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Abstract
A three-wavelength coherent-modulation-imaging (CMI) technique is proposed to simultaneously measure the
fundamental, second and third harmonics of a laser driver in one snapshot. Laser beams at three wavelengths (1053 nm,
526.5 nm and 351 nm) were simultaneously incident on a random phase plate to generate hybrid diffraction patterns, and
a modified CMI algorithm was adopted to reconstruct the complex amplitude of each wavelength from one diffraction
intensity frame. The validity of this proposed technique was verified using both numerical simulation and experimental
analyses. Compared to commonly used measurement methods, this proposed method has several advantages, including
a compact structure, convenient operation and high accuracy.
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1. Introduction

High-power laser facilities have been established for re-
search on inertial confinement fusion (ICF), high-energy-
density (HED) physics, laboratory-scale astrophysics,
etc. [1–4]. Typical examples of such facilities include
the National Ignition Facility (NIF) in the USA[5–7], the
ShenGuang-II (SG-II) Facility in China[8, 9], and the Laser
Megajoule Facility (LMJ) in France[10, 11]. The basic
principle of most of the studies performed at high-power
laser facilities is to simultaneously focus many amplified
high-energy laser pulses onto a small target to achieve
extremely high pressure and temperature, comparable to
that inside a star, to investigate nuclear fusion and other
high-energy-physics processes. To achieve a high energy
injection ratio, an amplified pulse laser beam at 1053 nm
should be converted to the third harmonic (351 nm) in the
final optical assembly (FOA)[12, 13] before being focused
onto a target. A frequency converter based on sum-
frequency generation is composed of one doubler and one
tripler, and thus the excitation laser beam always includes
the fundamental frequency (1053 nm), and the second
(526.5 nm) and third (351 nm) harmonic frequencies. The
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energy and quality of the converted third-harmonic laser
beam of the high-power laser facility are the two most
important parameters for all laser-physics experiments, and
accordingly measurements on them are routine work in the
operation and maintenance of the laser facility. Though
the fundamental and second-harmonic laser beams do not
directly take part in physical experiments, by measuring
the complex amplitude of the fundamental, second- and
third-harmonic beams simultaneously, we can accurately
analyze the energy distribution, the frequency conversion
efficiency, the characteristics of nonlinear crystals, and other
important parameters of laser facility. However, because
of the very limited inner space of the laser drivers and the
characteristics of the laser beams, it has been previously
impossible to simultaneously measure all these three laser
beams using conventional techniques, and only the third
harmonic has been typically measured in practice. An
intensity imaging method was commonly used to measure
the near-field and far-field intensity distributions of high-
power laser beams[14]. However, because of the limited
dynamic range of the detector, only the central lobe of focal
spot can be measured in most cases. In theory, measurement
of the phase of laser beams can be carried out with an
interferometer or Shack–Hartmann sensor; however, because
of their disadvantages in complex optical configurations,
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stringent requirements on working environment, and limited
number of sub-apertures, it has been very difficult to use
interferometers or Shack–Hartmann sensors to measure
the phase of high-power laser beams, which consist of a
single laser pulse propagating inside a tube with a time
duration of several nanoseconds[14, 15]. Coherent diffraction
imaging (CDI) was developed mainly for imaging with
X-rays and other short wavelengths to address the problem of
the lack of high-quality optics in this spectral regime[16–18].
CDI can directly reconstruct the amplitude and phase of
the radiation field from a diffraction intensity pattern via
an iterative algorithm without the need for high-quality
optics including lenses. It has outstanding advantages,
including a compact optical structure and simple operation.
Several investigations have been performed to demonstrate
that CDI is a very promising technique for online laser
beam diagnosis in high-power laser facilities[19, 20]. As
a recently developed CDI technique, coherent modulation
imaging (CMI)[21, 22] facilitates accurate measurement of
the intensity and phase distributions of a roughly convergent
radiation beam by simply positioning a random phase plate
in the vicinity of the focal region, followed by the acquisition
of a single frame of diffraction patterns. The advantages of
CMI, which include an extremely compact structure and
single exposure measurement, make it an ideal tool for
online high-power laser beam diagnosis. In this regard,
the results of several studies have demonstrated its practical
merits[23, 24]. Although the original CMI technique can only
measure the complex amplitude of a single wavelength,
we have previously demonstrated that a light field of two
wavelengths can also be accurately measured using this
approach by utilizing a multi-mode algorithm to perform
the reconstruction[25]. In this report, it is shown that by
replacing the binary-value phase plate with a multi-value
plate, a hybrid laser beam consisting of the wavelengths
1053 nm, 526.5 nm and 351 nm can be measured via the
same approach. This is an ideal technique to analyze
high-power laser beams behind the FOAs of the laser
drivers. The validity of this proposed online diagnosis
method was verified using both numerical simulations and
experimental measurements. Proof-of-principle experiments
were performed using a mini laser driver platform consisting
of one pulsed-laser operating at 1053 nm, one doubler,
and one tripler. It was shown that the spatial resolution
and measurement accuracy can approach 125 µm and 0.2
wavelengths, respectively, for 1053 nm.

2. Methods

2.1. Phase modulator design

Figure 1(a) is a schematic representation of the principle
of CMI, where the incident light beam illuminates a phase

Figure 1. (a) Diagram of the CMI layout. The incident wave illuminates
the phase modulator, which diffracts the observed light field into a speckle
pattern. The speckle pattern and an iterative algorithm are used to retrieve
the complex amplitude of the incident wave. (b) The designed three-step
random phase plate. (c) One-dimensional diagram of (b).

modulator, and the exiting field from the modulator forms
diffraction patterns on a detector. As the key component
of CMI, the phase modulator determines the convergence
speed of the iterative computation and the final reconstruc-
tion accuracy. To obtain fully developed speckle patterns
on the detector plane, the phase modulator of the CMI
should be a highly scattering element for each wavelength.
For single-wavelength CMI, the phase modulator is usually
fabricated by constructing many tiny squares on a silica
glass plate using an optical etching technique. The tiny
light-transmitting squares have a phase redundancy of π .
When all these squares are randomly distributed on the glass
surface, the phase modulator will act as a binary-valued
strongly scattering pure phase object. To measure the hybrid
light field behind the FOAs, the phase modulator should
be strongly scattering for each wavelength, and thus the
structure of the modulator should be specially designed.

Figure 1(b) shows a three-step random phase plate, where
the tiny square has two different heights, h1 and h2. Then for
light with a wavelength of λ, two different phase redundan-
cies of ϕ1 = 2π [h1(n − 1)/λ] and ϕ2 = 2π [h2(n − 1)/λ]
will be generated. The substrate material of the random
phase plate used in this study is fused silica with a refractive
index of 1.4498 at 1053 nm; thus, h1 and h2 are 1171 nm and
585.5 nm, respectively. Therefore, ϕ1 will take the values
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Figure 2. Flowchart of the reconstruction process.

of π , 2π and 3π for wavelengths of 1053 nm, 526.5 nm
and 351 nm, respectively, while ϕ2 will take the values
π/2, π and 3π/2 for wavelengths of 1053 nm, 526.5 nm
and 351 nm, respectively. Therefore, for 526.5 nm the
phase modulator is still a binary-valued phase object with
a phase redundancy of 0 and π . The phase modulator
generates phase redundancies of [0, π/2, π] for 1053 nm
and [0, 3π/2, 3π ] for 351 nm.

2.2. Algorithm

Figure 2 shows the flowchart of three-wavelength CMI,
where Ek,n(rs), Ek,n(rM ) and Ek,n(rD) are the complex
amplitudes of the kth wavelength in the nth iteration on
the support plane, the modulator plane and the detector
plane, respectively. Iterative reconstruction starts after three
random initial guesses are proposed for the three different
light fields incident on the modulator plane, and the iteration
continues with the following steps until the reconstruction
error is smaller than a predetermined value.

(1) The kth (k = 1, 2, 3) incident wave on the modulator
is multiplied by the transmission function of the modulator
Tk , Ek,n(rM ) = Ek,n(rm) · Tk , where rm and rM represent
the plane before and after the modulator, respectively. Then
Ek,n(rM ) is propagated to the detector plane Ek,n(rD) =

={Ek,n(rM )|L2}, where the operator ={Ek,n(rM )|L2} de-
notes numerical wave propagation over a distance L2.

(2) The difference between the recorded diffraction pattern
I and the reconstructed wave at the diffraction plane is
calculated using Equation (1). The reconstruction process
will stop if the error is smaller than a predetermined target
value.

Errorn =

∑
u

∣∣∣∑3
k=1 |Ek,n(rD)|

2
− I

∣∣∣2∑
u I 2 , (1)

where
∑

u represents summation over the entire diffraction
plane.

(3) Application of modulus constraints with the recording
pattern I at the detector plane.

Êk,n(rD) =

√
I Ek,n(rD)√∑K

k=1 |Ek,n(rD)|2
. (2)

Compared to single-wavelength CMI, we adopt a different
Fourier constraint where the modulus of each wavelength is
scaled by its real energy while its own phase is preserved.
The denominator of Equation (2) represents the intensity
summation of all wavelengths.

(4) Saturation processing is applied using Equation (3) for
each wavelength, where S denotes the saturated region in
the diffraction pattern I , and the iterative calculation value is
preserved before applying the Fourier constraint in this area.
In the unsaturated region, the updated value after application
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of the Fourier constraint is used.

Ê ′k,n(rD) =

{
Ek,n(rD), rD ∈ S,
Êk,n(rD), rD /∈ S.

(3)

(5) Backpropagation of the light field of each wavelength
to the modulator plane Êk,n(rM ) = =

−1
{Ê ′k,n(rD) | L2} and

the removal of the effect of the modulator.

Êk,n(rm) = Ek,n(rM )+ α
T ∗k
|Tk |2max

[Êk,n(rM )− Ek,n(rM )],

(4)
where ∗ denotes the complex conjugate and α is a parameter
which can be adjusted to alter the step size of the update;
α = 1 was used for all the presented results.

(6) Backpropagation to the support plane Êk,n(rS) =

=
−1
{Êk,n(rm) | L1} and the application of the support

constraint.

Ê ′k,n(rS) = HD(k,n) Êk,n(rS)

+ γ (1− HD(k,n))[Êk,n(rS)− Ek,n(rS)]. (5)

The support function HD(k,n) is a hole support and its
diameter D(k, n) increases with the iteration time until the
designed maximum value is reached. HD(k,n) = 1 inside the
hole and the value is zero outside the hole support. γ varies
from 0 to 1 as an update weight value.

(7) Propagation of Ê ′k,n(rS) to the modulator plane and
repetition of the next iteration reconstruction until Errorn is
reduced to a threshold value.

3. Simulations and experiments

3.1. Simulation

The feasibility of our proposed method was initially exam-
ined using numerical simulations. Figure 3 is a schematic
representation of the light path used for the simulation,
where a collimated laser beam containing the three wave-
lengths 1053 nm, 526.5 nm and 351 nm is focused by an
achromatic lens prior to illuminating the modulator. The
diameter of the collimated laser beam is 6 mm, and the
focal length f of the lens is 150 mm. The distances from
the modulator to the focal spot and the detector are 30 mm
and 100 mm, respectively. The pixel size of the detector is
assumed to be 9 µm × 9 µm and the pixel number of the
detector is assumed to be 2048× 2048.

Figure 4 shows the three incident beams on the modulator
plane, where the panels (a)–(c) display the amplitude, and
panels (d)–(f) display the corresponding phase. From left
to right, the images correspond to 351 nm, 526.5 nm, and
1053 nm, respectively.

Figure 5 shows the transmitting phase structures of the
modulator corresponding to the three different wavelengths

Figure 3. Beam path diagram of the simulation. The incident wave consists
of frequencies 1ω, 2ω and 3ω simultaneously.

Figure 4. (a)–(c) Amplitudes and (d)–(f) phases of these three illumination
beams incident on the modulator plane for (a), (d) 351 nm, (b), (e) 526.5 nm
and (c), (f) 1053 nm.

Figure 5. Phase delay of the modulator for (a) 351 nm, (b) 526.5 nm and
(c) 1053 nm.

1053 nm, 526.5 nm and 351 nm. These three-phase struc-
tures are obtained by generating a random matrix with
equally distributed values between zero and three, after
rounding them to integers of 0, 1 and 2, then multiplying the
matrix by π/4, π/2 and 3π/4, respectively. The size of the
minimum square represented by a white square with dashed
lines in Figure 5(b) is 9 µm× 9 µm.

By multiplying the complex amplitudes shown in Figure 4
with their corresponding phase modulators and propagating
them to the detector plane, the diffraction intensity can be
calculated for each wavelength. Figures 6(a)–6(c) are the
computed diffraction patterns for the wavelengths 351 nm,
526.5 nm and 1053 nm, respectively. Figure 6(d) is the sum-
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Figure 6. Simulated diffraction patterns of (a) 351 nm, (b) 526.5 nm, (c)
1053 nm and (d) their summation, which is a hybrid diffraction pattern of
the three wavelengths that provide simultaneous illumination. (e) Change in
the corresponding reconstruction error for each wavelength throughout the
iteration process.

mation of the three computed diffraction intensity patterns,
which is the hybrid diffraction pattern recorded in practical
experiments. The zoomed-in images of the central regions
inside the dashed rectangles represent the speckle patterns as
insets in the top-right corners.

Using the aforementioned reconstruction algorithm, the
complex amplitudes of the three wavelengths can be iter-
atively determined, and their corresponding reconstructed
accuracy can be calculated using Equation (6).

Errork,n =

∑
u ||Ek,n(rD)|

2
− Ik |

2∑
u I 2

k
. (6)

The change in the corresponding reconstruction error
for each wavelength throughout the iteration process is
represented in Figure 6(e). Based on this result, it is deter-
mined that the residual error becomes smaller than 1% for
all three wavelengths within 120 iterations, and eventually
decreases to 0.5% after 500 iterations. Visualization 1
available at https://doi.org/10.1017/hpl.2019.26 shows the
dynamic changes of all these reconstructions. These sim-
ulation results clearly demonstrate the feasibility of the
proposed method.

To further demonstrate the feasibility and reliability of
our method, we added another numerical simulation with
different lens aberrations for each wavelength. Figure 7
shows these three illuminations on the modulator plane in
the case of different lens aberrations, which are obviously
different from each other. In addition, to demonstrate that
this method can also provide additional information about
three different fields, a phase plate etched with the two
letters ‘SG’ was put into the incident beams, and thus the

Figure 7. Three illuminations incident on the modulator plane for (a)
351 nm, (b) 526.5 nm, (c) 1053 nm with different lens aberrations.

Figure 8. (A) Beam path diagram of the second simulation. The wavefronts
behind the ‘SG’ phase plate for (a) 351 nm, (b) 526.5 nm and (c) 1053 nm.
(d)–(f) plot their phase delay profile along the white line in (a)–(c),
respectively. (g)–(i) display the amplitude of the three incident beams on
the modulator plane.

wavefronts of the plane waves were changed after passing
through the phase plate as shown in Figure 8(A).

Figures 8(a)–8(c) show the wavefronts after the ‘SG’
phase plate with wavelengths of 351 nm, 526.5 nm and
1053 nm, respectively. To intuitively illustrate the phase
difference caused by the ‘SG’ phase plate, Figures 8(d)–
8(f) plot their phase delay profile along the white line in
Figures 8(a)–8(c), respectively. The values are 4.267, 2.751
and 1.342 in radians. It can be seen that there is a phase rela-
tionship which nearly equals double and third relationships
according to the wavelength and the refractive index. Now
we use this wave as the incident wave instead of plane waves
and the lens has different aberrations for each wavelength, as
mentioned above. The distance between the ‘SG’ phase plate
and the convergent lens is 10 mm. The other parameters are
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Figure 9. (a)–(c) Reconstructed modulus and (d)–(f) phase on the
modulator plane for 351 nm, 526.5 nm and 1053 nm, respectively. (g)–(i)
show the wavefronts behind the ‘SG’ phase plate. (j)–(l) plot the
reconstructed phase delay profile along the white line in (g)–(i), respectively.

consistent with the previous simulation. Figures 8(g)–8(i)
show the amplitude of the three incident beams on the
modulator plane.

Using our proposed method, the reconstructed results are
shown in Figure 9. Panels (a)–(c) and (d)–(f) show the re-
constructed modulus and phase distribution on the modulator
plane, respectively; from left to right, they are for 351 nm,
526.5 nm and 1053 nm, respectively. By propagating these
waves back to the convergent lens, removing the effect of
this lens, and then back propagating to the ‘SG’ phase
plate plane, we can obtain the wavefronts behind it, which
are shown in Figures 9(g)–9(i). Figures 9(j)–9(l) plot the
reconstructed phase delay profile along the white line in Fig-
ures 9(g)–9(i), showing the reconstructed phase delay values
are 4.249, 2.745 and 1.337 in radians, which are consistent
with the input values. These simulation results demonstrate
the feasibility of the proposed method and simultaneously
show that it can provide additional information, such as the
phase relationship of the three different fields.

3.2. Experiments

Our experimental setup shown in Figure 10 is a mini-scale
FOA of the SG-II high-power laser arrangement. The laser

Figure 10. Experimental setup for measuring the fundamental, second and
third harmonics in one snapshot.

Figure 11. (a)–(c) Reconstructed amplitude and (d)–(f) phase of the
random phase plate for 351 nm, 526.5 nm and 1053 nm, respectively, using
ptychography.

beam of 1053 nm was incident on frequency conversion
optics composed of a KDP type-I doubler and a KDP
type-II tripler. After the KDP type-II tripler, the fundamental
(1053 nm), second (526.5 nm) and third harmonic (351 nm)
frequencies exist simultaneously. This hybrid laser beam
from the tripler passes through an achromatic lens with
a focal length of 250 mm, and is then incident on the
modulator placed 56 mm behind the focus spot. A charge-
coupled-device camera (Allied Vision Technology GE4000,
4008× 2067 pixels, pitch 9 µm) was placed downstream of
the modulator to record the diffraction patterns at a distance
of 88.1 mm behind the phase plate.

The transmission functions of the modulator for each
wavelength were characterized by ePIE (extended ptycho-
graphic iterative engine)[26] in advance, and a position-
ing error correction algorithm[27, 28] was used to improve
the measurement accuracy. Figures 11(a)–11(c) display
the reconstructed transmission amplitudes of the random
phase plate for 351 nm, 526.5 nm and 1053 nm, respectively.
Figures 11(d)–11(f) show the corresponding phase retarda-
tions.

Figure 12(A) represents the recorded diffraction pattern,
where the inset in the top-right corner is the zoomed-in
region of the diffraction pattern identified with a white
rectangle, in order to highlight the speckle pattern. Both
the amplitude and phase of the three wavelengths of the
hybrid laser beam can be simultaneously reconstructed using
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Figure 12. Recorded diffraction pattern (A) and reconstructed results of the
three harmonics of the random phase plate with our proposed method. (a1)–
(c1) Amplitude and (a2)–(c2) phase of 351 nm, 526.5 nm and 1053 nm,
respectively. Wavefronts before the convergent lens for (a3) 351 nm, (b3)
526.5 nm and (c3) 1053 nm.

our proposed algorithm based on this recorded diffraction
pattern. Figures 12(a1)–12(c1) represent the reconstructed
modulus for 351 nm, 526.5 nm and 1053 nm, respectively,
and Figures 12(a2)–12(c2) represent their corresponding
phase. In the proof-of-principle experiment, laser beams
at three wavelengths passing a hole were used to verify
the feasibility of our method; the fine rings in the re-
constructed intensity in Figures 12(a1)–12(c1) come from
the edge diffraction of the hole. By propagating the re-
constructed complex amplitude of three wavelengths from
the random phase plate to the back plane of the lens in
Figure 10, and subtracting the phase caused by the lens
from them, we can get their wavefronts before the lens in
Figures 12(a3)–12(c3), which correspond to wavelengths of
351 nm, 526.5 nm and 1053 nm, respectively. The peak-to-
valley (PV) value of Figures 12(a3)–12(c3) are 0.1045λ,
0.0916λ and 0.0628λ, respectively.

To examine the measurement accuracy of the aforemen-
tioned experiment, several experiments were performed to
separately measure the complex amplitude of each wave-
length using the conventional CMI method. By the intro-
duction of an appropriate filter behind the tripler to allow
only one wavelength to form diffraction patterns on the
detector at a time, the diffraction patterns associated with
the three wavelengths can be separately recorded. Subse-
quently, the conventional single-wavelength CMI algorithm
can be utilized to reconstruct their complex amplitudes. The
reconstructions are shown in Figure 13, where panels (a1)–
(c1) represent the diffraction patterns recorded for the three
wavelengths, and panels (a2)–(c2) and (a3)–(c3) correspond
to the modulus and phase on the random phase plate for each
wavelength, respectively. Compared to the results shown in
Figure 12, they are highly consistent with each other.

Figure 13. Single-wavelength CMI results. (a1)–(c1) Recorded diffraction
pattern associated with each wavelength. (a2)–(c2) Amplitude and (a3)–(c3)
phase for 351 nm, 526.5 nm and 1053 nm, respectively. Wavefronts before
the convergent lens for (a4) 351 nm, (b4) 526.5 nm and (c4) 1053 nm.

Figures 13(a4)–13(c4) display the wavefronts before the
convergent lens of 351 nm, 526.5 nm and 1053 nm and their
PV values are 0.0759λ, 0.0825λ and 0.0411λ, respectively.

Additional calculations were performed to quantitatively
analyze the reconstruction errors further. The reconstruc-
tion errors were computed using Equation (6), where the
diffraction patterns Ik of the kth wavelength can be recorded
by blocking the other two wavelengths. Figure 14(a) rep-
resents the evaluation of the error curves as the iterations
progress for the three wavelengths investigated and Fig-
ure 14(b) represents the change in reconstruction errors for
common single-wavelength CMI. It is apparent that three-
wavelength CMI has a slower convergence than single-
wavelength CMI. Three-wavelength CMI can achieve re-
construction errors lower than 5% based on 300 iterations,
while single-wavelength CMI can achieve the same recon-
struction error using only 120 iterations. More unknown
factors should be decided by three-wavelength CMI than
by single-wavelength CMI. The zoomed-in error curves in
Figure 14(b) show that three-wavelength CMI can achieve
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Figure 14. Evolution of the error curve versus iterations. (a) Results of
the three-wavelength CMI reconstruction error for 351 nm (blue), 526.5 nm
(green) and 1053 nm (red). (b) Results for the single-wavelength CMI error
using the same procedure as (a).

the same reconstruction error as single-wavelength CMI of
approximately 4%, just beyond 400 iterations. This means
that three-wavelength CMI has a comparable reconstruction
accuracy to single-wavelength CMI, although more itera-
tions were required in experiments. In above reconstruc-
tions, an NVIDIA Tesla K40c GPU was adopted to do the
computation, taking nearly 0.62–0.65 s to finish one round of
iterative updating for three wavelengths. Figure 14(a) shows
the convergence in reconstructing error versus iterations;
we find that about 310 s (500 iterations) is required to get
accurate reconstruction.

Figure 15. Reconstructed results for a step phase plate: (a) 351 nm,
(b) 526.5 nm, (c) 1053 nm. (d)–(f) plot the red solid line in (a)–(c),
respectively.

The spatial resolution and measurement accuracy of the
proposed three-wavelength CMI approach were also studied.
A phase resolution target with a structure similar to the
common USAF 1951 pattern was used. However, in this
case, each tiny bar was evaporated silicon on a quartz
plate and the transmitted phase retardation was previously
calibrated using an interferometer. Thus, this kind of phase
resolution target can be used to simultaneously check the
capability of three-wavelength CMI in terms of spatial reso-
lution and phase measurement accuracy. In the experiments,
one diffraction pattern I1 was recorded to measure the
background phase distribution of the three wavelengths using
the proposed method, before the phase resolution target was
introduced. After the phase resolution target was placed in
the optical path, another diffraction pattern I2 was recorded
to reconstruct the transmitted complex amplitude for the
three wavelengths. The phase retardation of the phase
resolution target can be obtained for each wavelength by sub-
tracting the corresponding phase for two measurements. The
utilized phase resolution target has a designed phase delay of
0.2λ for 1053 nm. Therefore, the phase delays are 3.7699,
2.5133 and 1.2566 for 351 nm, 526.5 nm and 1053 nm,
respectively. In addition, since the resolution achieved at
1053 nm was three times worse than that at 351 nm for
the same optical setup, the image obtained at 1053 nm is
obviously dim and blurry in the reconstructed phase images
of the phase resolution target shown in Figures 15(a)–15(c).
The dotted red rectangle in Figures 15(a)–15(c) indicates
that the achieved resolution limits are 49.61 µm (Group 3,
Element 3) for 351 nm, 70.15 µm (Group 2, Element 6) for
526.5 nm and 125 µm (Group 2, Element 1) for 1053 nm.
The phase values along the solid red lines in Figures 15(a)–
15(c) are plotted in Figures 15(d)–15(f) so that they can be
more easily examined. It can be seen that they are very close
to the theoretically designed values.

4. Conclusion

To address the problem of simultaneously measuring the
fundamental, second and third harmonics behind FOAs for
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high-power laser facilities, a three-wavelength CMI-based
online diagnosis technique was proposed. A specially de-
signed modulator was adopted to scatter the hybrid laser
beam and produce diffraction patterns, and a conventional
CMI algorithm was modified to simultaneously reconstruct
the complex amplitude of each wavelength. The feasibility
of this proposed method was demonstrated both numerically
and experimentally. The spatial resolution and measurement
accuracy can approach 125 µm and 0.2 wavelengths, respec-
tively, for 1053 nm. Due to its advantages, which include
a compact structure, convenient operation, high resolution,
and high accuracy, this proposed approach can potentially be
utilized as a tool for online diagnosis of high-power beams
behind FOAs, which is one of the most difficult longstanding
problems in the field of high-power lasers.
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