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1. Introduction. Let M be a compact Riemannian manifold with first Betti
number b > 0 equipped with negative sectional curvatures. There are a countable
infinity closed geodesics on M, one in each non-zero conjugacy class in π1M. The
problem of obtaining asymptotic estimates on the number of closed geodesics has
been studied by many authors. Let � be the set of its closed geodesics. For γ ∈ �, let
l(γ ) denote the length of γ , then

π (T) := #{γ ∈ � : l(γ ) ≤ T} ∼ ehT

hT
as T → ∞,

where h is the topological entropy of the geodesic flow on the unit-tangent bundle
SM [7].

We denote by [γ ] ∈ H1(M, �) the homology class of γ . For a fixed homology class
α ∈ H1(M, �), it is known that

π (T, α) := #{γ ∈ � : l(γ ) ≤ T, [γ ] = α} ∼ c
eTh

Tb/2+1
as T → ∞,

for some constant c > 0, [5].
However the error terms of asymptotic expansion were not known until the work

of Dolgopyat on Anosov flows [2], where he obtained strong results on the contractivity
of transfer operators. These results led Anantharaman [1], Pollicott and Sharp [9] to
find full expansions for π (T, α) and πδ(T, α) (the definition of πδ(T, α) follows).

In [1], by using direct approach based on Fourier-Laplace transform,
Anantharaman obtained

πδ(T, α) : = #{γ ∈ � : |l(γ ) − T | ≤ δ, [γ ] = α}

= eTh

Tb/2+1

(
N∑

n=0

cn

Tn
+ O

(
T−(N+1))) as T → ∞,

for all N ∈ �, where the cn are constants.

1 This work was done at the Department of Mathematics, University of Manchester.
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In fact, she obtained the result for Anosov flows whose stable and unstable
characteristic foliations are of class C1 and uniformly jointly non-integrable. Estimating
the number of closed geodesics is a special case. Pollicott and Sharp [9] independently
obtained the same results for π (T, α), but their expansion contained terms of the form
T− n

2 which should vanish when n is odd.
However these authors did not describe how the constants cn depend on the

homology class α. In this article, we will consider how coefficients cn depend on α and
give an explicit formula for cn. Our main result is the following.

THEOREM. Let M be a compact Riemannian manifold with first Betti number b > 0
and with negative section curvatures. Furthermore suppose that either dim M = 2 or that
the sectional curvatures lie between −4 and −1. For a fixed α ∈ H1(M, �), we have

π (T, α) = eTh

Tb/2+1

(
c0 + c1 − |||α|||2

T
+ O(T−2)

)
as T → ∞,

where h is the topological entropy of the geodesic flow on the unit-tangent bundle SM and
||| · ||| is a norm on H1(M, �).

REMARKS.
1. The norm ||| · ||| on H1(M, �) is defined by |||x||| = 〈x, Ax〉, where A is a positive

definite matrix which will be defined in section 6.
2. We will obtain a more general form of the theorem, that is, we will give the

formula of the coefficients of T−n, for any n ∈ �.
3. This method can be applied to an Anosov flow which is homologically full ( i.e.,

every homology class contains at least one closed orbit) and whose stable and unstable
characteristic foliations are C1 and uniformly jointly non-integrable [6]. In fact, the
pinching condition on the curvatures of M ( sectional curvatures lie between −4 and
−1) is required to ensure that this condition holds.

4. After I obtained the results of this article, I learned that Motoko Kotani [4]
had studied the same question and also showed how the coefficients cn(α) depend
on homology class α. She followed the proof by Pollicott and Sharp in [9]. But my
argument is by a more direct approach.

The analysis in this article is closely akin to that used by Anantharaman in [1], but
we concentrate on how the coefficients depend on the homology class. In this article,
the finite positive constants c may vary at each occurrence.

2. Counting function. Let M be the compact manifold with first Betti number b >

0 and with negative sectional curvature. Let SM denote the unit-tangent bundle. Given
(x, v) ∈ SM, we can choose a unique unit speed geodesic γ : � → M with γ (0) =
x, γ̇ (0) = v. We define the geodesic flow φt : SM → SM by φt(x, v) = (γ (t), γ̇ (t)) and
let h > 0 denote its topological entropy. There is a natural one-to-one correspondence
between closed geodesics on M and closed orbits for φ. Let � and �̃ denote respectively
the set of closed geodesics on M and the set of closed orbits for φ. For γ ∈ � we denote
by γ̃ the corresponding closed orbit for φ. Let l(γ ) and l(γ̃ ) denote the length of γ and
the least period of γ̃ . It is known that l(γ ) = l(γ̃ ).

For computational convenience, we fix an isomorphism between H1(M, �) and
�b. This also gives an isomorphism between H1(M, �)/torsion and �b. For simplicity,
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we shall consider manifolds M whose first homology group is torsion free, i.e.,
H1(M, �) ∼= �b. Otherwise, we can write H1(M, �) ∼= �b ⊕ H, where H is the finite
torsion subgroup. Our results will then only differ by a multiplicative constant.

For any closed geodesic γ on M, there are Fi : SM → �, i = 1, 2, . . . , b such that

[γ ] =
(∫

γ̃

F1,

∫
γ̃

F2, . . . ,

∫
γ̃

Fb

)
=

∫
γ̃

F.

Thus we may rewrite π (T, α) in the form

π (T, α) = #
{
γ̃ ∈ �̃ : l(γ̃ ) ≤ T,

∫
γ̃

F = α

}
.

We shall now concentrate on estimating π (T, α). For convenience, we shall abuse
notation by writing γ both for a closed geodesic on M and for the corresponding
closed orbit for the geodesic flow.

Let G denote the closed subgroup of �b+1 generated by the vectors (l(γ ),
∫
γ

F)
(γ ∈ �). We have G = � × �b. Let Mφ be the set of φ-invariant probability measures
on SM. For u ∈ �b, define function β : �b → � by

β(u) = sup
m∈Mφ

{
hm(φ) +

〈
u,

∫
Fdm

〉}
.

β(u) is an analytic function on �b and has a positive definite Hessian at any point. It
is well-known β(0) = supm∈Mφ

{hm} = h, the topological entropy of φ and ∇β(0) = 0.
The function β(u) can be continued analytically in a complex neighbourhood of 0 in
�b.

In order to estimate π (T, α) we shall first consider the auxiliary function

πg(T, α) =
∑

[γ ]=α

g(l(γ ) − T),

where g : � → �+ is a function on �. First we assume that g has a compact support
and with C3-regularity. Let ĝ is the Fourier transform of g, by the Fourier Inversion
Formula,

πg(T, α) =
∑

[γ ]=α

g(l(γ ) − T)eσ (l(γ )−T)eσT e−σ l(γ )

= 1
2π

∑
γ∈�

∫
�

∫
�b/�b

ĝ(−iσ + t)e−it(l(γ )−T)eσT e−σ l(γ )e2π i〈v,[γ ]〉e−2π i〈v,α〉 dv dt

= 1
2π

∫
�

∫
�b/�b

Z(σ + it, v)eσT+itT ĝ(−iσ + t)e−2π i〈v,α〉 dv dt,

where we have defined

Z(s, v) = Z(σ + it, v) =
∑
γ∈�

e−sl(γ )+2π i〈v,[γ ]〉 =
∑
γ∈�

e−sl(γ )+2π i〈v,
∫
γ

F〉

for (s, v) ∈ � × �b/�b. It is well-known that when Re s = σ > β(0) = h, Z(s, v) is
absolutely convergent.
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For the behaviour of Z(s, v) in Re s < h, we code the geodesic flow with suspended
flow. Then we can determine the domain of Z(s, v) by studying the norm of the
transfer operator. Using the Dolgopyat’s result that the spectrum of transfer operator
is contracted when Re s > h − ε and |t| → ∞, we have the following proposition.

PROPOSITION 1. [1] There exist B > 0, ε1 > 0, ε2 > 0, ε3 > 0 and an open set V0, a
neighbourhood of 0 in �b/�b such that

(1) Z(s, v) is analytic if σ > h − ε1, |t| > B and in this domain we have |Z(s, v)| <

c|t|;
(2) Z(s, v) + log(s − β(iv)) is analytic in {(s, v) : σ > h − ε2, v ∈ V0};
(3) Z(s, v) is analytic in {(s, v) : v /∈ V̄0, σ > h − ε3}.

3. Analysis of counting function. In this section we will analyse the counting
function πg(T, α). In what follows, let g be of class C3 with compact support. Let
σ > h. Then

πg(T, α) = 1
2π

∫
�×�b/�b

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t)e−2π i〈v,α〉 dt dv

= 1
2π

∫
V0

e−2π i〈v,α〉 dv

∫
�

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t)) dt

+ 1
2π

∫
�b/�b−V0

e−2π i〈v,α〉 dv

∫
�

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t)) dt.

We shall consider the two integrals separately. First we consider the integral over
�b/�b − V0. For v /∈ V0, we have the following estimate.

LEMMA 1. For v /∈ V0 and for all σ > h, there exist ε > 0 such that∣∣∣∣∫
�

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t) dt
∣∣∣∣ ≤ c

∥∥g(3)
∥∥

L1 eT(h−ε).

Proof. Let σ be fixed with σ > h. Let ε = min{ε1, ε2, ε3}, where ε1, ε2, ε3 are
constants in Proposition 1. By part (3) of Proposition 1, Z(s, v) is analytic in
{(s, v) : v /∈ V0, Re s ≥ h − ε}. Using Cauchy’s theorem,∫




Z(s, v)esT ĝ(−is) ds = 0, (1)

where 
 = {Re s = σ, |Im s| ≤ R} ∪ {Re s = h − ε, |Im s| ≤ R} ∪ {h − ε ≤ Re s ≤ σ,

|Im s| = R}.
Since g is C3 on � and has compact support, integrating by parts and only

considering g which has compact support contained in (−∞, 0], we obtain for h − ε ≤
Re s ≤ σ ,

ĝ(−is) =
∣∣∣∣ 1
s3

∫
�

g(3)(y)esy dy
∣∣∣∣ ≤ c

∥∥g(3)
∥∥

L1

|Im s|3 ,

where c is a constant which is independent of g. Using Proposition 1,∣∣∣∣∫{h−ε≤Re s≤σ,|Im s|=R}
Z(s, v)esT ĝ(−is) ds

∣∣∣∣ ≤ cReσT c

∥∥g(3)
∥∥

L1

R3
(σ − (h − ε)) → 0
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as R → ∞. This means that∫
{h−ε≤Re s≤σ,|Im s|=R}

Z(s, v)esT ĝ(−is) ds → 0 as R → ∞. (*)

Since∫
�

∣∣Z(σ + it, v)e(σ+it)T ĝ(−iσ + t)
∣∣ dt ≤ c + 2

∫ +∞

B
eσT c|t|c

∥∥g(3)
∥∥

L1

|t|3 dt < ∞,

we have

lim
R→∞

∫ R

−R
Z(σ + it, v)e(σ+it)T ĝ(−iσ + t) dt < ∞.

Similarly,

lim
R→∞

∫ R

−R
Z(h − ε + it, v)e(h−ε+it)T ĝ(−i(h − ε) + t) dt < ∞.

Letting R → ∞ in (1)and using (*), we have∣∣∣∣∫
�

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t) dt
∣∣∣∣

≤ c + 2
∫ ∞

B
e(h−ε)T c|t| · c

∥∥g(3)
∥∥

L1

t3
dt ≤ c

∥∥g(3)
∥∥

L1 eT(h−ε). �

Now we consider the integral over V0. We shall prove the following lemma.

LEMMA 2. Let v ∈ V0, then for all M ∈ � and for all σ > h, we have∣∣∣∣∣∣
∫

�

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t) dt − 2π

M∑
j=0

1
Tj+1

d jĝ
ds j

(−iβ(iv))eβ(iv)T

∣∣∣∣∣∣
≤ c

(∥∥g(3)
∥∥

L1 + ‖g‖L1 + · · · + ‖yMg‖L1

)
eT(h−ε)

+ c
TM+1

∣∣∣∣∫
C(σ )

log(s − β(iv))esT dM+1

dsM+1
ĝ(−is) ds

∣∣∣∣ ,
where C(σ ) will be defined later.

Proof. When v ∈ V0, σ is fixed with σ > h. For 2B < R ∈ �+, let
C0 = {Re s = h − ε,−2B ≤ Im s ≤ 2B}; C1 = {Im s = −2B, h − ε ≤ Re s ≤ σ };
C2 = {Re s = σ,−2B ≤ Im s ≤ 2B}; C3 = {Im s = 2B, h − ε ≤ Re s ≤ σ };
C+

4 = {Re s = h − ε, 2B ≤ Im s ≤ R}; C−
4 = {Re s = h − ε,−R ≤ Im s ≤ −2B};

C+
5 = {Re s = σ, 2B ≤ Im s ≤ R}; C−

5 = {Re s = σ,−R ≤ Im s ≤ −2B};
C+

R = {h − ε ≤ Re s ≤ σ, Im s = R}; C−
R = {h − ε ≤ Re s ≤ σ, Im s = −R}.

By part (1) of Proposition 1, Z(s, v) is analytic in Re s > h − ε, |Im s| > B,∫
{C3∪C+

5 ∪C+
R ∪C+

4 }
Z(s, v)esT ĝ(−is) ds = 0, (2)∫

{C1∪C−
4 ∪C−

R ∪C−
5 }

Z(s, v)esT ĝ(−is) ds = 0. (3)
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By part (2) of Proposition 1, we have∫
−{C0∪C3∪C2∪C1}

(Z(s, v) + log(s − β(iv)))esT ĝ(−is) ds = 0 (4)

where the three contours are counterclockwise and −Ci means that the orientation of
the path is reversed.

Letting R → ∞ in (2) and using (∗), we have∫
{Re s=σ,2B≤Im s≤∞}

Z(s, v)esT ĝ(−is) ds =
∫

−C3∪{Re s=h−ε,2B≤Im s≤∞}
Z(s, v)esT ĝ(−is) ds.

(5)
Letting R → ∞ in (3), we have∫

{Re s=σ,−∞≤Im s≤−2B}
Z(s, v)esT ĝ(−is) ds

=
∫

−C1∪{Re s=h−ε,−∞≤Im s≤−2B}
Z(s, v)esT ĝ(−is) ds. (6)

From (4), we have∫
−C2

Z(s, v)esT ĝ(−is) ds =
∫

C1∪C2∪C3

log(s − β(iv))esT ĝ(−is) ds

+
∫

C0

(Z(s, v) + log(s − β(iv)))esT ĝ(−is) ds

+
∫

C1∪C3

Z(s, v)esT ĝ(−is) ds (7)

Let C(σ ) = C1 ∪ C2 ∪ C3. Adding three identities (5), (6), (7) we obtain∣∣∣∣∫
�

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t) dt + i
∫

C(σ )
log(s − β(iv))ĝ(−is)esT ds

∣∣∣∣
≤

∣∣∣∣∫{Re s=h−ε,|Im s|>2B}
Z(s, v)esT ĝ(−is) ds

∣∣∣∣
+

∣∣∣∣∫
C0

(Z(s, v) + log(s − β(iv)))esT ĝ(−is) ds
∣∣∣∣

≤ 2eT(h−ε)
∫ ∞

2B
c|t|

∥∥g(3)
∥∥

L1

t3
dt + ceT(h−ε) ≤ c

∥∥g(3)
∥∥

L1 eT(h−ε).

Integrating by parts, we have∣∣∣∣i ∫
C(σ )

log(s − β(iv))ĝ(−is)esT ds + i
T

∫
C(σ )

ĝ(−is)
s − β(iv)

esT ds

+ i
T

∫
C(σ )

log(s − β(iv))
dĝ
ds

(−is)esT ds
∣∣∣∣ ≤ c‖g‖L1 eT(h−ε).
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By using the Residue Formula,∣∣∣∣∫
C(σ )

ĝ(−is)
s − β(iv)

esT ds + 2π iĝ(−iβ(iv))eβ(iv)T
∣∣∣∣ =

∣∣∣∣∫
C0

ĝ(−is)
s − β(iv)

esT ds
∣∣∣∣

≤
∫ 2B

−2B

∣∣∣∣ ĝ(t − i(h − ε))
h − ε + it − β(iv)

e((h−ε)+it)T dt
∣∣∣∣

≤ c‖g‖L1 eT(h−ε).

So we have obtained∣∣∣∣∫
�

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t) dt − 2π
1
T

ĝ(−iβ(iv))eβ(iv)T
∣∣∣∣

≤ c
(∥∥g(3)

∥∥
L1 + ‖g‖L1

)
eT(h−ε) + c

T

∣∣∣∣∫
C(σ )

log(s − β(iv))esT dĝ(−is)
ds

ds
∣∣∣∣ .

We iterate the preceding operation M + 1 times, and note∣∣∣∣dkĝ(−is)
dsk

∣∣∣∣ =
∣∣∣∣∫

�

ykg(y)esy dy
∣∣∣∣ ≤ c‖ykg‖L1 .

We have∣∣∣∣∣∣
∫

�

Z(σ + it, v)e(σ+it)T ĝ(−iσ + t) dt − 2π

M∑
j=0

1
Tj+1

d jĝ
ds j

(−iβ(iv))eβ(iv)T

∣∣∣∣∣∣
≤ c

(∥∥g(3)
∥∥

L1 + ‖g‖L1 + · · · + ‖yMg‖L1

)
eT(h−ε)

+ c
TM+1

∣∣∣∣∫
C(σ )

log(s − β(iv))esT dM+1

dsM+1
ĝ(−is) ds

∣∣∣∣ . �

Using the Dominated Convergence Theorem, we have

lim
σ→h

∫
V0

e−2π i〈v,α〉 dv

∫
C(σ )

log(s − β(iv))esT dM+1

dsM+1
ĝ(−is) ds

=
∫

V0

e−2π i〈v,α〉 dv

∫
C(h)

log(s − β(iv))esT dM+1

dsM+1
ĝ(−is) ds.

By Lemma 1 and Lemma 2, we can prove the following proposition.

PROPOSITION 2. Let g be class C3 with compact support. For all M ≥ 1, we have∣∣∣∣∣∣πg(T, α) −
M∑

j=0

1
Tj+1

∫
V0

e−2π i〈v,α〉 d jĝ
ds j

(−iβ(iv))eβ(iv)T dv

∣∣∣∣∣∣
≤ c

‖yM+1g‖L1

TM+1
eTh + c

(∥∥g(3)
∥∥

L1 + ‖g‖L1 + · · · + ‖yMg‖L1

)
eT(h−ε). (8)
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4. Further calculation of counting function. By Proposition 2, in order to obtain
the estimate of πg(T, α), we only need to estimate∫

V0

d jĝ
ds j

(−iβ(iv))eTβ(iv)e−2π i〈v,α〉 dv.

We first have the following lemma.

LEMMA 3. There exist polynomials f (k)
j (iv) in iv1, . . . , ivb such that the total exponent

of each term has the same parity as k and such that∣∣∣∣∣
∫

V0

d jĝ
ds j

(−iβ(iv))eTβ(iv)−2π i〈v,α〉 dv

− eTh

Tb/2

2N+1∑
k=0

1
Tk/2

∫
‖v‖≤√

Tρ

e− 1
2 β ′′(0)(v,v)−2π i〈 v√

T
,α〉f (k)

j (iv) dv

∣∣∣∣∣
≤ c sup

n≤2N+2
‖yj+ng‖L1

eTh

TN+ b
2 +1

,

for some small ρ.

REMARKS.
(1) Here ‖ · ‖ denotes the 2-norm, i.e., ‖v‖ = (

∑b
i=1 v2

i )1/2,

(2) The proof of this lemma is same as that in [1]. We denote d j ĝ
ds j (−iβ(iv)) by ḡj(iv),

then expand β( iv√
T

) and ḡj( iv√
T

) in the neighbourhood of 0 by

β

(
iv

√T

)
= β(0) + ∇β(0) · iv + 1

2
β ′′(0)(iv, iv) + TR2N+3

= h − 1
2
β ′′(0)(v, v) + TR2N+3

and

ḡj(iv/
√

T) =
2N+1∑

l=0

ḡ(l)
j (0)

l!
· (iv)lT−l/2 + YN(iv/

√
T).

(3) By the first condition, we mean that f (k)
j (iv) can be written in the form

f (k)
j (iv) =

∑
al1,l2,...,lb (iv1)l1 (iv2)l2 · · · (ivb)lb .

In particular,

f (0)
j (iv) = ḡ(0)

j (0) = d j

ds j
ĝ(−is) |s=h;

f (1)
j (iv) = 1

6
ḡ(0)

j (0)β(3)(0) · (iv)3 + ḡ(1)
j (0) · (iv);

f (2)
j (iv) = 1

72
ḡ(0)

j (0)
(
2
(
β(3)(0) · (iv)3)2 + 3β(4)(0) · (iv)4)

+ 1
6

ḡ(1)
j (0) · (iv)β(3)(0) · (iv)3 + 1

2
ḡ(2)

j (0) · (iv)2.
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(4) We can see that f (0)
j (iv) are constants and f (0)

0 (iv) > 0 , since

f (0)
j (iv) = d j

ds j
ĝ(−is) |s=h= d j

ds j

∫
�

g(y)esy dy |s=h

=
∫

�

yjg(y)esy dy |s=h=
∫

�

yjg(y)ehy dy.

Taking M = N + b + 2 in (8), we have proved the following proposition.

PROPOSITION 3. For any N ≥ 1, we have∣∣∣∣∣∣πg(T, α) − eTh

Tb/2+1

N+b+2∑
j=0

1
Tj

2N+1∑
k=0

1
Tk/2

∫
‖v‖≤√

Tρ

e− 1
2 β ′′(0)(v,v)e−2π i〈α,v/

√
T〉f (k)

j (iv) dv

∣∣∣∣∣∣
≤ c sup

n≤4N+b+2
‖yng‖L1

eTh

TN+ b
2 +2

+ c
(∥∥g(3)

∥∥
L1 + ‖g‖L1 + · · · + ‖yN+b+2g‖L1

)
eT(h−ε),

where f (k)
j (iv) in iv1, . . . , ivb are polynomials such that the total exponent of each term

has the same parity as k.

5. Coefficients of error terms of πg(T, α). In this section, we will give the
asymptotic formula for πg(T, α) with error terms. We also give the explicit expression
of coefficients of error terms.

By the Proposition 3, we need to estimate

2N+1∑
k=0

1
Tk/2

∫
‖v‖≤√

Tρ

e− 1
2 β ′′(0)(v,v)e−2π i〈α,v/

√
T〉f (k)

j (iv) dv,

where f (k)
j (iv) are polynomials in iv1, . . . , ivb such that the total exponent of each term

in f (k)
j and k have the same parity. That is, we can write

f (k)
j (iv) =

∑
b̄l1,l2,...,lb (iv1)l1 (iv2)l2 · · · (ivb)lb ,

where l1 + l2 + · · · + lb and k have the same parity.
We first prove the following proposition.

PROPOSITION 4.

2N+1∑
k=0

1
Tk/2

∫
‖v‖≤√

Tρ

e− 1
2 β ′′(0)(v,v)e−2π i〈α,v/

√
T〉f (k)

j (iv) dv

=
2N+1∑
k=0

1
Tk/2

∫
�b

e− 1
2 β ′′(0)(v,v)s(k)

j (α, iv) dv + O

(
sup

n≤4N+b+2
‖yng‖L1 T−(N+1)

)
,

where

s(k)
j (α, iv) =

k∑
l=0

(−1)k−l
f (l)
j (iv)〈α, 2π iv〉k−l

(k − l)!
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are polynomials in iv1, . . . , ivb and we still have that the total exponent of each term in
s(k)

j (α, v) has the same parity as k.

Proof. We expand e−2π i〈α,v/
√

T〉 in a neighborhood of 0.

e−2π i〈α,v/
√

T〉 = 1 − 〈α, 2π iv〉√
T

+ 〈α, 2π iv〉2

2T
− 〈α, 2π iv〉3

3!T3/2

+ · · · − 〈α, 2π iv〉2N+1

(2N + 1)!TN/2+1
+ ZN(iv/

√
T),

where |ZN(iv/
√

T)| ≤ c ‖v‖2N+2

TN+1 . Let

s(k)
j (α, iv) =

k∑
l=0

(−1)k−l
f (l)
j (iv)〈α, 2π iv〉k−l

(k − l)!
;

then

2N+1∑
k=0

1
Tk/2

∫
‖v‖≤√

Tρ

e− 1
2 β ′′(0)(v,v)e−2π i〈α,v/

√
T〉f (k)

j (iv) dv

=
2N+1∑
k=0

1
Tk/2

∫
‖v‖≤√

Tρ

e− 1
2 β ′′(0)(v,v)s(k)

j (α, iv) dv + O

(
sup

n≤4N+b+2
‖yng‖L1 T−(N+1)

)
.

For T is sufficiently large, for all m ∈ �, we have∫
‖v‖>√

Tρ

e− 1
2 β ′′(0)(v,v)‖v‖m dv ≤

∫
‖v‖>√

Tρ

e−ε′‖v‖2 |v1v2 · vd | dv

≤
d∏

i=1

∫ ∞
√

Tρ

e−ε′v2
i vi dvi ≤ ce−ε′T ,

for some ε′ > 0. So we have∣∣∣∣∣
2N+1∑
k=0

1
Tk/2

∫
‖v‖≤√

Tρ

e− 1
2 β ′′(0)(v,v)e−2π i〈α,v/

√
T〉f (k)

j (iv) dv

−
2N+1∑
k=0

1
Tk/2

∫
�b

e− 1
2 β ′′(0)(v,v)s(k)

j (α, iv) dv

∣∣∣∣∣
≤ c sup

n≤4N+b+2
‖yng‖L1

(
T−(N+1) + e−ε′T)

. �

In the following lemma, we will see that the coefficients of T− k
2 vanish when k is odd.

LEMMA 4. If k is odd, then∫
�b

e− 1
2 β ′′(0)(v,v)s(k)

j (α, iv) dv = 0.
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Proof.

s(k)
j (α, iv) =

k∑
l=0

(−1)k−l
f (l)
j (iv)〈α, 2π iv〉k−l

(k − l)!

=
k∑

l=0

(−1)k−l f (l)
j (iv)(2π i)k−l

(
b∑

i=1

αivi

)k−l

:=
∑

al1,l2,...,lb (α)(iv1)l1 (iv2)l2 · · · (ivb)lb ,

where l1 + l2 + · · · + lb is odd and al1,L2,...,lb (α) are constants which depend on α and g.
Let v′ = −v, i.e., (v′

1, v
′
2, . . . , v

′
b) = (−v1,−v2, . . . ,−vb); then∫

�b
e− 1

2 β ′′(0)(v,v)s(k)
j (α, iv) dv

=
∫

�b
e− 1

2 β ′′(0)(v,v)
∑

al1,l2,...,lb (iv1)l1 (iv2)l2 · · · (ivb)lb dv1 dv2 · · · dvb

= −
∫

�b
e− 1

2 β ′′(0)(v′,v′)s(k)
j (α, iv′) dv′.

Thus ∫
�b

e− 1
2 β ′′(0)(v,v)s(k)

j (α, iv) dv = 0. �

By Lemma 4, for k odd the coefficient of T− k
2 vanish. So we only need to calculate

coefficients when k is even. Let b(k)
j (α) be the coefficient of Tk in Proposition 4; if we

write α = (α1, α2, . . . , αb) then

b(k)
j (α) =

∫
�b

e− 1
2 β ′′(0)(v,v)s(2k)

j (α, iv) dv

=
∫

�b
e− 1

2 β ′′(0)(v,v)
2k∑

l=0

(−1)l
f (l)
j (iv)〈α, 2π iv〉2k−l

(2k − l)!
dv

=
2k∑

l1+l2+···+lb=0

b( j)
l1l2...lbα

l1
1 α

l2
2 · · ·αlb

b ,

where b( j)
l1l2···lb are constants. More precisely,

b( j)
l1l2...lb = (l1 + l2 + · · · + lb)!

l1!l2! . . . lb!

∫
�b

e− 1
2 β ′′(0)(v,v)(2π i)l1+l2+···+lb

× v
l1
1 v

l2
2 . . . v

lb
b f (2k−(l1+l2+···+lb))

j (iv) dv.

Then we have proved the following Proposition.
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PROPOSITION 5.∣∣∣∣∣
2N+1∑
k=0

1
Tk/2

∫
‖v‖≤√

Tρ

e− 1
2 β ′′(0)(v,v)e−2π i〈α,v/

√
T〉f (k)

j (iv) dv −
N∑

k=0

b(k)
j (α)

Tk

∣∣∣∣∣
≤ c sup

n≤4N+b+2
‖yng‖L1

(
T−(N+1) + e−ε′T)

,

where b(k)
j (α) = ∑2k

l1+l2+···+lb=0 b( j)
l1l2...lbα

l1
1 α

l2
2 . . . α

lb
b are polynomials in α1, α2, . . . , αb and

the degree of b(k)
j is 2k and b( j)

l1l2...lb are constants which depend on g.

In order to obtain πg(T, α), we shall use Proposition 4 and Proposition 5. Let

cn(α) =
n∑

i=0

b(n−i)
i (α) =

n∑
i=0

 2(n−i)∑
l1+l2+···+lb=0

b( j)
l1l2...lbα

l1
1 α

l2
2 . . . α

lb
b


:=

2n∑
l1+l2+···+lb=0

cl1l2...lbα
l1
1 α

l2
2 . . . α

lb
b ,

where cl1l2...lb are constants and

c0(α) = b(0)
0 = f (0)

0

∫
�b

e− 1
2 β ′′(0)(v,v) dv = (2π )b/2√| det β ′′(0)| ĝ(−ih) > 0,

so c0(α) is independent of α. On the other hand, for n ≥ 1, cn(α) is polynomial
in α1, . . . , αb whose degree is 2n by Proposition 5. From the expression of b(k)

j (α),
we have

cn(α) ∼
∫

�b
e− 1

2 β ′′(0)(v,v)f (0)
0 (iv)

〈α, 2π iv〉2n

(2n)!
dv

= (2π i)2n f (0)
0

(2n)!

∫
�b

e− 1
2 β ′′(0)(v,v)〈v, α〉2n dv

∼ (−1)ncg‖α‖2n (cg > 0 and cg is dependent on g),

where A ∼ B means that lim‖α‖→∞ A/B = 1.
We have now obtained the following theorem.

THEOREM 1. Let g be of class C3 with compact support. Then for all N ≥ 1, we
have

πg(T, α) = eTh

Tb/2+1

(
N∑

n=0

cn,g(α)
Tn

+ O
(
T−(N+1))) , (9)

where cn,g(α), n = 0, 1, . . . , N are constants with c0,g > 0 independent of α but dependent
on g and for n ≥ 1, cn,g(α) = ∑2n

l1+l2+···+lb=0 cl1l2...lbα
l1
1 α

l2
2 . . . α

lb
b is a polynomial in

α1, α2, . . . , αb whose degree is 2n with cl1l2...lb constants depending on g. Furthermore,
cn,g(α) ∼ (−1)ncg‖α‖2n, as ‖α‖ → ∞.
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REMARKS.
(1) The explicit formulae for c0,g and c1,g(α) are following.

c0,g = b(0)
0 = (2π )b/2√| det β ′′(0)| ĝ(−ih) > 0;

c1,g(α) = b(1)
0 + b(0)

1

=
∫

�b
e− 1

2 β ′′(0)(v,v)
(

1
2

f (0)
0 (iv)〈α, 2π iv〉2 − f (1)

0 (iv)〈α, 2π iv〉+ f (2)
0 (iv) + f (0)

1 (iv)
)

dv.

(2) The term O(T−(N+1)) can be bounded by C supn≤4N+b+2 ‖yng‖L1 T−(N+1) +
c‖g(3)‖L1 e−εT .

6. The proof of main results. In this section, we use approximation to estimate
π (T, α).

For N ∈ �, let g = χ
[−T

1
4N+b+3 ,0]

. For all T we take g−
T and g+

T of class C3 with

compact supports such that

(1) g−
T ≤ g ≤ g+

T ;
(2) ‖g+

T ‖∞ ≤ 2 and ‖g−
T ‖∞ ≤ 2;

(3) for 0 ≤ n ≤ 4N + b + 2, ‖yng±
T ‖L1 ≤ c‖yng‖L1 ;

(4) supn≤4N+b+2 ‖yn(g±
T − g)‖L1 ≤ e−βT supn≤4N+b+2 ‖yng‖L1 for some β > 0;

(5) ‖g±
T

(3)‖L1 ≤ ce3βT‖g‖L1 .

These can be done by a convolution argument. By (1), πg−
T
(T, α) ≤ πg(T, α) ≤

πg+
T
(T, α). So ∣∣πg(T, α) − πg+

T
(T, α)

∣∣ ≤ πg+
T
(T, α) − πg−

T
(T, α).

By the Remark (2) of Section 5 the term O(T−(N+1)) is bounded by

C sup
n≤4N+b+2

‖yng‖L1 T−(N+1) + c‖g(3)‖L1 e−εT .

In this case,

C sup
n≤4N+b+2

‖yng‖L1 = sup
n≤4N+b+2

∫ 0

−T
1

4N+b+3

|y|n dy ≤ CT.

By Proposition 3, we have that∣∣∣∣∣∣πg±
T
(T, α) −

N+b+2∑
j=0

1
Tj+1

∫
V0

e−2π i〈v,α〉 d jĝ±
T

dsj
(−iβ(iv))eβ(iv)T dv

∣∣∣∣∣∣
≤ c‖yN+b+2g±

T ‖L1

TN+b+2
eTh + c

(∥∥g±
T

(3)∥∥
L1 + ‖g±

T ‖L1 + · · · + ‖yN+b+2g±
T ‖L1

)
eT(h−ε)

≤ c0
eTh

TN+b+1
+ c1eT(h−ε) + c2eT(h−ε+3β).
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By (4),

N+b+2∑
j=0

1
Tj+1

∣∣∣∣∣
∫

V0

e−2π i〈v,α〉
(

d jĝ+
T

dsj
− d ĵg

dsj

)
(−iβ(iv))eβ(iv)T dv

∣∣∣∣∣ ≤ c3e(h−β)T .

Hence,

πg(T, α) −
N+b+2∑

j=0

1
Tj+1

∫
V0

e−2π i〈v,α〉 dĵg
dsj

(−iβ(iv))eβ(iv)T dv

≤ πg+
T
(T, α) −

N+b+2∑
j=0

1
Tj+1

∫
V0

e−2π i〈v,α〉 dĵg
dsj

(−iβ(iv))eβ(iv)T dv

≤ πg+
T
(T, α) −

N+b+2∑
j=0

1
Tj+1

∫
V0

e−2π i〈v,α〉 djĝ+
T

dsj
(−iβ(iv))eβ(iv)T dv

+
N+b+2∑

j=0

1
Tj+1

∣∣∣∣∣
∫

V0

e−2π i〈v,α〉
(

d jĝ+
T

dsj
− d ĵg

dsj

)
(−iβ(iv))eβ(iv)T dv

∣∣∣∣∣
≤ c0

eTh

TN+b+1
+ c1eT(h−ε) + c2eT(h−ε+3β) + c3eT(h−β).

Similarly for g−
T , we have∣∣∣∣∣∣πg(T, α) −

N+b+2∑
j=0

1
Tj+1

∫
V0

e−2π i〈v,α〉 dĵg
dsj

(−iβ(iv))eβ(iv)T dv

∣∣∣∣∣∣
≤ c0

eTh

TN+b+1
+ c1eT(h−ε) + c2eT(h−ε+3β) + c3eT(h−β).

Choosing β < ε/3, we have∣∣∣∣∣∣πg(T, α) −
N+b+2∑

j=0

1
Tj+1

∫
V0

e−2π i〈v,α〉 dĵg
dsj

(−iβ(iv))eβ(iv)T dv

∣∣∣∣∣∣ ≤ c
eTh

TN+b+1
.

We do the same as in Section 4 for
∫

V0
e−2π i〈v,α〉 dj ĝ

dsj (−iβ(iv))eβ(iv)T dv and obtained

N+b+2∑
j=0

1
Tj+1

∫
V0

e−2π i〈v,α〉 dĵg
dsj

(−iβ(iv))eβ(iv)T dv

= eTh

T
b
2 +1

(
c0 +

N−1∑
k=1

ck,T (α)
Tk

+ O
(

1
TN

))
.

Since for g = χ
[−T

1
4N+b+3 ,0]

, ĝ(−iβ(iv)) = g(v) + O(e−T
1

4N+b+3 h),

ck,T (α) = ck(α) + O
(
eTh−T

1
4N+b+3 h).
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Hence

πg(T, α) = eTh

Tb/2+1

(
c0 +

N−1∑
k=1

ck(α)
Tk

+ O
(

1
TN

))
.

Now

π
(
T − T

1
4N+b+3 , α

) = O
(
eTh−T

1
4N+b+3 h),

and

π
(
T − T

1
4N+b+3 , α

) + πχ
[−T

1
4N+b+3 ,0]

(T, α) = π (T, α).

However, e−hT1/4N+b+3 → 0 faster than 1/Tn for any n. So we have the following theorem.

THEOREM 2. Let M be a compact Riemannian manifold with first Betti number b > 0
and with negative section curvature. Furthermore suppose that either dim M = 2 or the
sectional curvatures lie between −4 and −1. For α = (α1, α2, . . . , αb) ∈ H1(M, �) ∼= �b,
we have

π (T, α) = eTh

Tb/2+1

(
c0 +

N∑
n=1

cn(α)
Tn

+ O
(
T−(N+1))) , (10)

where c0 is a constant which is independent of α, and

cn(α) =
2n∑

l1+l2+···+lb=0

cl1l2...lbα
l1
1 α

l2
2 . . . α

lb
b

is a polynomial in α1, . . . , αb whose degree is 2n . Furthermore, cn(α) ∼ (−1)nc‖α‖2n, as
‖α‖ → ∞.

REMARK. We also can directly obtain πδ(T, α) by taking g = χ[−δ,δ] then using
approximation argument.

Now we consider the special case. If we take N = 1, then (10) reduces

π (T, α) = eTh

Tb/2+1

(
c0 + c1(α)

T
+ O(T−2)

)
.

By the remark following Theorem 1, we have that c0 > 0, and c1(α) = −∑b
i,j=1 cijαiαj +∑b

i=1 biαi + c with

cij = c
∫

�b
e− 1

2 β ′′(0)(v,v)vivj dv (c > 0).

Let A = (cij)b×b, B = (bi)b
i=1 We have

π (T, α) = eTh

Tb/2+1

(
c0 + −〈α, Aα〉 + 〈B, α〉 + c

T
+ O(T−2)

)
. (11)
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LEMMA 5. A is positive definite.

Proof. For any x = (x1, x2, · · · , xb),

〈x, Ax〉 =
b∑

i,j=1

cijxixj = c
b∑

i,j=1

∫
�b

e− 1
2 〈v,β ′′(0)v〉xivixjvj dv (c > 0)

= c
∫

�b
e− 1

2 〈v,β ′′(0)v〉
b∑

i,j=1

(xivixjvj) dv = c
∫

�b
e− 1

2 〈v,β ′′(0)v〉
b∑

i=1

(xivi)2 dv ≥ 0.

For a fixed x �= 0, {v :
∑b

i=1 xivi = 0} is a hyperplane in �b, so that the integrand is
positive almost everywhere. This means that 〈x, Ax〉 > 0 for x �= 0, hence A is positive
definite. �

Now we can define |||x||| = 〈x, Ax〉1/2 and ||| · ||| is a norm in H1(M, �) (or �b).
So we have

π (T, α) = eTh

Tb/2+1

(
c0 + −|||α|||2 + 〈B, α〉 + c

T
+ O(T−2)

)
. (12)

We note π (T, α) = π (T,−α) for any T . In fact for any T , there exists a natural one-
to-one correspondence in � by γ ↔ −γ . The correspondence preserves the length but
reverses the direction, so π (T, α) = π (T,−α) which implies B = 0 in (12). So we have
the following result.

THEOREM 3.

π (T, α) = eTh

Tb/2+1

(
c0 + c1 − |||α|||2

T
+ O(T−2)

)
as T → ∞,

where c0, c1 are constants and c0 > 0.

It is also easy to see that the following holds.

COROLLARY 1. For all α, β ∈ H1(M, �), if |||α||| > |||β||| then, for sufficiently large
T, we have π (T, α) < π (T, β). In particular, if α �= 0 then, for sufficiently large T,
π (T, α) < π (T, 0).
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Ećole Norm. Sup. (4) 33 (2000), 33–56.

2. D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. 147 (1998),
357–390

3. D. Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergod. Th. Dynam. Sys.
18 (1998), 1097–1114.

4. M. Kotani, A note on asymptotic expansions for closed geodesics in homology classes,
Math. Ann. (3) 320 (2001), 507–529.

https://doi.org/10.1017/S0017089504001764 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001764


CLOSED GEODESICS IN HOMOLOGY CLASSES 299

5. S. Lalley, Closed geodesics in homology classes on surface of variable negative curvature,
Duke Math. J. 59 (1989), 795–821.

6. D. Liu, Asymptotic expansion for closed orbits in homology classes for Anosov flows,
Math. Proc. Cambridge Philos. Soc. 136 (2004), 383–397.

7. G. Margulis, On some applications of ergodic theory to the study of manifolds of
negative curvature, Func. Anal. App. 3 (1969), 89–90.

8. M. Pollicott and R. Sharp, Exponential error terms for growth functions on negatively
curved surfaces, Amer. J. Math. 120 (1998), 1019–1042.

9. M. Pollicott and R. Sharp, Asymptotic expansions for closed orbits in homology classes,
Geometriae Dedicata 87 (2001), 123–160.

https://doi.org/10.1017/S0017089504001764 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001764

