refinement.

Remark 5.12. The existence of the intrinsic stabilizer reduction of M and its

obstruction theory only uses its (−1)-shifted symplectic derived enhancement to deduce
the existence of a d-critical structure on M. We could have thus used a weaker notion of

stacks of DT type, replacing condition (3) in Definition 3.4 by the requirement that M
admits a d-critical structure. However, we will be interested in replicating our arguments
in the relative case where M is a stack over a base smooth scheme S. In that context,

there is no well-developed theory of d-critical stacks to the author’s knowledge and the

existence of a derived enhancement will allow us to still perform our constructions.

6. Donaldson–Thomas invariants of derived objects

In this section, W denotes a smooth, projective Calabi–Yau threefold over C. We first
describe the stability conditions σ on Db(CohW ) that we will be interested in. We then

quote results in [AHH18] which imply that moduli stacks of σ-semistable complexes

are stacks of DT type and explain how to rigidify the C∗-scaling automorphisms of
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objects. Finally, we define generalized DT invariants via Kirwan blowups and show their
deformation invariance.

6.1. Stability conditions

By [Lie06], there is an Artin stack P :=Perf(W ) of (universally gluable) perfect complexes

on W, which is locally of finite type and has separated diagonal. Following [AHH18], we

will consider the following type of stability condition.

Definition 6.1 (Stability condition). A stability condition σ on Db(CohW ) consists of
the following data:

1. A heart A⊂Db(CohW ) of a t-structure on Db(CohW ). Let PA denote the stack of

perfect complexes in A.

2. A vector γ ∈ H∗(W,Q). Let Pγ
A denote the stack of perfect complexes in A with

Chern character γ.

3. A locally constant function

pγ : π0(PA)−→ V ,

where V is a totally ordered abelian group, pγ(E) = 0 for E ∈ Pγ
A and pγ is additive

so that pγ(E⊕F ) = pγ(E)+pγ(F ).

We say that E ∈ Pγ
A is semistable if for any subobject F ⊆ E we have pγ(F ) ≤ 0 and

stable if pγ(F )< 0. If E is not semistable, we say it is unstable.

In order for the stack of semistable objects to be of DT type, we will need to consider

stability conditions satisfying certain properties.

Definition 6.2 (Nice stability condition). Given a stability condition σ on Db(CohW ),

let M be the stack of σ-semistable objects in Pγ
A. We say that σ is nice if the following

hold:

1. M is an Artin stack of finite type.

2. M is an open substack of Perf(W ).

3. M satisfies the existence part of the valuative criterion of properness. We then say
that M is quasi-proper or universally closed.

Remark 6.1. The following are examples of nice stability conditions, by the results of
the mentioned authors:

1. A Bridgeland stability condition in the sense of Piyaratne–Toda [PT19] and Li [Li19].

2. A polynomial stability condition in the sense of Lo [Lo11, Lo13].

3. Gieseker and slope stability. These are examples of a weak stability condition in the

sense of Joyce–Song [JS12, Definition 3.5], where we take A = CohW and K(A) =

N(W ).
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6.2. Moduli stacks of semistable complexes are of DT type

The following theorem is an application of [AHH18, Theorem 7.25] to our context.

Theorem 6.2. Let σ be a nice stability condition on Db(CohW ), and let M denote the

stack of σ-semistable complexes. Then M is an Artin stack of DT type with proper good
moduli space M and affine diagonal.

Proof. By the niceness of σ, M is of finite type. By the results of [PTVV13], Perf(W )

is the truncation of a (−1)-shifted symplectic derived Artin stack. Since M is an open
substack of Perf(W ), it is also such a truncation. By [AHH18, Theorem 7.25], M admits

a good moduli space π : M → M such that M is separated. By Proposition 3.2, π is

universally closed and sinceM is universally closed as well, it follows thatM is universally

closed. Thus, M must be proper.
M has affine diagonal by [AHH18, Lemma 7.19].

6.3. C∗-rigidified intrinsic stabilizer reduction

Let M be as in Theorem 6.2. We denote T = C∗.
To obtain a meaningful nonzero DT invariant, it will be necessary to rigidify the C∗-

scaling automorphisms of objects in M.

For each family of complexes ES ∈M(S), there exists an embedding

Gm(S)→Aut(ES)

which is compatible with pullbacks and moreover Gm(S) is central. In the terminology

used in [AGV08], we say that M has a Gm-2-structure.

Using the results of [AOV08] or [AGV08], we may take the Gm-rigification M�Gm

of M. From the properties of rigification, for any point x ∈M, one has AutM�Gm
(x) =

AutM(x)/T . In particular, if x ∈Ms is stable, then AutM�Gm
(x) = {id}.

Even though M�Gm is not a stack of DT type, we show in the next two propositions

that we can construct its intrinsic stabilizer reduction and equip it with a semiperfect
obstruction theory of virtual dimension zero.

Proposition 6.3. M�Gm satisfies the conditions of Theorem 4.9. It thus admits an

intrinsic stabilizer reduction, which we denote by M̃C
∗
.

Proof. By [Rom05, Theorem 5.1] or [AOV08, Theorem C.1.1], M�Gm has the same

good moduli space M. Since the morphism M→M�Gm is a Gm-gerbe, it follows that
M�Gm and the good moduli space morphism M�Gm →M have affine diagonal.

Proposition 6.4. M�Gm is equipped with a VC package.

Proof. M is a stack of DT type and hence admits a VC package by Setup 5.8.
By the existence of the Gm-2-structure, T naturally embeds in each stabilizer group

Gx. Replacing all such groups by their quotients Gx/T , we obtain a VC package for

M�Gm.
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Remark 6.5. In the case of semistable sheaves treated in [KLS17], rigidification is

much simpler since the moduli stack is a global GIT quotient stack M = [X/G], where

G=GL(N,C), and then one may work with [X/PGL(N,C)] as the Gm-rigidication.

We thus obtain the following.

Theorem-Definition 6.6. M̃C
∗
is called the C∗-rigidified intrinsic stabilizer reduction

of M. It is a proper DM stack with a semiperfect obstruction theory of virtual dimension

zero.

Proof. For properness, the good moduli space q : M̃C
∗ → M̃C

∗
is proper. Since M is

proper and M̃C
∗
is proper over M, M̃C

∗
is proper.

Everything else follows from Theorems 5.9, 5.10 as applied in the proof of
Theorem 5.11.

Remark 6.7. By identical reasoning, all of the above hold in greater generality when

M is an Artin stack of DT type with a Gm-2-structure.

6.4. Generalized DT invariants via Kirwan blowups

Suppose as before thatM is an Artin stack of DT type parametrizing σ-semistable objects
in a heart A of a t-structure on Db(CohW ) with Chern character γ, for a nice stability

condition σ. Then, by Theorem-Definition 6.6, there is an induced C∗-rigidified intrinsic

stabilizer reduction M̃C
∗
with a good moduli space M̃C

∗
and an induced semiperfect

obstruction theory and virtual cycle of dimension zero. We can now state the main

theorem of this paper.

Theorem-Definition 6.8. Let W be a smooth, projective Calabi–Yau threefold, σ a

nice stability condition on a heart A⊂Db(CohW ) of a t-structure, as in Definition 6.1,

γ ∈H∗(W ), and let M denote the stack parametrizing σ-semistable complexes with Chern
character γ. Then we may define the associated generalized Donaldson–Thomas invariant

via Kirwan blowups (DTK invariant) as

DTK(M) := deg [M̃C
∗
]vir ∈Q.

Remark 6.9. In [KS21], the results of [KLS17] and the present paper are refined to define

a virtual structure sheaf [Ovir
˜M ] ∈K0(M̃C

∗
) and a corresponding K -theoretic generalized

DTK invariant.

6.5. Relative theory and deformation invariance

Let C be a smooth quasi-projective scheme over C and W → C a smooth, projective
family of Calabi–Yau threefolds. Without loss of generality, we assume that H∗(Wt,Q)

stays constant for t ∈ C and identify it with H∗(W0,Q), where W0 is the fiber of the

family over a point 0 ∈ C. Let γ ∈H∗(W0,Q). Moreover, let Perf(W/S) denote the stack
of (universally gluable) perfect complexes on the morphism W → C as in [Lie06].

We consider families σ of stability conditions σt, where, for each t ∈C, σt is a stability

condition on Db(CohWt) as in Definition 6.2 with Chern character γ ∈ H∗(Wt,Q) =

https://doi.org/10.1017/S1474748023000142 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000142


Intrinsic stabilizer reduction and generalized Donaldson–Thomas invariants 2021

H∗(W0,Q). Let M → C be the stack parametrizing relatively semistable objects in

Db(CohW ), that is, perfect complexes E such that the derived restriction Et := E|Wt
is

σt-semistable for all t ∈ C. We require that the conditions characterizing a nice stability
condition hold relative to the base C as follows.

Setup 6.10. We say that the family of stability conditions σt is nice if the following

hold.

1. M is an Artin stack of finite type.

2. M is an open substack of Perf(W/C).

3. M→ C admits a good moduli space M → C, proper over C.

Remark 6.11. When we have a GIT description of M→ C, then the above conditions
are satisfied. This is the case for Gieseker and slope stability of coherent sheaves.

When we are in the situation of the above setup, all of our results extend to the relative

case.

Theorem 6.12. Let W → C be a smooth, projective family of Calabi–Yau threefolds

over a smooth, quasi-projective scheme C, {σt}t∈C a nice family of stability conditions
on Db(CohW ), γ ∈H∗(W0,Q) and M→C the stack of fiberwise σt-semistable objects of

Chern character γ in Db(CohW ).

Then there exists an induced C∗-rigidified intrinsic stabilizer reduction M̃ → C, a

DM stack proper over C, endowed with a semiperfect obstruction theory and a virtual

fundamental cycle [M̃]vir ∈A0(M̃).

Moreover, the fiber M̃t over t ∈ C is the C∗-rigidified intrinsic stabilizer reduction of

Mt and the obstruction theory pulls back to the one constructed in the absolute case so

that if it : M̃t →M̃ is the inclusion, we have

i!t[M̃]vir = [M̃t]
vir ∈A0(M̃t).

Proof. This is the generalization of [KLS17, Theorem 7.17] adapted to our context. We
briefly explain the steps and necessary changes.

M admits a Gm-2-structure. By conditions (1) and (3) of Setup 6.10, M�Gm satisfies

the conditions of Theorem 4.9, so using Proposition 6.3 we obtain the C∗-rigidified
intrinsic stabilizer reduction M̃C

∗ →M→ C.

To see that the fiber over t ∈ C is M̃C
∗

t , observe that by definition M̃C
∗
is obtained

by taking iterated Kirwan blowups of a cover by strongly étale quotient charts (where
T = C∗)

Nx := [Ux/(Gx/T )]

��

�� M�Gm

��
Nx := Ux//Gx

�� M

��
C.
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Taking fibers over t∈C, we obtain a cover of Mt�Gm by strongly étale quotient charts,

so it suffices to show that (N̂x)t = (̂Nx)t. But this is true by the same argument used in
the proof of [KLS17, Proposition 7.4].

Constructing the obstruction theory of M̃C
∗
is slightly more subtle. First, we observe

that there is an obvious generalization of Setup-Definition 5.2 to define local model

structures on G-schemes U over the base scheme C, cf. [KLS17, Definition 7.11].

Using the fact that the morphism M→C is the truncation of a (−1)-shifted symplectic

derived stack over C, we can show that M�Gm admits a VC package, as in Setup 5.8.
The only difference is that, now in equation (5.10), we have FVx

= ΩVx/C and ωVx
is

a Gx-invariant 1-form, and similarly in equation (5.12), FSz
= ΩSz/C and ωSz

is a Gz-

invariant 1-form. The construction of the VC package follows verbatim the reasoning of
Subsections 7.2 and 7.3 in [KLS17]. We refer the reader there for details.

Finally, to see that the restriction of the semiperfect obstruction theory of M̃C
∗
to M̃C

∗

t

agrees with the absolute semiperfect obstruction theory constructed using the d-critical
structure of Mt�Gm, we use the fact that for any choice of relative local models in the

VC package of M�Gm, the sections ωVx
can be taken so that ωVx

|(Vx)t is Ω-equivalent to

an exact 1-form dfx induced by the d-critical structure of Mt�Gm. As a consequence of
properties of Ω-equivalence (cf. [KLS17, Lemma 5.14]), the construction of the semiperfect

obstruction theory of M̃C
∗

t can be performed equivalently using ωVx
|(Vx)t instead of dfx

in the VC package of Mt�Gm. The necessary arguments are carried out in detail in

[KLS17, Subsection 7.4].

In the case of Bridgeland stability conditions constructed in [PT19] and [Li19], the
results of [BLM+21] imply that we get nice families of Bridgeland stability conditions.

As an immediate corollary, we have the following theorem.

Theorem 6.13. The generalized DT invariant via Kirwan blowups for σ-semistable
objects on Calabi–Yau threefolds, where σ is a Bridgeland stability condition as in [PT19]

and [Li19], is invariant under deformations of the complex structure of the Calabi–Yau

threefold.

Remark 6.14. In the case of Gieseker stability and slope stability of coherent sheaves,

deformation invariance follows directly from the results of [KLS17].
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[Toë09] B. Toën, ‘Higher and derived stacks: A global overview’, In Algebraic Geometry—
Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80 (Amer. Math. Soc.,
Providence, RI, 2009), 435–487.
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