
ANZIAM J. 58(2017), 342–349
doi:10.1017/S1446181117000116

NETWORK DESIGN FOR MINIMUM SPANNING TREES
UNDER HAMMING DISTANCE

QIN WANG1 and LONGSHU WU) 1

(Received 17 July, 2016; accepted 16 October, 2016; first published online 26 April 2017)

Abstract

We consider a class of network-design problems with minimum sum of modification and
network costs for minimum spanning trees under Hamming distance. By constructing
three auxiliary networks, we present a strongly polynomial-time algorithm for this
problem. The method can be applied to solve many network-design problems. And,
we show that a variation model of this problem is NP-hard, even when the underlying
network is a tree, by transforming the 0–1 knapsack problem to this model.

2010 Mathematics subject classification: 90C27.

Keywords and phrases: network design, spanning tree, Hamming distance, polynomial
algorithm, NP-hard.

1. Introduction

Network design plays an important role in practice and has been intensively
investigated in the literature. It has many potential applications, such as telecom-
munication, performance evaluation, geophysical exploration and so on [4, 5, 7]. Since
Burton and Toint [2] published their paper on an instance of the inverse shortest paths
problem [1, 2], there has been a number of papers concerning this kind of optimization
problem. In this paper, we consider a class of network-design problems with minimum
sum of modification cost and network cost. This kind of problem has some practical
background. For example, in a transportation or communication network, the weight
of a link may represent the cost of sending one unit of commodity from one end to the
other. So, the weight of a path is the unit traveling cost from the source to the terminal
and often has a lower bound. In order to improve the transmission efficiency of the
network, one may want to reduce traveling costs between some pairs of sources and
terminals by decreasing weights of links. It is natural that reducing traveling cost in a
link needs some cost. We hope that the sum of the modification cost and the traveling
cost of the shortest paths under the new weights is as small as possible. This problem

1College of Sciences, China Jiliang University, Hangzhou, China; e-mail: wls@cjlu.edu.cn.
c© Australian Mathematical Society 2017, Serial-fee code 1446-1811/2017 $16.00

342

https://doi.org/10.1017/S1446181117000116 Published online by Cambridge University Press

mailto:wls@cjlu.edu.cn
https://doi.org/10.1017/S1446181117000116

[2] Network design for minimum spanning trees 343

can be solved in polynomial time by using a similar method as Algorithm 1 proposed
in this paper.

For a weighted graph G = (V, E,w), its vertex set and edge set are denoted by
V = V(G) and E = E(G), respectively. We use w = {w(e) ∈ R | e ∈ E(G)} to denote the
real weight set defined on E(G). We call graph G a tree if it is connected and acyclic.
The spanning subgraph of G is a subgraph which contains all the vertices of G. If the
spanning subgraph of G is a tree, we call it a spanning tree of G. For a subgraph T of
G, the weight of T , denoted by w(T), is defined by w(T) =

∑
e∈E(T) w(e). We say that

T is a minimum spanning tree of G if w(T) is minimum among all the spanning trees
of G. Throughout this paper, for a set F, we use |F| to represent its cardinality. Let T
be the family of all spanning trees of graph G and let c = {c(e) ∈ R+ | e ∈ E(G)} be the
given cost set. For each e ∈ E, c(e) stands for the fixed cost of modifying w(e). Let
b ∈ RE

+ be a bounding vector of maximum allowable modifications. Let x ∈ RE be such
that w(e) − b(e) ≤ x(e) ≤ w(e) + b(e) for all e ∈ E. We call x an adjusted weight vector.
The Hamming distance is defined as

H(w(e), x(e)) =

0 if w(e) = x(e),
1 if w(e) , x(e)

for e ∈ E. The problem considered in this paper can be described as follows.

Problem 1.1. Find an adjusted weight vector x such that:

(a) 0 ≤ |w(e) − x(e)| ≤ b(e) for each e ∈ E; and
(b) the total cost C(x) =

∑
e∈E c(e)H(w(e), x(e)) + minT∈T

∑
e∈T x(e) is minimum.

We show that Problem 1.1 is equivalent to that of weight reduction, that is, there
is no weight increase when modifying the edge weights. As a result, we develop
a strongly polynomial-time algorithm for solving this problem. We also consider
the following optimization problem and give an overall budget B > 0 on the total
modification cost.

Problem 1.2. Find an adjusted weight vector x such that:

(a) 0 ≤ |w(e) − x(e)| ≤ b(e) for each e ∈ E;
(b)
∑

e∈E(c(e)H(w(e), x(e))) ≤ B; and
(c) the weight of the minimum spanning tree minT∈T

∑
e∈T x(e) is minimum.

This paper is organized as follows. In Section 2, we present the strongly
polynomial-time algorithm for Problem 1.1. In Section 3, we show that Problem 1.2
is NP-hard, even when the underlying network is a tree, by transforming the
0–1 knapsack problem [6] into this model. Some concluding remarks are given in
Section 4.

https://doi.org/10.1017/S1446181117000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000116

344 Q. Wang and L. Wu [3]

2. Algorithm for network design under Hamming distance

First, we show that Problem 1.1 is equivalent to that of weight reduction, that is,
there is no weight increase when modifying the edge weights.

Theorem 2.1. Suppose that w̄ is an optimal solution of Problem 1.1; then w̄(e) ≤ w(e)
for each e ∈ E.

Proof. Suppose, to the contrary, that there is an edge g ∈ E such that w̄(g) > w(g).
Then

w′(e) =

w(e) if e = g,
w̄(e) otherwise

is a feasible solution of Problem 1.1. Note that∑
e∈E

c(e)H(w(e),w′(e)) =
∑
e∈E

c(e)H(w(e), w̄(e)) − c(g)

and, since c(g) > 0,∑
e∈E

c(e)H(w(e),w′(e)) <
∑
e∈E

c(e)H(w(e), w̄(e)).

Moreover, minT∈T
∑

e∈T w′(e) ≤minT∈T
∑

e∈T w̄(e). So, f (w′) < f (w̄), contradicting the
assumption that w̄ is an optimal solution of Problem 1.1. Hence, we have w̄(e) ≤ w(e)
for each e ∈ E. This completes the proof. �

Based on Theorem 2.1, we need only deal with the weight-reduction case of
Problem 1.1; we call it Problem 2.2, which is formally described as follows.

Problem 2.2. Find an adjusted weight vector x such that:

(a) 0 ≤ w(e) − x(e) ≤ b(e) for each e ∈ E; and
(b) the total cost C(x) =

∑
e∈E c(e)H(w(e), x(e)) + minT∈T

∑
e∈T x(e) is minimum.

For convenience, we call a weight vector x satisfying the condition (a) in
Problem 2.2 a feasible weight solution.

Theorem 2.3. Suppose that w̄ is an optimal solution of Problem 2.2 and T̄ is a
minimum spanning tree under weight vector w̄. Then

w′(e) =

w̄(e) for e ∈ T̄ ,
w(e) otherwise

is also an optimal solution of Problem 2.2.

Proof. Note that w′ satisfies condition (a) in Problem 2.2. Since

w′(e) =

w̄(e) for e ∈ T̄ ,
w(e) ≥ w̄(e) for e ∈ E \ T̄ ,

it follows that T̄ is also a minimum spanning tree under weight vector w′.

https://doi.org/10.1017/S1446181117000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000116

[4] Network design for minimum spanning trees 345

Now we show that the total cost under w′ is not greater than the total cost under w̄.
We have

C(w′) =
∑
e∈E

c(e)H(w(e),w′(e)) + min
T∈T

∑
e∈T

w′(e)

=
∑
e∈E

c(e)H(w(e),w′(e)) + min
T∈T

∑
e∈T

w̄(e)

≤
∑
e∈E

c(e)H(w(e), w̄(e)) + min
T∈T

∑
e∈T

w̄(e)

= C(w̄).

The proof is now complete. �

We define

w∗(e) =

w(e) − b(e) for c(e) < b(e),
w(e) for c(e) ≥ b(e)

for each e ∈ E and construct an auxiliary network as follows.

Auxiliary network 1. Let G1 = (V, E,w1), where V and E are the vertex set and edge
set in G, respectively, and w1(e) = c(e)H(w(e),w∗(e)) + w∗(e) for each e ∈ E.

Under weight vector w1, we denote the minimum spanning tree by T 1 and construct
another auxiliary network as follows.

Auxiliary network 2. Let G2 = (V, E,w2), where V and E are the vertex set and edge
set in G, respectively, and

w2(e) =

w∗(e) for e ∈ T 1,

w(e) otherwise.

Theorem 2.4. The weight solution w2 is a feasible weight solution of Problem 2.2.

Proof. By the definition of w2 and w∗, it is easy to see that 0 ≤ w(e) − w2(e) ≤ b(e) for
each e ∈ E. So, w2 satisfies condition (a) and, therefore, is a feasible weight solution
of Problem 2.2. �

Next we show that w2 is also an optimal solution of Problem 2.2. First, we have the
following theorem.

Theorem 2.5. Every feasible weight solution x satisfies that the total cost

C(x) ≥ C =
∑
e∈E

c(e)H(w(e),w2(e)) +
∑
e∈T 1

w2(e).

Proof. Suppose that w̄ is any feasible weight solution of Problem 2.2 and T 2 ∈ T is
a minimum spanning tree under w̄. By Theorem 2.3, without loss of generality, we
assume that

w′(e) =

w̄(e) for e ∈ T 2,

w(e) otherwise.

https://doi.org/10.1017/S1446181117000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000116

346 Q. Wang and L. Wu [5]

Denote C(w′) =
∑

e∈E c(e)H(w(e),w′(e)) +
∑

e∈T 2 w′(e). From the definition of F1,

C =
∑
e∈E

c(e)H(w(e),w2(e)) +
∑
e∈T 1

w2(e)

=
∑
e∈T 1

c(e)H(w(e),w∗(e)) +
∑
e∈T 1

w∗(e)

≤
∑
e∈T 2

c(e)H(w(e),w∗(e)) +
∑
e∈T 2

w∗(e)

≤
∑
e∈T 2

c(e)H(w(e),w′(e)) +
∑
e∈T 2

w′(e)

= C(w′).

This completes the proof. �

Theorem 2.6. T 1 is a minimum spanning tree of Problem 2.2 under weight vector w2.

Proof. We prove this by contradiction. Suppose that T 1 is not the minimum spanning
tree and the the minimum spanning tree is T̄ ∈ T such that

∑
e∈T 1 w2(e) >

∑
e∈T̄ w2(e).

We construct the third auxiliary network as follows.

Auxiliary network 3. This network is constructed as G3 = (V, E,w3), where V and E
are the vertex set and edge set in G, respectively, and

w3(e) =

w2(e) for e ∈ T̄ ,
w(e) otherwise.

But now the total cost of G3 is

C(w3) =
∑

e∈T 1∩T̄

c(e)H(w(e),w2(e)) +
∑
e∈T̄

w2(e)

<
∑
e∈T 1

c(e)H(w(e),w2(e)) +
∑
e∈T 1

w2(e) = C,

which is a contradiction to Theorem 2.5. The proof is now complete. �

Now we outline some polynomial solution procedures for solving Problem 2.2 in
the following algorithm.

Theorem 2.7. Problem 2.2 is polynomially solvable and Algorithm 1 correctly solves
this problem in O(|E| log |E|) time.

Proof. Combining Theorem 2.6 with Theorem 2.5, we can see that the weight vector
w2 is an optimal solution of Problem 2.2. The running time used in step 1 for
computing the new weights w∗(e), e ∈ E, is O(|E|). Solving the minimum spanning
tree problem in step 2 takes O(|E| log |E|) time. The running time used in step 3 for
computing the adjusted weights w2(e), e ∈ E, is also O(|E|). So, the time complexity
of Algorithm 1 is given by O(|E| log |E|). �

https://doi.org/10.1017/S1446181117000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000116

[6] Network design for minimum spanning trees 347

Algorithm 1:
Step 1. For each e ∈ E, define the revised weight vector w∗ by

w∗(e) =

{
w(e) − b(e) if c(e) < b(e),
w(e) if c(e) ≥ b(e).

Step 2. Construct Auxiliary network 1.

Step 3. Find the minimum spanning tree under weight vector w1 and denote the
tree by T 1.

Step 4. Construct Auxiliary network 2. The weight vector w2 is the optimal
solution and the optimal value is

C(w2) =
∑
e∈E

c(e)H(w(e),w2(e)) +
∑
e∈T 1

w2(e).

3. NP-hardness for tree networks

In this section we will show that Problem 1.2 is nondeterministic polynomial-time
(NP)-hard, even when the underlying network is a tree. We will use the NP-hard 0–1
knapsack problem [3, 6] for the reduction.

The knapsack problem is a problem in combinatorial optimization. Given a set of
n items, each with a weight a j > 0 and a value p j > 0, j = 1, 2, . . . , n, the problem is
to determine the number of each item to be included in a collection, so that the total
weight is less than or equal to a given limit L > 0 and the total value is as large as
possible. The integer programming of a 0–1 knapsack problem can be described as
follows:

maximize
n∑

j=1

p jy j,

subject to
n∑

j=1

a jy j ≤ L,

y j = 0, 1 and j = 1, 2, . . . , n.

Theorem 3.1. Problem 1.2 is NP-hard even if the underlying network G is a tree.

Proof. Suppose that the graph G is a tree; we call it T . Then T is the minimum
spanning tree of Problem 1.2. And, it is obvious that there will be no weight increase
when modifying the edge weights. So, in this case we need only deal with the weight-
reduction case of Problem 1.2; we call it Problem 3.2, which can be described formally
as follows.

https://doi.org/10.1017/S1446181117000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000116

348 Q. Wang and L. Wu [7]

Problem 3.2. Find an adjusted weight vector x such that:

(a) 0 ≤ w(e) − x(e) ≤ b(e) for each e ∈ E;
(b)
∑

e∈E c(e)H(w(e), x(e)) ≤ B; and
(c)
∑

e∈T x(e) is minimum.

Assume that |E(T)| = n. By assigning an index j, j = 1, 2, . . . , n, to each edge of T ,
we write w(e), x(e), b(e) and c(e) for w j, x j, b j and c j, respectively, and we transform
Problem 3.2 to Problem 3.3 as follows.

Problem 3.3. Find an adjusted weight vector x such that:

(a) 0 ≤ w j − x j ≤ b j for j = 1, 2, . . . , n;
(b)
∑n

j=1 c jH(w j, x j) ≤ B; and
(c)
∑n

j=1 x j is minimum.

Since the given limit is under Hamming distance, we observe that if w j is reduced,
then x j = w j − b j; otherwise, w j remains unchanged. So, let b j = p j, c j = a j for
j = 1, 2, . . . , n and let B = L. Furthermore, let

y j = H(w j, x j) =

0 if w j = x j,

1 if w j , x j

for j = 1, 2, . . . , n. Then Problem 3.3 can be described as

minimize w(T) −
n∑

j=1

p jy j,

subject to
n∑

j=1

a jy j ≤ L,

y j = 0, 1 and j = 1, 2, . . . , n,

which is equivalent to solving the 0–1 knapsack problem defined above. Hence, we
have proved that Problem 1.2 is NP-hard even if the underlying network G is a tree.
The result follows. �

4. Concluding remarks

In this paper, we considered a class of network-design problems with minimum
sum of modification and network costs. We presented a strongly polynomial-time
algorithm for Problem 1.1, and proved that Problem 1.2 is NP-hard even when the
underlying network is a tree by transforming the 0–1 knapsack problem to this model.
Also, we noted that if c j = 1 for each j = 1, 2, . . . , n, Problem 3.3 can be solved in
polynomial time. Due to the practical potential of the network-improvement problems,
it is also meaningful to consider whether other relevant models under different norms
are polynomially solvable.

https://doi.org/10.1017/S1446181117000116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000116

[8] Network design for minimum spanning trees 349

Acknowledgement

This research was supported by the National Natural Science Foundation of China
under Grant No. 11171316.

References
[1] D. Burton, W. R. Pulleyblank and Ph. L. Toint, “The inverse shortest paths problem with upper

bounds on shortest paths costs”, in: Network optimization, Volume 450 of Lecture Notes in
Economics and Mathematical Systems (Springer, Berlin–Heidelberg, 1997) 156–171.

[2] D. Burton and Ph. L. Toint, “On an instance of the inverse shortest paths problem”, Math. Program.
53 (1992) 45–61; doi:10.1007/BF01585693.

[3] R. Diestel, Graph theory, 3rd edn (Springer, Heidelberg, 2005).
[4] S. P. Fekete, W. Hochstattler, St. Kromberg and Ch. Moll, “The complexity of an inverse

shortest paths problem”, in: Contemporary trends in discrete mathematics, Volume 49 (American
Mathematical Society, Providence, RI, 1999) 113–127.

[5] C. Heuberger, “Inverse combinatorial optimization: a survey on problems, methods, and results”,
J. Comb. Optim. 8 (2004) 329–361; doi:10.1023/B:JOCO.0000038914.26975.9b.

[6] B. Korte and J. Vygen, Combinatorial optimization, theory and algorithms, 4th edn (Springer,
Heidelberg, 2007).

[7] Q. Wang, J. J. Yuan and J. Z. Zhang, “An inverse model for the most uniform problem”, Oper. Res.
Lett. 36 (2008) 26–30; doi:10.1016/j.or1.2007.03.006.

https://doi.org/10.1017/S1446181117000116 Published online by Cambridge University Press

https://doi.org/10.1007/BF01585693
https://doi.org/10.1023/B:JOCO.0000038914.26975.9b
https://doi.org/10.1016/j.or1.2007.03.006
https://doi.org/10.1017/S1446181117000116

	Introduction
	Algorithm for network design under Hamming distance
	NP-hardness for tree networks
	Concluding remarks
	References

