
SPECIAL ABELIAN GROUP DIFFERENCE SETS 

E. C. JOHNSEN 

1. Introduction. A v, k, A abelian group difference set (abbreviated AGDS) 
(G, D) is a ^-subset D = {d^i0 taken from an abelian group G of order v 
such that each element different from the identity e in G appears exactly \ 
times in the set of differences {dtdf1}, where 0<\<k<v — 1. Combina-
torially, a v, k, X AGDS is equivalent to a v, &, X design having an abelian 
collineation group which is transitive and regular on the elements and on the 
blocks of the design (1). Thus, v, k, and X satisfy the following relation (cf. 5) 

(1.1) (v - 1)X = k(k - 1). 

Two AGDSs (G, D) and (G, E) are called equivalent if there exists an auto-
morphsim co of G under which 

(1.2) E» = Da 

for some a Ç G. If E = D in (1.2), then co is called a multiplier of (G, D), 
and if co is the identity automorphism in (1.2), then (G, E) is called a translate 
of (G, £>). 

Two special classes of AGDSs have been investigated recently in (2) and 
(3). One is the class of AGDSs (G, D) with the inverse multiplier (abbreviated 
IM AGDSs) 

and the other is the class of skew-Hadamard AGDSs (G, D) (abbreviated 
SHAGDSs), where e € D and for all g G G, g ^ e, g G Z> if and only if g"1 $ Z>. 
In this paper we shall obtain a classification of AGDSs in which these two 
classes together with the AGDSs complementary to the SHAGDSs (abbre­
viated co-SHAGDSs) become the simplest and the most prominent classes. 

2. Preliminaries. Let (G, D) be a v, k, X AGDS and let 

r = {xi\0 S i ^ v - 1} 

be the abelian character group of G, where xo denotes the principal character. 
For the positive integer r let f r denote exp(27ri/r), the principal primitive rth 
root of unity, and let i?(f r) denote the field of the rth roots of unity over the 
rational field R. We define on G the function 

M A » ( g ) = { l : 11 D, 
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and set 

(2.2) Us) = E Az>(g)x.(g), O ^ ^ - l , 

and 

(2.3) ZD'(s) s E A ^ ^ f e " 1 ) = E A ^ t e " 1 ) ^ ) , O ^ ^ - l . 

Note that %D'' (s) — \j>{s) (complex conjugate) and that if Xs is of order r in T, 
then £z>(s) and %D' (s) are algebraic integers in i?(f r), 1 = s ^ ^ — 1. Finally, 
for any set S we define the "Kronecker <5" in the obvious way, i.e., for x, y £ S 

1, x = y, 
[0, x 9^ y. 

Now, as previously derived in (3), we have that 

(2.4) &>(*)&>'(*) = k - X + \vô(s, 0), 0 ^ s ^v - 1. 

From this we see that 

(2.5) \ÇD(s)\ = V(k - X) > 0, 1 g s g * - 1. 

3. A classification. Consider the possibility of solving the system of v — 1 
linear equations 

(3.1) $D'(s) = oi + a 2 ^(s) + . . . + a_ià>^2(s) , U 5 ^ » - 1, 

for the values of ai, a2, . . . , aD_i in R(Çf), where / = lcm^€G{order (g)}. Let 

H = [ f ^ - 1 » ] , i = h • • • ,v - 1, i = 1, . . . , v - 1. 

Suppose that there are exactly pD distinct values among 

{ U * ) | l £s S v - 1}. 

Let them be £z>(ii), ^(^2), . . . , £z>(̂ 'PZ)). Now, clearly, rank (S) ^ p0- How­
ever, the PD X p£> sub matrix 

2PZ) = [£z/_1(^)L r = 1, . . . , PD, J = 1, . . . , px>, 

is a non-singular Vandermonde matrix; hence, rank(S) ^ PD- Thus, 
rank(S) = PD- Since the rank of 2 is attained by the non-singular submatrix 
EP2>, the system of pD linear equations 

(3.2) y(ir) = &x + b£D(ir) + • • . + ^ à / z T ^ r ) , 1 ^ ^ ^ Pz>, 

has a unique solution for bi, b2, . . . , bp in R(Çf). Now. by (2.4), (3.2) becomes 

(3.3) * - X = b^D(ir) + b£D*(ir) + . . . + bpJD'D(ir), 1 S r S t>D. 

Applying Cramer's rule to (3.3) to find bp we obtain 

(3.4) b. = {-lY»-\k - X) / fî Uir) * 0. 
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We have thus shown the following result. 

THEOREM 3.1. Let (G, D) be an AGDS, where f = lcm^€G{order(g)} and pD 

is the number of distinct values among {£z>(s)| 1 fk s tk v — 1}. Then there exists 
a unique polynomial qD(x) = &i + b2x + . . . + bp XPD_1, bp ^ 0, with 
coefficients in R(Çf) and of lowest degree for which 

(3.5) &>'(*) = qD(Us)), U ^ » - L 

Now consider the representation of G as a direct product of cyclic groups, 

(3.6) G = C(ei) (8) . . . 0 C(en), 

where C(e?) is cyclic of order eu 1 ^ i ^ n, ei \ et+i for 1 ^ i ^ n — 1, and 
?/ = n?=i^i, where en = / . Let g^ be a generator of C(e*)> 1 ^ i ^ n. Corres­
ponding to (3.6) we have a representation of T as a direct product of cyclic 
groups, 

(3.7) r = K(ei) ® . . . 0 X f e ) , 

where K(et) is cyclic of order et, I ^ i ^ n, and where we may take xoo as a 
generator of K{e3), 1 g j ^ n, where 

(3.8) xo)(g(o) = { ^ ' • ̂ j ; 1 è iû n, 1 g j <: „. 

Now if g G G has the representation g = g(1)?i . . . g(w)
7w, then we will set 

AZ)(TI, . . . , 7«) = àD(g), and if Xs £ T has the representation 

Xs = Xdf1 • • • X(n)V 

then we will set ^ ( ^ I , • . • , 0w) = £D(S), where we always take the exponents 
of ga) and X(i) a s non-negative integers modulo et, 1 tk i Ik n. Thus, with 
this new notation, (2.2) becomes 

61 — 1 en— 1 ft 

(3.9) {«(«n O = £ • • • E AB(7i, • • • , 7») I l f . /™, 
71=0 7n=0 ; '=1 

Now e*|en = / , hence, let dUi = f whence fei = f/% \ S i S n. Then (3.9) 
becomes 

ei—1 en—1 / w \ 

(3.10) ^((7i, . . . , <rn) = 2 • • • X) Az>(7i, • • • , 7ft) exp( 27r iZ ^ 7 ^ / / ) , 
T 1 = 0 7n=0 \ j = l / 

0 ^ &t£ et - 1, 1 ^ i ^ ». 

LEMMA 3.2. Let (G, D) be an ADGS, where f = lcmff€G{order(g)} and 
£D(^I), • . • , £z)(̂ > ) a ^ 2Âe distinct values among {^D(S)\ I ^ s S v — 1}. Then 
the polynomial 

PD 

QD(X) = n (x-Uir)) 
r = l 

has rational integral coefficients. 
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Proof. Now £0(01 * • • • y 0n) € i?(f/). The automorphisms of -R(f/) fixing i? 
elementwise are all of the form 

(3.11) 4,œ: $>-> f/, l ^ » g / , gcd(w,/) = 1. 

Under such an automorphism we have 

cj)w: exp\2irij^ a^jUj/fJ -> exp(^27riÇ (wa^yjUj/f), 

whence by (3.10), 

(3.12) <j)w\ £D(<ri, . . . , an) —> £D(wo-i, . . . , W(T„), 

gcd(w, et) = 1, 1 ^ i ^ w, 

which means that <pw induces a permutation on the set of values 

&>(*'i), • • • , & > ( % ) • 

But then the coefficients of the polynomial 

PD 

QD(X) =11 (*-£»&)) 
7 - = l 

are invariant under all automorphisms of R(Ç/) fixing R elementwise; hence 
these coefficients must be in R. Since these coefficients are also algebraic 
integers, they are, in fact, rational integers. This proves the lemma. 

We can now obtain some additional information about the polynomial 
qD(x) in Theorem 3.1. 

THEOREM 3.3. The coefficients of qD{x) = b\ + b2x + . . . + bp XPD~1 are 

rational and of the form 

bt = ct(k - \ ) - ^ D - 2 \ 

where ct is a rational integer, 1 S i S PD, and cPD = e = ± 1 . 

Proof. The polynomial bp ~l{xqD{x) — (k — X)) is monic of degree pD and 
has £Z>(2*I)J . . . , £o(ip ) as roots, hence by Lemma 3.2, 

bf>D-1{xqD{x) - (k - X)) = QD(x) 

or 

(3.13) 

Co' + d'x+ . . . + CeD-1'x'D 1 + X°D, 

where c0', . . . , c„ _ / are rational integers. Now, by (3.4), 

\b,J = (k- X)-*('D-» 
whence 

(3.14) 6P = e(k - X)-*CPD-2>, € = ± 1 . 
"Z> 
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By (3.13), bp = - (k - X)/c0' which is rational. Again, by (3.13) and (3.14), 

bt = h ci = eci(k - \)-*l'D-2) = Ct(k - X)-*<'zr» 

is rational, where ct = eci is a rational integer, 1 ^ i ;g pD — 1. 

COROLLARY 3.4. / / an AGDS (G, Z>) exists, then either pD is even or k — X w 
JAe square of a rational integer. 

Proof. By Theorem 3.3, bp = e(k — \)~*(pD~2) is rational. Thus, if pD is 
odd, then k — X must be the square of a rational integer. 

LEMMA 3.5. If an AGDS (G, D) exists, then pD ^ 2. 

Proof. Now p^ ^ 1. Suppose that p^ = 1. Then, by Corollary 3.4, k — X is 
a rational integral square, m2, where m > 0 is an integer. By Theorem 3.3, 
&i = e V(& — X) = em, e = ± 1 , whence by Theorem 3.1 

£z>0O = em, 1 ^ 5 ^ v — 1, 
or 

(3.15) E A^(g)Xs(g) = em, 1 ^ 5 ^ i; - 1. 
g£G 

Now, multiplying both sides of (3.15) by Xs(g*-1)> g* £ G> and summing on s, 
we obtain: 

(3.16) AD(g*) = z/-1(fe — em) + em<5(g*> g). 

By (3.16) we must have v \ k ± m. Since 0 < & — m < v we cannot have 
y | k — m. Hence v \ k + m and thus y ^ & + m. Now 

(k + m)(k - m) = k2 - k + X = v\, 

whence \ ^ k — m or \/(k — \)=m^k — X, which is impossible for 
& — X > 1. Hence pD = 1 is impossible, whence p.o ^ 2. 

We now consider the special case where pD = 2. 

THEOREM 3.6. LeJ (G,D) be an AGDS for which pD = 2. rftew gz>(x) w 
either x, — 1 — x, or 1 — x. Furthermore, 

(i) gz>(a;) = x if and only if AD(g~1) = AD(g) /or all g £ G (i.e., if and 
only if (G, £>) w an IMAGDS, where Z> = D) ; 

(ii) gi)(x) = — 1 — x if and only if AD(e) = 0 and AD(g~1) + AD(g) = 1 
for all g G G, g ^ e (i.e., if and only if (G, D) is an SHAGDS) ; 

(iii) qD(x) = 1 — x if and only if AD(e) = 1 and A^Qf1) + AD(g) = 1 for 
ail g G G, g 9^ e (i.e., if and only if (G, D) is a co-SHAGDS). 

Remark. By a theorem of McFarland and Mann (4), every multiplier of 
an AGDS fixes some translate of the AGDS. Hence, every IMAGDS is a 
translate of an IMAGDS (G, D), where D1 = D. 

Proof. For pD = 2 we have, by Theorem 3.3, that qD(x) = Ci + ex, where 
C\ is a rational integer and e = ± 1 . 
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Case 1. e = + 1 . Here £D'(s) = C\ + £D(s)> 1 S s ^ v — 1. However, 
£ D ' ( S ) = \D(S) ; hence, Re(£ i / ( s ) ) = Re(£z>(s)), whence Ci = 0 and #£>(#) = #. 
Thus , £2/(5) = £ D 0 ) or 

(3.17) S A^fe-^x.Cg) = Z A^(g)x*(g), 1 g s S v - 1. 

Mult iplying both sides of (3.17) by Xs(g*_1)> g* G G, and summing on s, we 
obtain A^g*- 1 ) = àD(g*) for all g* Ç G. Hence, (G, £>) is an I M A G D S , 
where Dl = D. T h e converse is trivial. 

Case 2. e = — 1 . Here %&'(s) = C\ — £D(S) or 

(3.18) E A^fe-^x.Cg) = C! - Z A^fe)x sfe) , 1 S s^ v - 1. 

Mult iplying both sides of (3.18) by Xs(g*-1)> g* € G, and summing on 5, we 
obtain 

A^g*" 1) + AD(g.) = i r* (2* - ci) + ci5(g*, e), 
or 

(3.19) A^g*- 1 ) + AD(g*) = tri(2& - Cl), g* 5* e, 

and 

(3.20) 2A^(e) = »-1(2fe - cx) + ci. 

Now we cannot have AD(g*~l) + AD(g*) = 0 for all g* G G, g* ^ e, or 
AjD(g*~1) + A^(g*) = 2 for all g* G G, f* ^ 6, for otherwise, D would have 
either 0, 1, v — 1, or v elements, contradict ing 0 < \ < k < v — 1. Hence, 
Ai)(g*_1) + AD(g*) = 1 for all g* (z G, g* ^ e, whence by (3.19), C\ = 2k — v. 
Then by (3.20) we have t h a t 2àD(e) = 2fe + 1 - ?/. Thus , i; = 2fe + 1, 
whence Ci = — l a n d g c ( x ) = — 1 — xior AD(e) = 0, and z; = 2k — 1, whence 
Ci = 1 and qD(x) — 1 — x for A ^ ^ ) = 1. In the first case, (G, D) is an 
S H A G D S and in the la t ter case, (G, D) is a co-SHAGDS. T h e converse in 
each case is easily verified. 

4. A f u r t h e r r e s u l t . If (G, D) is an A G D S of one of the types given in 
Theorem 3.6 and E = Z> under the au tomorphism co of G, then it is no t 
difficult to show t h a t (G, JE) is of the same type as (G, D). This is, in fact, a 
special case of the following more general result. 

T H E O R E M 4.1 . Let (G, D) and (G, E) be two AGDSs and let E = Z> under 

the automorphism œ of G. Then qE(x) = Q_DM-

Proof. Now 

(4.1) £*(*) = £ AE(g)Xs(g), l ^ ^ - l , 

where 

<«> *•<«>-{£ $ £ ! £ } - * • < « • - > • 
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Hence, lett ing g = (g)co_1 or g = (g)«, we obtain, from (4.1) and (4.2), 

(4.3) b ( j ) = I i B ® X . ( S V ) , l ^ s ^ - l . 

Now, for all g £ G9 we define 

0.(2) = X.((g)«), U ^ P - 1 . 

Then 0g(g) ^ 0 and 0s(g) G i?(f r) for all g e G, where / = lcm, € G{order(g)}. 
Fur thermore , for all gi, g2 £ G and all s, 1 ^ s ^ v — ly 

6s(glg2) = Xs((glg2)0>) = X * ( ( g l ) « - ( g 2 ) w ) = 

X s ( ( g i ) w ) - x s ( f e ) c o ) = 0* (g i ) -0 5 (g 2 ) , 

hence 6S is a character on G or 0S = %ts f ° r some /s, 0 ^ ts ^ v — 1. If £s = 0 
so t ha t 05 = xo, then Xs = Xo, which is impossible since I ^ s ^ v — I; 
hence, 1 ^ ts ^ v - 1 ior all s, 1 ^ s g> v - 1. T h u s by (4.3), 

(4.4) Us) = E AZ)(2)x.s(D = Uts), l ^ ^ - l , 1 ^ /, ^ ^ - 1, 

which s ta tes t h a t every value in {£#(s)| 1 = s = ^ ~~ 1} is a value in 
{£z>(s)l 1 ^ ^ ^ v — 1}. Wri t ing £> = E " ' 1 and interchanging the roles of D 
and E in the above argument , we see t h a t every value in (£D(S) | 1 ^ 5 ^ v — 1} 
is a value in {£#(s)| 1 ^ 5 ^ v — 1}. Hence, the distinct values in 

{**(S)|1 ^ ^ » - l ) 

are the same as those in {£#(5) | 1 ^ s ^ v — 1}, whence pE = PD> Fur thermore , 

(4.5) tB'(s) = &>'(*,) = qD(t;D(t8)) = <&>({*(*)), 1 ^ 5 ^ v - 1. 

Now, by Theorem 3.1, the polynomial qE(x) of degree pE — 1 for which 
f j / ( s ) = ##(£#00) , 1 S s S v — 1, is unique. Hence, by (4.5), qE(x) = qD(x). 

I t is no t difficult to show t h a t the conclusion of Theorem 4.1 does no t 
follow if we merely assume t h a t (G, D) and (G, E) are equivalent. An example 
is given for v = 7, k = 3, X = 1, and G = {g*| 0 ^ i ^ 6} (the cyclic group 
of order 7) by D = {g, g2, g4} and £ = Dg~l = {e, g, g3}. Here, pD = 2, 
while pE = 6. 

REFERENCES 

1. R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc. 78 (1955), 464-481. 
2. E. C. Johnsen, The inverse multiplier for abelian group difference sets, Can. J. Math. 16 

(1964), 787-796. 
3. Skew-Hadamard abelian group difference sets, J. Algebra 4 (1966), 388-402. 
4. Robert McFarland and H. B. Mann, On multipliers of difference sets, Can. J. Math. 17 

(1965), 541-542. 
5. H. J. Ryser, A note on a combinatorial problem, Proc. Amer. Math. Soc. 1 (1950), 422-424. 

University of California, 
Santa Barbara, California 

https://doi.org/10.4153/CJM-1968-124-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-124-2

