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1. Introduction. Let M be a compact Riemannian manifold with first Betti
number b > 0 equipped with negative sectional curvatures. There are a countable
infinity closed geodesics on M, one in each non-zero conjugacy class in ;M. The
problem of obtaining asymptotic estimates on the number of closed geodesics has
been studied by many authors. Let I be the set of its closed geodesics. For y € T, let
[(y) denote the length of y, then

ehT
n(T)::#{yeI‘:l(y)fT}fvh—T as T — oo,

where / is the topological entropy of the geodesic flow on the unit-tangent bundle
SM [7].
We denote by [y] € H{(M, Z) the homology class of y. For a fixed homology class
a € Hi(M, Z), it is known that
Th

a(T,a)=#{y el :l(y)<T, [y]l=a} ~ as T — oo,

C b2+

for some constant ¢ > 0, [5].

However the error terms of asymptotic expansion were not known until the work
of Dolgopyat on Anosov flows [2], where he obtained strong results on the contractivity
of transfer operators. These results led Anantharaman [1], Pollicott and Sharp [9] to
find full expansions for (7T, ) and 75(T, ) (the definition of 75(7, ) follows).

In [1], by using direct approach based on Fourier-Laplace transform,
Anantharaman obtained

JT@(T,O():#{]/EF|l(]/)_T|§8,[]/]=Ol}

Th N

e c

= T (Z —T'; + O(T—(N+1))> as T — oo,
n=0

for all N € N, where the ¢, are constants.

! This work was done at the Department of Mathematics, University of Manchester.
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In fact, she obtained the result for Anosov flows whose stable and unstable
characteristic foliations are of class C! and uniformly jointly non-integrable. Estimating
the number of closed geodesics is a special case. Pollicott and Sharp [9] independently
obtained the same results for 7 (7, «), but their expansion contained terms of the form
T3 which should vanish when # is odd.

However these authors did not describe how the constants ¢, depend on the
homology class «. In this article, we will consider how coefficients ¢, depend on « and
give an explicit formula for ¢,. Our main result is the following.

THEOREM. Let M be a compact Riemannian manifold with first Betti number b > 0
and with negative section curvatures. Furthermore suppose that either dim M = 2 or that
the sectional curvatures lie between —4 and —1. For a fixed @« € H{(M, Z), we have

o a =Ml o) op
( ,Ol)—m Co+#+ (T7) ) as T — oo,

where h is the topological entropy of the geodesic flow on the unit-tangent bundle SM and
Il - 11 is @ norm on Hi(M, R).

REMARKS.

1. Thenorm ||| - ||| on H;(M, R)is defined by |||x||| = (x, Ax), where A4 is a positive
definite matrix which will be defined in section 6.

2. We will obtain a more general form of the theorem, that is, we will give the
formula of the coefficients of 77", for any n € N.

3. This method can be applied to an Anosov flow which is homologically full (i.e.,
every homology class contains at least one closed orbit) and whose stable and unstable
characteristic foliations are C' and uniformly jointly non-integrable [6]. In fact, the
pinching condition on the curvatures of M ( sectional curvatures lie between —4 and
—1) is required to ensure that this condition holds.

4. After I obtained the results of this article, I learned that Motoko Kotani [4]
had studied the same question and also showed how the coefficients ¢,(«) depend
on homology class «. She followed the proof by Pollicott and Sharp in [9]. But my
argument is by a more direct approach.

The analysis in this article is closely akin to that used by Anantharaman in [1], but
we concentrate on how the coefficients depend on the homology class. In this article,
the finite positive constants ¢ may vary at each occurrence.

2. Counting function. Let M be the compact manifold with first Betti number b >
0 and with negative sectional curvature. Let SM denote the unit-tangent bundle. Given
(x,v) € SM, we can choose a unique unit speed geodesic y : R — M with y(0) =
x, 7(0) = v. We define the geodesic flow ¢, : SM — SM by ¢.(x, v) = (y(¢), y(f)) and
let 4 > 0 denote its topological entropy. There is a natural one-to-one correspondence
between closed geodesics on M and closed orbits for ¢. Let I and I' denote respectively
the set of closed geodesics on M and the set of closed orbits for ¢p. For y € T we denote
by y the corresponding closed orbit for ¢. Let /() and /(7) denote the length of y and
the least period of . It is known that /(y) = I(p).

For computational convenience, we fix an isomorphism between H'(M, R) and
R?. This also gives an isomorphism between H(M, Z)/ torsion and Z°. For simplicity,
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we shall consider manifolds M whose first homology group is torsion free, i.e.,
H\(M,Z)= 7. Otherwise, we can write H;(M,Z) = 7" ® H, where H is the finite
torsion subgroup. Our results will then only differ by a multiplicative constant.

For any closed geodesic y on M, there are F; : SM — R,i=1,2, ..., b such that

[J/]=(/?Fl,/f/Fz,...,/iF;):/?F.

Thus we may rewrite (7, «) in the form
n(T,a):#{yeF I(y)<T, /F a}.
Y

We shall now concentrate on estimating (7, o). For convenience, we shall abuse
notation by writing y both for a closed geodesic on M and for the corresponding
closed orbit for the geodesic flow.

Let G denote the closed subgroup of R*! generated by the vectors (/(y), f F)
(y eT"). We have G = R x Z°. Let M, be the set of ¢-invariant probability measures
on SM. For u € R?, define function 8 : R” — R by

B(u) = sup {hm(qs) 4 <u, / de>} .
meMy

B(u) is an analytic function on R’ and has a positive definite Hessian at any point. It
is well-known B(0) = sup,,, M¢{hm} = h, the topological entropy of ¢ and VB(0) =
The function B(u) can be continued analytically in a complex neighbourhood of 0 in
C’.

In order to estimate 7 (7', ) we shall first consider the auxiliary function

m(T,e) = Y glly)—T),
[y]=c

where g : R — R is a function on R. First we assume that g has a compact support
and with C3-regularity. Let g is the Fourier transform of g, by the Fourier Inversion
Formula,

(T, o) = Z gl(y) — T)ea(l(y)—T)eaTe—al(y)

V]a

Z// g(—la+t)e it(l(y)— T) UT al(y) 2i(v,[y]) 727TIUO{ dvdt
Rb

yel /2

— / / Z(o +it, v)e” TH T g(—io + 1)e ) dy dt,
R”/Zh

where we have defined

Z(s,v) = Z(o + it,v) = Z eIy — Z e, [, F)

yelr yel

for (s,v) € C x R?/Z". 1t is well-known that when Res = o > B(0) = h, Z(s,v) is
absolutely convergent.

https://doi.org/10.1017/50017089504001764 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089504001764

286 DONGSHENG LIU

For the behaviour of Z(s, v) in Re s < A, we code the geodesic flow with suspended
flow. Then we can determine the domain of Z(s, v) by studying the norm of the
transfer operator. Using the Dolgopyat’s result that the spectrum of transfer operator
is contracted when Res > s — € and || — oo, we have the following proposition.

PROPOSITION 1. [1] There exist B> 0, €; > 0, €2 > 0, €3 > 0 and an open set Vy, a
neighbourhood of 0 in R? /7" such that

(1) Z(s, v) is analytic if 0 > h — €, |t| > B and in this domain we have |Z(s, v)| <
cltl;

(2) Z(s, v) + log(s — B(iv)) is analytic in {(s,v) 1 0 > h — ez, v € Vol

(3) Z(s, v) is analytic in {(s,v) v ¢ Vy,0 > h — e3}.

3. Analysis of counting function. In this section we will analyse the counting
function m,(7, ). In what follows, let g be of class C? with compact support. Let
o > h. Then

1 A 4
7 (T, @) = — / Z(o + it, v)e“ T g(—io 4 e > dt dv
g RxR?/zZb

1
= E "
1
+2TL’ Rb 70—V,

672711'(1),(:() dvf Z(O' + it, v)e(UJrit)Tg(_ia + l)) dl
R

e—27ri(v,oz) dv/ Z(O’ +it, v)e((r-Hf)Tg(—m’ + l)) dt.
R

We shall consider the two integrals separately. First we consider the integral over
R’/Z> — V. For v ¢ V}, we have the following estimate.

LEMMA 1. For v ¢ Vy and for all o > h, there exist € > 0 such that

= el e

/ Z(o + it, v)e“ T g(—io + 1) dt
R

Proof. Let o be fixed with o > h. Let € = min{ey, €2, €3}, where €1, €2, €3 are
constants in Proposition 1. By part (3) of Proposition 1, Z(s, v) is analytic in
{(s,v):v ¢ Vy, Res > h — €}. Using Cauchy’s theorem,

f Z(s, v)e'Tg(—is)ds = 0, (1)
A

where A ={Res=o, |[Ims| < RJU{Res=h—¢, |Ims| < R}U{h—e€ <Res <o,
[Im s| = R}.

Since g is C* on R and has compact support, integrating by parts and only
considering g which has compact support contained in (—oo, 0], we obtain for 4 — € <
Res < o,

sl

<c ’
[Tm 5|3

A 1 .
&(—is) = ‘—3 [ #meran
57 JR

where ¢ is a constant which is independent of g. Using Proposition 1,

(3)
‘/ Z(s, v)e'Ta(—is) ds| < cRe"Tch 3HL1 (c—Mh—-¢)—0
{h—e<Res<o,|Ims|=R} R

https://doi.org/10.1017/50017089504001764 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089504001764

CLOSED GEODESICS IN HOMOLOGY CLASSES 287

as R — oo. This means that

/ Z(s,v)e'Tg(—is)ds > 0 as R—oco.  (¥)
{h—e<Res<o,|Ims|=R}

Since
0T o 1870
/ |Z(a + it, v)e" DT g(—jo + Z)} dt <c+ 2/ e’ c|t|cT dt < o0,
R B
we have
R .
lim / Z(o + it, v)e" VT g(—jo + 1) dt < 0.
R—o0 _R
Similarly,
R .
lim Z(h — e + it, V)" T 5(—i(h — €) + 1) dt < 0.
R—0o0 _R
Letting R — oo in (1)and using (*), we have
f Z(o + it, v)e T g(—io + 1) dt
R
3
* (h—)T ||g( )”Ll 3) T(h—e)
<c+2 e c|t|-cht§c||g |.e ) O
B

Now we consider the integral over V. We shall prove the following lemma.

LEMMA 2. Let v € Vy, then for all M € N and for all o > h, we have

M i
. d/g .

. (oc+iNT 50 _ YY) B(iv)T

/RZ(G + it, v)e &(—io +1)dt — 2n Z(; T gy iB(iv))e
j:
< (|8 +lglhor + -+ yMglz)e ™
- dM-H
+ THT /C(a) log(s — B(iv))e’ dSMHg(—is) ds|,

where C(o) will be defined later.

Proof. When v € Vy, o is fixed with o > h. For 2B < R € RY, let
Co={Res=h—¢,-2B<Ims<2B}; C,={Ims=—-2B,h—ec <Res<o};
C={Res=o0,-2B<Ims<2B}; Ci={Ims=2B,h—e€ <Res<o};
C/={Res=h—€2B<Ims<R}; C, ={Res=h—¢,—R <Ims < —-2B};
C;:{Res=a,ZB§Ims§R}; C; ={Res=0,—R<Ims < -2B};
Chr={h—e<Res<o,Ims=R}; Cr=1{h—e<Res<o, Ims=—R}.

By part (1) of Proposition 1, Z(s, v) is analyticin Res > /& — ¢, |Ims| > B,

/ Z(s, v)e'Tg(—is)ds = 0, 2)
{Guciuciucy

/ Z(s, v)e'Tg(—is)ds = 0. 3)
{CUC; UCRUCS )
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By part (2) of Proposition 1, we have

/ (Z(s, v) + log(s — B(iv)))e'T g(—is)ds = 0 4)
—{GUCUGUC)

where the three contours are counterclockwise and —C; means that the orientation of
the path is reversed.
Letting R — oo in (2) and using (x), we have

/ Z(s, v)e'T g(—is)ds = / Z(s, v)e' T g(—is) ds.
{Re s=0,2B<Im s<oo} —C3U{Re s=h—e¢,2B<Im s<oo}
®)
Letting R — oo in (3), we have
/ Z(s, v)e' T g(—is) ds
{Re s=0,—0co<Im s<—2B}
= / Z(s, v)e'T g(—is) ds. (6)
—CU{Re s=h—e,—oco<Im s<—2B}
From (4), we have
/ Z(s, v)e' T g(—is)ds = / log(s — B(iv))e*T g(—is) ds
-G CIUGUCy
+ | (Z(s,v) + log(s — B(iv)))e’ &(—is) ds
Co
+ / Z(s, v)e' T g(—is) ds (7)
ClUCGs

Let C(o) = C; U G, U C3. Adding three identities (5), (6), (7) we obtain

’ f Z(o + it, V)" D g(—io + 1) dt + i /
R

C(o

/ Z(s, v)e'T g(—is) ds
{Re s=h—e,|Im s|>2B}

/ (Z(s, v) + log(s — B(iv))e* T g(—is) ds
Co

log(s — B(iv)g(—is)e'T ds
)

<

+

(3)
< 2eT(h—e)/°° il Hg,SHLI di + ceTh=9) < c||g(3) ”LleT(h—e)'
2B

Integrating by parts, we have

7g(—is.) T ds
) S — B(iv)

T(h—e)

i f log(s — B(iv)&(—is)e*T ds + L /
Co) T Jo

+ z log(s — ﬂ(iu))@(—is)e” ds
ds

<cliglipe
T Jcw)
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By using the Residue Formula,

/ D)7 4 dmig(— i)t
Clo) 8 — B(iv)

/ g(—lS) esT ds‘
Co

s — B(iv)
Bl gt—ih=€)  (heeysinr
/ 6(( —€)+it) dt
—2B
cliglipre

IA

h— e+ it — B(iv)
T(hfe)'

IA

So we have obtained

) 1 .
/{R Z(o + it, v)e" T g(—io + 1) dt — 27 ?fg(—iﬁ(iv))eﬁ(’”)r

dg(—is)
ds

< C(||g(3) ”L] + ||g||L1)€T(]17€) + %

/ log(s — B(iv))e’T ds‘ .
C(o)

We iterate the preceding operation M + 1 times, and note

d*g(—is)

— < cly'elp.

= ‘ /R Weg()e” dy

We have

M .
A 1 dig A
. (o+iT 50+ _ Al B(iv)T

/RZ(G +it, v)e &(—io + 1)dt — 2 EO T gy iB(iv))e

Jj=
<c([&®] 0+ lglho + -+ Mgl )e
- aM+1

s N

/C(g) log(s — B(iv))e dSM+1g(—zs) ds

+ . O

TM+1

Using the Dominated Convergence Theorem, we have

) dM+1
lim . e~ Fmiva) gy /C . log(s — B(iv))e’T dsM+1§(—is) ds

o—h

M+1

. d
— | it gy / log(s — B(iv))e’” g(—is) ds.
/VO cn ds*!

By Lemma 1 and Lemma 2, we can prove the following proposition.

PROPOSITION 2. Let g be class C* with compact support. For all M > 1, we have

M o
1 — (v, d/g . . .
JTg(T, a) — Z T /;/0 o2, )w(—lﬂ(lv))eﬁ(w)r dv
=0

< + (&) 0+ gho + -+ IyMgln)e™ 9. (8)
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4. Further calculation of counting function. By Proposition 2, in order to obtain

the estimate of 77,(7, a), we only need to estimate

d’g
_( lﬂ(lv))eTﬂ(w) —2mi(v,a) dv.
v, ds/

We first have the following lemma.

LEMMA 3. There exist polynomials j;-(k) (iv)inivy, ..., vy such that the total exponent
of each term has the same parity as k and such that

d’g
—( iB(iv))e P~ ritv.a) gy,
\/I\/O ds/

el T 1 (0)(v,v)—2 )

ﬁ v,V i a)
Sy e v dv
TP = TH2 /vsﬂp

Th

<c sup [y gl )
n<2N+2 TN+,7+1

for some small p.

REMARKS.
(1) Here | - || denotes the 2-norm, i.c., [[v] = (X0, v2)'/2,

(2) The proof of this lemma is same as that in [1]. We denote Zj;’ (—iB(iv)) by g;(iv),
then expand ,3(%) and g}(%) in the neighbourhood of 0 by

; 1
ﬂ(%) = B0+ VBO) - iv + L' O)v. iv) + TRoy.
1
=h-— 5,3”(0)(11, v) + TRony3

and
2N+1 —(1)( 0)

GV =Y L2

=0

() T~ 4 Yy (iv/V/T).

(3) By the first condition, we mean that fj(k) (iv) can be written in the form

Sy =Y an ) 02)" - (v,)"

In particular,
;) = gf‘-‘”(O) = d—jjg(—is) %
S0 v) = (0)(0)/3(3)(0) (i)’ +g(0) - (iv);
1) = “”(0)( (BY0) - (v)*)” + 369(0) - (iv)*)

+ g,”(O) ()B(0) - (iv)* + gf’(0> (iv)’.
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(4) We can see that ];.(0) (iv) are constants and fo(o)(iv) > 0, since

. d d’ o
1%i0) = 5819 L= 5 [ e dy 1o

- /R Ve0)e dy |yy= /R Vig0)e dy.

Taking M = N + b + 2 in (8), we have proved the following proposition.

PROPOSITION 3. For any N > 1, we have

Th N+b+2 § 2N+1
e 1 1 _lgmo _oxi T (k)
1(T.0) = =5y D 5 D T / e 2O it N A8 iv) d
e j=0 v k=0 T2 Jyoi=vTo ’

Th

<c sup ||y”g||LlTe + (g, + Mgl + -+ IV gl ) e,

b
n<4N+b+2 N+3+2

where fj(k)(iv) inivy, ..., vy are polynomials such that the total exponent of each term
has the same parity as k.

5. Coefficients of error terms of m,(7,«). In this section, we will give the
asymptotic formula for (T, o) with error terms. We also give the explicit expression
of coefficients of error terms.

By the Proposition 3, we need to estimate

2+
Z / e*% B"(0)(v,v) 672711'((1,1)/«/7) f»(k)(iv) dv.,
= T Jioi=vTo ’

where fj(k) (iv) are polynomials in ivy, .. ., ivy such that the total exponent of each term

in j;.(k) and k have the same parity. That is, we can write

S0 = 3 by o) ) - G,

where Iy + L, + - - - + I, and k have the same parity.
We first prove the following proposition.
PROPOSITION 4.

W+
Z _/ e*%ﬂ’/(o)(v,v)eﬁﬂi(mv/ﬁ)f(k)(iv) dv
k=0 Tk/2 lvl=<vTp !

=Y = [ O @ v+ 0 sup gl TV,
T R n<4N~+b+2

where

k j;-(l)(iv)(oz, 2miv)k!
(k=1

=0
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are polynomials in ivy, . .., ivy and we still have that the total exponent of each term in
s/(-k) (o, v) has the same parity as k.

Proof. We expand e=27i@v/~T) in a neighborhood of 0.

e—Zﬂi<a,v/\/7) - (o, 27T iv) n (o, 27n'v)2 _ (o, 2711’1))3
JT 2T 3173/2
2miv)2NH
4= w +ZN(iv/«/7),

QN + DTN/

Ilv ”2N+2

where | Zy(iv/v/T)| < 2. Let

];-(l)(iv)(ot, 2miv)k! .

k
s\, iv) = (~DF
=0

(k=1 ’
then
N+
Z - / e—% "(0)(v,v) e—zm(a,u/ﬁ> f(k)(iv) dv
= T o=y -
Wl
Y k . .
= Z W/ e 2f (O)(“'”)s](- )(oc, iv)ydv+ O sup Vgl T N+ )
k=0 loll<v/Tp n<4N-+b+2

For T is sufficiently large, for all m € N, we have

1 qn ’ 2
/ e 2P OV 1M gy < f e IV 1w vy - vy| do
Ioll>Tp Ioli><Tp
o0

7/_2 !
/ e Vividv; < ce T,
VTp

—-

=<

i=1

for some ¢’ > 0. So we have

2N+1 1
Z - ef%ﬂ”(o)(v,v)872ﬂi<a,v/\/7)f(k)(l-v)dv
k=0 T2 Jii=vTo v

2N+1 1
|
- % g [ eiay
k=0 ’

<c sup gl (TN 4. O
n<4N-+b+2

In the following lemma, we will see that the coefficients of T-% vanish when  is odd.

LEMMA 4. If k is odd, then

f e*%ﬁ”(o)(”’”)sj(-k)(a, iv)dv = 0.
R?
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Proof.

fj(l)(iv)(ot, 2miv)k-!
(k=D

k

0@, iv) = Y (—1!
=0

k—1

k b
= Y (=)@t (Z a,-u,-)
1=0

i=1

=i (@)1) (2)" - ivp)P,

where/y + h + -+ + [ is odd and ay, 1, ... ;,(«) are constants which depend on « and g.
Letv' = —v,ie, (v}, v}, ..., v;) = (=1, —v2,..., —Up); then

/ e OB (g vy dy
[Rh .
) /1 R Z azl.lz,...,l/;(ivl)ll (iv2)"2 - - - (ivp)"* dvy dvs - - - dvp
R?

= [ e O ya
R?

Thus
/ e_%ﬁ”(o)(”'”)sj(-k)(a, iv)dv = 0. O
Rh

By Lemma 4, for k odd the coefficient of 7-2 vanish. So we only need to calculate

coefficients when k is even. Let b}k)(oz) be the coefficient of T* in Proposition 4; if we
write ¢ = (a1, @3, ..., op) then

() = /R h e OO G ) gy

= / e_%ﬁ”(O)(v,v) ik:(—l)[ fj(l)(l'v)(ay 27-”'1))21(4 "
e 1=0 2k = 1)

2k

_ () I b Iy
= Z by, oay ey,
h+b+-+p=0

where 5!/ ., are constants. More precisely,
Ly

() _ (h+h+--+Db) —1B"(0)(v.v) )ittty
Lo dy = e (27i)
I/ Rb
X v{‘ véz ... véﬁ}_‘i(%_(l‘+12+"'+1”))(iv) dv.

Then we have proved the following Proposition.
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PROPOSITION 5.

2N+1 N (k)( )

’ - k
Z Tk/ / —1B"(0)(w, u) 2 ifee,v/NT) f( )(lv) dv — Z /
UH<\/_P k=0

<c sup [y'glp (TN 4 e7<7),
n<4N-+b+2

k ,
where b( () = le byt = bgl][)z ,boel‘ ozé2 l’ are polynomials in o, oy, ..., ap and

the degree of b( Y is 2k and b(]) .1, are constants whlch depend on g.

In order to obtain m,(7, ), we shall use Proposition 4 and Proposition 5. Let

n n 2(n—i)
n—i ) L L Iy
enle) = Zbg )(Ol) = Z Z b/112 lhall ] <
i=0 i=0 \/i+h++i=0
2n
b Iy

= Z Chib.. 1b(¥1 oy .. .0y,
L+h+-+1,=0

where ¢y, 4, are constants and

b2
GO im0,

JIdetpro)”

so co(a) is independent of «. On the other hand, for n > 1, ¢,(«) is polynomial

in «f,...,o, whose degree is 2n by Proposition 5. From the expression of bj(k)(a),
we have

cola) = b(()o) =fo(0)/ e 2B O gy
Rh

. \2n
N LB 0)w.0) £0) (o, 27T iv)
cn(a) Ahe 2 fo (lv)—(2n)! dv

(0)
(27Tl)2n (; )' / e % //(0)(1),1))(”’ a)2n dv

~ (—1)”cg||a||2” (¢ > 0 and c¢g is dependent on g),

where 4 ~ B means that limy oo 4/B = 1.
‘We have now obtained the following theorem.

THEOREM 1. Let g be of class C3 with compact support. Then for all N > 1, we
have

/N
(T, a) = e ZC”’g(“)Jro(T*(N*”) )
Tl &) = T Tn ’

n=0

where ¢, o(a),n =0, 1, ..., N are constants with ¢y , > 0 independent of o but dependent
on g and for n>1, c¢,q(a) = le+12+ ly=0 Chibs.. l,,Ol{ Oléz . a[l)” is a polynomial in
ai, aa, ..., o Whose degree is 2n with ¢y, ;, constants depending on g. Furthermore,

Cng(@) ~ (=1)cgller]|™, as [lerl| — oo.

https://doi.org/10.1017/S0017089504001764 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089504001764

CLOSED GEODESICS IN HOMOLOGY CLASSES 295

REMARKS.
(1) The explicit formulae for ¢, and ¢; ¢(a) are following.

O _ (2 )b/

=b R
Ce= T T aet pr0)

clg(a) = b(()l) + b(lo)

p 1
= // e 28O0 <§f(§0)(iv)(ot, 2miv)? —fél)(iv)(ot, 2miv) +f0(2)(iv) +f1(0)(iv))dv.
R)

&(—ih) > 0;

(2) The term O(T~*Y) can be bounded by Csup,_,y, ., Vgl T~V +
clg® e i

6. The proof of main results. In this section, we use approximation to estimate
(T, ).
For NeN, let g = X e

compact supports such thdt

() gr <g<gh

(2) gl < 2and g7l < 2;

(3) for0 <n <4N+b+2, [y"g7ll < clly"gln:

(4) sup,_anpi2 V"7 — @l < e PT sup, 4y pin 1Vgll for some B > 0;
5) 18571 < ceT g 1.

These can be done by a convolution argument. By (1), 7, (7, &) < 7o(T, ) <
7g: (T, ). So

For all T we take g7 and g7 of class C3 with

‘ng(T, a) — (T, a)} <7 (T, @) = 71y (T, ).
By the Remark (2) of Section 5 the term O(T-"*1) is bounded by

C sup [Y'elp TN +cg?)pe .

n<AN+b42
In this case,
0
n n
C sup |H'gllpr= sup / . W"dy < CT.
n<4N+b+2 n<A4N+b+2 J — TIN5

By Proposition 3, we have that

N+b+2

7o (T, o) = Z TJ+1/ i gT( iB(iv))e" ™7 dv

cl|yN o gT”L1 T} +(3) + N+b 2 + T(h—
< v ellgr | g+ I gl
e T(h—e) T(h—e+3p)

(3 —€
= COFNTH +cre + e .
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By (4),
N+b+2 /I s
1 —2mi(v,a djg d]g Y v _
j=0 Vo
Hence,

N+b+2

7T, ) = Z T / 0 T8 g uy)es” gy

N+b+2

< +(T a) — Z T / —27i(v,a) ( lﬁ(lv))eﬁ(w)T dv

N+b+2

&
<7r+(T a) — Z TJ+1f —2mitv.a) dgT( lﬂ(zv))eﬂ(’”)Tdv

dlgr  dg\ . s
—2mi(v,a) T _ o B(iv)T
/ " (dsf dy | (BT dv

N+b+2
+ Z Tj+l

eTh

< ¢ + CleT(h—e) + CZeT(/1—e+3/3) + CgeT(h_ﬂ).

TN+b+1
Similarly for g7, we have

N+b+2

&g
(T o) = Z T f ) S8 i) 7 dy

Th
e T(h—¢) T(h—e+3p) T(h—B)
SCOW—FC@ + e + c3e .

Choosing 8 < €/3, we have

N+b+2 s d/ , eTh
T = Y g o [ e S e ) < e

We do the same as in Section 4 for [}, e>7/ ij (—iB(iv))eP™T dy and obtained

N+b+2

Z T / —2mi(v,a) (—lﬂ(lv))eﬂ(’")T dv

( +Zc”(a) (%»

> g(_lﬂ(lv)) = g(v) + O(emeh)’

Since for g = x

=T TR ,0]

1
ek 7(e) = cp(e) + O(eT=TH7 0,
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Hence
oTh

7T @) = Th/2+1 ( co + Z Ck(“) (T1N>> :

Now
7 (T = T, @) = (7T,

and

7(T — T, ) + nx[irmm(ﬂ a) = (T, a).
However, e """ _ 0 faster than 1 / T" for any n. So we have the following theorem.

THEOREM 2. Let M be a compact Riemannian manifold with first Betti number b > 0
and with negative section curvature. Furthermore suppose that either dim M = 2 or the

sectional curvatures lie between —4 and —1. For a = (a1, a2, . .., ) € H{(M, Z) = 7°
we have
cn(@) (N+1)
(T, ) = Tb/2+1 ( °+Z T o(T~ ) ), (10)
where ¢ is a constant which is independent of o, and
2n
Lol Iy
Cn(O[) = Z 6’1112___1,70[110(22 ‘e Olbl
hh++y=0
is a polynomial in oy, . . ., oy whose degree is 2n . Furthermore, c,(a) ~ (—=1)'c|la||*", as

]| = oo.

REMARK. We also can directly obtain 75(T, o) by taking g = x[—s,s) then using
approximation argument.
Now we consider the special case. If we take N = 1, then (10) reduces

eTh c (Ot) B
a(T,0) = — s (co+ o+ O 2)>-

By the remark following Theorem 1, we have that ¢y > 0, and ¢(@) = — Zf‘),_i:l ciaioy +
S0 | bia; + ¢ with

cj = c/ e_%ﬂ”(o)(”’”)vivj dv (¢c>0).
Rh
Let A = (¢j)pxp, B = (b;)"_; We have

(T, a) =

e”’( —(a, Aa) 4 (B, ) + ¢
co+

THE T + O(T—2)> . (11)
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LEMMA 5. 4 is positive definite.

Proof. For any x = (x1, X2, - -+, Xp),

b b
1 ”
(x, Ax) = E CjXiXj = ¢ E / e 2P (0)”>x,-v,~xjvj dv (c>0)
R?

ij=1 ij=1
b b

_ —1(v,8"(0)v) _ / —1(v,B"(0)) 2
=c e 2 E X;v;x;v:)dv = ¢ e 2 E x;v;)" dv > 0.
/[R” ( iViXj j) , ( i 1) =

R?

ij=1 i=1

For a fixed x £ 0, {v: Zb x;v; = 0} is a hyperplane in R?, so that the integrand is

i=1

positive almost everywhere. This means that (x, Ax) > 0 for x # 0, hence 4 is positive

definite. O
Now we can define |||x||| = (x, Ax)"/? and ||| - ||| is a norm in H,(M, R) (or R?).
So we have

(T, a)=

e’ ,+—||Ia|||2+(B,a)+c
Tb/2+1 0 T

+ O(T‘Z)) ) (12)

We note 7 (7, o) = n (T, —«) for any T. In fact for any 7, there exists a natural one-
to-one correspondence in I by y <> —y. The correspondence preserves the length but
reverses the direction, so 7 (7, ) = 7 (7, —«) which implies B = 0 in (12). So we have
the following result.

THEOREM 3.

T o) — e’ 1 — [l O(T-2 e
7T( ,Ol)—m C0+#+ ( ) as — 00,

where ¢y, ¢; are constants and ¢y > 0.
It is also easy to see that the following holds.

COROLLARY 1. Foralla, 8 € H{(M, Z), if ||la||| > ||Bl|| then, for sufficiently large
T, we have n(T,a) < (T, B). In particular, if o # 0 then, for sufficiently large T,
(T, o) < (T, 0).
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