
Antarctica, Greenland and Gulf of Alaska land-ice evolution from
an iterated GRACE global mascon solution

Scott B. LUTHCKE,1 T.J. SABAKA,1 B.D. LOOMIS,2 A.A. ARENDT,3 J.J. McCARTHY,2

J. CAMP4

1Planetary Geodynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
E-mail: scott.b.luthcke@nasa.gov

2Science Division, SGT Inc., Greenbelt, MD, USA
3University of Alaska, Fairbanks, AK, USA

4Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

ABSTRACT. We have determined the ice mass evolution of the Antarctic and Greenland ice sheets (AIS
and GIS) and Gulf of Alaska (GOA) glaciers from a new GRACE global solution of equal-area surface
mass concentration parcels (mascons) in equivalent height of water. The mascons were estimated
directly from the reduction of the inter-satellite K-band range-rate (KBRR) observations, taking into
account the full noise covariance, and formally iterating the solution. The new solution increases signal
recovery while reducing the GRACE KBRR observation residuals. The mascons were estimated with
10 day and 1 arcdeg equal-area sampling, applying anisotropic constraints. An ensemble empirical mode
decomposition adaptive filter was applied to the mascon time series to compute annual mass balances.
The details and causes of the spatial and temporal variability of the land-ice regions studied are
discussed. The estimated mass trend over the total GIS, AIS and GOA glaciers for the time period
1 December 2003 to 1 December 2010 is –380�� 31Gt a–1, equivalent to –1.05�0.09mma–1 sea-level
rise. Over the same time period we estimate the mass acceleration to be –41�27Gt a–2, equivalent to a
–0.11�0.08mma–2 sea-level acceleration. The trends and accelerations are dependent on significant
seasonal and annual balance anomalies.

INTRODUCTION
The land-ice component of the cryosphere has important
connections to the global climate system. Changes in land-
ice cover impact the Earth’s radiation budget through
variations in albedo, and significantly impact the hydro-
logical cycle as changes in water storage. The Earth’s large
areas of land ice, including the ice sheets, glaciers and ice
caps, have the potential to significantly impact eustatic sea
level, as they hold �77% of the world’s fresh water, which
amounts to �65m of global sea-level equivalent (Barry and
Gan, 2011). Changes in freshwater input from calving and
melting Arctic land and sea ice can increase the haline
forcing in the North Atlantic and impact global ocean
circulation and climate patterns (Häkkinen and Rhines,
2004). Variations in land-ice volume are closely correlated
to global temperatures, as paleoclimate records show all the
major Greenland ice sheet (GIS) changes have been
correlated with temperature changes (Alley and others,
2010). It is important that we accurately quantify the current
spatial and temporal mass changes of the Earth’s land ice to
improve our understanding, modeling and prediction of
its response and contribution to climate change. Since its
launch in March 2002, the Gravity Recovery and Climate
Experiment (GRACE) mission has acquired ultra-precise
inter-satellite K-band range and range-rate (KBRR) measure-
ments between two co-orbiting satellites in a 450 km
altitude polar orbit, �220 km apart (Tapley and others,
2004). These data have vastly improved our knowledge of
the Earth’s time-variable gravity field. In particular the
GRACE mission has been instrumental in quantifying recent
land-ice mass evolution (e.g. Luthcke and others, 2006a,
2008; Velicogna, 2009; Chen and others, 2011; Schrama

and Wouters, 2011; Jacob and others, 2012; King and
others, 2012).

There are numerous challenges in applying GRACE to the
study of glacier and ice-sheet mass balances. GRACE senses
all sources of mass variability at the Earth’s surface, requiring
removal of non-glacier changes through incorporation of
independent datasets and models. Mass signals associated
with glacial isostatic adjustments (GIA) and terrestrial water
storage (TWS) are poorly known in many regions and often
dominate GRACE error budgets. Owing to the GRACE
mission’s limited longitudinal sampling at monthly time
intervals, filtering techniques are often applied to mitigate
striping errors and to focus signal into a region of interest,
often resulting in signal attenuation. When mass is
constrained to a particular spatial extent, signal can either
leak into or out of that domain and cause additional error.
Even when the choice of filtering and models used to correct
atmosphere and ocean mass variations is fixed, differences
in GRACE solutions can occur, due to different methods
used in processing the fundamental GRACE observations
(Pritchard and others, 2010).

Here we present a new study to quantify the ice mass
evolution of the Antarctic and Greenland ice sheets (AIS and
GIS) and Gulf of Alaska (GOA) glaciers from a GRACE
global mascon solution. The mascon technique is a time/
space domain approach for describing time-variable gravity
signals, in which time is discretized in contiguous, non-
overlapping finite intervals and, within a given interval,
space is divided into gravity contributions due to loading of
mass concentrations of equivalent water (mascons) on the
Earth surface. This study is unique and differs in many
aspects from previous regional and global mascon solutions,
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including those of Luthcke and others (2006a, 2008),
Rowlands and others (2010) and Sabaka and others
(2010). The mascons are estimated globally with 10 day
temporal and 1 arcdeg equal-area spatial sampling. Ice-
sheet mascons are restricted to the grounded-ice areas
contributing to eustatic sea-level change. We apply tem-
poral and spatial constraints anisotropically, through seven
distinct constraint regions representing the ice sheets (high-
interior and low-elevation margins), GOA glaciers, land and
ocean. The constraint equation is an exponential function of
correlation time and distance applied to all possible pairs of
mascons within a constraint region (Sabaka and others,
2010). A detailed error analysis is provided, including
consideration of leakage, and errors in modeling mass
variations of the atmosphere and ocean during the GRACE
data reduction (forward modeling). In addition, a controlled
comparison is performed in which we use the same set of
forward modeling and GRACE data reduction, but compute
the mass time series using an averaging kernel filter applied
to monthly spherical harmonic fields, as is common
practice in the literature (e.g. Velicogna and Wahr, 2005).
The mascon solution is iterated until convergence, and the
impact of the iterated solution on the reduction of the
GRACE KBRR residuals is quantified. Furthermore, this study
differs from the mascon solution presented by Jacob and
others (2012), in that we estimate the global mascons
directly from the GRACE KBRR data, taking into account the
full noise covariance, and iterate the solution while
quantifying the minimization of the GRACE KBRR obser-
vation residuals. We present the details of the global mascon
solution, an error analysis and a discussion of results focused
on recent GIS, AIS and GOA glaciers land-ice evolution.
This paper also serves to document our mascon solution
used in the international Ice Mass Balance Inter-comparison
Exercise (IMBIE; Shepherd and others, 2012).

MASCON FORMULATION
The GRACE processing centers provide time-variable gravity
observations (Level-2 products) in the form of monthly sets
of Stokes coefficients or spherical harmonic fields. These
monthly fields are estimated directly from GRACE tracking
data, typically without the use of constraints or a priori
information. The use of these fields for scientific applica-
tions, such as measuring the mass evolution of the GIS or
hydrological basins, requires filtering due to north–south
striping artifacts, which arise from the limited longitudinal
sampling of the GRACE orbits within monthly time periods
(Swenson and Wahr, 2006; Klees and others, 2008). Many
filtering methods do not take into account the noise
covariance of the estimated Stokes coefficients, and there-
fore are not optimal filters (Klees and others, 2008). Loss of
signal amplitude and limited spatial and temporal reso-
lution, as well as signal leakage in and out of regions of
interest, are particular problems when applying filtering
methods.

Instead of applying a filtering technique to the GRACE
Level-2 monthly Stokes coefficients, we used a mascon
technique, applying geolocatable anisotropic constraints to
estimate the global mass change directly from GRACE KBRR
data, which accounts for the full Stokes noise covariance.

The formulation for mascon parameters is derived from
the fact that a change in the gravitational potential caused by
adding a small uniform layer of mass over a region at an

epoch t can be represented as a set of (differential) potential
coefficients which can be added to the mean field. The delta
coefficients can be computed as (Chao and others, 1987)

�ClmðtÞ ¼
10ð1þ k 0

l ÞR2

ð2l þ 1ÞM
Z

P lmðsin�Þcosm� d�
� �

HðtÞ, ð1Þ

�SlmðtÞ ¼
10ð1þ k 0

l ÞR2

ð2l þ 1ÞM
Z

P lmðsin�Þsinm� d�
� �

HðtÞ, ð2Þ

where k 0
l is the loading Love number of degree l, to account

for the Earth’s elastic yielding which, in general, counteracts
the additional surface density (Farrell, 1972); �, � and R are
geographic latitude, geographic longitude and the Earth’s
mean semi-major axis, respectively; M is the Earth’s mass;
HðtÞ is equivalent water height in centimeters of the mass of
the layer over a unit of surface area at the epoch t; and � is
the solid angle surface area of the mascon region where HðtÞ
is applied, d� ¼ cos�d� d�.

The water height, HðtÞ (cm), can be equated to a surface
mass density, �ðtÞ (kgm�2), by noting that water has a
volume density of 1000 kg m�3, which gives �ðtÞ ¼
10�HðtÞ. The estimated mascon parameter, HjðtÞ, for each
mascon region, j, is a scale factor on the set of differential
Stokes coefficients for that mascon region, giving a surface
mass change (cmw.e.). In matrix notation, an assemblage
over j of the above equations provides a set of partial
derivatives, L, of the differential Stokes coefficients, �s,
(complete to degree and order 60) with respect to equivalent
water height, �h, such that

�s ¼ L�h: ð3Þ
The mascon parameters are part of nonlinear functions of

the GRACE KBRR measurements and are therefore estimated
using the Gauss–Newton (GN) method (Seber and Wild,
1989) of nonlinear least-squares. This method seeks a series
of differential corrections to the parameters via a lineariza-
tion of the observation equations at the current state. This
means that the changes in KBRR observations at the current
state due to changes in mascon parameters are needed for
the estimation. The partial derivatives of the GRACE KBRR
observations with respect to the mascon parameters are
computed by the chain rule, using the partial derivatives of
the KBRR observations with respect to standard Stokes
coefficients and the differential Stokes coefficients com-
puted from the equation above for the mascon region of
interest:

@Oi

@HjðtÞ ¼
Xlmax

l¼1

Xl

m¼0

@Oi

@Clm

@�C
j
lmðtÞ

@HjðtÞ þ @Oi

@Slm

@�S
j
lmðtÞ

@HjðtÞ , ð4Þ

where @Oi=@HjðtÞ is the partial derivative of KBRR obser-
vation i with respect to the j mascon parameter, HjðtÞ, at
time t ; @Oi=@Clm and @Oi=@Slm are the partial derivatives of
the KBRR observations with respect to the geopotential
Stokes coefficients (computed as part of the KBRR reduction

and Level-1 data processing); and @�C
j
lmðtÞ=@HjðtÞ and

@�S
j
lmðtÞ=@HjðtÞ are the partial derivatives of the delta

Stokes coefficients with respect to the mascon parameter in
region j at time t.

In matrix notation, assemblages over i and j of the above
equation provide a set of partial derivatives of the KBRR
observations, o, with respect to the mascon parameters, h,
by chaining L with partial derivatives, A, of the KBRR
observations with respect to the Stokes coefficients.
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Following Sabaka and others (2010), at step k of the GN
estimation let the GRACE KBRR residuals, r, be defined as
the difference between the observations, o, and a model
prediction, aðxkÞ, which is a function of a current state of a
general parameter set, xk . In addition to the current mascon
parameter state, this parameter set represents the effects of
orbital arc parameters (initial baseline state orbit and
accelerometer calibration parameters) and the mean field
and forward models of other geophysical processes of mass
redistribution (e.g. atmosphere and ocean tides). The details
of the orbit arc parameters and forward models are discussed

below, in the data processing section. The correction, �h̃k ,

to the current state of mascon parameters, h̃k , is then defined
as the unique minimizer of the quadratic cost function

Jð�hkÞ ¼ r� AL�hkð ÞTW r� AL�hkð Þ
þ � h̃k þ�hk

� �T
Phh h̃k þ�hk

� �
,

ð5Þ

where the first term is the weighted misfit and the second
term is a measure of mascon complexity, which in this case
is a smoothing function that tries to drive the mascon state to
zero. The data weight matrix, W, accounts for both
measurement noise and the effects of the orbital arc
parameters (back substituted), and Phh is a mascon
regularization matrix, whose influence is controlled by the

damping parameter, �. The updated mascon state, h̃kþ1, is
given by

GN iteration k

�h̃k ¼ LTATWALþ �Phh
� ��1

LTATWr� �Phhh̃k
� �

h̃kþ1 ¼ h̃k þ�h̃k

8>><
>>: ð6Þ

assuming a step size of unity.
The cost function of Eqn (5) suggests a major philosoph-

ical difference between this study and past studies, in that
multiple iterations of GN are actually carried out. For
instance, Rowlands and others (2010) and Sabaka and others

(2010) carry out a single step of GN, in which h̃1 is zero in
Eqn (5). In this study, the step k update, xkþ1, which reflects

h̃kþ1, is fed back into the KBRR processing in order to carry
out the next iteration. In this sense, the minimum of JðhÞ is
sought instead of the local quadratic approximation to it at

h̃k , i.e. Jð�hkÞ. It will be shown below that this leads to a
significant improvement in the recovered mascon solutions,
particularly in the ability to restore more signal strength.

There are several ways to rewrite the GN iteration k that
illuminate different properties of the estimator. For instance,
the filtering nature of the estimator and its error sources can
be seen by first expressing Eqn (6) as

GN iteration k
h̃kþ1 ¼
LTATWALþ �Phh
� ��1

LTATW rþ ALh̃k
� �(

ð7Þ
and then assuming the residuals can be expressed as a first-
order linear perturbation, �hk , about a true mascon state,

h̃k ¼ hk , with additive noise, e, such that r ¼ AL�hk þ e.
This gives

h̃kþ1 ¼ Rhk þ Ke, ð8Þ
where K ¼ ðLTATWALþ �PhhÞ�1LTATW and R ¼ KAL. The

estimate, h̃kþ1, differs from the true state, hkþ1 ¼ hk þ�hk ,

due to two effects: (1) the degradation of resolving power in
the filter, due to the presence of regularization, which is
manifested as a deviation of the resolution matrix, R, from
an identity matrix in the first term of Eqn (8), and (2) the
presence of additive noise from the second term in Eqn (8).
The effects of the resolution will be discussed in detail
below.

Another way to rewrite the GN iteration k is

GN iteration k

~sk ¼ Lh̃k

�ŝk ¼ ATWA
� ��1

ATr

ŝkþ1¼ ~sk þ�ŝk

h̃kþ1¼ P�1
hh L

T � ATWA
� ��1þLP�1

hh L
T

h i�1
ŝkþ1:

8>>>>>><
>>>>>>:

ð9Þ
This is now in the form of an anisotropic, non-symmetric
(ANS) filter (Kusche, 2007) that acts upon an unfiltered
Stokes state, ŝkþ1, to produce a filtered Stokes state, ~skþ1,

~skþ1 ¼ P�1
ss N�1 þ P�1

ss

� ��1
ŝkþ1, ð10Þ

followed by a least-square co-location (LSC) prediction

(Moritz, 1980) of the mascon state, h̃kþ1, from the filtered
Stokes state

h̃kþ1 ¼ P�1
hs Pss

~skþ1, ð11Þ
where N�1 and P�1

ss are the noise covariance and signal
auto-covariance matrices of the Stokes coefficients, respect-
ively, and P�1

hs is the signal cross-covariance matrix between
the mascons and Stokes coefficients. The ability to process
the KBRR tracking data directly allows for access to the
actual noise covariance matrix of the Stokes coefficients,
and thus makes this an example of an optimal ANS filter
(Kusche, 2007). Note that the Stokes signal covariances are
related to the mascon signal auto-covariance through simple
propagation, such that P�1

ss ¼ LP�1
hh L

T and P�1
hs ¼ P�1

hh L
T.

Currently, the mascon signal auto-covariance matrix reflects
a first-difference operation between all distinct pairs of
mascons in space and time, weighted as an exponential
function of temporal and spatial distance between them, and
a conservation of mass constraint that keeps the global
mascon sum constant over time. Because of the regional
aspect of the spatial weighting, the gravity signal is treated as
a non-stationary, anisotropic process based upon geolocat-
able physical properties. Details of the constraint regions,
mascon signal auto-covariance construction and selection of
the damping parameter are given in the following section.

GRACE DATA PROCESSING, AND MASCON
SOLUTION DETAILS
Data processing and forward models
We estimated global surface mass anomalies, or mascons,
directly from the reduction of the GRACE Level-1B data,
which includes the inter-satellite K-band range-rate (KBRR)
data, as well as orbit position, attitude and accelerometer
data for each GRACE satellite. We employed a baseline state
parameterization (Rowlands and others, 2002) and accel-
erometer calibration (Luthcke and others, 2006b), which
enables the estimation of surface mass variability from
GRACE KBRR data alone. The GPS data are used solely to
establish an accurate orbital reference and for calibrating
accelerometers (Luthcke and others, 2006b). The GRACE
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KBRR and Level-1B attitude and accelerometer data (in-
cluding accelerometer calibration) are processed in daily
arcs as outlined by Luthcke and others (2006b). Forward
models for both static and time-varying gravity are applied in
the KBRR data reduction daily arcs, in order to isolate land-
ice signal. Static mean gravity is modeled using the
complete GGM02C GRACE gravity model through degree
and order (d/o) 150 (Tapley and others, 2004). Ocean tides
are modeled with the GOT4.7 tide model (Ray, 1999; Ray
and Ponte, 2003). Atmospheric mass variations are modeled
to d/o 90 at 3 hour intervals using European Centre for
Medium-Range Weather Forecasts (ECMWF) operational
pressure grids. Ocean mass variations are modeled to d/o 90
from the baroclinic Ocean Model for Circulation and Tides
(OMCT). Terrestrial water storage (TWS) variations are
modeled using the Global Land Data Assimilation System
(GLDAS)/Noah Land Surface Model (Noah) 0:25�, 3 hour
data, represented as potential coefficients to d/o 90 (Ek and
others, 2003; Rodell and others, 2004). The TWS contri-
bution was set to zero for the major mountain glacier areas
of the globe using a 0:25� mask (Raup and others, 2000) and
also set to zero for the GIS and AIS. Glacial isostatic
adjustments are modeled based on ICE-5G (VM2) (Peltier,
2004) and are represented as potential coefficients to d/o 90.
Table 1 provides a summary of the modeling applied in the
reduction of the KBRR residuals for each of the mascon
solutions noted.

GIA and geocenter
We modified the mascon solution to restore the forward-
modeled global GIA, while more recent GIA models are
then used in the computation of the mascon solution results
presented. For both the GIS and GOA, a GIA model based
on the ICE-5G deglaciation history and an incompressible
two-layer approximation to the VM2 viscosity profile are
used to correct the GRACE mascon solution (Paulson and

others, 2007, computed and provided by A. Geruo, 2011).
For the AIS, the IJ05 R2 regional GIA model is used (Ivins
and others, in press). We correct our mascon solutions for
the viscous component of post-Little Ice Age (post-LIA) GIA
following the collapse of the Glacier Bay Icefield. As in
Luthcke and others (2008), we apply a regional post-LIA GIA
model that is rigidly constrained by �100 precise GPS and
relative sea-level (RSL) observations of uplift (Larsen and
others, 2005). We further correct our mascon solutions to
reflect surface mass variability in the Earth’s center-of-figure
frame, rather than the center-of-mass frame in which the
solutions are performed. We apply the geocenter correction
used in the IMBIE study (Shepherd and others, 2012) derived
from the degree 1 Stokes coefficients determined from
Swenson and others (2008). The geocenter correction
accounts for �1% of the GIS and GOA ice trends, and
<3% for the West AIS and AIS peninsula ice trends. The
largest impact of the geocenter correction is for East AIS, at
17% of the trend.

Global mascon definitions
We estimate a global set of 1� 1 arcdeg equal-area
(�12 390 km2) mascons at a 10 day temporal sampling.
The choice of the spatial sampling is a compromise between
approximating regional shapes and boundaries (e.g. land,
ocean, land ice) and the total number of parameters that can
be reasonably iterated for a global solution. There are a total
of 41 168 mascons estimated every 10 days, representing a
significantly smaller spatial sampling than the fundamental
spatial resolution of GRACE (Luthcke and others, 2006b).
Furthermore, the number of mascon parameters is signifi-
cantly larger than the number of d/o 60 Stokes coefficients
forming our basis functions (3718). Therefore, as discussed
in detail above, we employ a regularization in the form of
the mascon signal auto-covariance matrix (Sabaka and
others, 2010). This matrix is constructed from constraint
equations which require all mascon differences to be close
to zero in a statistical sense. The constraints are applied in
groups that pertain to geographical regions, so if two
mascons reside within the same region, the constraint
weight is a simple exponential function of the distance
(characteristic length) and time (characteristic time) between
the two mascons. If two mascons reside in different regions,
the weight is zero and the constraint vanishes. The details of
the constraints and the construction of the regularization
matrix, Phh, are given by Sabaka and others (2010, their
section 2.2). The important implementation parameters are
the characteristic length and time used in the exponential
taper weighting of the mascon first-difference constraint
equations, and the damping parameter, which controls the
influence of the regularization relative to the data misfit.

Application of regional constraints
The constraints are then applied anisotropically using the
following seven constraint regions: (1) GIS margins defined
as <2000m elevation, (2) GIS >2000m elevation, (3) AIS
<2000m elevation, (4) AIS >2000m elevation, (5) GOA
glacier area, (6) land (including all other ice regions) and
(7) ocean and large bodies of water (including ice shelves).
In defining the mascons for land and large bodies of water, a
minimum enclosed region area of 80 000 km2 was used.
Thus, if a land area enclosed within the ocean region is
<80 000 km2, then those land mascons were labeled as
ocean (similarly for water regions enclosed within land).

Table 1. Summary of forward modeling applied for each global
mascon solution

Mascon solution Forward modeling used in computation of KBRR
residuals number and partial derivatives for

indicated mascon solution

v08 GGM02C (150� 150)
Pole tide (IERS2003)

Solid Earth tides (IERS2003)
GOT4.7 ocean tides (Ray, 1999; Ray and Ponte,

2003)
OMCT ocean model from AOD1B

ECMWF 3 hour operational pressure grids
(Nmax ¼ 90)

Post-solution geocenter correction (Swenson and
others, 2008)

v09 Same as v08
GLDAS/Noah 0:25�, 3 hour data (Nmax ¼ 90) Ice

‘masked out’
ICE–5G (VM2) (model C21 and S21 from GIA/GRACE

solution)*
v10 Same as v09 plus v09 global mascon solution
v11 Same as v09 plus v10 global mascon solution
v12 Same as v09 plus v11 global mascon solution

*This GIA model is restored in the mascon solutions, and more recent GIA
models noted in the text are used in the computation of the mascon results.
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Figure 1 shows the GIS, AIS and GOA mascons as well as
the constraint region boundaries. Also shown in this figure
are ice-sheet drainage system divides based on those of
Zwally and Giovinetto (2011). These divides are used for
computing mass change as the sum of the mascon time
series within a drainage system, but are not used in the
mascon estimation.

We use a characteristic length of 100 km and a
characteristic time of 10 days in computing the exponential
constraints for the mascon signal auto-covariance matrix.
These values represent approximately one parameter
sample in time and space. We use a damping parameter
(� in Eqn (5)) of 30 000�1, which provides a similar solution

contribution from the signal and data covariance to that
determined from an analysis of the GIS, AIS and GOA
mascon matrix diagonals. We investigated the impact of the
damping parameter by performing solutions using values
that span an order-of-magnitude variation, centered on our
selected damping parameter value. We find that the
impact on the estimated mass balance and annual ampli-
tude is <8% on average over the GIS, AIS and GOA
mascons, while the 1� error estimates of the 10 day mascon
solutions can change by as much as 31% on average over
those regions. Therefore, varying the signal covariance
damping parameter has a larger impact on the solution
noise than the signal.

Fig. 1. Land-ice mascon configurations and drainage systems. (a) The GIS. The numeric labels describe the primary drainage systems and
subregions with the first and second digits respectively, and follow definitions based on those of Zwally and Giovinetto (2011). The yellow
border delineates the 2000m elevation cut-off used in constraining the mascon solution. (b) The AIS. The drainage systems are sequentially
labeled from 1 to 36. The 2000m elevation line defining the constraint regions is again delineated by a yellow border. The three Antarctic
regions of EAIS (drainage systems 3–15, 26–36), WAIS (drainage systems 1, 2, 16–22) and AIS peninsula (drainage systems 23–25) are
outlined in red. (Note that the yellow elevation line is concealed by the red line along a portion of the boundary between EAIS and WAIS.)
(c) The GOA mascons. This region is not further delineated by drainage systems or constraint regions.
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Resolution and leakage
We further analyze the impact of our signal covariance
(including our choice of the damping parameter and
characteristic length and time) by performing signal leakage
analysis within and across constraint regions using the
resolution matrix identified in Eqn (8). First, we look at the
influence of the signal covariance on individual mascons.
Several GIS and AIS mascons were chosen as single-source
mascons. For each single-source test we fill the mascon
parameter vector with a time series of mass change for that
mascon only (we use the time series from our final solution)
and zero all other mascons in space and time. The resolution
matrix then multiplies the vector of mascons in time and
space, where only one mascon contains a time series of
mass change. Therefore, before application of the resolution
matrix, only one mascon out of all the global mascons
contains a nonzero time series of mass change. However,
after application of the resolution matrix, several neighbor-
ing mascons will contain nonzero time series, as the signal
covariance spreads out the signal from the source mascon.
The effects of the signal covariance are quantified by
differencing the full mascon vector before and after the
application of the resolution matrix. The results of several
tests show that the spatial signal from a single mascon is
�100% accounted for by adding all the mascons within a
600 km radius of the original source mascon. Therefore, a
single mascon has negligible influence at distances greater
than 600 km. This is equivalent to a Gaussian spatial
smoothing filter with a 300 km radius. However, the
constraint region boundaries modify the spatial pattern of
signal spreading as the signal covariance, by design, limits
signal leakage across these boundaries. The spatial leakage
pattern of a single mascon’s signal is a function of its
location with respect to the constraint region boundaries. An
error analysis of signal leakage across constraint boundaries
is performed for each region considered. The regional
leakage analysis and its results are discussed further below.

In summary, the spatial resolution of our solutions is
equivalent to a 300 km Gaussian spatial smoothing filter
within constraint regions, but with significantly reduced
leakage across constraint region boundaries.

MASCON SOLUTION ITERATION AND KBRR
RESIDUAL ANALYSIS
As described above, we apply a mascon technique to
estimate global mass change directly from the GRACE KBRR
observations themselves, taking into account the full Stokes
noise covariance and a signal covariance. Therefore, we can
use the reduction in the GRACE KBRR residuals as a
quantitative objective measure of performance. The KBRR
residuals are the difference between the GRACE observed
KBRR data and KBRR data computed from our forward
models and mascon solution using the NASA Goddard
Space Flight Center (GSFC) GEODYN precision orbit
determination and geodetic parameter estimation software.
Unique to this study, we present the improvement in the
KBRR residuals from fully iterating the global mascon
solution (as in Eqn (6)). Because there are >11�106 mascon
parameters, we obtain the solution using iterative methods.
Following Sabaka and others (2010), we use the precondi-
tioned conjugate gradient method. Figure 2 presents the
KBRR residual performance for each solution defined in
Table 1. This figure shows the difference in the daily root
mean square (rms) of the KBRR residuals using the v08
forward model and the KBRR residuals computed from
subsequent versions of forward models (which include
iterated mascon solutions for v10–v12). Negative differences
represent improvements due to the new forward model of
mass change. The v09–v08 daily rms difference in Figure 2
demonstrates significant reduction in the KBRR residuals
(model improvement) from forward-modeling hydrology and
GIA. The residual reduction is seasonal, with the largest
reduction in daily residual rms in Northern Hemisphere
spring and an increase in residuals during a portion of
Northern Hemisphere summer. The residuals show that the
GLDAS hydrology model improves the global surface mass
modeling during most of the year, except the Northern
Hemisphere summer.

The global mascon solutions represent a reduction in the
daily KBRR residual rms, as shown in Figure 2. The first
iteration mascon solution, v10 forward model, represents a
factor of 2.4 reduction in residuals over the v09 forward
model (v08 plus GLDAS hydrology and GIA), and further
iterations represent 5% (v11 forward model) and 2% (v12
forward model) reduction over the preceding iteration. The
global mascon solutions show reduction in seasonal and
long-term trend signals in the daily KBRR residuals, due to
improved modeling of the global mass change, dominated
by hydrology and land ice. The spatial distribution of the
residual reduction is presented in Figure 3 as the trend and
annual amplitude of the GRACE average time-differenced
KBRR residuals (KBRR-dot). The significant trends in the
KBRR-dot residuals correspond to the GOA, AIS and GIS
land-ice regions, and in particular, the largest residual trends
are found in the West Antarctic ice sheet (WAIS) Amundsen
and Bellingshausen coasts, and the southeast and northwest
coasts of the GIS (Fig. 3a). Figure 3a demonstrates the
significant reduction in these KBRR-dot residual trends using
the v12 forward model, due to the inclusion of the v11
iterated global mascon solution.

Fig. 2. Daily KBRR residual rms solution differences. The daily
(dots) and 15 day Gaussian smoothed (curves) of the KBRR residual
rms differences between the v08 solution and the v09 (blue), v10
(purple), v11 (green) and v12 (orange) solutions. Negative values
represent a reduction in the residuals and an improvement in the
forward modeling, including an iteration of the mascon solution.
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Iterating the solution has an important impact on the
regional terrestrial ice mass signals obtained from the global
mascon solution (Fig. 4; Table 2). Iteration results in
increases in ice mass loss trend, annual and acceleration
signal computed from the global mascon solution. It
accounts for a �16:5, �21:8 and �1:1Gt a�1 correction to
the GRACE observed GIS, AIS and GOA mascon solution
trends; and 10.7, 34.2 and 4.4Gt corrections to the GIS, AIS
and GOA annual amplitude (Table 2). Iteration of the global
mascon solution is shown to reduce KBRR residuals and
increase signal recovery. Therefore, we regard the increased
signal recovery through iteration as an important part of the
global mascon solution, without which the regional land-ice
mass signals estimated from the mascon solution would be
in error by the amounts noted in Table 2 (v12–v09).

SIGNAL AND ERROR ANALYSIS
For each of the 41 168 mascons in our global solution, we
obtain a time series of mass anomalies with 10 day
sampling. To compute the time series of mass anomalies
for any region of interest we sum the individual time series at
each 10 day sample for all mascons contained within the
region. The 10 day mascon solution 1� error is estimated
from the rms of the misfit of the mascon solution time series

and a 10 day width Gaussian filter applied to the time series,
in a similar way to Luthcke and others (2008). Also, as in
Luthcke and others (2008), the mascon time-series trend and
annual amplitude are determined from a least-squares
simultaneous estimate of the trend, annual, semi-annual
and 161day periodic. The 161 day periodic compensates for
the GRACE alias of an S2 tide error (Ray and Luthcke, 2006).
For the trend, we replace the formal error estimate (variance
of the least-squares parameter) with one that considers a
first-order autoregression structure for the mascon time
series (Lee and Lund, 2004). The formal estimates of the
other parameters (e.g. annual amplitude) are then scaled by
the ratio of the trend error with autoregressive structure
considered, and the simple formal trend error. The total error
is then computed as the root sum square (rss) of the
following error estimate sources: statistical; leakage in and
out; atmosphere/ocean forward modeling; and GIA. These
errors are discussed below.

Leakage errors
Leakage of signals in and out of regions of interest occurs
due to the fundamental spatial resolution limitations of the
GRACE data themselves and the properties of our mascon
signal auto-covariance. Errors arising from leakage of signals
into (‘leakage-in’) a region of interest (e.g. GIS or AIS) from

Fig. 3. Global maps of the (a) trend and (b) annual amplitude of the time-differenced KBRR residuals (KBRR-dot) for the forward models used
in the v08 (row 1), v09 (row 2) and v12 (row 3) mascon solutions (Table 1). The differences between v09 and v08 show the impact of the
additional forward models included in the v09 solution, while the differences between v12 and v09 show the large reduction in residuals
that is achieved with the iterated mascon solution.
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unmodeled surrounding mass variation sources, such as
ocean, tides and hydrology, are estimated, as well as land-
ice mass signal leakage out (‘leakage-out’) of our regions of
interest. It should be noted that the hydrology signal leakage
error has been significantly reduced through the forward
modeling of a TWS model, as previously discussed, and as
in Luthcke and others (2008) and Sabaka and others (2010).
We use a representative global mass anomaly model in
space and time to estimate the leakage-in and leakage-out
errors. For this model, we use the vector hk (Eqn (8)) from
our final perferred v12 global mascon solution. To estimate
leakage-in for a region of interest, we zero the region
mascon parameters in hk from Eqn (8), but leave the
remaining global mascon parameter values to produce
hkRð0Þ. The estimate of leakage-in error is then the region’s
mascon time series after applying the resolution operator to
our model, hkRð0Þ. We then perform this procedure for each
region of interest. The leakage-out errors are computed using
a similar procedure, but in this case all mascon parameters

outside the region of interest are set to zero. The estimate of
leakage-out error is then the difference between the region’s
model mascon parameters and those after applying the
resolution operator. A summary of the leakage errors for the
major land-ice regions of interest is given in Figure 5a and
Table 3. While the leakage analysis does consider sources
(1 arcdeg mascons) significantly smaller than the funda-
mental spatial resolution of GRACE (approximately equiva-
lent to 300 km radius Gaussian smoother), the analysis did
not consider point sources and localized signal smaller in
spatial extent than an individual mascon. An assessment of
the impact of sub-mascon sources on our leakage estimates
will need to be evaluated in future analysis.

Atmosphere/ocean forward-modeling errors
Following Han and others (2004), we estimate the errors in
forward-modeling atmosphere and ocean mass as the
difference between two sets of models: (1) ECMWF and
OMCT vs (2) atmospheric mass variations derived from
NASA/GSFC Modern Era Retrospective-analysis for Research
and Applications (MERRA) model and a simple ocean
inverted barometer (IB). A summary of the impact of these
models on our land-ice solutions is provided in Figure 5b
and Table 4. The two models are not completely inde-
pendent, so we do not scale the differences by 1=

ffiffiffi
2

p
(Han

and others, 2004). Ocean mass variation and ocean tides
forward-modeling error contributions to our land-ice mass
solutions are included through the leakage-in analysis
discussed above. The mass anomaly model used in the
leakage analysis includes the ocean mass and ocean tides
modeling error observed by GRACE, as the mascon solution
reflects the mass anomalies from the forward models.

GIA errors
The land-ice mass trends estimated from our global mascon
solutions contain errors due to the uncertainties in the GIA
model applied. We estimate the GIA error as the difference
between the minimum and maximum GIA correction over a
range of plausible GIA models divided by 2 for each region
of interest. For the GIS and GOA the models considered
include the nominal ICE-5G Paulson incompressible two-
layer model discussed previously; an ICE-5G compressible
model (Geruo and others, 2013); and models based on
’ANU’ ice deglaciation history (Fleming and Lambeck,

Fig. 4. The effect of iteration on the mass time series for (a) GIS, (b) AIS and (c) GOA. The third and final iteration solution is shown (v12:
gray), along with the differences to the original (v09: blue), the first iteration (v10: purple) and the second iteration (v11: green) solutions.

Table 2. Effect of solution iteration on mascon regional mass change
statistics over the time period 1 December 2003 to 1 December
2010. The reported statistics describe the differences of the final
and third iteration solution (v12) to the original global solution
(v09), the first iteration solution (v10) and the second iteration
solution (v11)

Solution iteration
by region

Annual
amplitude

Acceleration Trend

Gt Gt a�2 Gt a�1

GIS
v12–v09 10.7 �0:7 �16:5
v12–v10 6.3 �1:0 �7:8
v12–v11 2.8 �0:5 �3:2

AIS
v12–v09 34.2 �11:3 �21:8
v12–v10 18.3 �5:8 �10:3
v12–v11 7.6 �2:5 �4:2

GOA
v12–v09 4.4 2:9 �1:1
v12–v10 1.9 1:6 �0:9
v12–v11 0.8 0:6 �0:5
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2004) applying a suite of Earth models (27) over a range of
lithospheric thicknesses, and upper mantle and lower
mantle viscosities (Barletta and others, 2012, computed
and provided by V.R. Barletta). For the AIS the models
considered include the nominal IJ05 R2 used in this study
and discussed previously; models based on IJ05 R2 with
varying Earth models; and models based on W12a with the
‘best’-fit Earth model and upper- and lower-bound Earth
models that give a good fit to the relative sea-level data
(Whitehouse and others, 2012, computed and provided by
P. Whitehouse). This is a similar approach to estimate the
GIA uncertainty to that used in the IMBIE study (Shepherd
and others, 2012). The post-LIA GIA signal uncertainty is
�30%, estimated from the model comparisons to GPS
vertical motions, raised shoreline records of RSL and tide-
gauge rates of RSL (Larsen and others, 2005).

Solution technique error analysis
As another step in our solution evaluation, we compare our
mascon solution with that of a solution made using the more
common approach of applying a filter to the monthly
spherical harmonic fields. In this test we apply a calibrated

regional GIS averaging kernel to our monthly spherical
harmonic fields estimated from the same Level-1B proces-
sing as our mascon solution (Luthcke and others, 2006b).
The averaging kernel is constructed, calibrated and applied
in a similar fashion to Velicogna and Wahr (2005). The
important aspect of this comparison experiment is that both
the mascons and the monthly spherical harmonic fields have
been estimated from the same Level-1B processing and
KBRR reduction, so the results isolate the differences arising
from the technique used to compute the total GIS mass time
series. Figure 5c shows (in red) the difference between the
time series computed from the GIS mascons and that
computed from the averaging kernel; the mascon solution
time series (black) is also provided in this figure for
comparison. The differences in the annual amplitude,
acceleration and trend between the two time series are,
respectively, 25Gt, �1Gt a�2 and �11Gt a�1. These poten-
tial uncertainties are due solely to the differences in the
techniques used for the mascon time-series recovery, and
are on the order of the estimated uncertainties for our
mascon solution, as summarized in Table 5 and discussed in
the next subsection.

Fig. 5. (a) The v12 mascon solution mass time series for GIS, AIS and GOA with leakage-in (black circles) and leakage-out (red diamonds)
estimated errors. (b) The v12 mascon solution time series for GIS, AIS and GOA with atmosphere and ocean model signal (ECMWF/OMCT:
black circles) and estimated model errors (ECMWF/OMCT – MERRA/IB: red diamonds). (c) The GIS v12 mascon solution time series and the
difference to the mass time series derived from the averaging kernel filter technique (red diamonds).

Table 3. Effect of leakage-in, leakage-out and the rss of the leakage-in and -out, on the annual amplitude, acceleration and trend of mass
changes for each main region and subregion over the time period 1 December 2003 to 1 December 2010

Leakage-in Leakage-out rss leakage

Region Annual
amplitude

Acceleration Trend Annual
amplitude

Acceleration Trend Annual
amplitude

Acceleration Trend

Gt Gt a�2 Gt a�1 Gt Gt a�2 Gt a�1 Gt Gt a�2 Gt a�1

GIS total 8.7 –2.9 2.5 17.6 –0.2 –7.3 19.7 2.9 7.7
GIS <2000m 23.8 –2.1 –3.6 35.8 1.9 –17.9 43.0 2.8 18.2
GIS >2000m 15.3 3.2 –7.1 12.2 1.9 –2.6 19.6 3.7 7.6

AIS total 12.4 0.5 –10.9 16.8 0.1 –4.4 20.8 0.6 11.8
AIS <2000m 15.3 2.9 –3.6 16.3 1.4 -2.1 22.4 3.2 4.2
AIS >2000m 2.8 1.0 –3.3 5.9 2.0 1.7 6.5 2.2 3.7
AIS east 6.7 0.7 –11.1 8.6 1.6 1.3 10.9 1.8 11.2
AIS west 5.1 –1.7 –1.7 5.4 –3.9 –8.6 7.4 4.3 8.8
AIS peninsula 3.0 –2.7 –10.0 5.3 –1.8 –9.1 6.1 3.3 13.5

GOA total 19.0 1.4 6.9 34.3 0.8 4.2 39.2 1.6 8.1
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Computation of seasonal balances
We use a linear regression analysis to extract the multi-year
average trend, acceleration and annual amplitude from our
10 day mascon time series. One of the strengths of GRACE
solutions, and of the mascon solution presented here in
particular, is the high temporal resolution at which the
evolution of land-ice mass balance can be observed and
quantified. Therefore, we seek to compute annual mass
balances from our GRACE mascon time series, in order to
better quantify the more complex spatial and temporal
variability of land ice. Luthcke and others (2008) simply
used the extrema of the full mascon time series as the start
and end of the balance years from which to compute the
annual mass balances. Because the mass time series for the
sum of GOA glacier mascons has a very clean annual signal
with little additional signal or noise, this is an acceptable
approach. However, for the more complex mascon time

series from the GIS, WAIS, East Antarctic ice sheet (EAIS) and
Antarctic ice sheet peninsula (AISP), an adaptive filter
approach is necessary. Therefore, we employ an ensemble
empirical mode decomposition (EEMD) adaptive filter to first
compute the timing of the balance seasons (accumulation
and loss), and then to compute the annual mass balances.

The EEMD is a noise-assisted data analysis improvement
of the EMD method, which provides an adaptive decom-
position of the time series into components known as
intrinsic mode functions (IMFs) (Wu and Huang, 2009). The
IMFs are monochromatic at a given point in time, but vary in
time with both amplitude and frequency. The IMF adaptive
decomposition separates out the frequency content of the
time series, which represent different physical modes. An
ensemble (many runs) of the EMD is performed, applying a
new generation of noise to the original signal on each run
within the ensemble. The added finite white noise provides a

Table 5. Summary of the v12 global mascon solution for the land-ice regions studied over the time period 1 December 2003 to 1 December
2010. The reported parameters are computed after applying the GIA and LIA model correction to the mascon time series. The total
uncertainties include contributions from statistical errors, mismodeling of the atmosphere, leakage errors, GIA model errors and, for Gulf of
Alaska, the LIA model errors

Region Area GRACE mascon solution GIA model*

Annual amplitude Acceleration Trend Trend

106 km2 Gt Gt a�2 Gt a�1 Gt a�1

GIS total 2.46 131.9�28.6 –10.1�6.3 –230.3� 12.1 4.7�6.7
GIS <2000m 1.49 109.0�48.6 –10.6�6.7 –223.7� 19.8 6.9�3.8
GIS >2000m 0.98 23.1�22.3 0.5�4.7 –6.6� 8.6 –2.2�3.0

AIS total 13.96 316.4�57.7 –32.6�25.6 –80.8� 26.2 47.0�17.9
AIS <2000m 6.93 172.6�50.7 –32.6�18.6 –113.3� 21.0 42.0�15.9
AIS >2000m 7.02 143.7�25.1 0.1�10.2 32.5� 21.6 5.0�14.6
AIS east 10.57 215.4�48.8 22.3�21.6 62.8� 28.1 16.8�21.6
AIS west 2.76 83.2�17.6 –45.5�6.1 –106.0� 15.9 26.2�12.8
AIS peninsula 0.63 18.3�14.6 –9.3�5.1 –37.7� 14.0 4.1�1.6

GOA totaly 0.76 165.9�46.2 1.7�6.9 –68.8� 11.0 2.1�2.0

*GIS and GOA are corrected with the ICE5G_Paulson GIA model. AIS is corrected with the IJ05_R2 GIA model.
yThe trend correction for the GOA region from the Larsen LIA model is 10.2�3.1Gt a�1.

Table 4. Annual amplitude, acceleration and trend of mass changes due to the atmospheric and ocean signal and errors for each main region
and subregion over the time period 1 December 2003 to 1 December 2010

Atmospheric and ocean signal* Atmospheric and ocean errory

Region Annual amplitude Acceleration Trend Annual amplitude Acceleration Trend

Gt Gt a�2 Gt a�1 Gt Gt a�2 Gt a�1

GIS total 199.1 7.1 3.5 9.5 –2.5 –4.5
GIS <2000m 90.6 2.8 –0.3 8.9 –2.0 –4.1
GIS >2000m 109.9 4.3 3.7 1.7 –0.5 –0.4

AIS total 697.7 –58.5 –5.8 17.6 –21.5 8.0
AIS <2000m 262.9 –40.4 –16.9 7.7 –13.5 –6.5
AIS >2000m 437.0 –18.1 11.1 10.3 –7.9 14.5
AIS east 561.2 –37.4 2.2 15.1 –17.6 8.3
AIS west 127.6 –17.7 –5.9 8.3 –2.2 –0.1
AIS peninsula 9.9 –3.4 –2.1 4.2 –1.7 –0.2

GOA total 42.8 –0.7 –2.1 1.7 –0.6 –1.8

*Sum of ECMWF atmospheric model and OMCT ocean model.
yDifference between the combined ECMWF/OMCT models and the combined MERRA/IB models.
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means to sort out signals with similar scale into their proper
IMFs and thus mitigate mode mixing. The mean of the
ensemble is treated as the final true result, so the effect of
noise is minimized. Unlike typical signal analysis tech-
niques, such as the linear regression analysis applied above,
the EEMD is an adaptive filter and does not rely on linear
and stationarity assumptions.

We apply the EEMD to adaptively find the extrema of the
non-stationary annual signal within the mascon time series of
interest. Theminima andmaxima of the annual IMF represent
the timing of the mass-balance seasons (beginning of the
mass accumulation and mass loss seasons). This is the most
important aspect of our EEMD application. The adaptive filter
is used to isolate the annual signal, and then to identify the
timing of the balance seasons and length of each balance
year as the annual signal is non-stationary and evolving. The
original signal is then reconstructed by summing the IMFs,
and eliminating noise by discarding the first few IMFs (Fig. 8).
We then compute the mass value of the reconstructed signal
at the beginning of the mass-balance seasons (annual IMF
minima). We use 100 runs within each EEMD ensemble,
where the added white noise is recomputed on each run
within the ensemble, with a noise ratio equal to twice the
ratio of the standard deviation of the mascon solution noise
(difference between 10day solution time series values and a
30 day Gaussian filter), and the standard deviation of the
signal (with trend removed). The EEMD is then run 50 times,
where the overall signal trend is removed before each run
and is added back after the reconstruction of the signal from
the selected IMFs. The mean (computed over the 50 EEMD
runs) timing value of the annual IMF minima and corres-
ponding reconstructed signal mass values are used to
compute the annual balance (Fig. 8). The annual balance is
computed by differencing the reconstructed mass values at
the times of two consecutive mean annual IMF minima. The
mass difference, or annual balance, is labeled with the year
that is mostly encompassed between the two minima.
Therefore, for the GIS and GOA land ice, the balance year
starts in the late summer to mid-fall of the previous year,
while for the AIS the balance year starts in the Northern
Hemisphere spring. The standard deviation of these values
over the 50 runs is used as an estimate of the noise
contribution to the uncertainty. To estimate a potential
systematic error in our balance year timing and values, the
EEMD analysis results are differenced from an iterative
piecewise trend and annual linear regression analysis of the
mascon time series, where the annual pieces are constrained
to form a continuous signal. The error estimate of balance
year extrema timing and mass value is then computed as the
rss of the noise and systematic error estimates. The error
estimate of the annual balance is then the rss of the error
estimates for the two balance year extrema.

LAND-ICE MASS EVOLUTION RESULTS
In this section we provide a summary of our iterated global
mascon solution, focusing on the results for the five most
significant land-ice regions: GIS, WAIS, EAIS, AISP and
GOA. Table 5 provides an overall summary of the regional
mass time series computed from the mascon solution. While
the time series cover a longer time period, the model
parameter fit is applied to an integer number of years,
1 December 2003 to 1 December 2010. We use the
terminology defined by Cogley and others (2011) to explain

glacier and ice-sheet variations in terms of variations in their
climatic balances, Bclim, and calving fluxes, D, ignoring the
contributions from basal balances.

GIS results
The time series for the sum of the GIS mascons (GIS total),
and the mascons above and below 2000m are shown in
Figure 6, and a summary of these time series is provided in
Table 5. The spatial distribution of the GIS trend and
acceleration is shown in Figure 7. The GIS exhibits the
largest rates of mass loss relative to both Antarctica and
Alaska, with a trend of �230� 12Gt a�1, an acceleration of
mass loss of �10� 6Gt a�2 and an average annual ampli-
tude of 132� 29Gt. Both the magnitude of the GIA
correction and our estimated uncertainty determined from
the model differences are quite small in comparison with the
total corrected trend (Table 5). Our estimates agree to within
stated error bars with previous estimates spanning at least
the period 2003 to October 2009: �219� 38Gt a�1 for
April 2002–November 2009 (Chen and others, 2011);
�238� 29Gt a�1 for October 2003–October 2009 (Sasgen
and others, 2012); �222� 9Gt a�1 for January 2003–
December 2010 (Jacob and others, 2012). Our estimated
acceleration of �10� 6Gt a�2 is in agreement with
�15� 7Gt a�2 for August 2001–August 2010 (Sasgen and
others, 2012) and �17� 8Gt a�2 for April 2002–June 2010
(Rignot and others, 2011). The GIS mass evolution is
dominated by the signal from the coastal margins of the
ice sheet, as defined in our solution as mascons <2000m.
Large coastal mass loss rates result from high rates of D
associated with the presence of fast-flowing marine-termi-
nating glaciers along the northwest, southwest and southeast
regions of the GIS (Moon and others, 2012), and due to the
higher surface melt rates that occur at low elevations on the
ice sheet. Above 2000m there is little statistically significant
signal.

The GIS annual balance results from the application of the
EEMD filter are shown in Figures 8 and 9. The GIS annual
balance anomalies (difference from the mean) show large
interannual variability (Fig. 9). The GIS mean annual balance
over the balance years 2004–10 is �248� 12Gt a�1. It is

Fig. 6. The v12 10 day mascon solution mass time series (circles)
and 10 day Gaussian smoothed solution (curves) for GIS total (blue),
GIS <2000m elevation (purple) and GIS >2000m elevation (green).
The red lines show the best-fit trend plus acceleration.
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important to note that our mean annual balance is slightly
different from the trend reported above, primarily due to the
differing time periods, where integer balance years are
needed for the annual balance computation. The balance
years 2005–09 have anomaly magnitudes <20% of the mean
annual balance and alternate between positive and negative
values. In contrast, the GIS balance years 2004 and 2010
have large positive and negative anomalies, �50% of the
mean annual balance, giving rise to the statistically signifi-
cant acceleration determined from the linear regression
analysis (Table 5). Therefore our reported GIS mass loss
acceleration is, in part, an artifact of the GRACE sampling
interval, rather than an indication of a persistent multi-year
signal, and longer time series will be needed before making
inferences about future evolution of the ice sheet.

In the northwest GIS (drainage systems 81 and 82) we
observe an increase in mass losses after 2005 (Figs 10 and
11), attributed to a reduction in snow accumulation (Sasgen
and others, 2012) that combines with increased D after
2007 (Moon and others, 2012) to further enhance mass
losses. The timing and extent of the northward progression of
mass loss is confirmed by GPS observations, showing
enhanced rates of uplift late in 2005 at Thule Station in

northwest Greenland (Khan and others, 2010). In the
southwest GIS (drainage systems 61, 62 and 72) we observe
persistent mass losses, attributed to high D that commenced
in the late 1990s, that are dominated by the large calving
losses from Jakobshavn Isbr�, the largest marine-terminating
outlet on the GIS (Joughin and others, 2012).

Large interannual mass variability is observed in drainage
system 32, the region of the Geikie Peninsula in central East
Greenland that is largely composed of ice not receiving flow
contributions from the GIS (Fig. 10) (Jiskoot and others,
2012). The mass time series for this region shows an increase
in mass loss beginning in 2005, followed by mass gains from
2007 to 09 (Fig. 11). The glaciers in this area are smaller and
steeper than ice-sheet outlet glaciers and exist in a region
with high precipitation rates (Ettema and others, 2009), so
they likely respond rapidly to climate variations in a fashion
similar to other maritime glacier systems. Approximately
90% of the glaciers in this region drain through tidewater
glacier outlets (Jiskoot and others, 2012), and those draining
to the south into the Blosseville Kyst may be particularly
sensitive to changes in climate, due to their southerly aspect
and concentration of ice at lower elevations.

Several studies have reported synchronous retreat of
marine-terminating glaciers in southeast Greenland during
2000–06 (Howat and others, 2008), followed by advance
and thickening of Helheim and Kangerdlugssuaq Glaciers
(Howat and others, 2007; Joughin and others, 2008). The
reduction in mass loss associated with these advances has
been assumed to be synchronous across the southeast coast
(Murray and others, 2010), although evidence for this was
based, in part, on terminus advance rates that did not
measure glacier mass or volume changes directly (Howat
and others, 2008). Our results show a deceleration in mass
loss during the entire 2003–10 period (Fig. 7b), but analysis
of the individual mass-balance seasons shows that much of
the deceleration occurred due to mass gains in the central
east GIS in 2008, and a synchronous reduction in mass
losses in 2009 (Fig. 10). These findings are consistent with
those of Chen and others (2011), who used GRACE
observations to infer a significant reduction in the mass loss
of southeast GIS glaciers during September 2007–November
2009; however, our results pinpoint the timing of this
reduction in mass loss to the 2009 balance year. The 2009
slowdown of mass loss in the southeast GIS likely occurred
due to a complex array of factors, including a deceleration
and advance of several southeast GIS glaciers (Murray and
others, 2010), as well as 2008 and 2009 positive accumu-
lation anomalies (Sasgen and others, 2012). We note that
observed deceleration and advance of southeast GIS glaciers
occurred 1–2 years prior to our observed 2009 reduction in
mass losses. This reflects the complex and asynchronous
nature of ice-sheet dynamics in the southeast GIS (Moon and
others, 2012).

Our observations show evidence of the response of the
GIS to variations in summer air temperatures and the length
of the summer melt season. We observe high rates of mass
loss across the western and northwestern GIS during 2008,
associated with extreme summer snowmelt that summer,
detected by passive microwave imaging sensors (Tedesco
and others, 2008). Coastal mass balances during 2009 were
less negative than all other years in the GRACE record, and
this was followed in 2010 with the most negative mass
balances below 2000m (Fig. 10). These patterns agree well
with observed and simulated melt extent records showing

Fig. 7. The GIS v12 mascon solution mass changes computed over
the time period 1 December 2003 to 1 December 2010. (a) Trend
corrected with ICE5G Paulson GIA model and (b) acceleration.
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low/high melt extents in the 2009/10 summers (Mernild and
others, 2011).

AIS results
The mascon solution for the AIS regions is summarized in
Table 5 and Figures 12 and 13. Unlike the GIS, both the
magnitude and uncertainties of the GIA corrections for the
AIS are significant with respect to the total trend. The overall
AIS trend for the December 2003–December 2010 time
period studied is �81� 26Gt a�1. Our trend estimate
agrees, within stated uncertainties, with �69� 18Gt a�1

obtained by King and others (2012) for August 2002–
December 2010, using a comparable recent regional GIA
model. The AIS trend is dominated by significant mass loss
from the WAIS, with a trend of �106� 16Gt a�1. A trend of
�38� 14Gt a�1 is found for the AIS peninsula, while the
EAIS trend is 63� 28Gt a�1. The largest trends are found in
the WAIS along the Amundsen and Bellingshausen Sea
coasts (drainage systems 19–22), concentrated at the Pine

Island embayment (convergence of drainage systems
19–22), and at the northern tip of the peninsula (drainage
system 24). These results are in general agreement with
�132� 60Gt a�1 for the WAIS and �60� 46Gt a�1 for the
AIS peninsula, determined from radar interferometry and
regional climate models for the year 2006 (Rignot and
others, 2008). In addition, our AIS peninsula trend is in good
agreement with �42� 9Gt a�1 for January 2003–March
2009, determined from a GRACE spherical cap mascon
solution (Ivins and others, 2011).

The most striking signal, with the greatest potential
consequence for sea-level rise, is the large accelerated mass
loss exhibited by the WAIS at �46� 6Gt a�2. While we do
observe interannual variability of the WAIS annual balances,
there is a consistent negative trend in these data, repre-
senting a persistent multi-year acceleration of mass loss
(Figs 8d and 9). The largest accelerated loss is concentrated
at Pine Island embayment and along the Amundsen and
Bellingshausen Sea coasts with significant mass loss

Fig. 9. The annual mass balance mean (2004–10) and annual anomalies about the mean for GIS (blue), GOA (green), EAIS (purple), WAIS
(orange) and AIS peninsula (cyan) from the EEMD analysis of the v12 mascon solution. The values and corresponding error bars are
determined from the mean extrema and extrema error ellipses shown in Figure 8.

Fig. 8. The EEMD v12 mascon solution time series and error analysis for (a) GIS, (b) GOA, (c) EAIS, (d) WAIS and (e) AIS peninsula. Each plot
shows the v12 mascon solution time series (black circles), the mean of 50 EEMD runs, where each case sums the IMFs from the one
preceding the ‘annual’ IMF to the final IMF (blue curve), the mean values from the 50 EEMD runs at the times of the ‘annual’ IMF extrema
(red triangles) and the extrema error ellipses (green ellipses).
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extending to the Zumberge coast (drainage system 1) during
the 2009 balance year (Fig. 14). These changes are consist-
ent with observations of grounding-line retreat (Rignot and
others, 2008), acceleration (Joughin and others, 2010) and
drawdown (Wingham and others, 2009) of the Pine Island
Glacier driven by basal melting of its large ice shelf
(Pritchard and others, 2012).

The EAIS trend (63� 28Gt a�1) and accelerated mass
gain (22� 22Gt a�2) (Table 5; Fig. 8c) are not persistent
multi-year signals but are due to an exceptional positive
surface mass-balance anomaly during the 2009 accumu-
lation season, concentrated primarily along the coast of
Dronning Maud Land (drainage systems 5–7), but also along
the coast of Wilkes Land (drainage systems 11 and 12)
(Figs 8c and 14). These observations have similar patterns to
melting days anomalies derived from passive microwave
observations which, for the entire AIS, reached a new
historical minimum for the 1980–2009 period (Tedesco and
Monaghan, 2009). In addition, our GRACE observations
agree quite well with the timing and spatial location of a
significant 2009 accumulation anomaly observed in the
surface mass-balance record derived from the regional
atmospheric climate model RACMO2 (Lenaerts and others,
2012; Shepherd and others, 2012).

The northern tip of the AIS peninsula exhibits consistent
negative annual balance, with the exception of the 2008
balance year (Fig. 14), which gives rise to the shallow

positive acceleration shown in Figure 13. The southern area
of the peninsula shows small positive and negative annual
balances, with the exception of large negative annual
balances for 2007 and 2009, giving rise to the sharp losses
shown in the AIS peninsula time series for these years
(Fig. 8e). These large negative annual balance anomalies
give rise to the acceleration signal in the southern peninsula
shown in Figure 13, and the overall peninsula acceleration
of �9� 5Gt a�2. Large mass losses on the AIS peninsula
result from tributary glaciers that feed into ice shelves that
have recently disintegrated (Shuman and others, 2011), and
increasingly negative mass balances resulting from strong
climatic warming in the region. Our observations agree with
satellite observations of surface lowering (Fricker and
Padman, 2012) and model estimates of increasing mass
losses from peripheral glaciers and ice caps in the region
(Hock and others, 2009).

GOA results
The mascon solution for the GOA glacier region is
summarized in Table 5 and Figures 8b and 15. The overall
trend of the GOA glaciers for the time period studied is
�69� 11Gt a�1, and �77� 11Gt a�1 if we take the mean
of the 2004–10 balance years (Fig. 9). Most of the GIA
correction in this region results from uplift corrections due to
LIA mass loss in the Glacier Bay region of Alaska. Our
estimates very nearly agree to within stated error bars with

Fig. 10. The GIS annual mass balances and mean annual mass balance determined from the EEMD analysis of the v12 mascon solution. The
timing of the seasons is determined by the mean EEMD extrema in Figure 8a, and the mass values are determined by the result of the EEMD
method (summing the IMFs from the one preceding the ‘annual’ IMF to the final IMF) for each individual mascon time series at the time of
the total GIS extrema.
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�46� 7Gt a�1 reported by Jacob and others (2012).
Differences in the best estimates between these two studies
likely results from different treatment of TWS, and slightly
different solution domains.

GOA glaciers exhibited large seasonal and interannual
variability during the 2003–10 measurement period (Figs 8b,
11 and 16). We observed large mass losses during summer
2004, in response to record high temperatures across Alaska
that year (Truffer and others, 2005). Even larger mass losses
occurred in 2009, despite the absence of a strong tempera-
ture forcing, and we attribute these losses to the 31 March
2009 eruption of Mount Redoubt that spread volcanic ash
across much of the GOA region (Schaefer and others, 2012)
and likely enhanced melt rates through a reduction in surface
albedo. Large 2007/08 winter accumulation was followed by
a cool 2008 summer season, resulting in near-balance
conditions during 2008. This offset the strong 2004 and
2009 melt seasons and resulted in no significant acceleration
in GOA mass balance during the GRACE period.

The spatial distribution of mass balances largely follows
the distribution of glacierization in the GOA region, with
largest mass losses occurring in the St Elias and Glacier Bay
regions. The highly variable distribution of glaciers in the
GOA region, with large signals occurring in the center of the
domain and much smaller signals at the northwestern and
southeastern edges, likely results in smearing and leakage of
signal between individual mascons. Therefore, although the
total GOA signal is not affected by these problems,
additional processing steps are required to further constrain

Fig. 11. The v12 10 day mascon solution time series (circles) and
10 day Gaussian smoothed solution (curves) for selected drainage
systems within the GIS and AIS, and mascons within the GOA land-
ice region. The colors of the plotted curves correspond to the
drainage system and mascon colors in Figure 1.

Fig. 12. The v12 10 day mascon solution time series (circles) and
10 day Gaussian smoothed solution (curves) for the AIS total (blue),
AIS <2000m elevation (purple), AIS >2000m elevation (green),
EAIS (orange), WAIS (cyan) and AIS peninsula (gold). The red curves
show the best-fit trend and acceleration.

Fig. 13. The AIS v12 mascon solution mass changes computed over
the time period 1 December 2003 to 1 December 2010. (a) Trend
corrected with the IJ05 R2 GIA model and (b) acceleration. The
EAIS, WAIS and AIS peninsula regions are demarcated by the cyan
borders.
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mass changes over drainage systems smaller than our
current solution domain.

CONCLUDING REMARKS
We have developed a new global mascon solution spe-
cifically tuned to observe high-latitude land-ice mass
evolution estimated directly from the GRACE inter-satellite
range-rate data. The study is unique in many ways including:
(1) a detailed error analysis of a constrained global mascon
solution with estimates of signal leakage in and out of the
regions of interest; (2) a controlled comparison to solutions
derived from monthly spherical harmonic solutions using
the same GRACE data processing and forward models,
providing estimates of uncertainty due to solution technique;
(3) fully iterating a global mascon solution to convergence
and quantifying the signal recovery improvement and

Fig. 14. The AIS annual mass balances and mean annual mass balance determined from the EEMD analysis of the v12 mascon solution. The
timing of the seasons is determined by the mean EEMD extrema in Figure 8c, d and e, and the mass values are determined by the result of the
EEMD method (summing the IMFs from the one preceding the ‘annual’ IMF to the final IMF) for each individual mascon time series at the
time of the extrema for the region in which the mascon is located (east, west or peninsula). The EAIS, WAIS and AIS peninsula regions are
demarcated by the cyan borders. The mean annual mass balance is shown for the v12 solution corrected with the IJ05 R2 GIA model.

Fig. 15. The GOA mascon trends computed from the v12 mascon
solution corrected with the ICE5G Paulson GIA model and the
Larsen LIA model over the time period 1 December 2003 to
1 December 2010.

Fig. 16. The GOA land-ice region annual mass balances and mean annual mass balance determined from the EEMD analysis of the v12
mascon solution. The timing of the seasons is determined by the mean EEMD extrema in Figure 8b, and the mass values are determined by
the result of the EEMD method (summing the IMFs from the one preceding the ‘annual’ IMF to the final IMF) for each individual mascon time
series at the time of the total GOA extrema.
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GRACE inter-satellite range-rate residual reduction; and
(4) applying the EEMD to compute land-ice annual
balances. We estimate the land-ice mass trends for the time
period 1 December 2003 to 1 December 2010 to be
�230� 12Gt a�1 for the GIS, �81� 26Gt a�1 for the AIS
and �69� 11Gt a�1 for the GOA glaciers. For the
subregions of the AIS we estimate 63 � 28Gt a�1 for the
EAIS, �106� 16Gt a�1 for the WAIS and �38� 14Gt a�1

for the AIS peninsula. The total over the land-ice regions
studied is �380� 31Gt a�1, equivalent to �1:05� 0:09
mma�1 sea-level rise. Over the same time period we
estimate the mass acceleration to be �10� 6Gt a�2 for the
GIS, �33� 26Gt a�2 for the AIS and 2� 7Gt a�2 for the
GOA glaciers, giving a total of �41� 27Gt a�2, equivalent
to �0:11� 0:08mma�2 sea-level rise. For the subregions of
the AIS we estimate the accelerations to be 22� 22Gt a�2

for the EAIS, �46� 6Gt a�2 for the WAIS and �9� 5Gt a�2

for the AIS peninsula. The trends and accelerations deter-
mined over our study period have been shown to be highly
dependent on significant seasonal and annual balance
anomalies, making it difficult to predict future land-ice
mass balance and its contribution to sea level. One possible
exception is the WAIS acceleration signal, which shows a
persistent negative trend in annual balance. The iterated
global mascon solution presented here provides the spatial
and temporal monitoring of land-ice evolution to aid in
improved understanding and modeling.
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