THE USE OF RADIOCARBON MEASUREMENTS IN ATMOSPHERIC STUDIES¹

M R MANNING, D C LOWE, W H MELHUISH, R J SPARKS, GAVIN WALLACE, C A M BRENNINKMEIJER and R C McGILL

Institute of Nuclear Sciences, Department of Scientific and Industrial Research Lower Hutt, New Zealand

ABSTRACT. ¹⁴C measured in trace gases in clean air helps to determine the sources of such gases, their long-range transport in the atmosphere, and their exchange with other carbon cycle reservoirs. In order to separate sources, transport and exchange, it is necessary to interpret measurements using models of these processes. We present atmospheric ¹⁴CO₂ measurements made in New Zealand since 1954 and at various Pacific Ocean sites for shorter periods. We analyze these for latitudinal and seasonal variation, the latter being consistent with a seasonally varying exchange rate between the stratosphere and troposphere. The observed seasonal cycle does not agree with that predicted by a zonally averaged global circulation model. We discuss recent accelerator mass spectrometry measurements of atmospheric ¹⁴CH₄ and the problems involved in determining the fossil fuel methane source. Current data imply a fossil carbon contribution of ca 25%, and the major sources of uncertainty in this number are the uncertainty in the nuclear power source of ¹⁴CH₄, and in the measured value for δ^{14} C in atmospheric methane.

INTRODUCTION

Trace gases in the atmosphere play a crucial role in determining our environment. Greenhouse gases in the troposphere determine the earth's temperature through selective absorption of infra-red radiation. Ozone in the stratosphere filters out ultra-violet radiation that would destroy complex organic molecules essential for life. Because the amounts of these gases are small and the balance of processes maintaining them complex, they are a potentially fragile part of our environment.

Many of the trace gases that must be studied in relation to changes in climate and atmospheric chemistry contain carbon. For these gases, isotopic measurements are directly relevant in determining sources and sinks, because sources will have different isotopic composition and sinks will involve fractionation. The importance of carbon isotope measurements in building global budgets for gases such as CO_2 (Keeling, Mook & Tans 1979; Peng *et al* 1983), CH_4 (Ehhalt 1973) and CO (Stevens *et al* 1972) has been recognized for some time.

The atmospheric concentration of gases with lifetimes of the order of minutes or less is determined by local atmospheric chemistry and the presence or absence of light. For gases with lifetimes of many years, concentrations are relatively homogeneous due to atmospheric mixing. Between these extremes there are atmospheric species with intermediate lifetimes, the concentration of which depends on both atmospheric transport and the distribution of sources and sinks. To understand the varying concentrations of such species, we must combine quantitative information on advection and diffusion in the atmosphere with information on the spatial distribution of sources and sinks. This is a difficult task, but holds the prospect that we may determine a consistent picture of all the processes involved.

Each of the gases CO_2 , CH_4 and CO is a candidate for study using a detailed physical and chemical model of the atmosphere. Extensive modeling of the annual cycle of CO_2 concentrations (Trabalka 1985; Heimann & Keeling 1986) has shown that even though this gas has a lifetime in the atmosphere of many years, the latitudinal and seasonal variation of its concentration yields information on long-range atmospheric transport.

 CH_4 has a lifetime similar to that of CO_2 , but is a complementary tracer of atmospheric transport because the distribution of its sinks is quite different. While the sinks for CO_2 are all at the surface, the dominant sink of CH_4 is through reaction with the OH radical distributed throughout the atmosphere. The OH radical is produced photolytically in the troposphere and its maximum diurnal concentration, and therefore the sink strength for CH_4 , varies considerably with latitude, altitude and season (Logan *et al* 1981).

Reaction with the OH radical is also the major sink for CO (Volz, Ehhalt & Derwent 1981), so CO has a sink structure similar to CH₄. As the lifetime of CO (\approx 4 months) is shorter than the time required to mix throughout the troposphere, this gas does not become

¹ This paper was presented at the 13th International Radiocarbon Conference, June 20-25, 1988 in Dubrovnik, Yugoslavia.

fully dispersed from its sources. In regions where the mean transit time for CO arrival from a source is of the order of its lifetime, we can expect significant variation in concentrations as a result of transient changes in atmospheric transport.

The natural cosmogenic formation of ¹⁴C in the stratosphere (Lal & Peters 1962) leads to both ¹⁴CO and ¹⁴CO₂. As this ¹⁴C production is greatest in the stratosphere, we expect a natural vertical gradient in atmospheric ¹⁴C. Human intervention through nuclear weapons testing, which put ¹⁴C in the stratosphere, and release of fossil carbon from the surface has enhanced this natural gradient. Relatively rapid mixing in the troposphere can be expected to dissipate this gradient at lower altitudes, but across the tropopause and in the stratosphere it will persist.

Thus, ¹⁴C is a useful tracer of transport in the atmosphere, and particularly of vertical transport. The longer-lived species such as ¹⁴CO₂ and ¹⁴CH₄ provide information on the longer time scales associated with stratosphere to troposphere and interhemispheric exchange, whereas ¹⁴CO can provide information on the shorter time-scale movements associated with transport within a hemisphere.

We show here that the seasonal component of a 32-yr atmospheric ${}^{14}\text{CO}_2$ record can be used to infer stratospheric residence times for CO_2 . Our data are compared with a two-dimensional model of atmospheric transport and discrepancies are shown which imply either deficiencies in present modeling of vertical transport, or the presence of complex sources and sinks of ${}^{14}\text{C}$ or both. We also show how measurements of ${}^{14}\text{CH}_4$ can identify the relative strengths of fossil and modern sources of methane, and can set limits on the production of this species from nuclear power plants.

MEASUREMENTS OF ATMOSPHERIC ¹⁴CO₂ IN THE SOUTH PACIFIC

Measurements of ¹⁴C in atmospheric CO_2 at Wellington, New Zealand and at other South Pacific sites ranging from the Antarctic to the Equator, were initiated by T A Rafter and G J Fergusson in the early 1950s. Early results and procedures are reported elsewhere (Rafter 1955; Rafter & Fergusson 1959; Rafter & O'Brien 1970). Our data report the results of this program up to May 1987.

The sampling procedures used to obtain nearly all the data are described by Rafter and Fergusson (1959). Trays containing ca 2L of 5 normal NaOH carbonate-free solution are exposed for intervals of 1–2 weeks, and the atmospheric CO₂ absorbed during that time is recovered by acid evolution. Considerable fractionation occurs during absorption into the NaOH solution, and the standard fractionation correction (Stuiver & Polach 1977) is used to determine a Δ^{14} C value corrected to δ^{13} C = $-25^{0}/_{00}$.

A few early measurements were made by bubbling air through columns of NaOH for several hours. These samples can be readily identified in the data as their δ^{13} C value is much higher (*ie*, closer to the ambient air value). Also, some samples reported here were taken using BaOH solution or with extended tray exposure times. These variations in procedures do not appear to affect the results.

Table 1 lists the Wellington data for the period, Dec 1954–May 1987, and data for shorter periods at six other sites. Dates refer to the mid-point of the sampling interval, and an asterisk denotes a sample for which contamination is known or suspected. Figures 1A, B show the data after discarding these suspect cases.

Low latitudinal gradients are to be expected in the South Pacific, as the sources of $^{14}CO_2$ are far from the sampling sites and CO_2 has a mean lifetime in the atmosphere which is long compared to the time required for tropospheric mixing. This is borne out by our data which show only small variations between sites. Quantifying these differences is made difficult by the noise level, which appears to exceed the error due to counting statistics, and by the sparsity of data from different sites for common times.

Table 2 summarizes the station differences relative to the Wellington station, using months where data are common to both. This suggests that ¹⁴C levels in atmospheric CO_2 were slightly higher in the Equatorial Pacific than at mid-southern latitudes, and were

TABLE 1
Radiocarbon measurements of South Pacific air

	δ^{13} C	Δ^{14} C	Lab
Date	%0		number
Tara	va, Kirib	ati, 1.5° N, 173	3.0° E
660805	-21.6	645.7±3.6	NZ2448
661004	-20.9	636.6±3.8	NZ2449
661205	-21.2	649.3±3.8	NZ2452
670205	-21.5	611.6±3.9	NZ2466
670605	-20.9	612.7±3.8	NZ2482
670805	-19.5		NZ2481
670905	-19.3	605.6±3.9	NZ2498
671005	-19.5	597.8±3.8	NZ2485
671205	-19.4	594.8±3.8	NZ2484
680305	-19.3		
680405	-20.5	574.8±3.8	NZ2507
680505	-20.1	567.2±3.8	NZ2508
680605	-20.2	574.0±3.8	NZ2509
680705	-22.8		
680805	-21.9		
680830	-20.7	593.8 ± 6.0	NZ2722
680906	-22.6	542.2±3.9	NZ3474
680927	-21.1		
681025	-21.0	564.1±5.9	
681205	-19.4	554.9±3.8	NZ2557
690105	-20.3	548.8±3.8	NZ2558
690305	-21.5	559.1±3.8	
690505	-20.6	545.2±3.8	
690705	-18.9	536.7±4.0	
690905	-18.7	519.4 ± 3.6	
691105	-20.6	529.6 ± 3.9	
700105		533.0 ± 3.8	
700305	-21.5	513.6±3.9	
700505 700706	-19.9 -21.8	510.3±3.9 507.4±3.9	
	-21.0	507.4±3.9 514.0±3.9	
700905 701105	-21.5	514.0 ± 3.9 507.4 ±3.9	NZ2609
701105	-23.1	507.4 ± 3.9 507.6 ±3.9	
710105	-23.3	507.0±3.9	NZ2628
710507		486.5±3.9	NZ2630
710507		486.3 ± 3.9 486.3 ± 3.7	
710904	-21.3		
711104	-23.5	506.2 ± 3.9	NZ2656
721006	-21.3	460.5 ± 3.6	NZ4095
721104	-21.9	463.6±3.3	NZ4096
721204	-20.5	455.9±3.6	NZ4097
730104	-22.8	442.8±3.3	NZ4098
730205	-22.9	444.8±3.7	NZ2685
730405	-22.7	438.1±3.3	NZ2686
730504	-22.3	452.7±3.7	NZ2687
740804	-21.3	401.8±3.3	NZ4080
740904	-22.5	405.4±3.7	NZ4081
741109	-21.5	394.2±3.6	NZ4099
741204	-21.8	393.9±3.6	NZ4100
•			

 Juni i acin			
	δ^{13} C	Δ^{14} C	Lab
Date	%0	%0	number
750105	-21.3	391.3±3.5	NZ4101
750204	-18.6	376.4±3.3	NZ4102
750605	-22.4	415.5±3.7	NZ4079
750707	-20.8	401.3±3.3	NZ3829
750826	-22.3	390.6±3.3	NZ4141
750904	-23.2	358.9±3.2	NZ4142
751014	-22.8	363.4±3.3	NZ4299
751104	-23.1	366.6±3.3	NZ4300
751204	-22.7	360.4±3.3	NZ5646
760104	-22.6	371.7±3.3	NZ5647
760204	-22.3	354.9 ± 3.3	NZ5648
760304	-22.2	353.4±3.3	NZ5649
760404	-21.2	357.4±3.3	NZ5650
760504	-21.7	348.6±3.7	NZ5651
760612	-20.6	357.8 ± 5.3	NZ5692
760706	-20.6	353.3 ± 3.3	NZ5693
760813	-21.6	352.0 ± 3.7	NZ5694
770812	-16.9	348.4±3.3	
110012	-10.9	040.4 <u>1</u> 0.0	NZ3033
Euro	futi Tunz	alu, 8.5° S, 17	0.00 E
660805	-21.6	650.8±3.8	
	-21.8		
661005		638.5±3.8	
661204	-21.9	619.9±3.8	
670205	-22.3	636.6±3.8	NZ2465
670505	-20.5	609.9±3.8	NZ2474
670605	-21.1	612.8 ± 3.9	NZ2475
670805	-19.8	596.9 ± 4.5	NZ2476
671005	-20.7	598.9 ± 3.8	NZ2483
671205	-21.8	582.7 ± 4.5	NZ2486
671205	-21.8	586.2 ± 4.5	NZ2489
680305	-20.2	563.6±3.8	NZ2510
680405	-21.0	596.6 ± 3.9	NZ2511
680505	-21.7	561.1±3.8	NZ2512
680602	-19.5	551.4±3.8	NZ2513
680804	-20.7	549.8 ± 3.9	NZ2525
680830	-22.3	556.4±3.9	NZ2526
680906	-18.3	544.0±4.0	NZ2527
680927	-21.1	570.2±5.1	NZ2725
681205	-21.0	553.7±3.8	NZ2536
690105	-18.7	552.6±3.8	NZ2537
690305	-20.7	552.8±3.8	NZ2554
690505	-21.4	535.9 ± 3.9	NZ2561
690705	-20.8	529.1±3.9	NZ2565
690905	-21.2	518.6±3.9	NZ2574
691105	-21.1	517.4 ± 3.9	NZ2575
700105	-21.1	513.5 ± 3.9	NZ2577
700304	-20.6	510.5 ± 0.5 527.0 ±3.9	NZ2580
700505	-20.0	527.0 ± 3.9 523.5 ± 3.9	NZ2594
700505	-21.2	523.5 ± 3.9 504.5±3.9	NZ2595
701005	-21.1	504.5 ± 3.9 516.8±3.9	NZ2615
701005	-22.3	510.0 ± 3.9 517.1 ± 3.9	NZ2615
101205	-21.3	517.1±0.9	1122010

TABLE 1 (continued)

_	δ^{13} C	Δ^{14} C	Lab		$\delta^{13}C$	Δ^{14} C	Lab
Date	%00	%0	number	Date	‰	%0	numbe
710205	-22.2	502.6 ± 3.9	NZ2632	650813	-22.3	640.1±3.8	NZ204
710305	-24.2	504.3±3.5	NZ2633	650924	-22.9	654.6±3.9	NZ203
710505	-22.4	512.8 <u>+</u> 4.0	NZ2634	651105	-23.9	653.2±3.8	NZ204
710705	-22.7	498.7±3.6	NZ2637	660106	-22.0	666.5 ± 3.8	NZ203
710905	-23.0	496.2±3.9	NZ2648	660204	-23.4	644.9±3.8	NZ204
711105	-22.5	487.4±3.5	NZ2649	660305	-21.8	635.4±3.8	NZ204
720106	-22.2	490.0±3.6	NZ2674	660605	-23.2	649.0±3.6	NZ204
720305	-20.8	487.9±3.6	NZ2083	660705	-23.3	622.5±3.8	NZ204
				660805	-24.3	626.4±3.9	NZ204
	uva, Fiji,	18.1°S, 178.4		660905	-23.0	625.8±3.8	NZ204
580402	-9.0	74.5±3.8	NZ2000	661205	-21.4	636.3±3.8	NZ204
580407	-25.0	68.4±3.8	NZ2001	670220	-20.7	616.5±3.8	NZ205
580510	-9.0	71.4±3.3	NZ2002	670714	-22.4	593.1±3.8	NZ205
580510	-25.0	69.0±4.7	NZ2003	670804	-22.4	587.2±3.9	NZ205
581104	-25.0	117.1±4.6	NZ2005	671006	-21.9	584.9 ± 3.9	NZ205
590228	-23.6	124.1±4.6	NZ2007	671205	-21.1	567.9±3.7	NZ205
590703	-24.5	151.3±4.1	NZ2004	680205	-20.8	573.6±3.8	NZ205
590922	-22.3	180.4±4.5	NZ2006	680415	-20.3	567.3±3.8	NZ205
600122	-22.1	189.8±4.5	NZ2009	680604	-19.6	553.7±3.9	NZ205
600414	-21.1	185.1±4.5	NZ2008	680805	-21.5	549.3±3.6	NZ205
600902	-22.7	197.0±4.5	NZ2010	680906	-21.9	545.4±3.6	NZ205
600929	-24.6	202.3 ± 4.5	NZ2012	681005	-20.0	549.4±5.0	NZ209
510120	-23.7	196.5 ± 4.5	NZ2011	681105	-21.7	549.4 ± 3.0 556.5 ±3.9	NZ208
610301	-21.2	196.8±4.2	NZ2034	681205	-21.7	530.5±3.9 530.4±3.8	
610414	-22.9	192.9±5.0	R00945	690105	-20.7		NZ206
610708	-22.1	196.5±5.0	NZ2013	690307	-20.7	542.4±3.9	NZ206
610818	-23.1	207.2 ± 4.2	NZ2033	690505	-20.0	546.9 ± 3.8	NZ206
610929	-23.7	180.8±5.0	NZ2015	690706		531.5±3.6	NZ206
611110	-23.5	183.5 ± 6.8	R00997		-20.2	533.8±3.6	NZ206
611219	-24.7	103.3 ± 0.0 198.2±4.9	NZ2014	690905	-22.1	541.9±3.9	NZ206
620119	-21.7	190.2±4.9 214.4±4.2	NZ2014	691107	-22.4	531.0±3.9	NZ206
620301	-23.2	208.3 ± 5.0	NZ2032	700109	-21.8	521.7±3.9	NZ206
620301	-23.2	200.3±3.0 233.0±9.4	NZ2092	700306	-22.1	525.8±3.9	NZ206
520412	-23.2	233.0 ± 9.4 223.5 ±5.3	NZ2092	700509	-21.6	536.0±3.9	NZ207
620412	-21.8	223.5 ± 5.3 234.4±4.3	NZ2021 NZ2020	700705	-21.6	514.3±3.9	NZ207
520706	-26.5			700905	-22.1	504.5±3.9	NZ207
520708 520927	-20.5 -24.5	238.9±5.9 250 2±2 0	NZ2091	701106	-22.3	506.4±3.9	NZ207
520927 530117	-24.5 -19.8	259.3±3.9	NZ2019	710108	-21.6	512.1±3.9	NZ207
630705	-19.8	289.0±4.8 380.5±4.1	NZ2017 NZ2022	710305	-20.6	498.6±3.9	NZ207
				710509	-22.0	492.3±3.9	NZ207
630917 630927	-22.7	417.6±4.1	NZ2038	710710	-22.5	486.9±4.0	NZ207
	-26.8	413.5 ± 4.1	NZ2037	710905	-23.2	494.6±3.6	NZ207
531220 540116	-21.6	497.0±3.4	NZ2024	711105	-21.5	498.4±3.9	NZ207
540116	-21.9	490.7±4.0	NZ2025	711205	-21.1	491.4±3.6	NZ208
540409 540500	-21.9	545.6±3.5	NZ2026	720106	-21.4	488.6±3.3	NZ208
540522	-23.2	548.7±3.5	NZ2027	720305	-28.8	501.5 ± 3.6	NZ208
540702	-26.1	580.4±4.0	NZ2028	720505	-21.1	474.3±3.6	NZ208
640925	-22.6	630.1±3.9	NZ2029	720704	-24.5	496.5 ± 6.7	NZ209
641217	-22.7	644.4±3.7	NZ2030	720705	-24.6	473.9±3.3	NZ208
550115	-19.6	654.5±3.8	NZ2045	720805	-20.2	473.4±5.1	NZ209
50408	-20.2	643.0±3.9	NZ2031	721005	-24.1	468.8±3.3	NZ208
650701	-22.9	647.8±3.9	NZ2035	730108	-18.4	458.4 ± 4.6	NZ209

TABLE 1 (continued)

1	δ^{13} C	$\Delta^{14}C$	Lab			$\delta^{13}C$	Δ^{14} C	Lab
Date	‰	%00	number		Date	‰	‰	number
730205	-21.1	451.3±3.7	NZ2085		660905	-28.0	631.6±3.8	NZ2456
730406	-20.4	444.6±3.3	NZ2086		661005	-23.1	614.3±3.8	NZ2455
730605	-23.0	433.6±3.3	NZ2090		661205	-20.5	602.8±3.8	NZ2457
730805	-23.9	456.2±3.7	NZ2089		670205	-16.1	592.4±3.8	NZ2470
731005	-23.9	423.1±3.3	NZ4053		670606	-20.3	501.3 ± 4.5	NZ2473
731126	-22.5	430.7±7.4	NZ3816		670705	-19.5	516.3 ± 3.9	NZ2497
731207	-21.3	456.5±3.3	NZ4054		670805	-20.8	535.3 ± 3.6	NZ2472
740106	-20.9	427.3 ± 3.7	NZ4055		670905	-21.5	575.3±3.9	NZ2496
740319	-22.4	409.8 ± 3.7	NZ4059		680205	-20.2	561.1±3.9	NZ2500
740405	-21.6	415.2 ± 3.7	NZ4060		680405	-19.4	562.3±3.9	NZ2501
740505	-21.4	416.1 ± 4.4	NZ3847		680605	-21.0	529.1±3.9	NZ2517
740607	-21.4	403.8 ± 3.7	NZ4061		680704	-22.5	517.8±3.9	NZ3468
750307	-21.6	400.0±0.7 392.6±3.3	NZ4103		680804	-20.3	503.5 ± 3.9	NZ2519
750404	-21.8	384.1±3.3	NZ4104		680828	-20.2	533.1 ± 3.9	NZ2518
750504	-19.7	379.0±3.3	NZ4105		680905	-25.0	531.7±3.9	NZ2533
750608	-22.0	389.3±3.7	NZ4106		680926	-21.7	509.7±3.9	NZ2534
/30000	-22.0	009.010.1	1124100		681003	-19.8	515.9 ± 3.9	NZ3495
Malbau	rna Auc	tralia, 37.8° S,	111 0° E		681031	-22.8	521.8 ± 3.9	NZ3480
1	-23.6	76.5±4.0	NZ2311		681107	-22.3	535.0 ± 3.9	NZ3482
581104 590229	-23.0 -24.6	103.3 ± 3.8	NZ2312		681205	-19.7	512.7±3.9	NZ2532
590229	-24.0	103.3 ± 3.0 101.5±4.6	NZ2312		690105	-19.5	534.8 ± 3.8	NZ2555
590926	-25.1	101.5 ± 4.0 136.6 \pm 4.5	NZ2319		690305	-19.3	532.6±3.9	NZ2556
1		130.0 ± 4.5 161.5±4.5	NZ2330		690505	-19.7	496.6 ± 3.9	NZ2562
600122 600415	-22.4	181.5 ± 4.5 182.1 ± 4.5	NZ2330		690705	-20.6	496.3±3.4	NZ2581
	-21.4	152.1 ± 4.5 155.1 ± 4.6	NZ2331		690906	-20.6	488.3±3.9	NZ2586
600708	-23.0 -21.0	155.1 ± 4.0 173.0 \pm 4.5	NZ2335 NZ2337		691104	-19.0	400.0±0.9 507.0±3.9	NZ2588
600930 601112	-23.5	173.0 ± 4.5 181.7±4.5	NZ2342		700105	-18.0	515.8 ± 3.9	NZ2587
610120	-23.5	181.7 ± 4.5 188.8±4.5	NZ2343		700305	-19.4	509.0 ± 3.9	NZ2620
610929	-22.5	183.2 ± 4.0	NZ2357		700505	-20.0	486.7±3.9	NZ2621
611219	-20.7	185.2 ± 4.0 185.2±4.0	NZ2358		700701	-20.3	475.6±3.9	NZ2622
620413	-19.0	185.2 ± 4.0 198.6±4.0	NZ2359		700905	-19.7	486.5 ± 3.9	NZ3547
620928	-21.5	193.0 ± 4.0 221.8 ±5.2	NZ3580		701104	-20.3	480.3±3.5	NZ3548
	-22.5	221.0 ± 3.2 240.9±4.1	NZ2366		710105	-19.2	484.6±3.9	NZ2625
630118		240.9 ± 4.1 282.3 ±3.9	NZ2388		710604	-17.9	433.1 ± 3.9	NZ2650
630705	-21.0	348.9 ± 3.8	NZ2385		710804	-18.8	463.6 ± 3.5	NZ2651
630926	-20.5		NZ2386		711004	-19.6	462.3±3.9	NZ2652
631219	-19.4	411.5±3.8	NZ2380		711204	-18.4	470.5±3.5	NZ2653
640116	-21.6	436.8±3.8	NZ2307		720604	-18.8	398.1 ± 6.7	NZ2733
640410	-19.7	486.6 ± 4.0	NZ2397		120004	-10.0	000.1 ±0.7	1122700
640702	-20.3	512.0±4.0			Mallingt	on Now	Zealand, 41.3	85 174 8° F
640925	-20.2	560.3±3.9	NZ2400		541215	-9.4	-17.7±7.6	NZ2100
641218	-20.5	574.4±3.9	NZ2399		550222	-9.4 -9.4	-17.7 ± 7.0 -10.1 \pm 7.7	NZ2099
650115	-20.6	609.3±3.8	NZ2459				-10.1±7.7	NZ2099
650409	-20.1	608.0±3.9	NZ2422		550414	-9.4		NZ2090
650520	-19.8	589.8±3.8	NZ2460		550510	-24.9	-10.3±7.8 -4.1±5.9	NZ2097
651001	-20.9	612.5±3.8	NZ2423		550615	-9.4		NZ2102
651105	-20.9	620.7±3.8	NZ2430		550907	-8.8	-11.9 ± 4.0	NZ2103 NZ2104
651205	-20.1	516.9±3.9	NZ2461		551215	-8.8	0.1 ± 5.4	NZ2104 NZ2105
660107	-20.2	610.2±3.8	NZ2424		560219	-8.8	5.6±3.9	
660305	-21.1	614.0±3.8	NZ2438		560615	-25.0	37.9 ± 4.8	NZ2107
660505	-22.8	614.9±3.8	NZ2437		560925	-25.8	10.1 ± 4.8	NZ2108
660605	-20.5	587.3±3.9	NZ2440		561021	-9.0	13.6±4.7	NZ2110
•								

TABLE 1 (continued)

1								
	$\delta^{13}C$	$\Delta^{14}C$	Lab		1	$\delta^{13}C$	Δ^{14} C	Lab
Date	‰	%0	number		Date	‰	 ‰	number
561022	-9.2	18.1±4.7	NZ2109		630118	-25.9	265.5±3.9	NZ2154
570127	-9.0	18.3±3.7	NZ2111		630301	-23.6	269.7±3.9	NZ2156
570127	-10.1	24.9 ± 3.7	NZ2112		630301	-23.6	266.4±3.8	NZ2159
570428	-10.6	39.0±4.7	NZ2113		630414	-23.5	280.9±3.8	NZ2160
570428	-9.8	41.5±4.7	NZ2114		630414	-23.5	284.3 ± 3.9	NZ2157
570522	-24.8	16.6±4.8	NZ2115		630526	-24.2	313.2±4.1	NZ2163
570723	-9.4	44.9±3.9	NZ2120		630706	-24.7	331.1 ± 4.1	NZ2161
570723	-9.6	43.4±3.9	NZ2118		630817	-24.7	355.6 ± 4.3	NZ2162
570827	-24.8	51.4±4.0	NZ2116		630929	-23.7	405.2 ± 3.8	NZ2164
571009	-12.5	46.3±5.1	NZ2122		631110	-24.7	374.8 ± 4.1	NZ2165
571106	-9.7	51.6±4.7	NZ2124		631220	-24.7	429.5 ± 3.8	NZ2165
571126	-8.8	62.0±4.6	NZ2123		640117	-23.1	445.7±3.8	NZ2160
580318	-9.4	67.5±4.0	NZ2126		640301	-22.8	472.5±4.0	
580318	-10.1	76.2±4.0	NZ2125		640411	-22.0	472.3 ± 4.0 500.3±4.0	NZ2168
580704	-25.0	81.1±3.8	NZ2128		640523	-25.9		NZ2169
580828	-25.0	77.8±3.8	NZ2127		640703	-25.9 -24.7	498.3±3.9	NZ2170
580929	-24.8	93.9±3.5	NZ2129		640815	-24.7 -24.6	542.4±3.7 567.4±4.0	NZ2171
581009	-24.6	116.9±4.6	NZ2130		641003	-24.0 -25.4	507.4 ± 4.0 507.0±3.9	NZ2173
581223	-25.0	110.1 ± 3.8	NZ2131		641106	-25.4 -24.7		NZ2172
590117	-25.0	121.1 ± 3.8	NZ2132		641217	-24.7	621.9±3.9	NZ2174
590302	-25.0	126.0±4.6	NZ2133		650115		615.7±3.9	NZ2175
590411	-25.1	137.2±3.8	NZ2134		650227	-22.0	689.4 ± 7.5	NZ2271
590601	-25.9	132.8±3.8	NZ2134		1	-23.6	633.6±3.9	NZ2176
590713	-25.2	150.1±3.8	NZ2135		650408 650521	-23.9	634.1±3.9	NZ2178
590813	-25.0	141.8±4.5	NZ2133			-21.4	615.2 ± 3.8	NZ2177
591001	-26.4	164.6 ± 4.5	NZ2138		650702	-25.7	694.5±3.9	NZ2180
591119	-24.5	171.4 ± 4.5	NZ2139		650813 650924	-23.9	614.1±3.9	NZ2179
591219	-25.0	181.7±4.5	NZ2139			-25.2	634.2±4.0	NZ2181
600121	-25.2	181.8±4.5	NZ2140		651106 651224	-18.1	625.7±4.0	NZ2182
600414	-23.4	187.9±4.5	NZ2141			-24.9	634.4±3.9	NZ2183
600714	-24.0	187.4±4.5	NZ2142		660204	-24.6	647.3±3.9	NZ2184
600901	-22.8	193.7±4.5	NZ2145		660308 660402	-26.4	646.5 ± 3.9	NZ2185
600929	-22.5	195.9 ± 4.5	NZ2143			-23.9	631.8±3.6	NZ2186
601113	-26.4	198.4 ± 4.5	NZ2144		660520	-26.1	622.1 ± 3.8	NZ2189
601219	-24.5	193.7 ± 4.5	NZ2147		660610 660706	-25.0	612.4 ± 4.2	NZ2188
610120	-25.5	194.9±4.5	NZ2140			-23.2	612.2 ± 4.4	NZ2187
610310	-24.9	207.1 ± 5.1	NZ2140		660819	-24.8	590.8±3.9	NZ2190
610414	-25.0	201.9 ± 4.5	NZ2149		660909	-26.8	625.2±3.8	NZ2191
610526	-26.3	196.7 ± 4.5	NZ2150		661007	-23.8	614.8±3.9	NZ2192
610706	-25.1	190.7 ± 4.5 198.3 ± 9.5	NZ2151 NZ2263		661105	-25.1	614.9 ± 4.2	NZ2193
610819	-25.1	196.3 ± 9.5 197.9 ± 6.3			661211	-24.8	627.8±3.9	NZ2194
611003	-23.3	197.9±6.3 182.8±5.0	NZ2262		670109	-24.6	616.4±3.9	NZ2195
611111	-24.7	102.0 ± 5.0 237.2 ± 9.4	NZ2152		670224	-23.0	602.9 ± 4.4	NZ2196
611219	-23.0 -25.1	237.2 ± 9.4 227.3 ± 9.4	NZ2264		670408	-23.4	609.0±3.8	NZ2197
620119	-25.1		NZ2265		670506	-23.7	596.5±3.8	NZ2198
620302		197.4±5.0	NZ2268		670610	-23.7	580.0±6.3	NZ2272
	-23.4	207.3 ± 7.5	NZ2266		670610	-23.7	595.9 ± 5.4	NZ2273
620425	-24.5	214.3 ± 5.1	NZ2267		670719	-24.4	571.3±3.8	NZ2199
620525	-24.5	189.4 ± 9.5	NZ2269		671006	-23.1	575.1±3.8	NZ2200
620928	-24.5 -24.0	233.5 ± 4.4	NZ2155		671110	-25.7	586.0 ± 5.2	NZ2274
601100	-2010	250.4±5.9	NZ2270		671209	-24.4	579.6±3.9	NZ2201
621109 621220	-24.0	266.6±3.9	NZ2153	1	680113	-23.9	583.0±3.9	NZ2201

TABLE 1	lcor	tiniid	ad 1
I ADLE I		ntinue	JUJ

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Date 720317 720331 720420 720504 720610 720707 720901 721007	δ ¹³ C %0 -22.5 -23.8 -22.6 -23.0 -24.4 -24.0 -24.7	$\begin{array}{c} \bigtriangleup^{14} C \\ \hline \% \\ \hline 474.8 \pm 7.4 \\ 482.4 \pm 3.6 \\ 468.1 \pm 3.6 \\ 469.5 \pm 5.1 \\ 470.1 \pm 5.1 \\ 470.1 \pm 5.1 \end{array}$	Lab number NZ2282 NZ2250 NZ2254 NZ2286
680211 -24.5 582.5±3.9 NZ2203 680311 -22.5 572.8±3.6 NZ2204 680406 -23.9 547.6±3.7 NZ2205 680531 -24.8 560.5±3.9 NZ2206 680607 -24.6 561.7±3.9 NZ2207 680705 -26.3 550.4±3.9 NZ2208 680809 -24.7 538.1±3.9 NZ2209 680830 -23.8 535.5±3.8 NZ2210 680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212	720317 720331 720420 720504 720610 720707 720901	-22.5 -23.8 -22.6 -23.0 -24.4 -24.0	474.8±7.4 482.4±3.6 468.1±3.6 469.5±5.1 470.1±5.1	NZ2282 NZ2250 NZ2254 NZ2286
680311 -22.5 572.8±3.6 NZ2204 680406 -23.9 547.6±3.7 NZ2205 680531 -24.8 560.5±3.9 NZ2206 680607 -24.6 561.7±3.9 NZ2207 680705 -26.3 550.4±3.9 NZ2208 680809 -24.7 538.1±3.9 NZ2209 680830 -23.8 535.5±3.8 NZ2210 680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212	720331 720420 720504 720610 720707 720901	-23.8 -22.6 -23.0 -24.4 -24.0	482.4±3.6 468.1±3.6 469.5±5.1 470.1±5.1	NZ2250 NZ2254 NZ2286
680406 -23.9 547.6±3.7 NZ2205 680531 -24.8 560.5±3.9 NZ2206 680607 -24.6 561.7±3.9 NZ2207 680705 -26.3 550.4±3.9 NZ2208 680809 -24.7 538.1±3.9 NZ2209 680830 -23.8 535.5±3.8 NZ2210 680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212	720420 720504 720610 720707 720901	-22.6 -23.0 -24.4 -24.0	468.1±3.6 469.5±5.1 470.1±5.1	NZ2254 NZ2286
680531 -24.8 560.5±3.9 NZ2206 680607 -24.6 561.7±3.9 NZ2207 680705 -26.3 550.4±3.9 NZ2208 680809 -24.7 538.1±3.9 NZ2209 680830 -23.8 535.5±3.8 NZ2210 680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212	720504 720610 720707 720901	-23.0 -24.4 -24.0	469.5±5.1 470.1±5.1	NZ2286
680607 -24.6 561.7±3.9 NZ2207 680705 -26.3 550.4±3.9 NZ2208 680809 -24.7 538.1±3.9 NZ2209 680830 -23.8 535.5±3.8 NZ2210 680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212	720610 720707 720901	-24.4 -24.0	470.1±5.1	
680705 -26.3 550.4±3.9 NZ2208 680809 -24.7 538.1±3.9 NZ2209 680830 -23.8 535.5±3.8 NZ2210 680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212	720707 720901	-24.0		NZ2287
680809 -24.7 538.1±3.9 NZ2209 680830 -23.8 535.5±3.8 NZ2210 680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212	720901		465.9±5.1	NZ2288
680830 -23.8 535.5±3.8 NZ2210 680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212			450.3 ± 5.1	NZ2289
680906 -23.7 531.5±3.9 NZ2211 681004 -24.6 532.8±3.9 NZ2212	1 1 2 1 0 0 1	-24.4	449.9±6.7	NZ2283
681004 -24.6 532.8±3.9 NZ2212	721208	-24.9	447.3 ± 4.7	NZ2285
	730210	-24.3	453.9 ± 5.1	NZ2291
	730309	-23.6	442.8 ± 3.3	NZ2255
681102 -25.3 541.9±3.9 NZ3470	730706	-24.7	435.0±3.7	NZ2256
681108 -26.9 541.2±3.9 NZ2214	730811	-24.5	427.1±3.3	NZ2257
681206 -23.8 539.6±3.9 NZ2215	730907	-24.4	415.9 ± 3.7	NZ2258
690110 -24.3 539.1±3.9 NZ2217	731006	-24.1	426.0 ± 3.3	NZ2259
690207 -23.1 537.7±3.8 NZ2216	731109	-23.4	434.3±3.7	NZ2260
690308 -23.3 550.4±3.8 NZ2218	731207	-23.3	417.2±3.2	NZ2261
690413 -23.4 545.4±3.8 NZ2222	740111	-23.2	417.2 ± 0.2 412.8 ± 3.5	NZ3565
$690502 -23.1 530.4 \pm 4.0 \text{ NZ2220}$	740201	-23.0	405.1±3.3	NZ3566
690509 -22.8 539.6±3.9 NZ2221	740308	-22.2	418.5±3.3	NZ3567
690607 -23.4 525.2±4.2 NZ2223	740404		417.2 ± 3.3	NZ3568
690711 -23.2 526.3±3.9 NZ2219	740510	-23.3	386.8 ± 3.3	NZ3572
690809 -23.0 522.8±3.9 NZ2224	740607		359.7±3.3	NZ4052
690905 -23.5 544.9±3.8 NZ2225	740706		394.5±3.3	NZ4057
691010 -25.2 531.2±3.9 NZ2226	740807		392.3 ± 3.7	NZ4058
691103 -23.2 523.0±3.9 NZ2227	740906		405.0±3.3	NZ4062
691205 -22.5 510.2±3.9 NZ2228	741005		398.7±4.7	NZ3848
700109 -22.5 510.2±3.9 NZ2229	741108		401.7±3.3	NZ4065
700306 -22.5 535.3±3.9 NZ2230	741208		393.7±3.3	NZ4074
700410 -22.1 520.4±3.9 NZ2232	750110		396.3±3.3	NZ4076
700509 -22.4 513.5±3.9 NZ2231	750207		399.0±3.7	NZ4078
700606 -23.3 516.2±3.9 NZ2233	750307		400.6±3.3	NZ4083
700710 -23.8 505.9±3.9 NZ2234	750405		397.7±3.3	NZ4088
700807 -23.6 497.4±3.5 NZ2235	750510		389.1 ± 3.7	NZ4090
700911 -24.5 508.0±3.9 NZ2236	750620		384.5±3.3	NZ4092
701010 -24.3 498.6±3.9 NZ2237	750709		377.3±3.3	NZ4094
701106 -23.3 497.6±4.0 NZ2238	750810		378.1±3.7	NZ4108
701223 -22.7 495.6±3.9 NZ2239	750912		367.5±3.7	NZ4110
710110 -22.3 500.6±3.9 NZ2240	751003	-23.6	354.0±8.8	NZ4121
710205 -23.8 494.7±3.7 NZ2241	751010	-22.4	365.3±3.3	NZ4119
710305 -24.6 508.3±3.9 NZ2242	751115	-23.0	363.8±3.7	NZ4122
710409 -24.8 501.0±3.9 NZ2243	751205	-23.6	370.8±3.7	NZ4124
710507 -24.9 499.7±3.9 NZ2244	760113	-23.8	373.4±3.7	NZ4126
710611 -24.6 499.0±3.9 NZ2245	760206	-24.3	368.1±3.3	NZ4135
710709 -25.9 494.2±4.1 NZ2246	760306	-23.7	366.7±3.1	NZ4137
710808 -23.5 483.3±4.0 NZ2248	760410	-23.0	346.1±3.3	NZ4145
710910 -24.5 478.8±4.5 NZ2247	760510		359.6±3.3	NZ4140
711010 -24.0 492.5±3.9 NZ2249	760606		360.9±3.4	NZ4144
711203 -24.8 479.3±3.9 NZ2251	760704		365.0 ± 5.0	NZ4302
720109 -23.9 484.5±3.6 NZ2252	760815		343.3 ± 3.7	NZ5659
720206 -24.7 491.6±4.0 NZ2253	761011	-22.9	344.2±5.1	NZ5673

TABLE 1 (continued)

1	δ^{13} C	Δ^{14} C	1	1	1	c13 c	. 14 -	
Date	81°C ‰	∆**C ‰	Lab number		Deta	$\delta^{13}C$	Δ^{14} C	Lab
761104	-25.3	700 346.5±3.3	NZ5675	4	Date	<u>%</u> 0	<i>%0</i>	number
761210					811203	-25.4	254.8±3.2	NZ6067
770103	-23.6 -24.5	329.6±3.7	NZ5678		820402	-25.4	* 385.6±3.7	NZ6432
770211		332.9±3.7	NZ5679		820509	-23.5	245.2 ± 3.2	NZ6449
	-24.3	347.0±5.3	NZ5688		820605	-25.0	248.5 ± 3.2	NZ6450
770311	-24.7	335.4 ± 4.5	NZ5690		820708	-23.3	249.2 ± 3.8	NZ6451
770506	-24.8	332.9 ± 3.3	NZ5697		820902	-25.8	241.3±3.2	NZ6459
770612	-24.1	335.6±4.7	NZ5699		821206	-25.2	235.5 ± 3.4	NZ6523
770715	-22.4	331.5±3.7	NZ5900		830117	-24.1	233.6 ± 3.7	NZ6527
770813	-24.1	323.6 ± 3.3	NZ5702		830207	-24.9	227.4±3.7	NZ6528
770909	-24.8	317.6±3.3	NZ5707		830306	-25.8	233.9 ± 3.3	NZ6529
771001	-28.1	335.1±3.4	NZ5730		830519	-2.2	* 398.4±15.5	NZ6623
771007	-24.2	322.0 ± 3.7	NZ5731		830607	-25.2	235.6±3.7	NZ6530
771111	-23.4	325.0 ± 3.7	NZ5732		830819	-25.0	235.0±3.7	NZ6538
780502	-24.6	314.6±3.7	NZ5866		831015	-24.9	221.2±3.7	NZ6539
780611	-25.8	310.4±3.7	NZ5867		831029	-7.3	* 290.0±9.6	NZ6624
780630	-25.9	314.8±3.7	NZ5868		840115	-25.0	217.5±3.3	NZ6540
780804	-25.2	308.8±3.2	NZ5869		840205	-24.2	230.3±3.8	NZ6549
780908	-18.0	309.0±5.1	NZ5870		840508	-25.3	214.0±3.8	NZ6816
781007	-25.5	321.3±8.9	NZ5871		840610	-25.9	* 244.8±4.5	NZ6815
781110	-25.4	308.1±3.3	NZ5872		840709	-25.3	214.5 ± 3.8	NZ6817
790112	-24.9	310.2±3.3	NZ5910		840803	-26.4	238.0±4.4	NZ6807
790317	-24.7	302.8±3.3	NZ5911		840910	-25.4	208.1 ± 3.5	NZ6820
790407	-25.3	304.2±3.7	NZ5912		841111	-25.4	206.9±2.7	NZ6821
790509	-24.9	296.2±3.2	NZ5913		841202	-26.4	216.8 ± 3.3	NZ6831
790603	-24.5	292.3±3.3	NZ5914		850202	-26.5	206.9 ± 3.3	NZ6847
790710	-24.9	298.6±3.8	NZ5915		850324	-25.4	209.8±3.8	NZ6858
790812	-25.4	284.0 ± 3.8	NZ5916		850706	-27.2	218.0 ± 8.0	NZ7257
791005	-25.3	282.9±3.7	NZ5956		850809	-25.7	213.0 ± 6.0	NZ7277
791103	-25.2	303.5±3.8	NZ5957		850909	-25.8	204.0 ± 6.0	NZ7272
791209	-24.3	276.4±3.3	NZ5958		851102	-26.0	203.4 ± 4.2	NZ7408
800212	-25.3	282.3±3.3	NZ5959		851202	-26.6	205.1 ± 4.2	NZ7409
800308	-25.1	289.0 ± 3.8	NZ5960		860110	-23.7	204.0 ± 4.0	NZ7264
800404	-24.8	277.6±3.3	NZ5961		860214	-26.0	204.0 ± 4.0 207.0 ± 5.0	NZ7286
800508	-23.7	279.4±3.3	NZ5969		860331	-26.0	199.0±5.0	NZ7382
800616	-23.5	* 239.1±7.9	NZ5971		860502	-23.5	184.0±7.0	NZ7417
800706	-25.4	281.5±3.7	NZ6008		860712	-25.8	194.5±4.2	NZ7417
800801	-25.0	274.3±3.7	NZ6009		860810	-26.5	188.3 ± 3.7	NZ7412
800905	-24.8	278.1±3.3	NZ6010		860907	-26.1	200.8±3.7	NZ7412 NZ7413
801009	-25.5	282.7±3.7	NZ6011		861005	-26.0	194.0±4.0	NZ7413
801111	-25.6	272.9±3.2	NZ6012		861108	-25.5	194.0±4.0 191.0±4.0	NZ7430
801204	-25.4	268.6 ± 3.4	NZ6013		861207	-25.6	191.0±4.0 189.0±4.0	
810110	-24.7	266.0 ± 3.7	NZ6014		870103	-25.5		NZ7432
810206	-25.4	260.9±3.7	NZ6015		870405		185.0±4.0	NZ7454
810312	-24.0	264.1 ± 4.7	NZ6016		870405	-25.6 -25.5	189.0 ± 5.6	NZ7395
810410	-25.2	270.9 ± 3.3	NZ6017		870510	-25.5	190.0±4.2	NZ7455
810507	-23.2	* 352.2±3.3	NZ6421		610009	-25.8	176.2 ± 4.6	NZ7456
810606	-24.5	263.3 ± 3.7	NZ6062		Compha	Il la Nam	Zooland 50 PC	
810809	-26.1	259.5 ± 3.3	NZ6062 NZ6063				Zealand, 52.5° S	
810904	-25.1	259.5±3.3 258.0±5.1	NZ6063		700105	-25.2	501.6±3.9	NZ2600
811002	-25.1	256.0 ± 5.1 256.8 ± 3.3	NZ6064 NZ6065		700305	-23.7	511.0±3.9	NZ2601
811101	-25.4	256.8±3.3 254.7±3.7			700504	-24.4	512.5±3.9	NZ2604
	-20.4	204.1±0.1	NZ6066		700710	-25.2	496.7±3.9	NZ2607

TABLE 1 (continued)

	$\delta^{13}C$	Δ^{14} C	Lob		δ^{13} C	Δ^{14} C	Lab
Data	% %	∑C ‰	Lab	Date	° C ‰	∆ C ‰	number
Date			number NZ2662	Dale	700	700	number
700904	-25.6	486.7±3.6		Scott Ba	o Anto	rctica, 77.9° S,	166 7º E
701104	-24.9	482.6±3.9	NZ2663 NZ2664	611105	-26.1	195.7±6.4	NZ2695
710106	-24.3	494.0 ± 3.9		611230	-25.6	195.7±0.4 196.7±9.6	NZ3577
710307	-23.3	504.6±3.9	NZ2665	620207	-25.0	190.7±9.0 180.3±9.9	NZ3575
710404	-18.3	506.1±3.9	NZ2666	620207	-27.4	180.3 ± 9.9 203.2 ± 6.3	NZ3573
710704	-25.2	489.9±3.7	NZ2667	620228	-27.4	203.2±0.3 251.5±3.9	NZ2373
710904	-26.1	483.7±5.2	NZ2742	630107	-32.3 -29.1	251.5 ± 3.9 255.8±4.1	NZ2374
730105	-26.2	453.9±5.2	NZ2743	660102	-29.1	622.0 ± 3.8	NZ2426
731008	-22.7	409.8±3.7	NZ2690				NZ2420
731108	-25.2	406.4±3.3	NZ2691	660124 660205	-23.1	635.2±3.9 622.5±3.8	NZ2417
731206	-26.1	403.3±3.3	NZ2692		-23.8		
740115	-24.8	404.8±3.3	NZ2693	660217	-14.9	633.3 ± 3.6	NZ2418
740304	-25.4	411.5±3.7	NZ4066	671202	-23.4	573.8±3.9	NZ2493
740404	-25.1	403.2 ± 3.3	NZ4067	671229	-24.6	577.6±3.9	NZ2494
740506	-26.1	412.2 ± 3.7	NZ4068	680129	-21.3	539.3±5.2	NZ2715
740607	-25.9	408.4 ± 3.3	NZ4069	680212	-17.6	573.6±3.9	NZ2495
740706	-25.9	401.1±3.7	NZ4070	681121	-23.2	539.1±3.8	NZ2547
740804	-24.8	402.8±3.7	NZ4071	681216	-25.0	542.3±3.9	NZ2548
740904	-25.4	397.2 ± 3.7	NZ4072	690110	-24.6	545.1±3.8	NZ2549
740908	-26.6	400.4±3.7	NZ4084	690208	-26.3	542.4±3.9	NZ2550
741004	-25.2	420.2 ± 3.2	NZ5644	691106	-19.4	556.6 ± 8.8	NZ2729
741104	-24.1	402.2±3.3	NZ4086	691227	-19.2	476.1±7.3	NZ2730
741208	-22.9	393.5±7.4	NZ3835	700116	-16.4	492.4±7.3	NZ2731
750112	-23.3	393.7±5.1	NZ4127	710408	-22.9	496.2 ± 3.5	NZ2658
750204	-24.4	374.5±4.6	NZ4128	710420	-24.5	497.3±3.9	NZ2657
750313	-24.3	389.3 ± 3.7	NZ4111	710714	-24.5	479.5±3.6	NZ2659
750417	-25.7	395.3±5.1	NZ4112	711112	-27.8	477.7±4.0	NZ2661
750506	-25.2	385.1 ± 5.5	NZ4113	711218	-26.5	477.5±4.0	NZ2660
750608	-25.4	400.4±5.8	NZ4114	730215	-20.5	447.3±3.7	NZ2682
750707	-26.1	368.4±3.3	NZ4115	730412	-23.6	433.7±5.2	NZ2747
750813	-25.1	359.7±3.7	NZ4116	730914	-25.0	432.4±4.5	NZ2750
750908	-22.7	359.9 ± 3.2	NZ4117	731019	-20.3	438.0±6.8	NZ2738
751008	-26.8	373.2±3.3	NZ4129	740423	-22.6	406.7±5.2	NZ3849
751105	-25.1	368.9±3.7	NZ4130	740513	-18.2	400.1±6.9	NZ3825
751204	-25.9	364.0±3.3	NZ4131	740816	-19.0	340.8±8.7	NZ3826
760104	-24.7	370.4±3.3	NZ4132	751008	-16.6	403.8±5.2	NZ3850
760204	-25.4	363.8±3.7	NZ4133	751123	-26.1	361.7±3.3	NZ5660
760304	-25.3	353.6±3.7	NZ5666	751230	-25.6	361.6±3.3	NZ5661
760406	-25.3	362.1±3.3	NZ5667	760130	-25.5	368.9 ± 3.3	NZ5662
760504	-24.3	352.5±3.2	NZ5668	760316	-22.4	374.0±5.1	NZ5663
760604	-25.5	350.2±3.5	NZ5669	-			
760704	-24.8	351.4±3.3	NZ5670				
760803	-25.2	344.0±3.3	NZ5671				
760904	-25.3	343.0±3.2	NZ5681				
761004	-24.9	330.4±3.2	NZ5682				
761104	-25.3	333.3±3.7	NZ5683				
		342.0±3.3	NZ5684				
1		337.7±3.3	NZ5685				
		334.3±3.7					
760803 760904 761004	-25.2 -25.3 -24.9	$\begin{array}{c} 344.0\pm 3.3\\ 343.0\pm 3.2\\ 330.4\pm 3.2\\ 333.3\pm 3.7\\ 342.0\pm 3.3\\ 337.7\pm 3.3\end{array}$	NZ5671 NZ5681 NZ5682 NZ5683 NZ5684				

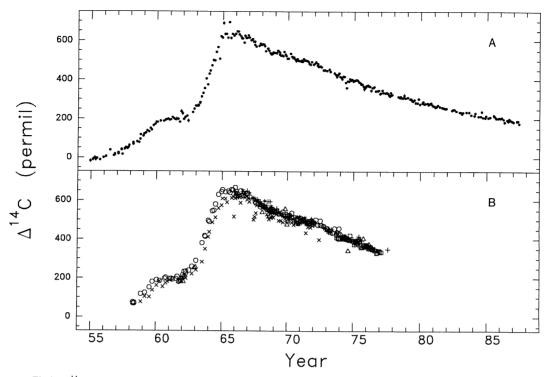


Fig 1. Δ^{14} C values measured in atmospheric CO₂ at (A) Wellington, New Zealand and (B) other sites in the South Pacific, 1954–1987. Symbols used in (B) are: + Tarawa Is, 1.5°N; * Funafuti, 8.5°S; O Suva, 18.1°S; × Melbourne, 37.8°S; \Box Campbell Is, 52.5°S; and \triangle Scott Base, 77.9°S.

slightly lower at higher latitudes during 1966–1976. The data from Melbourne are ca $25\%_{00}$ lower than the Wellington data, and as pointed out by Rafter and O'Brien (1970), this is likely to be due to a local effect of fossil-fuel carbon at the monitoring site which was a rooftop in the center of Melbourne city.

The ¹⁴C record for the South Pacific in Figures 1 A, B clearly shows a peak in 1965 occurring a little over one year later than that observed in the Northern Hemisphere (Nydal & Lovseth 1983; Levin *et al* 1985). Although Northern Hemisphere surface measurements of ¹⁴CO₂ were higher than those reported here in the mid-1960s, this difference had disappeared by 1968. From 1980 onwards, the Southern Hemisphere Δ^{14} C values appear slightly higher than those measured in Europe. This is consistent with a regional "Suess" effect influencing the European data. The continuing fall of excess ¹⁴CO₂ has a 1/e time of ca 17 yr.

Table 2
Δ^{14} C for South Pacific sites relative to Wellington statistics of differences in data for the same month

Site	No of common months	Median difference	Mean difference	Standard deviation about mean
Tarawa, 1.5°N	58	8.7	7.3	16.2
Funafuti, 8.5°S	34	8.6	10.2	17.0
Suva, 18.1°S	86	8.7	8.7	20.3
Melbourne, 37.8°S	60	-22.3	-27.0	23.4
Campbell Is, 52.5°S	50	-6.4	-3.5	13.9
Scott Base, 77.9°S	29	-4.5	-6.6	21.1

46

The seasonal structure in the region of the peak Southern Hemisphere values is much less pronounced than for Northern Hemisphere data. This, together with the later arrival of the peak in the Southern Hemisphere, is consistent with the fact that most of the release of ¹⁴C from nuclear weapons testing occurred in the Northern Hemisphere. Further, it is well established (Telegadas 1971) that most of the ¹⁴C inventory produced by nuclear tests was located in the stratosphere by the mid-1960s. Figure 2 shows this stratification of the ¹⁴C inventory between the stratosphere and troposphere by comparing surface data (Levin *et al* 1985; this work), with tropospheric and stratospheric data (Telegadas 1971).

ANALYSIS OF ¹⁴CO₂ DATA

We average all the data (usually just one value) available for Wellington in each month in order to obtain a time series spanning 391 months with 104 missing values. The missing data are fairly evenly distributed through the record and so are unlikely to bias the following analysis.

In order to extract a seasonal component, we must determine a smooth trend in the data about which the seasonal variation occurs. There are many procedures for doing this (eg, Cleveland Freeny & Graedel 1983; Enting 1987). The methods used here are based on "loess" smoothing (Cleveland 1979) and the "STL" procedure for seasonal and trend decomposition (Cleveland & McRae 1989).

Loess smoothing determines a smoothed value at each point in the series from a window of a fixed number of nearest neighbors. The smoothed value is determined by fitting a straight line to the data window using weights that decrease with distance from the subject point. Both loess smoothing and the STL procedure are robust with respect to outliers, *ie*,

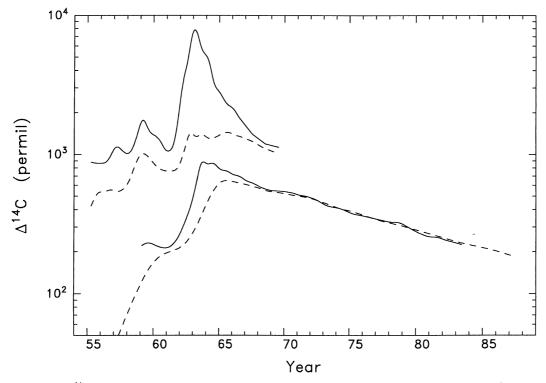


Fig 2. Δ^{14} C values in the stratosphere and at the earth's surface shown as smooth spline curves fitted to available data; the upper two curves are for the stratosphere and the lower two for the surface; <u>a denotes</u> Northern Hemisphere and <u>stratosphere</u> and <u>stratosphere</u> data from Telegadas (1971), Northern Hemisphere surface data from Levin *et al* (1985) and Southern Hemisphere surface data from this work.

outlier points are identified by an initial calculation, their weights are reduced and the calculation repeated. The STL procedure determines the seasonal and trend components simultaneously with a consistent philosophy of the structure of each. The trend component is determined by loess smoothing of the data minus the seasonal component, the latter being determined for each calendar month by loess smoothing of the data minus the trend component. STL allows arbitrary variation of the seasonal component from month to month within the year (in contrast to band pass filtering methods) but ensures small variation in the seasonal cycle from year to year.

There are inherent difficulties in separating seasonal and trend components for both the rapid rise in Δ^{14} C values during the early 1960s and the following decay. Further, the relative distribution of ¹⁴C throughout the atmosphere may have been significantly altered by the very large tesss of the early 1960s. Thus, in order to determine a consistent and slowly varying seasonal component, we have limited the analysis to 1966 onwards.

The STL procedure does not allow for missing data, so missing values have been interpolated by fitting a Reinsch (1967) spline to the data, and adjusting the tension of the spline so that the number of sign changes in residuals agrees with that expected for a random sequence. We have tried alternative procedures for interpolating missing data which do not significantly affect the results. Figures 3A, B, C, show the trend, seasonal and remainder components. The seasonal component shows a cycle of decreasing amplitude with some evidence of a phase change in the latter part of the record.

Up to 1980, the cycle has a maximum in March and a minimum in August; a negative anomaly occurs in December. The amplitude of the cycle decreases steadily from a peak-to-peak range of 20‰ in 1966 to 3‰ in 1980. From 1966–1975, while the shape of the cycle is roughly constant, the amplitude decays exponentially with a 1/e time of 12 yr. From 1980 onwards, a different cycle emerges with an amplitude of ca 5‰, a maximum in July–August

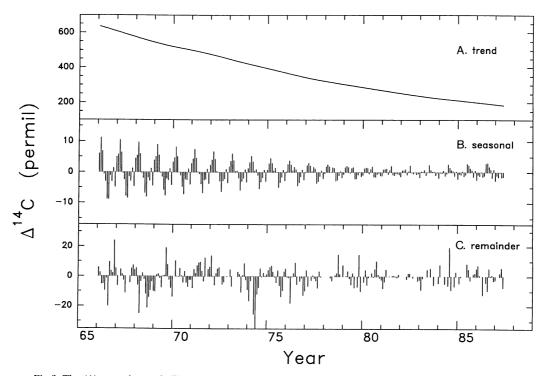


Fig 3. The (A) smooth trend, (B) seasonal and (C) remainder components of the Wellington Δ^{14} C data record determined by the STL procedure as discussed in the text.

and minimum in January. If present, this would have been masked in the earlier part of the record by the larger decaying cycle.

A direct indication of the change in the seasonal cycle can be seen by plotting the differences of the original data from a smooth trend, against a calendar month. Figures 4A, B show such "month-plots" of differences from the smooth trend, in the periods 1966–1977 and 1981–1987. Horizontal bars show the mid-mean (mean of values between the upper and lower quartiles) of all data for a given month. Individual data values are shown by a spike from the mid-mean for the corresponding month. The contrast in the annual cycle for these two periods confirms that the change in the seasonal cycle is not an artifact of the interpolation or outlier rejection techniques used with the STL procedure.

Finally, we note that the seasonal cycles at the other South Pacific sites are not well determined by our data, and for some months the differences between sites are large compared with errors due to counting statistics. These appear often enough to suggest that regional variations in ¹⁴CO₂ may be as large as $20^{0}/_{00}$.

INTERPRETATION OF ¹⁴CO₂ SEASONAL AND TREND VARIATION

The overall decline in atmospheric ${}^{14}\text{CO}_2$ has been studied extensively in many analyses of the global carbon cycle (Oeschger *et al* 1975; Enting & Pearman 1983). This decline is predominantly determined by the rate of exchange of carbon between the atmosphere and the ocean, and is one of the best determinants of that exchange rate.

Although the seasonal cycle in atmospheric ${}^{14}CO_2$ has not been well researched, seasonal cycles in other "bomb"-produced radionuclides, particularly ${}^{90}Sr$ and ${}^{3}H$, are influenced by seasonal changes in transport of stratospheric air into the troposphere. The transport of gaseous tracers such as ${}^{14}CO_2$ is by advection and diffusion, whereas for other radionuclides particulate deposition and rainout phenomena are dominant (Sarmiento & Gwinn 1986; Schell, Sauzay & Payne 1974). Thus, differences between the seasonal cycle of ${}^{14}CO_2$ and other fallout species are expected.

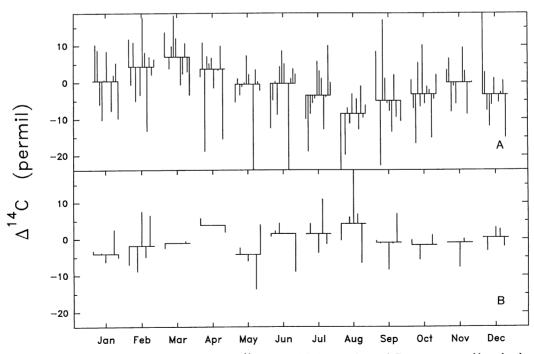


Fig 4. Seasonal cycles of differences between Δ^{14} C data and their smooth trend. Data are grouped by calendar month and shown as spikes from the mid-mean, (A) for period 1966–1977 and (B) for period 1981–1987.

Factors other than transport from the stratosphere also contribute to seasonal variation in ${}^{14}CO_2$. Levin (1985) reports variations at a European site due to seasonal changes in the release of fossil-fuel CO₂, and at an Antarctic site due to seasonal changes in ocean-atmosphere exchange.

The seasonal cycle from 1966 to 1980 is consistent with a seasonal variation in the transfer of "bomb" ¹⁴CO₂ from the stratosphere to the troposphere. The decay in the amplitude of this cycle is then explained by the depletion of the stratospheric inventory. Because mixing within the Southern Hemisphere troposphere occurs within a few months, we assume that the amplitude of the seasonal component seen at the surface is proportional to the amount of ¹⁴CO₂ transferred from stratosphere to troposphere in the previous few months. If this is assumed to be proportional to the ¹⁴CO₂ inventory in the stratosphere, modulated by the seasonally varying exchange rate, then the 12-yr decay time of the seasonal cycle is equal to the mean residence time for stratospheric CO₂.

This estimate of stratospheric mean residence time is longer than the value of 7.0 yr (half-life of 58 months) derived by Telegadas (1971) from measurements of ¹⁴C in the stratosphere up to 1969. This earlier data may reflect a residence time for just the lower part of the stratosphere. The value derived here is closer to an alternative estimate of 10 yr for the mean residence time of air in the stratosphere based on energy and mass flux (Walker 1977).

COMPARISON OF ¹⁴CO₂ DATA WITH ATMOSPHERIC TRANSPORT MODELS

Modeling of tracer transport in the atmosphere due to advection and diffusion has progressed considerably in recent years (Mahlman, Levy & Moxim 1980; Golombek & Prinn 1986). Models that incorporate consistent global circulation and realistic (if approximate) climatology can now be used to predict tracer concentrations. This approach is preferable to inferring atmospheric transport from tracer data alone.

We now present some results using a two-dimensional model for atmospheric transport (Plumb & Mahlman 1987; Plumb & McConalogue 1988) which is a zonally averaged version of a larger three-dimensional global circulation model (GCM) (Mahlman & Moxim 1978). The zonally averaged version gives the same net tracer transport as the three-dimensional model, but requires much less computer time. A resolution of 2.4° in latitude and 10 vertical levels extending to the 10mBar level (33km) are used.

The vertical diffusion coefficients at the lowest two layers were increased to $8m^2s^{-1}$ (bottom level) and $6m^2s^{-1}$ (next lowest level), based on other work using this model for determining seasonal variation of atmospheric CO₂ concentrations (Plumb, pers commun). Otherwise the fields determining atmospheric transport are as determined from the three-dimensional GCM.

To relate our South Pacific ¹⁴CO₂ data with this model, it was run from an initial condition where a tracer is injected instantaneously with uniform concentration throughout the lower three grid layers of the stratosphere representing pressure levels 110, 65 and 38mbar. The only sink for the tracer is at the surface, where there is a uniform sink strength set to give approximately the observed overall decay rate from 1966 onwards. Figure 5 shows the tracer concentration at 45°S predicted by the model. Note that results for the first two years are sensitive to the artificial initial conditions. Figure 6 shows a month plot, in the same format as Figure 4A, of the seasonal component of this predicted time series, extracted using the STL procedure after removal of the first two years of data.

There is a significant discrepancy in phase between the predicted seasonal cycle in Figure 6 and the observed one in Figure 4A. The model predicts that the concentration of a tracer injected into the stratosphere will peak in September and reach a minimum in January, almost totally out of phase with the observed result. This implies that either the seasonality of vertical transport in the model is incorrect or the observed seasonal cycle in $^{14}CO_2$ is determined by effects other than seasonality in transport from the stratosphere.

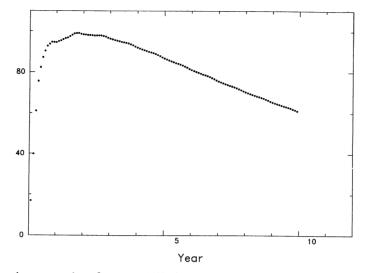


Fig 5. Predicted concentration of tracer at 45°S after a stratospheric injection in the two-dimensional model discussed in the text. The units on the vertical axis are arbitrary.

The seasonal cycles for ⁹⁰Sr and ³H in the Southern Hemisphere (Taylor 1968) are different from that given here for ¹⁴CO₂. As already mentioned, different transport effects determine the concentration of these isotopes observed at the surface. ⁹⁰Sr is deposited by aerosols with tropospheric lifetimes on the order of weeks, so its annual cycle at the surface closely follows variations in input from the stratosphere. In contrast, variations in the long-lived ¹⁴CO₂ should lag behind, and in fact be almost completely out of phase with their input from the stratosphere. Comparing Taylor's results with ours shows the ¹⁴CO₂ cycle lags by ca 5 months, much as expected. As the ⁹⁰Sr and ¹⁴CO₂ data support one another, we believe that the annual cycle in transport between the stratosphere and the troposphere as used in the zonally averaged GFDL model is incorrect.

¹⁴CH₄ MEASUREMENTS IN THE SOUTH PACIFIC

There are many known sources of atmospheric methane (Khalil & Rasmussen 1983). The major sources appear to be biogenic, such as ruminant animals and rice paddies, in which methane is produced by anaerobic bacteria. Further, atmospheric methane concentra-

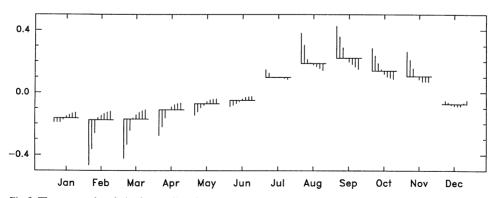


Fig 6. The seasonal cycle in the predicted concentration of tracer at 45°S after a stratospheric injection in the two-dimensional model discussed in the text. The format is as used in Figure 4 and the units on the vertical axis are arbitrary.

tions have been increasing at ca 1%/a over recent decades, suggesting an increasing source strength.

Measurement of ¹⁴C in atmospheric methane provides a way to determine the relative amount of methane released from fossil fuel and primordial methane sources (Ehhalt 1973). Lowe *et al* (1988) recently reported Accelerator Mass Spectrometry (AMS) measurements from the South Pacific which showed lower (¹⁴C/¹²C) ratios than anticipated, and indicated a significant (25–35%) component of recently released methane has been of fossil origin. Carbon isotope measurements of atmospheric methane from clean air, extending those given by Lowe *et al* and using the same sampling techniques, are shown in Table 3. We include 7 new measurements and omit 2 reported earlier which do not meet stricter consistency criteria now imposed on our AMS data to screen out unsatisfactory graphite targets.

All reported methane samples were taken at Baring Head (41°S, 175°E) near Wellington, New Zealand, under baseline conditions, *ie*, periods of strong onshore winds and while simultaneously measured CO₂ concentrations indicate well-mixed air. The sample mean and standard deviation for δ^{14} C values in Table 3 is +78 ± 94%. The sample standard deviation is higher than the mean error associated with the AMS measurement, and this indicates some noise due to sampling and CH₄ extraction procedures.

An improved atmospheric methane sampling method is being developed in which sampled air is pumped through a molecular sieve into 67L stainless steel tanks to a pressure of ca 120 psi. Methane is subsequently extracted in the laboratory by oxidation to, and collection of CO_2 , after use of a high-efficiency cryogenic trap to remove any residual CO_2 and water vapor in the tanks.

In the next two sections, we indicate the nature of the constraints placed on methane sources by the isotope ratios of atmospheric methane. The analysis is based on a very simple model of methane sources, which classifies these as either "modern" or "fossil" and uses average values for the isotope ratios of each. Allowance is also made for ¹⁴CH₄ from nuclear power plants. A more realistic model would incorporate sources of intermediate age, such as

 TABLE 3

 Carbon isotopic composition of atmospheric methane collected at Baring Head, New Zealand, under baseline conditions

Date coll	δ ¹³ C (%₀)	pMC % mod	$\delta^{14}C$ (%))	Lab no.	
870312	-47.24 ± 0.05	102.7 ± 5.4	-19±52	NZA-47	
870316	-47.03 ± 0.05	106.8 ± 3.3	$+20 \pm 32$	NZA-62	
870317	-48.90 ± 0.05	102.3 ± 5.7	-27 ± 54	NZA 46	
870410	-46.10 ± 0.05	106.7 ± 2.6	+21 \pm 25	NZA 52	
870616	$\textbf{-45.68} \pm \textbf{0.05}$	105.4 ± 5.2	+10 \pm 50	NZA105	
870619	$\textbf{-45.57} \pm 0.05$	104.0 ± 4.5	-3 ± 43	NZA117	
870626	$\textbf{-45.96} \pm 0.05$	109.5 ± 3.6	$+48 \pm 34$	NZA119	
870626	$\textbf{-48.59} \pm \textbf{0.05}$	129.1 ± 6.5	+229 \pm 62	NZA135	
870626	-46.37 ± 0.05	111.2 ± 5.8	$+64\pm55$	NZA142	
870702	$\textbf{-45.80} \pm \textbf{0.05}$	131.3 ± 5.4	$+258\pm52$	NZA143	
870715	$\textbf{-42.57} \pm 0.05$	122.4 ± 4.7	$+180\pm45$	NZA201	
870723	$\textbf{-46.62} \pm \textbf{0.05}$	105.8 ± 10.0	$+12 \pm 96$	NZA128	
870812	$\textbf{-45.05} \pm \textbf{0.05}$	118.7 ± 7.9	$+138\pm76$	NZA150	
870923	-40.	122.7 ± 4.4	+189 \pm 42	NZA225	
871117	-46.9 ± 0.05	115.9 ± 4.8	+107 \pm 46	NZA226	
880317	-45.9 ± 0.05	119.7 ± 9.0	$+146\pm87$	NZA273	
880412	-43.9 ±0.05	97.8 ± 2.7	-60 ± 26	NZA297	
880513	-43.79 ± 0.05	113.6 ± 4.8	$+93\pm46$	NZA305	

swamps, and use direct isotope measurements of a range of sources with appropriate source strengths. However, the simpler analysis gives an upper estimate for the proportion of methane derived from fossil fuel, and demonstrates the sensitivity of such estimates to some general parameters of atmospheric transport and chemistry.

A TWO BOX ATMOSPHERE MODEL FOR CH₄ ISOTOPES

To interpret the ¹⁴CH₄ data above, we use a model treating the two hemispheres as well-mixed boxes with mass balanced exchange and consider the inventories of CH₄, ¹³CH₄ and ¹⁴CH₄ separately. The changes in inventories are related to fluxes by

$$\frac{d}{dt}C_{h} = Q_{h} - k (C_{h} - C_{h'}) - \lambda C_{h}$$

$$\frac{d}{dt}{}^{13}C_{h} = {}^{13}Q_{h} - k ({}^{13}C_{h} - {}^{13}C_{h'}) - \epsilon \lambda {}^{13}C_{h}$$

$$\frac{d}{dt}{}^{14}C_{h} = {}^{14}Q_{h} - k ({}^{14}C_{h} - {}^{14}C_{h'}) - \epsilon^{2} \lambda {}^{14}C_{h}$$
(1)

where:

$$\begin{split} h & \mbox{labels the hemisphere S or N;} \\ h' & \mbox{labels the alternate hemisphere;} \\ C_h, {}^{13}C_h \mbox{and } {}^{14}C_h & \mbox{are the inventories of CH}_4, {}^{13}CH_4 \mbox{and } {}^{14}CH_4 \mbox{ in hemisphere h;} \\ a & \mbox{are the source fluxes of CH}_4, {}^{13}CH_4 \mbox{and } {}^{14}CH_4 \mbox{ into hemisphere h;} \\ a & \mbox{are the source fluxes of CH}_4, {}^{13}CH_4 \mbox{and } {}^{14}CH_4 \mbox{ into hemisphere h;} \\ b & \mbox{are the source fluxes of CH}_4, {}^{13}CH_4 \mbox{and } {}^{14}CH_4 \mbox{ into hemisphere h;} \\ b & \mbox{are the source fluxes of CH}_4, {}^{13}CH_4 \mbox{and } {}^{14}CH_4 \mbox{ into hemisphere h;} \\ b & \mbox{are the source fluxes of CH}_4, {}^{13}CH_4 \mbox{and } {}^{14}CH_4 \mbox{ into hemisphere h;} \\ c & \mbox{are the source fluxes of CH}_4, {}^{13}CH_4 \mbox{and } {}^{14}CH_4 \mbox{ inter-hemisphere h;} \\ c & \mbox{are the inverse mean life of CH}_4, taken to be (9.6 \mbox{yr})^{-1} \mbox{ following Prinn et} \\ a & \mbox{al (1987). Note that the small difference between the mean life of } {}^{12}CH_4 \mbox{and CH}_4 \mbox{ is gnored here;} \\ \epsilon & \mbox{is the kinetic isotope effect coefficient, taken to be } 0.990 \pm 0.007 \mbox{following Davidson et al (1987) ((k_{13}/k_{12}) \mbox{ in their notation).} \end{split}$$

The solution of these equations can be written as

$$C_{N}(t) + C_{S}(t) = \int_{-\infty}^{t} e^{\lambda(x-t)} \left(Q_{N}(x) + Q_{S}(x) \right) dx$$

$$C_{N}(t) - C_{S}(t) = \int_{-\infty}^{t} e^{(2k+\lambda)(x-t)} \left(Q_{N}(x) - Q_{S}(x) \right) dx$$
(2)

with similar equations for ¹³C and ¹⁴C.

The inventories are sensitive to the source flux terms Q only over the last few mean lifetimes of CH_4 , *ie*, over the last few decades. For the recent past, we assume that the total CH_4 source flux has increased exponentially at 1%/a and further that the regional distribution of fluxes has remained constant. Then

$$Q_N(x) + Q_S(x) = Q_{\text{tot}} e^{\mu(x-1987)}$$

$$Q_N(x) - Q_S(x) = \Delta Q_{\text{tot}} e^{\mu(x-1987)}$$
(3)

where:

 Q_{tot} is the total CH₄ release/a in 1987;

 ΔQ_{tot} is the excess release in the Northern Hemisphere over the Southern Hemisphere; μ is the exponential increase rate, taken as 0.01. Evaluating the appropriate integrals in equation (2) we have for the total CH_4 inventories:

$$C_{N}(t) + C_{S}(t) = \frac{Q_{\text{tot}}}{\lambda + \mu} e^{\mu(t - 1987)}$$

$$C_{N}(t) - C_{S}(t) = \frac{\Delta Q_{\text{tot}}}{2k + \lambda + \mu} e^{\mu(t - 1987)}.$$
(4)

Assuming, in 1987, a mean atmospheric CH₄ concentration of 1670 ppb, and an interhemispheric difference of 90 ppb (Steele *et al* 1987; Fraser *et al* 1986), an atmospheric mass of 1.82×10^{20} moles, and values of λ , μ and *k* already quoted, we have

$$Q_{\text{tot}} = 3.47 \times 10^{13} \text{ moles/a}$$

 $\Delta Q_{\text{tot}} = 0.91 \times 10^{13} \text{ moles/a}.$

To determine the inventories of ${}^{13}CH_4$ and ${}^{14}CH_4$, we assume that the CH_4 source can be separated into fossil and modern carbon components each having different isotope ratios, which together with the relative proportions of the two sources, have not changed in recent decades. Then

$${}^{13}Q_{h}(t) = (1 + \alpha {}^{13}\delta_{\text{fos}} + (1 - \alpha) {}^{13}\delta_{\text{mod}}) {}^{13}R_{0}Q_{h}(t)$$
(5)

where:

 $\begin{array}{ll} \alpha & \text{is the fossil carbon fraction of the total CH₄ source} \\ {}^{13}R_0 & \text{is the } ({}^{13}\text{C}/{}^{12}\text{C}) \text{ ratio of the PDB standard} \\ {}^{13}\delta_{\text{fos}} & \text{is the } \delta^{13}C_{\text{PDB}} \text{ of the fossil carbon CH}_4 \text{ source} \\ {}^{13}\delta_{\text{mod}} & \text{is the } \delta^{13}C_{\text{PDB}} \text{ of the modern carbon CH}_4 \text{ source}. \end{array}$

The inventories resulting from these fluxes are given by

$${}^{13}C_N(t) + {}^{13}C_S(t) = (1 + \alpha {}^{13}\delta_{\text{fos}} + (1 - \alpha) {}^{13}\delta_{\text{mod}}) {}^{13}R_0 \frac{Q_{\text{tot}}}{\epsilon \lambda + \mu} e^{\mu(t - 1987)}$$
$${}^{13}C_N(t) - {}^{13}C_S(t) = (1 + \alpha {}^{13}\delta_{\text{fos}} + (1 - \alpha) {}^{13}\delta_{\text{mod}}) {}^{13}R_0 \frac{\Delta Q_{\text{tot}}}{2k + \epsilon \lambda + \mu} e^{\mu(t - 1987)}.$$
(6)

Turning next to ${}^{14}CH_4$, note that the fossil carbon source has no contribution to Q_h , but that a nuclear power source (Povinec, Chudy & Sivo 1986) must be considered even though this is a negligible source of total CH₄. Thus

$${}^{14}Q_N(t) = (1 - \alpha) \left(1 + {}^{14}\delta_{\text{mod}}(t)\right) {}^{14}R_0 Q_N(t) + {}^{14}Q_{\text{Nuc}}(t)$$
$${}^{14}Q_S(t) = (1 - \alpha) \left(1 + {}^{14}\delta_{\text{mod}}(t)\right) {}^{14}R_0 Q_S(t)$$
(7)

where:

https://doi.org/10.1017/S0033822200039941 Published online by Cambridge University Press

This leads to

$${}^{14}C_{N}(t) + {}^{14}C_{S}(t) = \int_{-\infty}^{t} e^{\epsilon^{2}\lambda(x-t)} \left[(1-\alpha) \left(1 + {}^{14}\delta_{\mathrm{mod}} \right) {}^{14}R_{0}Q_{\mathrm{tot}} e^{\mu(x-1987)} + {}^{14}Q_{\mathrm{Nuc}}(x) \right] dx$$

$${}^{14}C_{N}(t) - {}^{14}C_{s}(t) = \int_{-\infty}^{t} e^{(2k+\epsilon^{2}\lambda)(x-t)} \left[(1-\alpha) + (1+{}^{14}\delta_{\mathrm{mod}}) {}^{14}R^{0}\Delta Q_{\mathrm{tot}} e^{\mu(x-1987)} + {}^{14}Q_{\mathrm{Nuc}}(x) \right] dx. \quad (8)$$

The value of ${}^{14}\delta_{mod}(t)$ has changed with time due to changes in the $\delta^{14}C$ of atmospheric CO_2 which provides the carbon from which the modern CH_4 is derived. We assume a residence time of one year between carbon photosynthesis and methane production, and correct for fractionation to $\delta^{13}C$ of $-65\%_{00}$ (note this is the inferred value of $\delta^{13}C$ for the modern carbon CH_4 source—see below). Thus

$$(1 + {}^{14}\delta_{\rm mod}(t)) = \left(\frac{1 - 65\%_{00}}{1 - 25\%_{00}}\right)^2 (1 + \Delta^{14}C_{\rm atm}(t-1))$$
(9)

where $\Delta^{14}C_{atm}(t)$ is the atmospheric $\Delta^{14}C$ value for time t. In order to estimate this last term, we use an average of the atmospheric ¹⁴C data of Levin *et al* (1985) representing the Northern Hemisphere, and the atmospheric ¹⁴C data given here representing the Southern Hemisphere. Where the Northern Hemisphere data is missing we assume it is the same as the Southern Hemisphere, and prior to 1955 we assume a constant value of $-200/_{00}$. The lower limit of the integration range in equation (8) is taken as 1940, as the integrands become negligible prior to this. Numerical integration then produces

$$\int_{-\infty}^{1987} (1 + {}^{14}\delta_{\text{mod}}) e^{(\epsilon^2 \lambda + \mu)(x - 1987)} dx = 10.718$$
$$\int_{-\infty}^{1987} (1 + {}^{14}\delta_{\text{mod}}) e^{(2k + \epsilon^2 \lambda + \mu)(x - 1987)} dx = 1.0037.$$
(10)

Levin (pers commun) has estimated the nuclear power term $Q_{Nuc}(t)$ and we use her estimates here. In 1987 the estimated release rate is 1100 Ci/a, corresponding to 17.6 moles of ${}^{14}CH_4/a$. This is more conveniently expressed as 0.43 ${}^{14}R_0Q_{tot}$, based on the value of Q_{tot} given above. Using Levin's exponential growth rates, we have

$$Q_{\text{Nuc}}(t) = 0.43 \,{}^{14}R_0 Q_{\text{tot}} \, e^{0.16(t-1987)}, \text{ for } t = 1975 \text{ to } 1987,$$

$$Q_{\text{Nuc}}(t) = 0.063 \,{}^{14}R_0 Q_{\text{tot}} \, e^{0.26(t-1975)}, \text{ for } t = 1969 \text{ to } 1975 \text{ and}$$

$$Q_{\text{Nuc}}(t) = 0, \text{ for } t \le 1969. \tag{11}$$

The integrals in equation (8) involving Q_{Nuc} can now be evaluated as

$$\int_{-\infty}^{1987} e^{\epsilon^2 \lambda (x-1987)} Q_{\text{Nuc}}(x) \, dx = 1.6153^{-14} R_0 Q_{\text{tot}}$$

$$\int_{-\infty}^{1987} e^{(2k+\epsilon^2 \lambda)(x-1987)} Q_{\text{Nuc}}(x) \, dx = 0.3407^{-14} R_0 Q_{\text{tot}}.$$
(12)

INTERPRETATION OF ¹⁴CH₄ DATA

We can now calculate α , the fossil carbon fraction, from observed δ^{14} C values for atmospheric CH₄. To summarize, values of k, λ , μ , and mean hemispheric CH₄ concentrations are used to estimate Q_{tot} and ΔQ_{tot} ; then estimates of ϵ , ${}^{14}\delta_{mod}(t)$ and ${}^{14}Q_{Nuc}(t)$ are used to calculate the hemispheric {}^{14}CH_4 inventories relative to the total CH₄ inventory in terms of

an unknown α . Finally, we relate the inventory ratio to the observed δ^{14} C using

$$\frac{{}^{14}C_s}{C_s} = {}^{14}R_0 \left(1 + \delta^{14}C_{obs}\right)$$
(13)

giving an equation which is solved for α . With the parameters values given above, this leads to

$$1.226 (1 - \alpha) + 0.150 = (1 + \delta^{14}C_{obs})$$

where 1.226 is the value of $(1 + \delta^{14}C)$ that would arise if the only source was from modern carbon, and 0.150 is the shift due to the nuclear power source. From these values we have $\alpha = 0.243$.

Consistency of the ¹³CH₄ and ¹⁴CH₄ budgets is now considered. Equation 6 predicts a slight difference in the δ^{13} C values of CH₄ for the two hemispheres. This arises because the larger source term in the Northern Hemisphere leads to a net export of aged (and, due to the kinetic oxidation effect, heavier) CH₄ to the Southern Hemisphere. Ignoring this very small effect, we have

$$1 + \delta^{13} C_{obs} \approx \frac{\lambda + \mu}{\epsilon \lambda + \mu} \left(1 + \alpha^{13} \delta_{fos} + (1 - \alpha)^{13} \delta_{mod} \right)$$

or, to a good approximation

$$\delta^{13}C_{obs} \approx \alpha^{13}\delta_{fos} + (1-\alpha)^{13}\delta_{mod} + 9\%_{00}.$$
 (14)

If the fossil CH₄ source is assumed to be entirely from fossil fuels then the value of ${}^{13}\delta_{\text{fos}}$ should be ca $-30^{\circ}/_{00}$ and, in order to explain $\delta^{13}C_{\text{obs}} = -47^{\circ}/_{00}$, we must have ${}^{13}\delta_{\text{mod}} \approx -65^{\circ}/_{00}$. Although this inferred value is slightly lighter than that used in other CH₄ budgets (eg, Tyler, Blake & Rowland 1987; Stevens & Engelkemeir 1988), it is well within the range of δ^{13} C values of the known sources of modern carbon CH₄. Equation 13, based on observed 14 C values, gives a more reliable estimate of α than Equation 14, based on 13 C values, because of the considerable uncertainty in ${}^{13}\delta_{\text{mod}}$ in the latter. Thus, we have used equation 13 to determine α and equation 14 to check consistency.

To estimate the sensitivity of α to the parameters of this two-box model, we consider the effect of making variations in these parameters of the order of their uncertainties. This leads to

parameters as described above	$\alpha = 0.243$
k changed from $(2 \text{ yr})^{-1}$ to $(1 \text{ yr})^{-1}$	$\alpha = 0.255$
λ changed from (9.6 yr) ⁻¹ to (8.6 yr) ⁻¹	$\alpha = 0.252$
ϵ changed from 0.990 to 0.997	$\alpha = 0.233$
$Q_{ m Nuc}$ reduced to half equation (11)	$\alpha = 0.182$
$\delta^{14}C_{obs}$ changed from +78% to +172%	$\alpha = 0.166.$

This shows that α is not very sensitive to the methane lifetime estimate, the kinetic isotope effect or the inter-hemispheric exchange time. Yet it is sensitive to the magnitude of the nuclear power source term, and to the value of ${}^{14}\delta_{obs}$. The estimated growth rate of 17%/a in the total nuclear power ${}^{14}CH_4$ should cause a significant increase in the $\delta^{14}C$ of atmospheric CH₄. The figures used in the previous section imply an increase in the Southern Hemisphere of ca 25%/00/a and, provided the fossil carbon fraction α is not also increasing, this should be clearly measurable after 2 to 3 years of measurements.

A more detailed calculation of the transport of methane between the hemispheres has been carried out using the zonally averaged atmospheric transport model already described. When the model is run with a northern mid-latitude tracer source and a uniformly distributed sink corresponding to a tracer lifetime of 10 yr, the difference between the predicted values of the tracer concentrations at 45°N and 45°S corresponds to a 2.5-yr inter-hemispheric exchange time. This supports the value of k used above.

CONCLUSION

Our 32-yr record of atmospheric ${}^{14}CO_2$ measurements in the South Pacific covers nearly all the period in which atmospheric ${}^{14}C$ has been influenced by nuclear weapons testing, and begins with Δ^{14} C values below zero. Since 1966 the decrease of this "bomb" carbon in the atmosphere has roughly followed an exponential decay with a 1/e time of 17 yr. From 1966–1977, the ¹⁴CO₂ data show a small latitudinal variation, and a definite seasonal cycle peaking in February. This seasonal cycle in ¹⁴CO₂ is believed due to seasonal changes in the rate of transport of "bomb" carbon from the stratosphere and is consistent with the cycle of other fallout products. The cycle decayed in amplitude with a 1/e time of 12 yr, which is inferred to be the mean residence time for CO_2 in the stratosphere.

A two-dimensional model of atmospheric transport based on a three dimensional general circulation model predicts a seasonal cycle in the arrival of a tracer injected into the stratosphere, but the phase of the predicted cycle disagrees with that observed for ¹⁴CO₂. It would seem that stratosphere-to-troposphere transport is not estimated correctly in the model.

An analysis of ${}^{14}CH_4$ data has shown how these can be used to estimate the fraction of atmospheric methane derived from fossil carbon. A major uncertainty in this estimate appears to be the contribution of nuclear power plants to ¹⁴CH₄ in the atmosphere. However, comparable measurements in both hemispheres over a number of years should enable the nuclear power source of CH₄ to be better determined.

ACKNOWLEDGMENTS

The atmospheric ${}^{14}CO_2$ data presented here are the result of the work of many people. We wish to acknowledge the contribution of M K Burr, who was responsible for maintaining our gas counters for much of the period covered. Sampling at the Wellington site was done by the staff of the New Zealand Post Office Makara radio station; at the South Pacific island sites, by meteorological observers from the New Zealand Meteorological Service; at Scott Base, by staff of the Antarctic division, DSIR, and at Melbourne, by E D Gill of the National Museum of Victoria. We are grateful for the assistance of all these people.

R A Plumb kindly provided the source code and transport coefficients for the zonally averaged model of atmospheric transport, and his support and guidance in the use of this model are much appreciated. We would also like to thank W S Cleveland for supplying code for his STL procedure. Finally, we would like to pay tribute to T A Rafter, who had the foresight to begin measurements of atmospheric ¹⁴CO₂ in New Zealand, and who recognized the importance of extending these to other South Pacific sites many years ago.

REFERENCES

Cleveland, W S 1979 Robust locally weighted regression and smoothing scatterplots. Jour Am Statistical Assoc 74: 829-836.

Cleveland, W S, Freeny, E and Graedel, T E 1983 The seasonal component of atmospheric CO₂: Information from new approaches to the decomposition of seasonal time series. Jour Geophys Research 88: 10934–10946. Cleveland, W S and McRae, J E 1989 The use of loess and STL in the analysis of atmospheric CO_2 and related data.

Spring, Maryland.
Davidson, J A, Cantrell, C A, Tyler, S C, Shetter, R E, Cicerone, R J and Calvert, J G 1987 Carbon kinetic isotope effect in the reaction of CH₄ with HO. Jour Geophys Research 92: 2195–2199.
Ehhalt, D H 1973 Methane in the atmosphere. In Carbon and the biosphere. Brookhaven symposium in biology, 24th, New York, Corona and the biosphere. Brookhaven symposium in biology, 24th, New York, Corona and Calvert, J G 1987 Carbon kinetic isotope constraints.

Proc. Upton, New York, USAEC, CONF-720510.

Enting, I G 1987 On the use of smoothing splines to filter CO_2 data. Jour Geophys Research 92: 10977–10984. Enting, I G and Pearman, G I 1983 Refinements to a one-dimensional carbon cycle model. CSIRO Div Atmos Research tech paper 3

Fraser, P J, Hyson, P, Rasmussen, R A, Crawford, A J and Khalil, M A K 1986 Methane, carbon monoxide and methylchloroform in the Southern Hemisphere. Jour Atmos Chem 4: 3-42.

In Elliott, W P, ed, The statistical treatment of CO₂ data records. NOAA Tech Memo ERL ARL-173, Silver

Golombek, A and Prinn, R G 1986 A global three-dimensional model of the circulation and chemistry of CFCl₃, CF2Cl2, CH3CCl3, CCl4, and N2O. Jour Geophys Research 91: 3985-4001

Heimann, M and Keeling, C D 1986 Meridional eddy diffusion model of the transport of atmospheric carbon dioxide, 1. Seasonal carbon cycle over the tropical Pacific ocean. Jour Geophys Research 91: 7765–7781

Karlen, I, Olsson, I, U, Kallberg, P and Kilicci, S 1964 Absolute determination of the activity of two ¹⁴C dating standards. Arkiv Geofysik 4: 465–471.

Keeling, C D, Mook, W G and Tans, P P 1979 Recent trends in the ${}^{13}C/{}^{12}C$ ratio of atmospheric carbon dioxide. Nature 277: 121-123.

Khalil, M A K and Rasmussen, R A 1983 Sources, sinks and seasonal cycles of atmospheric methane. Jour Geophys Research 88: 5131-5144.

Lal, D and Peters, B 1962 Cosmic ray produced isotopes and their application to problems in geophysics. Progress in elementary particle and cosmic ray physics. Amsterdam, North Holland 6: 1–74. Levin, I (ms) 1985 Atmospheric CO₂ in continental Europe—An alternative approach to clean air CO₂ data. Paper

presented at IAMAP mtg, Atmospheric carbon dioxide its sources, sinks, and global transport, Kandersteg, Switzerland.

Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, D, Vogel, J C and Münnich, K O 1985, 25 years of tropospheric ¹⁴C observations in central Europe. Radiocarbon 27(1): 1-19.

Logan, J A, Prather, M J, Wofsy, S C and McElroy, M B 1981 Tropospheric chemistry: A global perspective. Jour Geophys Research 86: 7210-7254.

Lowe, D C, Brenninkmeijer, C A M, Manning, M R, Sparks, R and Wallace, G 1988 Radiocarbon determination of

atmospheric methane at Baring Head, New Zealand. *Nature* 332: 522–525. Mahlman, J D, Levy, H and Moxim, W J 1980 Three dimensional tracer structure and behaviour as simulated in two

ozone precursor experiments. Jour Atmos Sci 37: 655–685. Mahlman, J D and Moxim, W J 1978 Tracer simulation using a global general circulation model: results from a midlatitude instantaneous source experiment. Jour Atmos Sci 35:1340–1374.

Nydal, R and Lovseth, K 1983 Tracing bomb ¹⁴C in the atmosphere 1962-1980. Jour Geophys Research 88: 3621-3642

Oeschger, H, Siegenthaler, U, Schotterer, U and Gugelmann, A 1975 A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27: 168-192.

Peng, T-H, Broecker, W S, Freyer, H D and Trumbore, S 1983 A deconvolution of the tree ring based δ^{13} C record. Jour Geophys Research 88: 3609–3620.

Plumb, R A and Mahlman, J D 1987 The zonally averaged transport characteristics of the GFDL general circula-tion /transport model. Jour Atmos Sci 4:298–326.

Plumb, R A and McConalogue, D D 1988 On the meridional structure of long-lived tropospheric constituents. Jour Geophys Research 93: 15,897–15,913.

Povinec, P, Chudy, M and Sivo, A 1986 Anthropogenic radiocarbon: past present and future. In Stuiver, M and Kra, R S, eds, Internatl¹⁴C conf, 12th, Proc. Radiocarbon 28(2A): 668-672.

Prinn, R, Cunnold, D, Rasmussen, R, Simmonds, P, Alyea, F, Crawford, A Fraser, P and Rosen, R 1987 Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science 238: 945-950

Rafter, T A 1955¹⁴C variations in nature and the effect on radiocarbon dating. New Zealand Jour Sci Tech 37: 20-38.

Rafter, T A and Fergusson, G J 1959 Atmospheric radiocarbon as a tracer in geophysical circulation problems. In United Nations peaceful uses of atomic energy, Internatl conf, 2nd, Proc. London, Pergamon Press.

Rafter, T A and O'Brien, B J 1970 Exchange rates between the atmosphere and the ocean as shown by recent C14 measurements in the south Pacific. In Olsson, I U, ed, Radiocarbon variations and absolute chronology, Nobel symposium, 12th, Proc. Stockholm, Almqvist & Wiksell.

Reinsch, C M 1967 Smoothing by spline functions. Num Math 10: 177–183. Sarmiento, J L and Gwinn, E 1986 Strontium 90 fallout prediction. Jour Geophys Research 91: 7631–7646. Schell, W R, Sauzay, G and Payne, B R 1974 World distribution of environmental tritium. In Physical behaviour of radioactive contaminants in the atmosphere, IAEA and WMO symposium, Proc. Vienna, IAEA-STI/PUB/354,

Steele, L P, Fraser, P J, Rasmussen, R A, Khalil, M A K, Conway, T J, Crawford, A J, Gammon, R H, Masarie, K A and Thoning, K W 1987 The global distribution of methane in the troposphere. *Jour Atmos Chem* 5: 125–171.

Stevens, C M and Engelkemeir, A 1988 Stable carbon isotopic composition of methane from some natural and anthropogenic sources. Jour Geophys Research 93: 725-733

Stevens, C M, Krout, L, Walling, D and Venters, A 1972 The isotopic composition of atmospheric carbon monoxide. Earth Planetary Sci Letters 16: 147–165.

Stuiver, M and Polach, H A 1977 Discussion: Reporting of ¹⁴C data. Radiocarbon 19(3): 355-363.

Taylor, C B 1968 A comparison of tritium and strontium-90 fallout in the southern hemisphere. Tellus 20: 559-576

Telegadas, K 1971 The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. US Atomic Energy Comm rept HASL-243.

Trabalka, J R, ed 1985 Atmospheric carbon dioxide and the global carbon cycle. US Dept Energy rept DOE/ER-0239

Tyler, S C, Blake, D R and Rowland, F S 1987 ¹³C/¹²C ratio in methane from the flooded Amazon forest. Jour Geophys Research 92: 1044-1048.

Volz, A, Éhhalt, D H and Derwent, R G 1981 Seasonal and latitudinal variation of ¹⁴CO and the tropospheric concentration of OH radicals. Jour Geophys Research 86: 5163–5171.

Walker, J C G 1977 Evolution of the atmosphere. New York, MacMillan.