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Abstract

Objects with dynamic types allow the integration of operations that essentially require run-
time type-checking into statically-typed languages. This paper presents two extensions of the
ML language with dynamics, based on our work on the CAML implementation of ML, and
discusses their usefulness. The main novelty of this work is the combination of dynamics with
polymorphism.

Capsule Review

In a strictly typed language such as ML it is sometimes necessary to build a ‘self-describing’
data item consisting of a value paired with its type. Such values are said to have type dynamic,
in recognition of the fact that the ‘true’ type of such a value is resolved at run-time, rather
than at compile time. While a very simple idea at an intuitive level, it has proved remarkably
difficult to combine dynamic typing with ML-style implicit polymorphism. Leroy and Mauny
propose one possible extension to ML that admits many interesting uses of dynamic types
while preserving the overall flavour of the language.

1 Introduction

Static typing (compile-time enforcement of the typing rules for a programming
language) is generally preferred over dynamic typing (the production of run-time
tests to check the rules), since static typing reports type violations earlier, and allows
for the generation of more efficient code. However, one has to revert to dynamic
typing for programs that cannot be recognized type-safe at compile-time. This
situation often reveals weaknesses of the type system used. Dynamic typing could be
avoided, then, by employing more advanced type systems. For instance, it had long
been believed that generic functions (functions that can be applied to arguments
of different types) can only be supported by dynamically-typed languages, such as
Lisp, until the advent of polymorphic type disciplines, such as that of ML, that
permit static typing of such functions.

In contrast, there are programming situations which seem to require dynamic
typing in an essential way. A first example is the eval function (and similar meta-
level operations), that takes a character string, evaluates it as an expression of the
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language, and returns its value. The type of the returned value cannot be known at
compile-time, since it depends on the expression given as argument. Another example
is structured input/output. Some run-time systems provide an extern primitive that
takes an object of any type and efficiently outputs a low-level representation of the
object to persistent storage. The object can be read back later, possibly .in another
process, by the intern primitive. The extern function can easily be typed in a
polymorphic type system; but this is not the case for the intern function, since
the type of its result depends on the contents of the file being read. To guarantee
type safety, it is clear that the values returned by eval or intern must carry some
type information at run-time, and that this type information must be dynamically
checked against the type expected by the context.

As demonstrated above, dynamic typing cannot be avoided for a few highly specific
functions. However, we would like to retain static typing for the huge majority of
functions that can be typechecked at compile-time. What we need is a way to embed
dynamic typechecking within a statically-typed language. The concept of objects
with dynamic types (or dynamics, for short, as introduced by Cardelli, 1986) is an
elegant answer to this need. A dynamic is a pair of a value v and a type expression
7, such that v has type 7. From the standpoint of static typing, all dynamics belong
to the built-in type dyn. The type dyn represents those values that are self-described
as far as types are concerned, i.e., those values on which run-time type checking can
be performed.

Continuing the examples above, the function eval naturally returns dynamics, so
its static type is string — dyn. Similarly, intern has type io_channel — dyn, and
the extern function will be made to accept arguments of type dyn only, since the
external representation of an object should now include its type.

Two constructs are provided to communicate between type dyn and the other
types in the language. One construct creates dynamics by taking an object of any
type and pairing it with its static type. The other construct checks the internal type
of a dynamic against some static type t, and, in case of success, gives access to the
internal value of the dynamic with type t.

In this paper, we consider the integration of dynamics, as described above, into the
ML language (Milner et al., 1990). The main novelty of this work is the combination
of dynamics with a polymorphic type discipline. This combination raises interesting
issues that have not yet been addressed. The main published references on dynamics
have only considered first-order types (Abadi et al., 1989), or first-order types with
subtyping (Cardelli, 1986; Cardelli et al., 1989). Abadi et al. (1989) mention some of
the problems involved with polymorphism, but briefly and informally. They reference
a draft paper by Mycroft (1983) that is said to consider the extension of ML with
dynamics; this article has never been published, and we could not get a copy of
it. Recently, Abadi et al. (1989) have proposed an extension to their earlier work
that allows polymorphism and subtyping. We compare their proposals to ours in
section 5.

The two extensions of ML with dynamics we present here are not mere proposals.
The simpler one has been fully integrated into the CAML system (Weis et al.,
1990), the ML implementation developed at INRIA, for more than three years.
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It has grown to the point of stability where dynamics are used inside the CAML
system. The second, more ambitious extension was also extensively prototyped in
CAML. This practical experience enables us to discuss the main implementation
issues involved by dynamics. It also gives some hints on the practical usefulness
of dynamics in an ML system, both for user-level programming and system-level
programming.

The remainder of this paper is organized as follows. Section 2 presents a first
extension of ML with dynamics. After an informal presentation, we formalize
typing and evaluation rules for dynamics within a significant subset of ML, show
the soundness of typing with respect to evaluation, and discuss type inference
and compilation issues. Section 3 extends the system previously described with the
ability to destructure dynamics (both the type part and the value part), and rebuild
dynamics with the components of the structure. We adapt the typing and evaluation
rules of section 2 to this extension. Section 4 discusses the practical usefulness of the
two systems, based on some significant uses of dynamics in the CAML environment.
Finally, we mention some related work in section 5, and give concluding remarks in
section 6.

2 Simple dynamics

This section describes dynamics as they are implemented in CAML release 2.6 and
later (Weis et al, 1990, chap. 8).

2.1 Introduction and elimination constructs

The new construct dynamic a is provided to create dynamics. This construct evaluates
a, and pairs it with (the representation of) the type inferred for a. For instance,
dynamic 1 evaluates to (1,int), and dynamic true to (true, bool). In any case, the
expression dynamic a is of type dyn, without any mention of the internal type of
the dynamic.

To do anything useful with a dynamic, we must gain access to its internal value,
bringing it back to the statically-typed world. A run-time type check is needed at
that point to guarantee type safety. This check must ensure that the internal type of
the dynamic does match the type expected by the context. This operation is called
coercion of a dynamic. Coercion is traditionally presented as a special syntactic
construct, such as the typecase construct in Abadi et al. (1989). This construct
binds the internal value of the dynamic to some variable. It also handles the case
where the run-time type check fails, and another coercion must be attempted, or an
exception raised.

In ML, these two mechanisms, binding and failure handling, are already provided
by the pattern-matching machinery. Hence, instead of providing a separate coercion
construct, we integrate dynamic coercion within pattern-matching. We introduce a
new kind of pattern, the dynamic patterns, written dynamic(p : 7). This pattern
selects all dynamics whose internal value matches the pattern p, and whose internal
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type agrees with the type expression 1. For instancet, here is a function that takes a
dynamic and attempts to print it:

let print = function
dynamic(x : int) — print.int x
| dynamic(s : string) — print_string s
| dynamic((x,y) : int X int) —
print_string "("; print_int x; print_string ",";
print_int y; print_string ")"
| x — print_string "?"

2.2 Creation of polymorphic dynamics

The introduction of dynamics in a polymorphic type system raises some issues that
do not appear in the case of a monomorphic type system. In this section we show
that some restrictions must be put on dynamic creation; the next section deals with
the semantics of type matching during dynamic coercion.

It is allowable to create a dynamic of an object with a polymorphic type, provided
the type is closed : none of the type variables free in the type should be free in the
current typing environment. For instance, dynamic(function x — x) is legal, since
the identity function has type « — o, and « is a fresh type variable that does not
appear anywhere else (in the case of a principal typing). It will be possible to use
the internal value of the dynamic with all type instances of a — a.

On the other hand, function x — dynamic x is rejected: dynamic x is typed
in the environment x : o, where x does not have a closed type. In this case, it is
impossible to determine at compile-time the exact type of the object put into the
dynamic: static typing says it can be any instance of a, i.e., any type. To correctly
evaluate the function above, the actual type to which a is instantiated would have
to be passed at run-time. Since polymorphic functions can be nested arbitrarily,
this means that all polymorphic functions, even those that do not build dynamics
directly, would have to take type expressions as extra parameters, and propagate
these types to the polymorphic functions they call.

Besides complicating compilation and raising efficiency issues, passing type infor-
mation at run-time is essentially incompatible with the ML semantics, because it
implies ‘by-name’ semantics for polymorphism instead of ML’s ‘by-value’ semantics
for polymorphism, in the terminology of Leroy (1993). In other terms, the extra
abstractions that must be inserted at generalization points to pass type informa-
tion around cause the evaluation of polymorphic expressions to be delayed until
instantiation-time, and therefore side-effects can occur at times different than in ML.
Assume, for instance, that the following expression is not rejected:

let f = function x — (print"Hi!"; function y — dynamic(x,y)) in
let g=f(1) in
(g(1), g(true))

1 All examples in this article are written in the CAML dialect of ML (Cousineau and Huet,
1990; Mauny, 1991).
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To correctly propagate type information, the compiler must insert extra abstractions
over type representations and the corresponding applications, as follows:

let f = function v — function 7’ — function x —
(print"Hi!"; function y — dynamic(x,y :7 x1”)) in
let g =function 7 — f(int)(r)}(1) in
(g(int)(1), g(bool)(true))

No other placement of abstractions and applications is possible, since abstractions
and applications must correspond to the points where generalization and instantia-
tion take place. Hence, the program above prints ‘Hi!” twice, instead of once as in
core ML.

Besides this change in semantics for the let construct, allowing dynamics to be
created with non-closed types also destroys the parametricity properties of the ML
type system. It is well-known that since polymorphic functions can only operate
uniformly over objects whose type is a type variable, all functions with a given
polymorphic type obey some algebraic laws that depend only on the type (Wadler,
1989; Mairson, 1991). For instance, all functions f with type Voo list — « list
are such that, for all functions g and lists /,

map g (f ) = f(map g I).

This captures the fact that a function f with the type above can only reorder,
duplicate and remove some elements from the given list, regardless of the actual
value of the elements; hence we get the same results if we apply an arbitrary
transformation g to each element of the list either before applying f or after. This
is no longer true if we add dynamics without typing restrictions: the function £
defined by

let f = function 1 —
match (dynamic 1) with
dynamic(m : int 1list) — reverse 1 | d — 1

would have type Va.a list — a list, yet

map string of_int (f [1;2]) = ["2";"1"]
f(map string.of_int [1;2]) = ["1";"2"]

The closedness condition on dynamic creation rules out the £ function above. More
generally, it is conjectured that the closedness condition suffices to guarantee that
similar parametricity results hold for ML plus dynamic and for core ML.

2.3 Coercion of polymorphic dynamics

For type matching in the presence of polymorphic types, two behaviours can be
considered. The first is to require that the internal type of the dynamic be exactly
the same as the expected type, up to a renaming of type variables. The other
behaviour is to also accept any dynamic whose internal type is more general than
the expected type. For instance, dynamic [], whose internal type is Ya. a list,
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matches the pattern dynamic(x : int list) with the latter behaviour, but not with
the former. We have retained the latter behaviour, since it seems more coherent with
the statically-typed part of the ML language (where, for example, the empty list can
be used in any context that expects a list of integers).

Type patterns are allowed to require a polymorphic type, as in dynamic(f : o — ).
This pattern matches any dynamic whose internal type is as general or more general
than the type in the pattern (e.g. § — B, or § — 7). As a consequence of this
semantics, identifier £ can safely be used with different instances of the type o — a
in the right-hand side of the pattern-matching, as in:

function dynamic(f :aa > a) — f f

The type matching semantics guarantee that £ will be bound at run-time to a value
that belongs to all instances of the type scheme « — o. (This is the only case in ML
where a variable bound by a function construct can be used with several types
inside the function body.)

In the example above, the type variable « is not a regular pattern variable such as
£f: it is implicitly quantified universally by the dynamic pattern, and therefore cannot
be instantiated during the matching process. For instance, the pattern dynamic(x :
o list) matches only a dynamic of the polymorphic empty list, not any dynamic
of any list. As a consequence, a type pattern T more general than a type pattern
7/ will match fewer dynamics than 7/, in contrast with regular ML patterns. This
means that in a dynamic matching, the most general type patterns must come first.
To catch polymorphic lists as well as integer lists, one must write

function dynamic(x :a list) —
| dynamic(x :int list) — ...

instead of the more intuitive definition

function dynamic(x :int list) —
| dynamic(x :a list) —

In the latter definition, the second case would never be selected, since the first case
also matches dynamics with internal type a list.

2.4 Syntax

We now formalize the ideas above, in the context of the core ML language, enriched
with pattern-matching and dynamics. The syntax of the language is as follows:

Type expressions:

T = int a base type
] « type variable
I 01— function type
I mixt product type
] dyn the type of dynamics
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Patterns:
p = X pattern variable
0 i constant pattern
0 (p1,p2) pair pattern
§ dynamic(p, :1) dynamic pattern
Expressions:
a = x variable
0 i integer constant
I function p; = ay|...|p, — a, function (with pattern matching)
I a a function application
I (ar,a2) pair construction
] 1let x=a; in a; the let binding
I dynamic a; dynamic construction

To precisely define the semantics of dynamic expressions, we need to keep track
of the type given to their arguments during typechecking. For this purpose, we
introduce annotated expressions (typical element b), that have the same syntax as
raw expressions a, except that the dynamic expressions also contain the type of their
argument. More precisely, dynamic expressions are annotated by a type scheme: a
type expression with some variables universally quantified.

Type schemes:
o = Va,...on7
Annotated expressions:
b = x
[ function p; = by|...|pn— by
| dynamic (b; :0)
L ...

Type schemes are identified up to a permutation or renaming of bound variables.
Trivial type schemes V.7 are written 7, and identified with type expressions.

2.5 Typechecking

The typing rules for this calculus are given in Fig. 1. Most of the rules are just those
of the core ML language, revised to take pattern-matching into account in function
definitions. Two additional rules present the creation and coercion of dynamics.

The rules define the predicate E + a : T = b, meaning ‘expression a has type 7 in
the typing environment E’. The b component can be viewed as the typed completion
of a (the input expression): b is an annotated expression, with the same structure
as a, that records the types given to the arguments of dynamic expressions. The
rules make use of an auxiliary predicate, - p : 7 = E, meaning ‘pattern p has type 1
and enriches the type environment by E’. Here, E stands for a finite mapping from
variable names to type schemes.
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1< E(x)
(DEFi:int =i QR ——
EFx:1=x
- Fpr:1 = E; E+Ela 7" =b (k=1,...,n)
E} function ...|pr— ar|... : © = 1" = function ...|py— b |...
)El-al:r'—>r=>b1 Ela :7”"=>b Ela :t1i=>b Ela; :1,=>b
@ (%
Elayay:t=b b EF (a,ay) 11y X 13 = (b1, b))
)El-al 11 = b E + [x+— Clos(t;, FV(E)]Faz : 1= b
©
ElFlet x=a; in a; ;1= let x=b; in b,
Era:t=b FV(©)NFV(E)=0
Q)
E | dynamic a :dyn = dynamic(b, Clos(t,9))
B Fx:1=[xr—1) O Fi:int =[]
Fp:1=E Fp:v=F Fp:t=E
(10) (11)
Fp): tx7"=E®E' F dynamic(p : 1) : dyn = Clos(E, )

Fig. 1. Typing rules.

Some notations on maps. The empty map is written []. The map that associates
o to x and is undefined on other variables is written [x — ¢]. The asymmetric join
of two maps E; and E, is written E; + E;; it is asymmetric in the sense that if x
belongs to the domain of E; and to the domain of E;, we take (E; 4 E2){(x) = Ez(x)
and ignore E;(x). The symmetric join of E; and E, is written E; @ E; it is undefined
if the domains of E; and E, are not disjoint.

We write FV (z) for the set of all type variables that appear in the type expression 7.
For type schemes, we take FV (o) to be the type variables free ing: FV(Vo,...a,.7) =
FV (@) \ {a1...a,}. Similarly, FV(E) is the union of the free variables of all type
schemes in the codomain of E.

We write T < ¢ to express that type 7 is an instance of type scheme g, i.e., writing
o =Vo...a,.7, we have 1 = t'{a; « 71...a, < 1,,} for some types 7 ...1,.

Finally, Clos(t, V) stands for the closure of type t with respect to those type
variables not in the set V. It is defined by Clos(z, V) = Va ... a,.1, where {oy,..., 05}
is FV(z) \ V. The Clos operator is extended pointwise to type environments.

The only rules that significantly differ from those of the core ML language are
rule 7, that deals with dynamic creation, and rule 11, that deals with dynamic
coercion. Rule 7 says that the expression dynamic(a) has type dyn, provided that a
has a type t that can be closed: none of the free variables of 1 are free in the current
typing environment E. The completion of dynamic a is dynamic(b : ¢), where b is
the completion of a, and ¢ the type scheme obtained by generalizing all variables
free in 1, i.e., Clos(t, ).

Rule 11 says that the pattern dynamic(p : ) matches values of type dyn, provided
that p matches values of type t. Assume p binds variables x;...x, to values of
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types 7i...T,. Then, dynamic(p : 7) binds the same variables to the same values. As
described above, all type variables free in 1y ... 1, can be generalized. Hence, we take
that dynamic(p : ) binds x;...x, to values of types Clos(t,0) ... Clos(z,, §).

One might be surprised by the fact that the types 7;...t, are generalized inde-
pendently. For instance, the pattern dynamic(f,g : (¢ — o) X (@ — «)) results in the
environment

[f Voo —a g:Y8.8— f]

(after renaming o to f in the second type scheme), and the information that the
types of £ and g share the same o has been lost. Actually, this makes no difference,
because the type schemes Vo.{¢ — a) x (¢ — a) and Vo, f.(a¢ — o) x (B — f)
are isomorphic: all terms belonging to one type scheme also belong to the other
(Di Cosmo, 1992). The isomorphisms between polymorphic product types justify
the independent generalization of the components of E in rule 11.

An important property of the ML type system is the stability of typing judgements
under substitutions (Damas and Milner, 1982). The typing predicate defined above
also enjoys this property.

Proposition 1
If EFa:t= b, then ¢(E) - a : ¢(t) = b for all substitutions ¢.

Proof

First, we check that if - p : T = E, then F p : ¢(t) = ¢@(E). This is an easy inductive
argument on p. The case where p is a dynamic pattern follows from the fact that
@(Clos(E,0)) = Clos(E, ), since Clos(E,®) has no free variables. Then, Proposition
1 follows from a well-known inductive argument on a (Mitchell, 1990, Section 4.7.2).
We give only the new case: a = dynamic q,. In this case, the typing derivation is:

Eta:t=b FV(@)NFV(E)=0

E F dynamic a :dyn = dynamic(b : Clos(t,®))

By renaming if necessary, we can assume that none of the free variables of 7 are
(1) in the domain of ¢, and (2) free in ¢(E). This renaming does not modify E,
since FV(z) " FV(E) = 0. Applying the induction hypothesis, we get a proof of
@(E) F a : ¢(t) = b. We have ¢(1) = t by hypothesis (1), and FV(t)NFV (p(E)) = @
by hypothesis (2). Hence we can conclude ¢(E) F dynamic a : dyn = dynamic(b :
Clos(z,®)), which is the expected result. [

2.6 Evaluation

We now give call-by-value operational semantics for our calculus. Annotated ex-
pressions b are mapped to responses (ranged over by r). Responses are either values,
or the constant wrong that denotes run-time type violations. Values (v) are terms
with the following syntax:
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(12) e b x > e(x) (13) ek i > cst(i)
(14) e function ...|py = by | ... S clos(e, ... | px = b |...)
ei—b’—.bclos(e’,...|pk—>bk|.,.) ebb S
(15) F v <pe Ser e +eée't b S k minimal
eFb b Sy
ebb v eFby oo ebbSv  e+[x—uvlbb—r
(16) - (17) .
e+ (b1, by) — pair(vy,v2) eblet x=by in by —r
eFboo
(1) :
e dynamic(b : 6) — dynamic(v : o)
eFb S v # clos(e,...) el—b”—'>wrong
19) - (20) -
et b b — wrong ek b b’ — vrong
e}-b’—‘>clos(e1,p1—>bl|...|p,,—>b,.) eFb S I—u<pk—‘+wrong
1) ,
ek b’ b" — wrong
ek b 5 wrong et b, 5 wrong
(22) - 23) -
et (b,b;) — wrong et (by,by) > wrong
eF—bl-;wrong el—b—.>wrong
(24) - (25) -
ek let x =5, in b, — wrong et dynamic (b : o) — wrong
(26) F v < x> [x— 0] Q@7 Fest) <i—[]
Fop<p—e Fo,<p—>e Fo<poe 1<0
28) , 29) .
F pair(vy,v2) < (p1,p2) — €1 @ ez I dynamic(v : ¢) < dynamic(p : 1) > e
v # cst(i’) v # pair(v, )
By ——— @31 .
b v < i— wrong v < {(p1,p;) — wrong
I—ul<pl—.>wrong !—m<p2—.>wrong
(32 : (33 :
F pair(vy, v2) < (p1, p2) — wrong F pair(v,v;) < (p1, p2) — wrong
v # dynamic(v’ : o) Fi<o v<p—‘+wrong
(34) . 35) -
F v < dynamic(p : 1) — wrong - dynamic(v : 6) < dynamic(p : 7) — wrong

Fig. 2. Evaluation rules.
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Values:
v = cst(i) integer value
I pair(v,v’) value pair
[ dynamic(v :o) dynamic value
[ clos(e,pi = by|...| pn = by) function closure

Evaluation environments:
e == [...,x—u,...]

Evaluation responses:

roi= v normal response (a value)
[ wrong type error response
Pattern-matching responses:
m = e normal response (an environment)
[ wrong type error response

The type schemes in dynamic values are required to be closed: all variables are
universally quantified.

The evaluation rules are given in Fig. 2. They closely follow the structure of the
typing rules. The first two sets of rules define the predicate e - b 5 r, meaning
‘in environment e, expression b evaluates to response 7. The last two sets of rules
define the auxiliary predicate - v < p 5 m, meaning ‘the matching of value v against
pattern p results in m’. Here, m is either an evaluation environment, describing the
bindings performed on p variables in case of successful matching, or the constant
wrong if a run-time type violation occurred.

Since most rules are similar to those of ML (Milner et al., 1990), we only detail the
two rules dealing with dynamics. Rule 18 expresses that evaluating dynamic(b : o)
amounts to evaluating b and pairing its value with o, the static type of b. Rule 29
defines the semantics of pattern matching over dynamics. The internal type scheme
o of the dynamic is required to be more general than the type 7’ expected by the
pattern: the type 7/ must be an instance of the type scheme o, in the sense of
the < relation used in the typing rules. Then, the internal value of the dynamic is
recursively matched against the value part of the dynamic pattern.

2.7 Soundness

In this section, we show that the typing rules are sound with respect to the evaluation
rules: the evaluation of a well-typed program never stops because of a run-time type
error, such as trying to apply an integer as if it were a function. In this situation,
the evaluation rules given above associate wrong to the program. We now show that
this cannot occur to a well-typed program.

Proposition 2
Let ap be a program (a closed expression). If [] F ap : 10 = b for some type 7o,
then we cannot derive [] F b =S wrong,
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To prove this result, we first define a semantic typing relation, = v : 7, saying
whether the value v semantically belongs to the type 1. The relation is defined by
structural induction on v, as follows.

e = cst(i) : 7 if and only if 7 = int
e = pair(v,»n) :tifandonlyift=1 Xt and v :t7and =y 112
e = clos(e,pr = by |...| pn = by) : 7 if and only if T = 1y — 72 and there
exists a typing environment E and raw expressions a;...a, such that =e : E
and E F (function p; = ay|...| pn = a,) : 11 = 12 = (function p; — by |
ceil pn— bn)
e =dynamic(v :0) :tif and onlyif t =dyn and v : 0.
The use of the typing relation to define = over functional values is taken from Tofte
(1990). The semantic typing relation extends to type schemes and to environments:

e =mv:ogifandonlyif Ev:tforall typest <o
e = ¢ : E if and only if ¢ and E have the same domain, and = e(x) : E(x) for
all x in their domain.

The following property shows that semantic typing is stable under substitution;
hence, type generalization is always semantically correct.

Proposition 3
Assume = v : 1. Then, = v : ¢(t) for all substitutions ¢. Hence = v : Vo ... a,. 7 for
all variables «; ... a,.

Proof
By induction on v. The case where v is a closure is settled by Proposition 1. The
remaining cases are obvious. [

The two claims below are the inductive steps that establish Proposition 2.

Proposition 4
Assume Fp:t= E and Fv < p - m. If = v : 1, then m # wrong; instead, m is an
evaluation environment e such that e : E.

Proof
By induction over p. The cases p = x and p = i are obvious. If p = (p;, p2), then the
last rule applied in the typing derivation is

|‘p1!1'1=>E1 |—p2:‘tz=>E2

F@Lp) uxnu=>E 6k

with 1 = 11 X1 and E = E, ®E,. By hypothesis |= v : 7y X 13, we have v = pair(vi, v2)
with = v; : 1) and = v; : 75. The last rule used in the evaluation derivation is one
of 28, 31, 32 or 33. Rule 31 does not apply, since v is a pair. Rule 32 requires
F vy < py = wrong, but this contradicts the induction hypothesis applied to v;.
Rule 33 is similarly excluded. Hence the last evaluation rule used must be

- -
Fo<pr—e Fon<pp—oe

Fpair(v,v)) < (p1,p2) 2 e1 ® e
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with e = e; @ e;. Applying the induction hypothesis to the matching of v; against
p1 and to the matching of v, against pj, we get = ¢e; : E; and = e; : E;. Hence
= e ®e; : E| ® E,, which is the expected result.

For the case p = dynamic(p, : 1y), the last rule applied in the typing derivation is

Fp:t=E

F dynamic(p; : 71) : dyn = Clos(E,0)

with © = dyn and E = Clos(E,®). By definition of =, we have v = dynamic(v; : g)
and = v, : 0. There are three evaluation possibilities. Rule 34 does not apply, since
v is a dynamic. Rule 35 assumes 7; < ¢ and v; < p S wrong. This contradicts the
induction hypothesis, since = v, : ¢ implies = v; : 7; by definition of |= over type
schemes. Hence the last evaluation rule used is

L]
Fop<p—e T1<0

t dynamic(v; : 0) < dynamic(p; : 1) Se

Since = vy : ¢ and 1; < g, it follows that = v; : 1;. Applying the induction
hypothesis to the matching of vy : 7y against p;, we get = e : E;. By proposition 3,
this implies = e : Clos(E;, §). That’s the expected result. [

Proposition 5

Assume EFa:t=bandekF b - r. If = e : E, then r # wrong; instead, r is a
value v such that =v : 7.

Proof

By induction over the length of the evaluation, and case analysis over a. We show
one base case and two inductive cases; the other cases are similar. If a = x, the rule
used in the typing derivation is

7 < E(x)

EFx:1=x

The only possible evaluation is e - x 5 e(x). Hence, r = e(x) # wrong. By hypothesis
= e : E, we have = e(x) : E(x). Since 7 < E(x), this implies |= e(x) : 7, which is the
expected result. If a = let x = a; in a», the last typing rule used is

Ela i1 =b E + [x+— Clos(t;, FV(E))] Faz ;1= b,

EFlet x=ay in @y :71=>let x=5b; in b,

Two evaluation rules lead to the conclusion e - b — r. The first one is

ek by > wrong

eklet x=>5b; in bz—'>wrong
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By induction hypothesis, we cannot derive e I b, 5 wrong, since E F a; : 1, = by.
Hence the last evaluation step must be

eF-bl—‘-n) e+[xr-—>v]l—b2-:>r

eblet x=by in by —>r

Applying the induction hypothesis to the evaluation of b;, we get = v : 71. By
Proposition 3, this implies = v : Clos(t), FV(E)). Hence E e+ [x+— v] : E 4+ [x—
Clos(ty, FV(E))], and we can apply the induction hypothesis to the evaluation of b,.
This leads to the expected result: r # wrong and |=r : 3.

If a = dynamic ay, the last typing rule used is

Ela 1 =bh FV@E)NFV(E)=9

E + dynamic a :dyn = dynamic(b;, Clos(ty,0))

There are two evaluation possibilities. The first one (rule 25) concludes r = wrong

because e F by — wrong; but this contradicts the induction hypothesis. Hence the
last evaluation step must be

*
ekb -

e+ dynamic(b; : Clos(z1,0)) 5 dynamic(v, : Clos(ty,®))

Applying the induction hypothesis to the evaluation of by, we get = vy : 71. By
proposition 3, this implies = v; : Clos{t;,#). Hence &= dynamic(v; : Clos(zy,9)) : dyn,
as expected. O

2.8 Type reconstruction

Unlike the ML type system, the type system presented above does not possess the
principal type property. This fact is due to the closedness condition in the rule
for dynamic expressions. Consider the expression function x — dynamic x. It has
types int — dyn, and dyn — dyn, and more generally T — dyn for all closed types t;
but the lower bound of all these types, « — dyn, is not a valid type for the function,
since it corresponds to the construction of a dynamic with a statically unknown
type. Such programs must be statically detected, and rejected as ambiguous: they
have no well-defined semantics. The programmer must put more type constraints to
unambiguously state what the program should do.

There is a slight technical difficulty in detecting ambiguous programs. For the
dynamic a construct, it would not be correct to infer the most general type < for a,
and fail immediately if some variables in t are free in the current typing environment:
these variables may later be instantiated to closed types. Consider the expression
(function x — dynamic x)(1). Assuming the function part of the application is
typed before the argument, the function is given type ¢ — dyn, and dynamic x
appears to build a dynamic with non-closed type a. But when the application is
typed, o is instantiated to int, and we know that the dynamic is created with
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P(i) = (int, [])
P(x) = (o, [x — af)
where a is a fresh type variable

P(p1,p2) = (t1 X 12, E\ @ Ey)
where (z1, E1) = P(p) and (12, Ez) = P(p))

P(dynamic(p; : 7)) = (7, 0E,)
where (11, E1) = P(p;) and @ is such that 67, =1

W (i, E) = (int, id, §)

W(x,E) = (t{o; > B1,-.., 000> B}, id, )
where E(x) = Va;...a,.7 and §,..., B, are fresh variables

W{((function p, = a;|...|p, — a,),E) = (' > 1", ¢, D)
where (1, Ex) = P(px) fork=1,....n
and g = mgu(t},...,1,)
and (T’[la @1, Dl) = W(ah E+ #’El)
and (13, 92, D2) = W(a2, 01 (E + (' Ey))
and ...
and (z;;, @n, Ds) = W(an, @n-1... @1 (E + W'Ey,))
and y4" = mgu(@y ... P27}, .., QuTh_;, Ty
and g =y’ o@uo---o@ oy
and 7 = 7] and " = p"1)
and D = (" @u... 0201 U ... U " @, Dpy U ' D,y

Wiai(az), E) = (ua, pro @y 0@y, pp D1 U puD;)
where (Tl: (Pl,Dl) = W(ahE)
and (v, @2, D7) = W(az, ¢, E)
and u = mgu(¢,1,17; — o) with « being a fresh variable

W(let x=a; in @,E) = (12, 20 @1, ¢1(D1) UDy)
where (1, ¢1,D) = W(ay, E)
and (12,02, D2) = W(ay, 91 E + x+— Yoy ... 2,. 7))
with {a...0,} = FV(1;) \ FV(9.E) \ FV(D))

W (dynamic(a,), E) = (dyn, ¢,, Dy U (FV(7;) N FV (¢, E)))
where (11,91, D1) = W(ay, E)

W ((a1,a2), E) = (9211 X 12, @20 @1, @2D1 U D)
Where (tly(plyDl) = W(al,E)
and (13, 92, D7) = W(az, ¢, E)

Fig. 3. The type reconstruction algorithm.
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internal type int. Hence, the closedness check must be delayed until the end of type
inference. The idea is as follows: when typing dynamic a, we record all type variables
that are free in the inferred type for a and in the current typing environment. At
the end of typechecking, all type variables in this set must be instantiated to closed
types.

This process can be formalized as a simple extension of the Damas-Milner
algorithm W (Damas and Milner, 1982). The algorithm is shown in Fig. 3. It takes
as input an expression a and an initial typing environment E. It outputs a type t (the
type inferred for a), a substitution ¢ {recording instantiations performed on E), and
a set D of type expressions that keeps track of ambiguous dynamic constructions.
Each time a dynamic(a) expression is typed, all type variables free in the inferred
type for a and in the current typing environment are added to D. For expressions
of other kinds, D is simply carried around; the instantiations performed on E are
also performed on D. Variables free in D are prevented from being generalized.

If the algorithm fails, the program is not well-typed. If the algorithm succeeds
with D containing only closed types, then 7 is the most general type for the program.
If the algorithm succeeds, but D contains non-closed types, then the program is
ambiguous; however, it has type y(z) for all substitutions y such that y(D) contains
only closed types.

For dynamic patterns dynamic(p : 1), the expected type 7 is given explicitly in
the pattern, so there is actually nothing to infer. We just check that the pattern p
is of type 7, and record the (polymorphic) types of the variables bound by p. We
have considered inferring t from the pattern p and the right-hand side a of the
pattern-matching, but this seems quite difficult, since variables bound by p can be
used with several different types in a.

2.9 Compilation

In the current CAML implementation, internal types of dynamics are represented
by the following term-like structure:

type gtype = Gvartype of int
| Gconsttype of int X gtype list

Type constructors are identified by unique stamps instead of names to correctly
handle type redefinition. Type variables are also encoded as integers. All type
variables are assumed universally quantified. The code generated for dynamic(b : o)
simply pairs the value of a with the structured constant representing a trivial instance
of o as a gtype. For pattern matching, CAML provides a library function ge_gtype,
that takes two types and tests whether the first is more general than the second. The
code generated for pattern matching on dynamics simply calls ge_gtype with the
internal type of the dynamic, and the expected type (again, a structured constant of

* Algorithm W should also produce an annotated expression b. This extra result has been
omitted for the sake of simplicity. It is easy to reconstruct b from the principal typing
derivation built by the algorithm.
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type gtype). The sequence of tests matching the internal value against the pattern
is entered only when ge_gtype returns true. Those tests were compiled assuming
that the value being tested belongs to the expected type for the dynamic; therefore,
it would be incorrect to match the internal value first, and then the internal type.

To speed up run-time type tests, we could switch to the following representation
for internal types of dynamics:

type gtype = Gvartype of gtype option ref
| Gconsttype of int X gtype list

This representation makes it possible to perform instantiations by physical modi-
fications on the type, which is more efficient than recording them separately as a
substitution (Cardelli, 1987). These physical modifications are reversed at the end of
matching.

To make dynamic coercions even faster, we could perform partial evaluation on
the ge_gtype predicate, since its second argument is always known at compile-
time. Conventional pattern-matching compilation techniques (Peyton-Jones, 1987)
do not apply directly; however, since they consist in specializing term-matching
predicates on their first argument (the more general term), not on the second one
(the less general term). Specializing a matching predicate such as ge._gtype on
its second argument is actually just as difficult as the more general problem of
specializing a unification predicate on one of its arguments. The latter problem has
been extensively studied in the context of Prolog compilation. A popular solution
is the Warren Abstract Machine and its compilation scheme (Warren, 1983; Maier
and Warren, 1988; Ait-Kaci, 1990). Most of the techniques developed there apply
to our problem. We shall detail this issue at the end of section 3.6.

3 Non-closed types in dynamic patterns

This section presents an extension of the system presented above that makes it
possible to match dynamic values against dynamic patterns with incomplete type
information. This enables destructuring dynamics without specifying their exact type.

3.1 Presentation

With the previous system, the internal value of a dynamic can only be extracted
with a fixed type. This turns out to be insufficient in some cases. Let us continue
the print example of section 2.1. For product types, we would like to have a single
case that matches all dynamics of pairs, prints the parentheses and comma, and
recursively calls the print function to print the two components of the pair. This
cannot be done with the system above: the pattern dynamic((x,y) : « x §) will only
match dynamics whose internal type is at least as general as VaVf.a x B, definitely
not all dynamics whose internal type is a pair type. What we need is to have
type variables in dynamic patterns that are not universaily quantified, but rather
existentially quantified, so that they can be bound to the corresponding parts of the
internal type of the dynamic.
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We now give a more complete version of the print function, with explicit universal
and existential quantification for type variables in dynamic patterns. We will use it

as a running example in this section.

type fun_arg = Arg of string in
let rec print = function
dynamic(i : int) —
print_int i
| dynamic(s : string) —

print_string "\""; print_string s; print_string "\""

| de.3B.dynamic((x,y) :a x ) —

print_string "("; print(dynamic x); print_string

print(dynamic y); print_string ")"
| Jadynamic([] :a« list) —

print_string "[]"
| Jodynamic(x ::1 :o list) —

print(dynamic x); print_string " ::"; print(dynamic 1)

| Ya.dynamic(f :o0 > a) —
print_string "function x — x"
| Jo.VB.dynamic(f : a0 — ) —
print_string "function x —» 1"
| Vo.3B.dynamic(f :a —> f) —
let s = gensym() in
print_string "function "; print_string s;

print_string " — "; print(dynamic(f (Arg s)))

| dynamic(Arg(s) : fun_arg) —
print_string s

| Jodf.dynamic(f :a > f) —
print_string "function x—..."

ld —
print_string "?"

Typing existential quantification

M
@
€)]

@)

(6)

™)

®)

©)

(10)

(11)

We first show how existentially quantified type variables behave when typing the
right-hand side of the pattern-matching. An existentially quantified variable can be
bound to any actual type at run-time. Hence, at compile-time we should make no
assumptions about the type o, and treat it as an abstract type. That is, the type
o does not match any type except itself; and « must not escape the scope of the
pattern-matching that binds it: « is not allowed to be free in the type of the returned

value. As a consequence, the following two functions are rejected:

function Ja. dynamic(x :a) — x=1
function Ja. dynamic(x :a) — x

while this one is perfectly legal:
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function 3Jo. dynamic((f,x) : (¢ — int) xa) — f x

and can be applied to dynamic(succ, 2) as well as to dynamic(int_of _string, "3").

There is one important difference between existentially bound type variables and
abstract types: the actual type bound to such a type variable is available at run-time.
Given an object a whose static type contains a variable o existentially bound, it is
possible to build a dynamic from this object. The internal type of the dynamic will
be the ‘true’ type for a: its static type where the binding of « has been performed.
Cases (3) and (5) in the print function illustrate this feature: when the matching
with Jo. dynamic(x ::1 :a list) succeeds, two dynamics are created, dynamic x
with internal type the type t bound to «; and dynamic 1 with internal type T list.
This transforms a dynamic of a non-empty list into the dynamic of its head and the
dynamic of its tail, thus allowing recursion on the list.

Mixed quantifications

Existentially quantified variables can be freely mixed with universally quantified
variables inside type patterns. Then, the semantics of the matching depends on the
relative order in which these variables are quantified. This is illustrated by cases
(7) and (8) in the print example—two modest attempts at printing functional values.

In case (7), the pattern is Jo.Yf. dynamic(f : « — f). Since « is bound before S,
the variable « matches only type expressions that do not depend on f. For instance,
a dynamic with internal type Vy.y — 7y is rejected. The functions selected by the
pattern above are exactly those returning a value of type f for all . Since no such
value exists in ML, the selected functions never terminate normally, hence they are
printed as function x — L.

In case (8), the pattern is Va.3f.dynamic(f : « — f). Here, § is bound after
o; hence B can be instantiated to type expressions containing «. For instance, this
pattern matches a dynamic with type Vy.y — y list, binding f§ to o list. This
pattern catches a class of functions that operate uniformly on arguments of any type
(Wadler, 1989). These functions cannot test or destructure their arguments, but only
put them in data structures or in closures. Therefore, if we apply such a function
to a symbolic name x, and recursively print the result, we get a representation of
the function body, with x standing for the function parameter.’ (More exactly, the
printed function is extensionally equivalent to the original function, assuming there
are no side-effects.)

In the presence of mixed quantification, the rules for typing the right-hand side of
pattern-matchings outlined above have to be strengthened: it is not always correct
to treat an existentially quantified type variable as a new abstract atomic type.
Consider:

§ To avoid any confusion between the formal parameter and constants mentioned in the func-
tion body, formal parameters are represented by a local type fun_arg = Arg of string.
This ensures that the given function cannot create any terms of type fun_arg, unless it 1s
the print function itself. Fortunately, the self-application print(dynamic print) selects
case (10) of the definition.
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function Ve.3f.dynamic(f :a — ) — £(1) = f(true)

Assuming f : Ya. a — f, the expression £(1) = f(true) typechecks, since both
applications of £ have type f. Yet, when applying the function above to dynamic
(function x — x), the matching succeeds, £(1) evaluates to 1, f(true) evaluates to
true, and we end up comparing 1 with true — a run-time type violation. Since the
actual value of B is allowed to depend on «, static typechecking has to assume that
B does depend over «, and treat two occurrences of f corresponding to different
instantiations of a as incompatible.

This is achieved by considering § in the right-hand side of the matching as a
type constructor parameterized by a. (This transformation is known in logic as
Skolemization.) To avoid confusion, we shall write Sg for the type constructor
associated to the type variable f. Therefore, we now assume £ : Va. o — Sp(a) for
the typing of f£(1) = f(true), and this leads to a static type error, since the two
sides of the equal sign have incompatible types Sg(int) and Sg(bool). However,
£(1) = £(2) is well-typed, since both sides have type Sg(int). The general rule is:
for the purpose of typing the right-hand side of a pattern-matching, an existentially
quantified type variable f is replaced by the type expression Sg(xi,...,«,), where
oy ..., is the list of those type variables that are universally quantified before f in
the pattern.

Multiple dynamic matching

Type variables are quantified at the beginning of each case of the pattern-matching,
not inside each dynamic pattern. This makes no difference for universally quantified
variables (because of the type isomorphisms). However, existentially quantified vari-
ables can be shared among several dynamic patterns, expressing sharing constraints
between the internal types of several dynamics. For instance, the ‘dynamic function
application’ example of Abadi et al. (1989) can be written as:

function 3Jx.3B. (dynamic(f :a— B), dynamic(x :@)) — dynamic(f x)

This function takes a pair of two dynamics, applies the first one (which should
contain a function) to the second one, and returns the result as a dynamic. It
ensures that the type of the argument is compatible with the domain type of the
function.

Type variables can be shared among two dynamic patterns of the same matching;
but we shall prohibit sharing between patterns belonging to different matchings
(curried dynamic matching). In other terms, all cases in a pattern matching are
required to be closed: all type variables contained in dynamic patterns should be
quantified at the beginning of the corresponding matching. For instance, it is not
possible to write the dynamic apply function as it appears in Abadi et al. (1989):

function 3Jo.3B. dynamic(f :a — ) — function dynamic(x :2) —
dynamic(f x)

This violates the requirement above, since « is bound by the outermost matching,
and mentioned in the innermost one. The reasons for this restriction are mostly
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pragmatic: curried dynamic matching, in conjunction with polymorphic dynamics,
can lead to ambiguities in the bindings of types to existentially quantified type
variables. Consider:

let f = function Jua.dynamic(x : a) —
let d =dynamic(x) in function dynamic(y :a) — d
in f(dynamic [])(dynamic [1])

The first type matching succeeds with « bound to Vf.f list, but the second
matching requires « to be narrowed to int list. It is unclear whether the dynamic
d created between the two matchings should have internal type VB.f list or
int list. This problem does not arise if we require the actual type bound to « to
be determined by only one matching. This is ensured by the closedness condition
on pattern matching, without significantly reducing the expressive power of the
language: curried dynamic application can still be written as

function df — function dx — match (df,dx) with ...

at the cost of a later error detection, if df is not a dynamic of a function.

3.2 Syntax

The only syntactic change is the introduction of a sequence of quantifiers in front
of each case in pattern matchings.

Expressions:

a = ... ][ function Qu.py = ay|...| Qu.pn — a4
Annotated expressions:

b ::= ... ] function Q1.p1 = by |...| Qn.prn — by

Quantifier prefixes:

Q = €] VaQ [ Fa.Q

We will always assume that variables are renamed so that quantifier prefixes Q
never bind the same variable twice. We write BV (Q) for the set of variables bound
by prefix Q.

3.3 Typechecking

We introduce the Skolem constants at the level of types. To each type variable «,
we associate the type constructor §,, with variable arity.

T o= ... Sulrry...,Th)

Skolem constants appear only inside inferred types: they cannot appear in the type
part of dynamic patterns, nor in the internal type of dynamic values. We shall write
7, @ for types that do not contain Skolem constants. We define FSC(z), the free
Skolem constants of type t, as the set of all variables a such that the type constructor
S, appears in 7.
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1< E(x)
(36) EFi:int =i 37N
ErFx:1=>x
Qb p:7 = E; E4+Eba 1" = b FSCH"NBV(Q,) =0
(38) E F function ... Qupr— ay|... 1 7 o1
= function ...|Qrpx = bi|...
(39)El-a1:t’—>t=>b1 Etra:7"=b Efra 1, =b EVva, 1= b,
Eraia :t=b b, EF(a,ay) : 1) X 13 = (b1,b2)
( )Ei—al 11 = by E + [x+> Clos(t, FV(E))]F a; : 1= b,
41
Ellet x=a; in a; ;1= 1let x=b, in b,
Eta:t=b FV(©)NFV(E)=0
42)
E + dynamic a :dyn = dynamic(b, Clos(t, §))
QFp 1y =E QFp ;= E
@) Q0Fx:t=[x—1] 44)
OF(pLp) uxn=E @k
FV () = BV(Q) QFp:T=E 0 =S(, Q)
45) QFi:int = [] (46)
Q | dynamic(p : 7) : dyn = Clos(6(E),0)

Fig. 4. Typing rules with mixed quantification in type patterns.

The new typing rules for functions and for patterns are shown in Fig. 4. For
each case Q.p — a in a function definition, the pattern p is typed taking Q into
account. The proposition - p : ¢ = E now takes Q as an extra argument, becoming
QF p:o = E. The Q prefix is carried unchanged through all rules, and it is
used only in the rule for dynamic patterns. There, in the types of all identifiers
bound by the pattern, we replace existentially quantified type variables by the
corresponding Skolem functions. This is performed by the substitution 6 = S(e, Q),
defined inductively on Q as follows:

S(ay...on€) = id
S(a...an,Ve.Q) = S(a1...2,0,Q)
St ...om3aQ) = {ar> Su(0t1,...,0m)} 0S(@...00,Q)

The typing of the action a proceeds as previously. We simply check that the type
of a does not contain any Skolem constants corresponding to variables bound by
Q. This is ensured by the side-condition FSC(z”) N BV(Q,) = 0 in rule 38.

3.4 Evaluation

The introduction of existential type variables in dynamic patterns significantly
complicates the semantics of the language, both for dynamic creation and for
dynamic matching. The modified evaluation rules are shown in Fig. 5. The value
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47) et x > e(x) (48) e+ i > cst(i)

(49) e+ function ...| Qu.pxk — bx | ... — clos(e, ... | Qupx — by | ..))

el—b’—'>clos(e',...|Qk.pk—>bk[...) eFb S
(50) Qe F v < px 5@, T) &+ +Solve(QuT)Fa—r  k minimal
ebb b S
ek b — v ekby >0 ebb >v et+[x—ov), thby—r
82)) - (52 -
et (b1, by) — pair(v,v7) ekFlet x=05b; in by —>r
eFb>uv

(53)

e F dynamic (b : o) S dynamic(v : T(g,¢€))

(549) Qv < x> ([x+ 0], B) (55) QFi<i> (], 0)

56 OFo<pi > (e, T))  QFu<p— (e T

OF (,v)<(pp) > (e@e, [ UTY)

Ql-v<p—‘>(e, I o =Vay...a,.7 {ag...a0n} NBV(Q) =0

(57 -
Q |- dynamic(v : §) < dynamic(p :3) — (¢, TU{T =T7})

Fig. 5. Evaluation rules with mixed quantification in type patterns (error rules similar to
rules 19-25 and 30-35 have been omitted).

space used is:

Values:
v = cst() integer value
[ pair(v,v) value pair
I dynamic(v:o) dynamics value
I clos(e, Qi.pr = bi|...| Qun.pn — by) function closure
Evaluation environments:
e = [..,x—>u.. 0 (dog...00T)...]
Responses:
ro= v normal response
[ wrong type error response
Pattern-matching responses:
m = (e, I normal response
[ wrong type error response

The type schemes appearing in dynamic values are required to be closed, and not
to contain any Skolem constant.

For dynamic creation, the evaluation of dynamic(b,7) now has to transform
the static type t inferred for a before pairing it with the value of a (rule 53).
Skolem constants representing existentially bound type variables are replaced by

18 FPR 3
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the actual types bound to these variables, properly instantiated. These bindings of
type variables are recorded in the evaluation environment e. Since existential type
variables may depend upon universal variables, an existential variable is actually
bound to a type context (a type expression with holes) instead of a simple type
expression. We write type contexts as Aa; ...a,. T, where the type variables «; ... a,
are names for the holes in 7. The T function defined below is the evaluation function
on types. It maps a type expression 7 to a type expression T not containing Skolem
constants, interpreting the Skolem constants according to an environment e.

T(int,e) = int
T(dyn,e) = dyn
T(ee) = a

T(t1 X 12,€) T(t1,e) X T(13,€)
T(r1,€) > T(t2,€)
T(S,(ty...T0),e) = Ty « T(z,8),...,0, «— T(t,,€)]

ife(@) = Aoty ...00. T

T(Tl — 12, e)

[

The T function straightforwardly extends to type schemes:
T((Vety ...0n.7),) = Vay...0.T(r,e) if {o...0,} N Dom(e) =0

For dynamic matching during function application (rule 50), it is no longer
possible to perform dynamic type matching separately for each dynamic pattern,
since patterns may share existentially quantified variables. Therefore, all dynamic
type constraints are collected first, as a set of equations T; = T;, where T is the
internal type of a dynamic, and 7, a type pattern. Hence the response m returned
by the pattern-matching predicate is either wrong, or a pair (e,I') of a set e of
bindings and a set I" of equations between types. In addition, the pattern-matching
predicate is now parameterized by Q, the quantifier prefix for the matching, becoming
Qrov<p Sm (rules 54-57). The @ prefix is used in rule 57 to select a trivial
instance of the internal type of the dynamic whose free variables do not clash
with the variables bound by Q. In a second phase, the function Solve is called to
resolve the set I' of equations on types, taking then prefix @ into account. (The next
section precisely defines Solve.) When the type matching succeeds, Solve returns the
correct bindings for existentially quantified type variables. Then, the evaluation of
the right-hand side of the matching proceeds as usual.

. 3.5 Unification

The run-time matching between type patterns and internal types of dynamics
amounts to a certain kind of unification problem, called unification under a pre-
fix. This problem is studied extensively by Miller (1991), though in the very general
setting of higher-order unification, while we only deal with first-order terms here.
The first-order problem also appears in Miller (1989). In our case, the problem
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consists in checking the validity of propositions of the format

q1d ... qntn.(T = TI)

where the g, are either universal or existential quantifiers, and t, 7’ are first-order
terms of a free algebra. Unification under mixed prefix generalizes the well-known
matching problem (‘given two terms 7 and 7/, find a substitution 8 such that
6(t) = 7 °) and the unification problem (‘given two terms 7 and 7/, find a substitution
0 such that 8(r) = 0(z)’): writing «, ...a, for the variables of 7 and f;... g, for the
variables of 7, the matching problem is equivalent to

VB ... ¥Bp3ay ... Jan(z = 7)),
and the unification problem to
3By ... 3By .. Fan(t = 7).

For the purpose of dynamic matching, we not only want to know whether the
proposition Q.(t = 7’) holds (where Q is a quantifier prefix), but also to find minimal
assignments for the variables existentially quantified in Q that satisfy the proposition.
From now on, we shall treat variables universally bound in Q as constants. That is,
we add these variables as term constructors with arity zero to the initial signature
(int and dyn of arity zero, — and x of arity two).

Definition 1
A substitution 8 is a Q-substitution if for all variables a, all constants § contained
in the term (x) are bound before « in prefix Q.

Definition 2
A substitution @ is a Q-unifier of 7 and 7' if 6(r) = 8(z') and 6 is a Q-substitution.
If such a substitution exists, T and 7’ are said to be Q-unifiable.

Clearly, the formula Q.(t = 7') is valid if and only if t and 7" are Q-unifiable. The
following proposition gives a simple way to check whether two terms are Q-unifiable.

Proposition 6
Two terms t and 1’ are Q-unifiable if and only if v and 7’ are unifiable, and their
most general unifier is a Q-substitution.

Proof

The ‘if” part is obvious. For the ‘only if’ part, let 8 be a Q-unifier of t and 7. Since
0(r) = 8(7'), the terms 7 and t’ are unifiable. Let px be their most general unifier.
There exists a substitution ¢ such that 8 = ¢ o u. Hence, for all variables o, the
constants contained in u(x) are a subset of those contained in 6(x). Since 0 is a
Q-substitution, all constants in u(x) are also bound before « in Q. It follows that u
is a Q-substitution. []

Proposition 6 shows that if two terms are Q-unifiable, then they possess a most
general Q-unifier. Moreover, we immediately get an algorithm to compute the most
general Q-unifier of T and 7’: compute the most general unifier of t and 7, using
e.g. Robinson’s algorithm, and check that it is a Q-substitution.

18-2
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We can now define the function Solve used in evaluation rule 50. It takes a
prefix Q and a set I' of equations 1| = 1i,...,7, = 7,,. The types 1,...7, are trivial
instances of the internal types of dynamic values. The types t}...1), are the type
parts of dynamic patterns. Since the prefix Q binds the variables in 7} ..., only, we
first complete Q to bind the variables in 7, ...7, also. Let «; ..., be the variables
free in 7;...1,. We take Q' = Q.3a, ... Ja,. This existential quantification means that
the variables «;...a, can be freely instantiated during type matching, since they
are universally quantified in the internal types of dynamic values. Because of the
renaming constraint in rule 46, the variables «; ... a, are not already bound by Q.

Let u be the most general Q'-unifier of ty X ... x 17, and 7} x ... X 7;,. The
substitution u is transformed into an evaluation environment, by adding bindings
for the variables that are existentially quantified in Q. More precisely, we take
Solve(Q,T) to be s(u, €, Q), where s is defined as follows:

S(ﬂ9al -~-an,€) = []
s(u, 01 ... 0, Vor.0) = s(u, 0 ... on0, Q)
s(u, 0 ... 0, 30.Q) = o> (Aay...o.pu(0)] + s(u, o ... o0, Q)

The transformation s is the run-time counterpart of the Skolemization function §
used for static typing in section 3.3. It turns the substitution p into an evaluation
environment that reflects the instantiations performed on the existentially quantified
variables during the type matching process.

3.6 Compilation

The semantics given above are quite complicated, so it is no surprise their imple-
mentation turns out to be delicate. The main difficulty is unification under a prefix
Q. Efficient algorithms are available for the regular unification phase. It remains
to quickly check that the resulting substitution is a Q-substitution. This check can
actually be integrated with the occur check, at little extra cost. The idea is to reflect
dependencies by associating ranks (integers) to type variables. Variables bound by Q
are statically given ranks 0,...,n from left to right. Other variables (i.e. those in the
internal types of dynamics) are considered bound at the end of Q, and are therefore
given rank co. When identifying two variables « and f, the resulting variable is given
rank min(rank(a),rank(B)). Then, binding an existential variable « to a constructed
type t is legal if and only if:

1. (occur check) a does not occur in ©
2. (rank check) t does not contain any universal type variable whose rank is
greater than the rank of a.

As in the case of simple dynamics (section 2.9), the easiest way to implement
type matching is to call at run-time a unification primitive, with the type pattern
(annotated by rank information) as a constant argument. Partial evaluation of the
unification primitive on the type pattern is desirable, not only to speed up type
matching, but also to provide a cleaner handling of run-time type environments:
after specialization, the bindings for the existential type variables can be recorded
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on the stack or in registers, as if they were regular variables; without specialization,
the unification primitive returns a data structure containing these bindings, and less
efficient code is generated to access these bindings.

Specializing unification on one of its arguments is not much harder than spe-
cializing matching on its second argument (section 2.9). The techniques developed
for the Warren Abstract Machine directly apply (Warren, 1983; Maier and Warren,
1988; Ait-Kaci, 1990), with the exception of the extra rank check. For instance, the
WAM does not perform occur check for the initial binding of an existential variable,
while we have to check ranks even in this case. Another difference is that back-
tracking is always ‘shallow’, in the WAM terminology, since ML pattern-matching
is deterministic. This simplifies the handling of the trail.

Following the ideas above, the first author has integrated a prototype unification
compiler in the CAML system. The CAML pattern-matching compiler was modified
to implement unification semantics as well as matching semantics, depending on flags
put on the patterns. This low-level mechanism allows performing unification on some
parts of a data structure, and regular pattern-matching on the other parts. Then,
dynamic patterns dynamic(p : 1) are simply expanded after type inference into
product patterns (p, repr(z)), where repr(t) is the pattern that matches all internal
representations of types matching 1. The pattern repr(t) is marked to use unification
semantics.

The only missing feature from what we have described above was rank check. At
that time, we considered only dynamic patterns where all universal type variables
come first, followed by all existential variables. Rank check could have been added
with little modifications.

Dynamic matching benefited from all optimizations performed by the pattern-
matching compiler, including factorization of tests between cases, and utilization
of typing informations. As a consequence, dynamic matching was quite efficient.
However, we agreed that this efficiency was not worth the extra complication of the
compiler, and this prototype was not merged with the CAML release.

4 Assessment

This section discusses the practical usefulness of the two propositions above, drawing
from our experience with the CAML system.

4.1 Structured input-output

The CAML system provides the two library functions extern : extern_channel X
dyn — unit and intern : intern_channel — dyn, to efficiently write and read data
structures on persistent storage, preserving sharing inside the structure.9 A typical

Y The current implementation of extern does not handle functional values, because
the CAML compiler generates position-dependent machine code. Even with position-
independent code, the persistent objects produced would not be portable across architec-
tures. However, there is no problem with defining extern over functions in a byte-coded
implementation (Cardelli, 1986).
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use is, for a separate compiler, to communicate relocation information with its linker,
and to save and reload symbol tables representing compiled module interfaces.

The ML type system uses name equivalence for concrete data types. This causes
some difficulties with dynamics written to persistent storage: the program reading
a dynamic can define some data types with different names than the program
that wrote the dynamic, or define data types with the same name, but different
structures. There are two solutions to this problem. The first one is to revert to
structural equivalence for dynamic type matching. That is, the data type definitions
are expanded both in dynamic values and in dynamic type patterns, and structural
equivalence is used during matching. The CAML implementation of intern/extern
takes another approach: when writing a dynamic to persistent storage, extern also
writes the definitions of all concrete data types whose names appear in the type
part of the dynamic. When the object is read back, intern checks that the reader
program defines data types with the same names and structurally similar definitions,
and raises an exception if this is not the case. The latter implementation allows for
faster dynamic coercion than the former, but it requires information on data type
definitions to be available at run-time.

In conjunction with character-based communication channels such as Unix sock-
ets, the intern and extern primitives provide a simple implementation of remote
procedure calls (RPC). Here is a sample RPC server for the monomorphic function
f:7 -1

while true do
let (inchan,outchan) = accept_connection(...) in
match intern inchan with
dynamic(arg : ) — extern outchan (dynamic (f arg))
done

The corresponding client stub function is:

let f arg =
let (inchan,outchan) = establish_connection(...) in
extern outchan (dynamic arg);
match intern inchan with
dynamic(res :7”) — res

The first proposed system supports only remote calls to a monomorphic function.
Existential variables, as in the second system, are required to provide a remote
interface to a polymorphic function. For instance, here is an RPC server for a
sorting function:

while true do
let (inchan,outchan) = accept_connection(...) in
match intern inchan with
Jo. dynamic(order,arg : (x X a — bool) X a list) —
extern outchan (dynamic(sort order arg))
done
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4.2 Interfacing with system functions

Dynamics makes it possible to provide an interface with a number of system
functions that cannot be given a static type in ML. Without dynamics, these
functions could not be made available to the user in a type-safe way. In the CAML
system, these functions include:

e eval _syntax : ML — dym, to typecheck, compile, and evaluate a piece of
abstract ML syntax (type ML). This makes it easy to providle CAML as an
embedded language inside a program. For instance, the Coq system (Dowek
et al, 1991), a proof development environment based on the Calculus of
Constructions, provides the ability to interactively define proof tactics written
in CAML, and to apply them on the fly. The CAML macro facility (Weis et
al., 1990, Chapter 18) also makes use of eval_syntax, since a macro body is
an arbitrary CAML expression whose evaluation leads to the substituted text.

e MLquote : dyn — ML, which is one of the constructors of the data type
representing abstract syntax trees. This constructor embeds constants of arbi-
trary types inside syntax trees. These constants are produced by compile-time
evaluations (e.g. macro expansion and constant folding).

e print :dyn — unit, to print a dynamic value in ML syntax. CAML cannot
provide a polymorphic printing function with type o — unit, due to some
optimizations in the data representation algorithm, that make it impossible to
decipher the representation of a data without knowing its type.

In these examples, the returned dynamics are generally coerced to fully known
types, usually monomorphic. Therefore, we do not see the need for existential type
variables there, and the simpler dynamic system presented in section 2 seems largely
sufficient. In practice, the restriction encountered first is not that dynamics can only
be coerced to closed types, but that dynamics can only be created with closed types.
This prevents the print function from being called by a polymorphic function to
print its polymorphic argument, for instance. This is often needed for debugging
purposes.

4.3 Ad hoc polymorphism

ML polymorphism is uniform: polymorphic functions operate in the same way on
arguments of several types. In contrast, ad hoc polymorphism consists in having
generic functions that accept arguments of several types, but operate differently
on objects of different types. Prime examples are the print function or the equal
predicate: different algorithms are used to print or compare integers, strings, lists,
or references. Several extensions of functional languages have been proposed, that
support the definition of such generic functions, including type classes (Wadler and
Blott, 1989) and run-time overloading (Rouaix, 1990).

Dynamics provide a naive, but easy to understand, way to define generic functions.
As demonstrated above in the print example, dynamics permit joining predefined
functions on atomic types (print_int, print_string) and functions on data struc-
tures (pairs, lists), that recurse on the components of the structures—the main
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operation in defining generic functions. Another important aspect of generic func-
tions is extensibility: whenever a new data type is defined, these functions should be
extended to deal with objects of the new type as well. This can also be supported in
the dynamic implementation, by keeping in a reference a list of functions with type
dyn — unit, to be applied until one succeeds whenever none of the standard cases

apply.
exception Cannot_print;;
let printers = ref ([]:(dyn — unit) list);;
type fun.arg = Arg of string in
let rec print = function

dynamic(i :int) — print_int i

| d — 1let rec try.print = function
f :irest » try f d with Cannot_print — try_print rest
[ 1] — print_string "7"

in try_print !printers;;
let new_printer f =
printers := f ::!printers;;

For instance, assuming that the type o foo = A of a | B of a X a foo has been
defined, we could add a printer for type foo as follows:

new_printer (function
Jo. dynamic(A : & foo) — print_string "A"
| Jo. dynamic(B(x,y) : @ foo) —
print_string "B("; print (dynamic x); print_string ",";
print (dynamic y); print_string ")"
| x — raise Cannot_print);;

It should be pointed out that this implementation of ad hoc generic functions
with dynamics has major drawbacks. First, because of the restrictions on dynamic
creation, polymorphic functions that need to call print have to take dynamics
themselves. This is not too serious for print, but would be prohibitive for heavily
used functions such as equal: all functions on sets, association lists, ..., would
have to operate on dynamics, thus dramatically reducing accuracy of static typing
and efficiency of compiled code. Moreover, we cannot statically check that print is
never applied to objects that have no printing method defined. This important class
of type errors will only be detected at run-time. Finally, such an implementation of
generic functions is rather inefficient, since dynamics are built and coerced at each
recursive call.

Type classes and run-time overloading techniques seem more realistic in these re-
spects. They statically guarantee that generic functions can only be applied to objects
on which they are defined. They perform type matching at compile-time whenever
possible. And run-time type information can usually be arranged as dictionaries of
methods, allowing faster method selection than dynamic type matching.
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5 Related work

A number of recent studies have considered languages with dynamic types. Some of
these studies deal with the automatic insertion of dynamic creations and coercions
that turn ‘ambivalent’ programs (programs that cannot be recognized type-safe nor
type-erroneous at compile time) into equivalent programs with run-time type checks
(Thatte, 1990; Henglein, 1992). One motivation is to integrate more transparently
dynamically-typed and statically-typed objects; another motivation is the efficient
compilation of programs written, in dynamically-typed languages such as Scheme.
In our proposal, we insist on keeping the coercions to and from dynamics explicit
in the source code and under the programmer’s responsibility: serious programming
errors can go unnoticed at compile-time if run-time type checks are automatically
inserted, therefore reducing the robustness of programs.

The work on dynamics most closely related to ours is that of Abadi et al. (1992).
Their first paper Abadi et al. (1992) studies a simply-typed calculus enriched by
objects with dynamic type. Dynamics can be coerced to partially unknown types:
type patterns in the dynamic coercion construct can contain ‘pattern variables’, that
correspond in our second system to existentially-quantified variables. Since there is
no polymorphism, type matching is straightforward.

Abadi et al. (1992) have recently extended this system to polymorphic types.
The main difference between their latest system and our second system is in the
format of type patterns in dynamic coercions. Their approach to polymorphic type
matching is to allow higher-order pattern variables into type patterns: variables
that range over type contexts. For instance, the type pattern Vo.3f.a — f§ in our
second system corresponds, in their system, to the pattern Voa.a — F[o], where F
is a pattern variable ranging over operators from types to types. Their algebra of
type patterns is strictly more expressive than ours: mixed quantification introduces
a linear ordering on the dependencies between existential and universal variables,
while pattern variables can express arbitrary dependencies; also, their patterns can
select polymorphic functions (e.g. functions that can be applied to integer lists
and boolean lists), and these patterns have no equivalent in our second system.
On the other hand, mixed quantification has a simple interpretation in first-order
logic, and therefore possesses a simple and efficient type matching algorithm; while
some ad-hoc restrictions must be put on pattern variables to keep type matching
manageable.

6 Conclusions

We have presented two extensions of ML with dynamic objects. The simpler one
has proved quite successful for interfacing user code with some important system
functions in a type-safe way. Its implementation cost remains moderate. The other
extension, which generalizes the dynamic patterns to include both universal and
existential variables in the type part, makes it possible to work on dynamics without
coercing them to fixed types. Its semantics are more delicate, and it is considerably
harder to implement. We have presented one promising application of this extension:
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the use of dynamics for data persistence or interprocess communication. The first
proposed system does not allow to operate on persistent data in a generic way,
or to perform remote calls to polymorphic functions; the second system supports
these operations. More practical experience is needed to determine how expressive
a polymorphic type system with dynamics needs to be in order to correctly support
these applications.
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