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Cyclotomic Schur Algebras
and Blocks of Cyclic Defect

Steffen König

Abstract. An explicit classification is given of blocks of cyclic defect of cyclotomic Schur algebras and of cy-
clotomic Hecke algebras, over discrete valuation rings.

1 Introduction

A fundamental result of representation theory of finite groups is the classification of blocks
of cyclic defect. The aim of this note is to use this classification as a tool for classifying
blocks of cyclic defect of cyclotomic Hecke algebras and of the associated Schur algebras,
over discrete valuation rings. This reproves and generalizes results of Xi and of Erdmann
for classical Schur algebras over fields.

We define two classes of R-orders which will be the outcome of the classification. Here R
is a discrete valuation ring with maximal ideal π, field of fractions K and residue field k =
R/π. The notation R−R (two tied copies of R) means the set {(a, b) ∈ R×R : a− b ∈ π}.

Fix a natural number n ∈ N. The R-order Λn is the following subset of n − 1 copies of
2 × 2-matrices over K and one copy of 1 × 1-matrices over K (with ties between the first
and the second copy, the second and the third copy and so on):
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The R-order Γn is the following subset of n− 2 copies of 2× 2-matrices over K and two
copies of 1×1-matrices over K (with ties between the first and the second copy, the second
and the third copy and so on):
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For finite groups and also for Hecke algebras, there is a well-defined notion of blocks
of cyclic defect. By Schur-Weyl duality, the blocks of a Hecke algebra and of the associ-
ated Schur algebra correspond to each other (where on both sides, ‘full rank’ algebras are
considered). Thus it makes sense to talk about blocks of cyclic defect of cyclotomic Schur
algebras as well (see Section 2 for definitions and references).
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Theorem 1.1 Fix R as above.

(a) Let Λ be an R-order which is a block of cyclic defect of a cyclotomic Schur algebra. Then Λ
is Morita equivalent to Λn for some n.

(b) Let Γ be an R-order which is a block of cyclic defect of a cyclotomic Hecke algebra. Then Γ
is Morita equivalent to Γn for some n.

The proof of the theorem will be based on Proposition 3.1, which gives the same classi-
fication in an abstract setup containing the situation of the theorem.

We note that the integer n can be read off from the group theoretic data (see [1], Sec-
tion 17).

It is an important feature of cyclotomic Hecke and Schur algebras that they generalize
both type A and type B situations. In the case of cyclic defect, the theorem however tells us
that type B does not contribute any new examples.

Corollary 1.2 The order Λn has infinite global dimension. The order Γn has global dimen-
sion 2n− 1.

For each n, the order Γn contains an idempotent e such that eΓne is isomorphic to Λn.
Moreover, the left Γn-lattice Γne is a full tilting module of the quasi-hereditary order Γn, and
the Γn-Λn-bimodule Γne induces a Schur-Weyl duality

Λn � EndΓn (Γne),

Γn � EndΛn (Γne)

Corollary 1.3 Let Λ and Γ be a cyclotomic Hecke algebra and a cyclotomic Schur algebra,
respectively.

(a) For each block of k⊗R Λ there exists a natural number n such that this block is Morita
equivalent to an algebra An which is the quotient of the path algebra of

•
α1

�
β1

•
α2

�
β2

• · · · •
αn

�
βn

•

modulo the ideal generated by the following relations: for each i with 1 ≤ i ≤ n−1: αi ·αi+1 =
0, βi+1 · βi = 0, βi · αi = αi+1 · βi+1.

(b) For each block of k ⊗R Γ there is a natural number m such that the block is Morita
equivalent to the following algebra Bm which is the quotient of the path algebra of

•
α1

�
β1

•
α2

�
β2

• · · · •
αm

�
βm

modulo the ideal generated by the following relations: β1 ·α1 = 0 and for each i with 1 ≤ i ≤
m− 1: αi · αi+1 = 0, βi+1 · βi = 0, βi · αi = αi+1 · βi+1.

The algebra An has infinite global dimension, whereas the global dimension of Bm is
2m− 2. Again there is a Schur-Weyl duality relating the two algebras (for n = m).

This corollary contains known results: The main result of Xi’s paper [15] states the
result of part (a) for blocks of the (type A) Schur algebras Sp(p, p). Since p divides the
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order of the symmetric group Σp just once, in this case every block has cyclic defect; thus
the corollary applies to this case. Xi’s proof (which is valid in any situation where p divides
the group order just once) is based on quasi-hereditary structures and computations with
Loewy lengths and composition series. More generally, Erdmann ([9], Proposition 4.1)
observed that (a) is true for any block of cyclic defect of a type A Schur algebra, and similarly
(b) for blocks of cyclic defect of symmetric groups. Her proof uses character theory.

2 Definitions and Notation

As before we fix a discrete valuation ring R with maximal ideal π, field of fractions K
and residue field k. By an R-order we always mean an R-algebra Λ contained in the split
semisimple K-algebra K ⊗R Λ such that K is already a splitting field.

Let us first briefly review some of the theory of blocks of cyclic defect. For more infor-
mation, in particular for the definition of a defect group we refer to Alperin’s book [1]. Let
G be a finite group and k a field. Then the group algebra kG is a direct sum of two-sided
ideals, called blocks. Assigned to each block is a p-subgroup (where p is the characteristic
of k) which is called the defect group (and which is unique up to conjugation); the p-Sylow
subgroup is the defect group of the block which contains the trivial module. If the block
has cyclic defect (that is, the defect group is cyclic), then—by results of Dade, Janusz and
Kupisch—it is Morita equivalent to a Brauer tree algebra whose structure is quite explicitly
known. We will give two examples in the next section. If k is replaced by the discrete valu-
ation ring R, then a block of cyclic defect is Morita equivalent to a Green order associated
with the same Brauer tree (see Roggenkamp’s paper [14]). The orders Λn in the theorem
are Green orders having a line as a Brauer tree.

The proof of the theorem will be based on the two structures of cellular algebras and of
quasi-hereditary algebras. Cellular algebras have been defined by Graham and Lehrer [10].
We use an equivalent definition given in [11].

Definition 2.1 ([11]) Let A be an R-algebra where R is a commutative Noetherian integral
domain. Assume there is an antiautomorphism i on A with i2 = id. A two-sided ideal J
in A is called a cell ideal if and only if i( J) = J and there exists a left ideal∆ ⊂ J such that
∆ is finitely generated and free over R and that there is an isomorphism of A-bimodules
α : J � ∆ ⊗R i(∆) (where i(∆) ⊂ J is the i-image of ∆) making the following diagram
commutative:

J
α

−−−−→ ∆⊗R i(∆)�i

�x⊗y �→i(y)⊗i(x)

J
α

−−−−→ ∆⊗R i(∆)

The algebra A (with the involution i) is called cellular if and only if there is an R-module
decomposition A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′n (for some n) with i( J ′j ) = J ′j for each j and such

that setting J j =
⊕ j

l=1 J ′l gives a chain of two-sided ideals of A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂
Jn = A (each of them fixed by i) and for each j ( j = 1, . . . , n) the quotient J ′j = J j/ J j−1 is
a cell ideal (with respect to the involution induced by i on the quotient) of A/ J j−1.

IfΛ is an R-order and there is a cell chain such that after tensoring both with K and with
k this chain becomes a cell chain of a cellular algebra, K ⊗R Λ and k⊗R Λ respectively, then
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A is called integral cellular.

Quasi-hereditary algebras over fields have been defined by Cline, Parshall and Scott [5].
In [6], the same authors extended their definition to an integral setup suitable for mod-
ular representation theory. We are going to use special cases of these definitions only. In
particular, we will define quasi-hereditary algebras only inside the class of cellular algebras.

Definition 2.2 Let A be a finite dimensional algebra over a field. Let J be a cell ideal in
A (with respect to some anti-automorphism i as above). Then J is called a heredity ideal if
and only if there is a primitive idempotent e in A generating J as a two-sided ideal and such
that the left A-module∆ is isomorphic to the projective module Ae.

If A is cellular with all sections in the defining chain being heredity ideals, then A is
called quasi-hereditary.

Let R be a discrete valuation ring as above and let Λ be an R-order. Then Λ is called a
quasi-hereditary order if and only if there is a finite chain 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = Λ
of two-sided ideals such that tensoring with both K and k makes this chain into the defining
chain of a quasi-hereditary algebra.

Our objects of study are the following:

Definition 2.3 (Ariki and Koike [3]) Let S be the ring Z[q, q−1, u1, . . . , ur] for some nat-
ural number r. Then the Hecke algebra Hn,r (called a cyclotomic (or Ariki-Koike) Hecke
algebra) is defined over S by the following generators and relations:

Generators: t = a1, a2, . . . , an

Relations: (t − u1)(t − u2) · · · (t − ur) = 0
a2

i = (q− 1)ai + q (i = 2, . . . , n)
ta2ta2 = a2ta2t
aia j = a jai(|i − j| ≥ 2)
aiai+1ai = ai+1aiai+1(i = 2, 3, . . . , n− 1)

Specializing r = 1 and u1 = 1 respectively r = 2 and u1 = −1 one gets back the classical
Hecke algebras of types A and B, respectively.

We note that a more general class of cyclotomic Hecke algebras appears in [4].
This Hecke algebra can be seen as deformation of the group algebra of the wreath prod-

uct (Z/rZ) � Σn. Ariki and Koike show in [3] that Hn,r is a free S-module of rank n! rn, and
they classify the simple representations of the semisimple algebra frac (S) ⊗S Hn,r . An im-
portant application of Ariki-Koike Hecke algebras is Ariki’s proof of (a generalization of)
the LLT-conjecture which gives an explicit way of computing characters of Hecke algebras
(see [2]).

In [8] Schur algebras for these Hecke algebras have been constructed; these generalize
the q-Schur algebras defined by Dipper and James [7]. The construction involves a Schur-
Weyl duality between these Schur algebras and the above Hecke algebras.

Definition 2.4 (Dipper, James and Mathas [8]) Let S be the ring Z[q, q−1, u1, . . . , ur] for
some natural number r. For each multipartition λ, let Mλ := mλHn,r be a Young module
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over the cyclotomic Hecke algebra Hn,r. Then the cyclotomic Schur algebra Sn,r is defined
to be the endomorphism ring

Sn,r := Endhn,r

(⊕
λ

Mλ
)

where λ runs through all multipartitions.

We will consider all these algebras over discrete valuation rings only, which means that
they have to be localized and completed in a suitable way.

3 Proofs

Throughout, we fix a discrete valuation ring R. By order we always mean an R-order. For
simplicity, algebras are assumed to be indecomposable as rings.

Technically, our main result is as follows:

Proposition 3.1 (a) Let Λ be a quasi-hereditary order which is in Schur-Weyl duality with
a cellular Green order Γ; that is, there exists a bimodule ΛMΓ such that EndΛ(M) � Γ and
EndΓ(M) � Λ. Then there is a natural number n such that Λ is Morita equivalent to Λn.

(b) Let Γ be a Green order and suppose Γ is integral cellular. Then there is a natural
number n such that Γ is Morita equivalent to Γn.

Let us first verify that the orders in the theorem satisfy the assumptions of the proposi-
tion.

A cyclotomic Hecke algebra is integral cellular by [10] and also by [8]. A cyclotomic
Schur algebra is integral quasi-hereditary by [8]. Schur-Weyl duality is built in the defini-
tion given in [8]. A block of cyclic defect is a Green order by [14].

Next we give two examples of Brauer tree algebras (over a field) which will be used in
the proof below.

The first example is that of a Brauer tree algebra of the graph • • •

•

. This algebra
has three simple modules (associated with the edges of the tree, say a, b, and c), and as a
left module over itself it has the following composition series:

AA =

a
b
c
a

⊕

b
c
a
b

⊕

c
a
b
c

From this information, it is easy to write down the periodic projective resolutions of the
simple modules. For instance, a minimal projective resolution of the simple of type a looks
as follows:

· · · →

a
b
c
a

→

c
a
b
c

→

b
c
a
b

→

a
b
c
a

→ a→ 0

https://doi.org/10.4153/CMB-2000-012-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-012-0


84 Steffen König

This determines extensions between simple modules as follows: Ext1
A(b, a) = Ext1

A(c, b) =
Ext1

A(a, c) is zero, whereas Ext1
A(a, b) = Ext1

A(b, c) = Ext1
A(c, a) has dimension one. In

particular Ext1
A(b, a) is not isomorphic to Ext1

A(a, b).

This algebra is not cellular (see below).

The second example is that of a Brauer tree algebra having tree • • � where the
vertex denoted by � is exceptional with multiplicity two.

This algebra has two simple modules, say a and b, and the following composition series
as left module over itself:

AA =
a
b
a
⊕

b
a b

b

This algebra is cellular (with respect to an involution fixing the vertices and turning around
the arrows in the quiver). In fact, there is a one-dimensional cell ideal, which as left module
is simple of type b. Factoring it out, there is another one-dimensional cell ideal, again
simple of type b. The next section has dimension four and consists of two copies of a
uniserial module with socle b and top a. Factoring out this ideal, one arrives at the field (a
simple module of type a). The length of this cell chain is four, and there is no shorter one.

The proof of Proposition 3.1 is split up into two lemmas.

Lemma 3.2 Let Γ be an R-order which is both an integral cellular algebra, say with involu-
tion i, and a Green order. Then Γ is Morita equivalent to an order Γn for some n.

Proof Fix a cell chain J1 ⊂ J2 ⊂ · · · ⊂ Jn = Λ for some natural number n. Then
K ⊗R J1 ⊂ K ⊗R J2 ⊂ · · · ⊂ K ⊗R Jn = K ⊗R Λ is a cell chain of the split semisimple K-
algebra A(K) = K⊗RΛ. The subquotients in this cell chain are just the simple Wedderburn
components of A(K). Over k = R/π we get a cell chain k⊗R J1 ⊂ k⊗R J2 ⊂ · · · ⊂ k⊗R Jn =
k⊗R Λ of the finite dimensional k-algebra A(k) = k⊗R Λ.

By Proposition 5.1 of [11], the induced involution i on the cellular algebra A(k) must
fix isomorphism classes of simple modules. Thus for any two simple A(k)-modules, say
L and L ′ there must be an isomorphism Ext1

A(k)(L, L ′) � Ext1
A(k)(L ′, L). This implies that

the Brauer tree of A(p) is a line (see Proposition 5.3 of [11] for more detail). See the first
example for an illustration.

Assume the Brauer tree of A(k) has an exceptional vertex. Then we are in a situation
as in the second example. The cell chain has length equal to the number of Wedderburn
components of A(K), which equals the number of edges of the Brauer tree. In the example
this number is two, whereas we have seen that for A(k) (given in the example) one needs a
chain of length four.

In general, the existence of an exceptional vertex forces the cell length of A(k) to be
strictly bigger than that of A(K). In fact, there is an indecomposable projective module P
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having a composition series of one of the following three types:

a
b
a
· · ·
b
a

or

a
b
a
· · · c
b

a

or

a
c

b · · ·
c

a

The number of A(k)-simples up to isomorphism is n − 1 whereas the length of the given
cell chain is n. By Proposition 4.1 of [11], a cell ideal either does not contain any idempo-
tent or it is a heredity ideal generated as two-sided ideal by a primitive idempotent whose
equivalence class is uniquely determined. Thus all but one subquotient in the cell chain
must contain a primitive idempotent (not contained in a smaller ideal in the cell chain)
and hence be a heredity ideal in the respective quotient algebra. Clearly, the algebra A(k)
itself does not contain a heredity ideal, hence it must contain a cell ideal J such that A(k)/ J
is quasi-hereditary. The intersection of J with P is either zero or the socle of P. Therefore,
in the quotient A(k)/ J there is an indecomposable projective module, say Q, which is either
P or P/ soc(P).

Let J ′ be a heredity ideal of A(k)/ J. No other indecomposable projective module maps
injectively into Q. Hence the intersection of J ′ (which is, by definition, a direct sum of
copies of an indecomposable projective module) with Q must be trivial. Continuing by in-
duction it follows that no section in the heredity chain of A(k)/ J can intersect non-trivially
with Q.

This gives the desired contradiction. Therefore there is no exceptional vertex.
This implies part (b) of the theorem.

Lemma 3.3 Let Γ be a Green order and Λ be any order such that there exists an idempotent
e = e2 ∈ Λ with eΛe = Γ and Λ � HomΓ(Λe). Suppose that Λ is integral quasi-hereditary.

Then the idempotent 1 − e is a sum of primitive idempotents which all are equivalent and
all of which lie in the unique heredity ideal of Λ.

The situation in the lemma is usually called a ‘double centralizer property between Λ
and Γ’ or a ‘Schur-Weyl duality’, and this also provides us with a ‘Schur functor from Λ to
Γ’.

Note that the lemma proves a more general statement than what is needed for the propo-
sition.

Proof An indecomposable Γ-lattice is either irreducible or projective. Decomposing the
rightΓ-latticeΛe into a direct sum of indecomposables, sayΛe = ⊕Mi we can (by applying
a Morita equivalence, if necessary) assume without loss of generality that for i �= j the
summands Mi and M j are not isomorphic. Clearly, Λe also decomposes as Λe � X ⊕
Y where X collects the Γ-projective direct summands and all the indecomposable direct
summands of Y are irreducible (and not projective) over Γ.

The proof is based on comparing the following natural numbers: The number of (non-
isomorphic) direct summands of X and of Y is denoted by n(X) and n(Y ), respectively. The
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number n counts the simple Wedderburn components of A(K) = K⊗R Γ which equals the
number of simple components of B(K) = K⊗RΛ. This number in turn equals the number
of equivalence classes of primitive idempotents in the integral quasi-hereditary algebra Λ,
whereas the Green order Γ has n − 1 equivalence classes of primitive idempotents, that is,
n(X) = n − 1. Schur-Weyl duality tells us that n(X) + n(Y ) equals n. Hence n(Y ) is one,
that is, Y is irreducible. The idempotent 1− e by construction is the identity morphism on
Y .

It remains to show that 1 − e lies in the heredity ideal J of Λ and that J is unique. By
definition, J must contain some primitive idempotent, say e ′. If e ′ is not equivalent to
e, it must be equivalent to the identity morphism on some direct summand, say X1 of X.
From the structure of a Green order it follows that there are two non-equivalent central
idempotents in Γ, which do not annihilate X1. Hence e ′ cannot be equivalent to e, which
lies in one simple component of B(K). Thus e generates J, and by the same argument, e is
(up to equivalence) the only primitive idempotent in Λ which lies in a simple component
of A(K). Also, J is the unique heredity ideal of Λ.

This implies part (a) of the theorem.
The corollaries follow easily by direct computations, which we skip.
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