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Abstract

We discuss the isoperimetric problem in planes with density. In particular, we examine planes with
generalized curvature zero. We solve the isoperimetric problem on the plane with density ex , as well as
on the plane with density r p for p < 0. The Appendix provides a proof by Robert Bryant that the Gauss
plane has a unique closed geodesic.
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1. Introduction

The isoperimetric problem on a Riemannian surface seeks a region of least perimeter
enclosing a given area. In general, we can study this problem on a surface where
a continuous positive function, called the density, is used to weight both area and
perimeter. Note that defining such a density is not equivalent to scaling the metric by
a factor λ, because area and perimeter would be scaled by different powers of λ.

We consider the particular case of the Euclidean plane with a density function eϕ .
We are especially interested in what conclusions can be drawn when the generalized
Gauss curvature of the plane is zero, which occurs when ϕ is harmonic. For the plane
with density r p, Section 4 shows that isoperimetric regions exist for p ≥ 0 or p <−2
but not for−2≤ p < 0, when any area may be enclosed by arbitrarily small perimeter.
For the plane with density ex , given A > 0, the infimum perimeter is A but cannot be
attained (Proposition 4.9). Section 5 studies the ‘J-plane’ with density exp(x2

− y2).
In Section 2 we cite the definition of generalized Gauss curvature and the

generalized Gauss–Bonnet formula for surfaces with density from Corwin et al. [3].
We conclude this section with some general results about geodesics in planes with
generalized curvature zero.
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178 C. Carroll, A. Jacob, C. Quinn and R. Walters [2]

In Section 3 we consider surfaces with an area density function eβ that weights area
but leaves perimeter unaffected, and we provide generalizations of the curvature of a
curve and Gauss–Bonnet. Proposition 3.4 explains that any plane with density can be
viewed under a conformal change of variables as a surface with area density. If the
generalized curvature of the plane is zero, then the surface is flat and has Euclidean
coordinates. This observation leads to many important conclusions about planes with
generalized Gauss curvature zero. For nonconstant density, there does not exist a
geodesic between every two points and there are no compact isoperimetric regions
(Proposition 3.5 and Corollary 3.7).

In Section 4 we solve the isoperimetric problem on planes with density ex and r p,
p < 0. For a plane with density r p, p > 0, we note that circles about the origin are
unstable and conjecture that minimizers are off-centre, convex discs.

In Section 5 we explore the plane with density exp(x2
− y2), which we call the

J-plane. We are interested in J because of its relationship to the Gauss plane of
density exp(−x2

− y2) and because it has generalized curvature zero. We prove some
results about the behaviour of the geodesics of J. For the isoperimetric problem, we
conjecture that, similar to the plane with density ex , the infimum perimeter for given
area is not attained.

In Section Appendix A we conclude with a proof by Robert Bryant that the Gauss
plane has a unique closed geodesic, a circle.

2. Manifolds with density

We consider Riemannian surfaces endowed with a positive density eϕ used to
weight both perimeter and area. In terms of Riemannian perimeter and area (d P0
and d A0), weighted perimeter and area satisfy

d P = eϕd P0,

d A = eϕd A0.

Note that such a metric is not equivalent to scaling the perimeter and area by some
factor λ, since perimeter and area would scale by different powers of λ. See Morgan [7]
for more on manifolds with density.

The tools for studying surfaces with density from Corwin et al. [3] include a formula
for the generalized (Gauss) curvature

Gϕ = G −1ϕ,

where G is the classical Gauss curvature. The curvature of a curve is given by

κϕ = κ −
dϕ

dn
,
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where κ is the classical curvature. As in the classical case, κϕ has the interpretation of
d P/d A, and for the boundary of an isoperimetric region, κϕ is constant. Finally, the
Gauss–Bonnet formula generalizes to surfaces with density:∫

R
Gϕ d A0 +

∫
∂R
κϕ d P0 +

∑
(π − αi )= 2π.

We begin with two results about geodesics.

PROPOSITION 2.1. Let 5 be a plane with density eϕ with generalized curvature
Gϕ = 0. Then there are no closed geodesics in 5.

PROOF. Let γ be a closed curve of constant curvature in 5. Since 5 is a plane, the
bounded region is a disc, so Gauss–Bonnet applies:

2π =
∫
γ

κϕ d P0 = κϕ

∫
γ

d P0 = κϕP0.

This equation cannot hold if κϕ = 0, so no geodesic can be closed. 2

PROPOSITION 2.2. Given a plane with density that has nonpositive generalized
curvature, if there exists a geodesic γ between two points, then it is unique.

PROOF. Let γ and γ ′ be distinct geodesics between two points in the plane. Begin
at one point, which we shall call a, and follow γ until it first crosses γ ′ (which may
not be until the other point) and call that intersection point b. Now since we are in
the plane and the bounded region is a disc, we can apply Gauss–Bonnet to the region
bounded by γ and γ ′, with α1 and α2 the angles formed where the two geodesics meet.
Thus, ∫

R
Gϕ +

∫
γ

κϕ +

∫
γ ′
κϕ +

∑
(π − αi )= 2π.

Because γ and γ ′ are both geodesics, the
∫
κϕ terms vanish, so that

α1 + α2 =

∫
R

Gϕ .

Since Gϕ ≤ 0, α1 = α2 = 0, and the geodesics must coincide. 2

3. Manifolds with area density

We now consider Riemannian surfaces with a positive area density eβ that weights
area but not perimeter. Proposition 3.4 shows that a Riemannian surface with density
is equivalent to a Riemannian surface with area density. Proposition 3.5 shows that
geodesics do not exist between every two points on a plane with nonconstant density
and Gϕ = 0. Corollary 3.7 shows that in a plane 5 with density eϕ and Gϕ = 0, there
are no compact isoperimetric regions.
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DEFINITION 3.1. Let γ be a smooth curve in a surface with area density eβ . Then the
curvature κβ at any point along γ is defined to be

κβ = κe−β ,

where κ is the classical curvature.

Note that κβ ≥ 0 if and only if κ ≥ 0.
This definition is justified by the following proposition.

PROPOSITION 3.2. Infinitesimally, κβ = d P/d A.

In particular, for the boundary of an isoperimetric region, κβ is constant.

PROOF. Length is unaffected by the area density, so the standard first variation formula
[4, p. 6] holds:

d P

dt
=

∫
κ · v d P.

However, area is affected, and as a result d A/dt =
∫
v · eβ d P . The result follows. 2

PROPOSITION 3.3 (Generalized Gauss–Bonnet). Given a piecewise smooth curve
enclosing a topological disk R in a Riemannian surface with area density eβ and
inward pointing unit normal n,∫

R
G d A0 +

∫
∂R
κβ eβ d P0 +

∑
(π − αi )= 2π.

PROOF. The proof follows from direct substitution into the Riemannian Gauss–
Bonnet formula. 2

PROPOSITION 3.4. Every surface with density eϕ is conformally equivalent to a (not
necessarily complete) surface with area density eβ = e−ϕ . In particular, every plane
with generalized curvature zero is conformally equivalent to a flat surface with area
density; its development over the Euclidean plane yields Euclidean coordinates.

PROOF. Considering length alone, a density function on the surface is equivalent to
a conformal change of metric d P = eϕd P0, yielding d A = e2ϕd A0. Adding area
density eβ = e−ϕ yields d A = eϕd A0, as desired.

Suppose that the surface with density has Gauss curvature G and generalized
curvature Gϕ = G −1ϕ. The conformal change of metric yields Gauss curvature

G ′ = e−2ϕ(G −1ϕ)= e−2ϕGϕ;

see [1, Theorem 1.159] and [8, 3.2]. Hence, if Gϕ = 0, G ′ = 0, and the plane with area
density can be developed over the Euclidean plane (as a Riemann surface). 2
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REMARK. Proposition 3.4 implies Propositions 2.1 and 2.2.

PROPOSITION 3.5. Given a plane with nonconstant density eϕ and generalized
curvature zero, there does not exist a geodesic between every pair of points.

PROOF. Assume that a geodesic exists between every pair of points. By
Proposition 3.4 there exists a conformal mapping that converts the plane to a flat
Riemannian manifold M with Euclidean coordinates. Under this mapping geodesics of
the plane become straight lines, and, because there exists a geodesic between every pair
of points, M must be a convex subset of the plane. If M is not the whole plane, then by
the Riemann mapping theorem M maps conformally to the unit disk, and is bounded.
But ϕ is harmonic and nonconstant, so M bounded contradicts Liouville’s theorem,
implying that M is the whole Euclidean plane. Now we show that any conformal
automorphism of the complex plane is linear, which would imply that the density is
constant, a contradiction that proves the proposition.

A conformal automorphism of the complex plane is a map from the Riemann
sphere to itself with a singularity at infinity. If this singularity is essential, it takes
on almost all values infinitely often (by Picard’s theorem), which would contradict
injectivity. Thus the singularity is not essential. So the conformal map is a linear
fractional transformation, and because it takes infinity to infinity it must be of the form
w = az + b (z cannot be in the denominator) and the map is linear. Therefore the
density is constant, which implies a contradiction, so there does not exist a geodesic
between every pair of points. 2

PROPOSITION 3.6. Let f be a nonconstant subharmonic function on an open domain
D in R2. Consider the class of subsets S of D which are translates of a fixed compact
subset S0 of D. Let g(S) denote the integral of f over S. Then g cannot have a local
maximum at S0.

PROOF. Define a function h in a neighbourhood of 0 where h(x) is the average of
f over S0 + x . h is well defined because the integral over a region translated by
some x always exists in the open domain D. As an integral average of nonconstant
subharmonic functions, h is nonconstant subharmonic. Hence h cannot have a local
maximum at 0, so g cannot have a local maximum at S0. 2

COROLLARY 3.7. In a plane 5 with nonconstant density eϕ such that Gϕ = 0, an
isoperimetric region has no compact components.

PROOF. Suppose that an isoperimetric region has a compact component R. By
Proposition 3.4, a conformal change of metric yields Euclidean coordinates with area
density eβ = e−ϕ . Since ϕ remains harmonic [2, Theorem 8.4], eβ is subharmonic. By
Proposition 3.6, any compact isoperimetric region cannot be a local maximum for area.
By the remark after Definition 3.1 and Proposition 3.2, the outer boundary of R must
be strictly convex with constant curvature. Move R slightly to increase area. Now
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replace some arc on the boundary with a chord to restore area and lower perimeter,
thus contradicting isoperimetry. 2

4. Planes with density r p and ex

In this section we explore the isoperimetric problem in planes with density ex and
r p, where p is any real number. Although 1 log r p

= 0, we cannot assume all the
previous results about planes with generalized curvature zero for these examples, since
at the origin r p

= 0 and log r p is undefined.

PROPOSITION 4.1. Circles about the origin in the plane with density r−1 are
geodesics.

PROOF. By symmetry, a circle about the origin has constant generalized curvature. As
the circles grow, the enclosed weighted area A increases, while the weighted perimeter
P remains 2πrr−1

= 2π . Hence the generalized curvature, which has the geometric
interpretation d P/d A, vanishes, and the circles are geodesics.

This can be easily observed by looking at Euclidean coordinates. Here a circle of
radius r is mapped to the line x = log(r) and thus has a boundary of zero classical
curvature. By Definition 3.1 all circles have generalized curvature equal to zero. 2

PROPOSITION 4.2. Given a plane5 with density r p,−2≤ p < 0, there does not exist
a solution to the isoperimetric problem. Indeed, regions of any area A can be enclosed
by an arbitrarily small perimeter.

PROOF. In 5, the radius of a circle about the origin is 2πr p+1. If −2≤ p <−1, as
r approaches infinity the perimeter of the circle goes to zero. The area outside of the
circle is equal to ∫ 2π

0

∫
∞

r
r p+1 dr dθ =∞.

So given any ε > 0, we can construct two circles about the origin with large enough
radii such that the combined perimeter of both is less than ε. Let A0 be the area in
between the two circles. If A0 < A, because there is infinite area outside of the second
circle, we can increase the radius of that circle, decreasing perimeter and increasing
area to A. If A0 > A, then we increase the radius of the first circle, decreasing both
perimeter and area to reach area A.

Now suppose that p =−1. Euclidean coordinates are produced by the mapping
w = log(z), with |dw| = |z−1dz| and area density |z| = |ew| = ex (with x = Re w).
The image of 5 under this map is a strip of height 2π with the top and bottom
identified. The origin maps to negative infinity, and circles of radius r map to vertical
lines (x = log r ). Given ε > 0, consider a circle with perimeter less than ε. This circle
can be slid left or right to attain any desired area.

If−1< p < 0 then the image of5 under the mappingw = z p+1/(p + 1) is a sector
in the plane with identified sides and vertex angle 2π(p + 1). The area density in
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Euclidean coordinates is given by |z|−p
= |w|−p/(p+1), which gives zero area density

at the origin and approaches infinity as r goes to infinity. Once again given any ε > 0,
in Euclidean coordinates create a circle with perimeter P < ε and area A0. If A < A0
then we can contract the circle, decreasing the perimeter until A0 = A. If A > A0, then
the circle can be slid outward to attain any desired area A by the intermediate value
property. 2

PROPOSITION 4.3. In the plane 5 with density r p where p <−2, a circle about the
origin encloses a given area A (on the outside) with the least perimeter.

PROOF. We work in Euclidean coordinates, produced by the mapping w = z p+1/

(p + 1), with |dw| = |z pdz| and area density |z|−p
= c|w|−q , with q = p/(p + 1).

So 1< q < 2. The image of 5 is a sector of angle 2π |p + 1| with bounding rays
identified. Since the area density goes to 0 as |w| goes to infinity, components
of regions of prescribed area can be moved closer to the origin and shrunk.
Therefore there is a bounded sequence of regions approaching the infimum perimeter,
and a minimizer exists by standard compactness arguments (see, for example, [5,
Sections 5.5 and 9.1]). Any minimizer is bounded by a smooth curve of constant
curvature [6, Section 3.10] (see Definition 3.1) and hence is convex. The region has
just one component, because if there were two components, one could be moved closer
to the origin and shrunk. Likewise the region must contain the origin, so its boundary
is a graph r(θ) in polar coordinates, with θ ranging from 0 to L = 2π |p + 1|. The area
AR is given by

AR = c
∫ L

0

∫ r(θ)

0
r−p/(p+1)

0 r0 dr0 dθ

= c
∫ L

0

∫ r(θ)

0
r1/(p+1)

0 dr0 dθ

= c
p + 1
p + 2

∫ L

0

[
r (p+2)/(p+1)

0

]r(θ)

0
dθ

= c2

∫ L

0
r(θ)(p+2)/(p+1) dθ

where c2 = c(p + 1)/(p + 2).
We now consider a circle C of radius ravg where ravg is the average value of the

function r(θ) on [0, L]. This circle has perimeter

PC = Lravg =

∫ L

0
ravg dθ =

∫ L

0
r(θ) dθ =

∫ L

0

√
r(θ)2 dθ

<

∫ L

0

√
r(θ)2 + ṙ(θ)2 dθ = PR .
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So the perimeter of C is less than that of R. To show that C contains greater area, we
note from our earlier calculation that

AC = c2

∫ L

0
(ravg)

(p+2)/(p+1) dθ.

Now let g(x)= c2x (p+2)/(p+1). Then since 0< (p + 2)/(p + 1) < 1 for p <−2, and
c2 > 0, g(x) is strictly concave for x > 0. Hence,

AC =

∫ L

0
g(ravg) dθ >

∫ L

0
g(r(θ)) dθ = AR .

So A has greater area as well. 2

PROPOSITION 4.4. Given a plane with density r p, p ≥ 0, then there exists an
isoperimetric region.

PROOF. Rosales et al. [9, Theorem 2.6] proved that in Euclidean space endowed with a
nondecreasing radial density function f , such that f (|x |)→∞ as |x |→∞, a minimizer
exists. We note that although Rosales dealt with manifolds of strictly positive density,
the argument admits an isolated point of zero density. 2

PROPOSITION 4.5. Given a plane with density r p, p > 0, any isoperimetric region
must contain the origin in its interior or its boundary.

PROOF. Suppose that it does not. Then an isoperimetric region exists some distance
from the origin with area A and perimeter P . By [6, 3.10], the boundary of the
region must be a closed curve of constant curvature. Therefore, in the Euclidean
coordinates (attained through the mapping w = z p+1/(p + 1)), the boundary must be
strictly convex. The weighted area density function in Euclidean coordinates is the
inverse of the original density function and is radially decreasing. As in the proof
of Corollary 3.7, any convex region some finite distance from the origin can be slid
closer to the origin into increasing area density, thus increasing the area of the region.
By replacing an arc of the boundary with a chord, we can reduce the area of the new
region back down to A. However, this new region has less perimeter than the original
isoperimetric region. Thus it could not have been isoperimetric. 2

CONJECTURE 4.6. In the plane 5 with density r p, p > 0, for a given area A the
isoperimetric region R is an off-centre, convex disk, containing the origin as in
Figure 1. It approaches a circle through the origin as p goes to zero and approaches
a unit ray as p goes to infinity.

REMARK. We offer the following evidence for Conjecture 4.6. By Proposition 4.4, a
minimizer exists. By [6, Section 3.10] it is smooth, except possibly at the origin. The
boundary has at most one smooth component; otherwise expanding one and shrinking
another by constant normal variations could preserve enclosed area to first order and
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0

FIGURE 1. The conjectured minimizer for the plane with density r p , p > 0.

reduce perimeter to second order by the second variation formula [9, Proposition 3.6].
Since a smooth boundary has constant generalized curvature, it probably is convex.
By Rosales et al. [9, Theorem 3.10], circles about the origin are stable if and only
if the density function is log convex. Since r p is not log convex, circles about the
origin are not stable. However, though the isoperimetric region R is not a circle, by
Proposition 4.5, R must contain the origin. We think that the origin lies in the interior
because in Euclidean coordinates the area density blows up at the origin.

In the first limit case, when p = 0, the minimizer R can be a circle centred about
any point in the plane. However, when looking at the limit as p goes to zero, a limit of
minimizers must be a circle through the origin. Indeed, as p approaches zero, the dip
at the origin of the density function gets smaller and smaller, and for each minimizer
it pays for part of the boundary to travel through that dip because passing through the
dip lowers perimeter while gaining area.

In the second limit case, as p becomes large, a minimizer must extend beyond the
unit circle (to have given area) but probably only slightly beyond.

PROPOSITION 4.7. In the plane with density ex , all curves with constant curvature κϕ
are either closed or have infinite (weighted) length.

PROOF. Assume that they do not. Then there exists a curve, denoted γ , that is not
closed but has finite weighted length. γ must contain a point p with maximum x value,
otherwise γ would have infinite weighted length. At p the normal vector n=−i. Also,
κ > 0; hence κϕ = κ − dϕ/dn > 1. Hence, everywhere κ = κϕ + dϕ/dn is bounded
below by the positive constant κϕ − 1, a contradiction. 2

COROLLARY 4.8. The plane with density ex contains no isoperimetric region.
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x

y

Density = ex

(-a, b)

(-a, -b)

FIGURE 2. A region in the plane with density ex that approaches minimal perimeter for given area.

PROOF. Any isoperimetric region R must have a smooth boundary with constant
curvature κϕ [6, 3.10]. By Proposition 4.7, R has a compact component, contradicting
Corollary 3.7. 2

Although the plane with density ex has no specific region that realizes the minimal
area to perimeter ratio for the plane, the minimal ratio can be approached in the limit
of certain noncompact regions (see Figure 2).

PROPOSITION 4.9. For the plane with density ex , the infimum of perimeters to enclose
a region with area A is A. This infimum is not realized by any region.

PROOF. Construct an open rectangle R as in Figure 2, symmetric about the x-axis.
Simple calculations show that the perimeter and area are given by

PR = e−a(2b + 1),

AR = 2be−a .

Given any area A, let a be a function of b so that for any b, AR = A. Now let b
go to infinity. Then a goes to infinity as well, so e−a converges to zero, and the ratio
AR/PR goes to one.

Now suppose that there exists a region with perimeter less than or equal to A.
Looking at all horizontal slices of the plane, we see that the most efficient way to
enclose length in the slice is a point with density ep enclosing length ep to the left.
The area of the region is given by the integral of all the horizontal length slices ep, and
the perimeter is given by the integral of ep times a tilt factor greater than or equal to 1.
Since the boundary cannot have a vertical line, the perimeter is greater than A. 2
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-2 -1

-1
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FIGURE 3. A grid of all geodesics parallel to the axes in the J-plane corresponds to a small part of J.

-2

-1

1

2

-2 -1 1 2

FIGURE 4. A Mathematica generated plot showing a geodesic in the J-plane passing through the point
(1,1) with slope 1.

5. The J-plane

We now turn to the particular example of the plane with density exp(x2
− y2),

which we call the J-plane.

The change to Euclidean coordinates (Proposition 3.4) maps a grid of geodesics
parallel to the axes, as seen in Figure 3, to straight parallel lines. However, this
grid is not complete. Notice that the the y-axis reaches infinity at a weighted length
of just

√
π/2 from the origin, while all parallel geodesics have infinite weighted

length. In Euclidean coordinates the surface is actually an infinitely sheeted Riemann
surface with branch points on the y-axis at y =±

√
π/2. Figures 4 and 5 show some

other geodesics.
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l
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-2 -1 1 2

FIGURE 5. A Mathematica generated plot showing a geodesic in the J-plane passing through the origin
illustrating the orientation of the line in Proposition 5.1.

PROPOSITION 5.1. Let γ be a geodesic in J and let p be a point on γ not on the
x-axis or y-axis at which γ is not tangent to a vertical line, as in Figure 5. Since the
tangent line l to γ at p is not vertical, it intersects the y-axis at some point p′. We
orient l choosing the positive direction to go from p to p′. We give γ the opposite
orientation by comparison at p. Then, following γ in positive direction (the direction
pointed away from the y-axis at p), γ converges to a line parallel to the x-axis.

PROOF. Without loss of generality, we assume p is in the first quadrant, since the
quadrants are symmetric. Let γ be parameterized in terms of arc length, such that
γ (0)= (x(0), y(0))= p, and such that x ′(0) > 0. We have two cases: (i) y′(0) < 0 or
(ii) y′(0)≥ 0. Assume that y′(0) < 0. Also assume that y(t) 6= 0 for t > 0. Now, we
claim that x ′(t)≥ 0 and y′(t)≤ 0 for all t > 0. For this not to be the case, γ would
have to become vertical or horizontal at some point t0 > 0 where γ (t0) is still in the
first quadrant. We shall show that if γ becomes vertical or horizontal at some point
then curvature would point in the correct direction to make x ′(t)≥ 0 and y′(t)≤ 0
again. Assume that γ is horizontal at t0. Then the normal vector n is vertical. So by
the geodesic equation,

n · (κ −∇ϕ)= 0,

(κ −∇ϕ) must be horizontal. We know that κ is a multiple of n, so it is vertical.
Thus, it must exactly cancel the vertical component of −∇ϕ. In the first quadrant,
−∇ϕ = (−2x, 2y) has positive y-component, so to cancel, the curvature κ is vertical
down. Thus, y′(t)≤ 0 for t > 0. Now, assume γ is vertical at some point t0 > 0. Then
the normal vector n is horizontal, so (κ −∇ϕ) is vertical. Thus, κ must cancel the
x-component of −∇ϕ = (−2x, 2y) which is negative. So the curvature κ is a vector
in the positive x direction, thus x ′(t)≥ 0 for t > 0. With the conditions, y′(t)≤ 0,
x ′(t)≥ 0, and y(t) 6= 0 for t > 0, we know that γ must converge to a line parallel to
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the x-axis. We shall deal with what happens when y(t)= 0 for some t > 0 after we
have dealt with the second case.

Moving to the second case, take y′(0)≥ 0. We have already dispensed with the case
y′(0)= 0. Since the curvature vector would point down, this becomes the first case
instantaneously. Now, we already know what happens if the tangent vector becomes
horizontal or vertical. If it becomes vertical, then we return to our original situation
of x ′(t)≥ 0 and y′(0)≤ 0. If it becomes horizontal, then we enter the first case. So
what we want to show is that eventually the tangent vector becomes horizontal. To
show this, it suffices to look at the magnitude and direction of the curvature vector. As
noted, we know that−∇ϕ = (−2x, 2y)= (a, b) has a < 0 and b > 0. Let n= (e, f ),
so e ≥ 0 and f < 0. We compute κ = n · ∇ϕ =−ea − f b where κ = κn. Since
−ea − f b > 0, the curvature is in the same direction as n which has a nonpositive
vertical component. Thus, the geodesic is curving in the desired direction. However,
we must show that it curves sufficiently quickly. Since e ≥ 0 and a < 0, −ea > 0, so
κ =−ea − f b >− f b. As t increases, f decreases to −1 and b increases. Set fmax
equal to its value at t = 0 and define bmin analogously. Then− f b >− fmaxbmin. Thus,
by comparison with a constant curvature curve, we know that the curve eventually does
become horizontal. This reduces case (ii) to case (i).

To finish the proof, we return to case (i) and remove the assumption that y(t) 6= 0
for t > 0. Suppose that y(t)= 0 for some t0 > 0. By symmetry we can apply case (ii)
to show that γ then becomes horizontal and curves back towards the x-axis. Applying
case (i), γ must either approach a line parallel to the x-axis or cross the x-axis again.
It cannot cross again, however, because it would violate uniqueness. 2

From Proposition 5.1, we get the following proposition which incompletely
characterizes the end behaviour of geodesics.

PROPOSITION 5.2. If γ is a geodesic on J that is not the y-axis then γ converges to
a line parallel to the x-axis in at least one direction. If γ crosses the x-axis, then γ
converges to lines parallel to the x-axis in both directions.

PROOF. If γ is the x-axis, then the proposition is clearly true, so we assume that this
is not the case. Then, we know that a point which is not on one of the axes can be
found. Applying Proposition 5.1 at this point to γ , we find that γ converges to a line
parallel to the x-axis in at least one direction. If γ crosses the x-axis, then a point can
be found on either side of the x-axis. Applying Proposition 5.1 to each of these points
tells us that γ converges to lines parallel to the x-axis in both directions. 2

In the remaining case, we believe two things are possible. At one end γ converges
to a line parallel to the x-axis. Either the other end curves around 180 degrees and
converges to a line parallel to the x-axis, or it converges to a line parallel to the y-axis.

Despite the fact that Proposition 5.2 is an incomplete characterization, we can use
it to prove a couple of useful corollaries.

COROLLARY 5.3. All geodesics in J except for the y-axis have infinite length.
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FIGURE 6. A sequence of regions in J which we conjecture approach the infimum perimeter for given
area.

PROOF. This is a trivial corollary of Proposition 5.2. The quarters of plane on the left
and right bounded by the lines y = x and y =−x have density greater than 1, so any
line converging to the x-axis has an infinite Euclidean length in this region and thus an
infinite length. 2

Since an isoperimetric region minimizes perimeter and geodesics have infinite
length, we have the following corollary.

COROLLARY 5.4. No isoperimetric region in J is bounded by a geodesic. 2

CONJECTURE 5.5. There does not exist an isoperimetric region in J.

We conjecture that J is similar to the plane with density ex , in that we can construct
a sequence of regions (as in Figure 6) that approach the infimum perimeter for given
area.
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Appendix A. Unique geodesic in the Gauss plane (Robert Bryant)

At the Geometry Festival 2006, Frank Morgan mentioned the conjecture of Corwin
et al. [3, Conjecture 6.1] that in the Gauss plane (with density proportional to
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exp(x2
+ y2)) there is a unique closed geodesic (a circle). Overnight Robert Bryant

supplied the following proof.

PROPOSITION A.1. There are no simple closed geodesics in the Gaussian plane
besides the circle.

PROOF. In the general case we assign the plane a density exp(a − b(x2
+ y2)) (with

b ≥ 0). For our purposes, in fact, a conformal change of metric to

g = exp(a − b(x2
+ y2))(dx2

+ dy2)

will suffice since we are looking at geodesics. This may be reduced by scaling to

g = exp(1− r2)(dr2
+ r2 dθ2).

(This makes the unit circle (r = 1) have length 2π and be a geodesic.) We can write
this as

g = ds2
+ f (s)2 dθ2

with

ds = exp
(

1− r2

2

)
dr

and

f (s)= r exp
(

1− r2

2

)
.

Then

f ′(s)=
d f

ds
= 1− r2

and

f ′′(s)=
d f ′

ds
=−2r exp

(
r2
− 1
2

)
,

so the curvature κ satisfies

κ =
− f ′′

f
= 2 exp(r2

− 1) > 0.

It follows that r = 1 is a geodesic of length 2π and that conjugate points along this
geodesic are separated by a distance of π/

√
k = π/

√
2.

Any unit speed geodesic satisfies

exp(1− r2)(ṙ2
+ r2θ̇2)= 1,

and Clairaut’s integral tells us that

r2 exp(1− r2)θ̇ = α,
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λ -(β) 1 λ+
(β)

 α = λ e(1–λ2) /2

α

β

FIGURE A.1.

where α is a constant. The case α = 0 just gives the radial geodesics, which can
be discarded. By reflectional symmetry (θ→−θ ), assume that α > 0. Then θ is
strictly increasing along a geodesic and hence can be used as a coordinate. The above
equations then give (

dr

dθ

)2

=
r2(exp(1− r2)r2

− α2)

α2 .

It follows from inspection that α ≤ 1, with α = 1 only for r ≡ 1, the closed circle.
When 0< α < 1, let λ±(α) be defined so that 0< λ−(α) < 1< λ+(α) and

λ±(α)
2 exp(1− λ±(α)2)= α2

as in Figure A.1.
It follows that a geodesic with r2 exp(1− r2)θ̇ = α lies in the annulus

λ−(α)≤ r ≤ λ+(α)

and is tangent to both boundary circles. The θ phase shift that the geodesic undergoes
in travelling from the inner tangency to the outer tangency is then given by

P(α)=
∫ λ+(α)

λ−(α)

α dr

r
√

r2 exp(1− r2)− α2

with 0< α < 1.
When P(α)= (p/q)π where p/q is rational in lowest terms, the geodesic will

close after touching the inner radius r = λ−(α) q times and will wind p times around
the origin in order to close. In particular, it will be a simple closed geodesic only if
p = 1, that is, P(α)= π/q for some integer q ≥ 1.
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By the conjugacy calculation, we know that

lim
α→1−

P(α)=
π
√

2
,

so no geodesics that stay near r = 1 can be simple closed geodesics.
Because the function a(r)= r exp((1− r2)/2) satisfies 0< a(r)≤ 1 for 0< r < 1

and a′ vanishes only at r = 1 while a′′(1) < 0, it follows that there is a unique smooth
function ρ : (0,∞)→ (−π/2, π/2) such that cos ρ = r exp((1− r2)/2) and such
that dρ/dr > 0. (In fact, ρ extends smoothly to ρ : (−∞,∞)→ (−3π/2, π/2) by
requiring that ρ(−x)=−π − ρ(x) for x ≥ 0. However, this is not likely to be useful.)

Setting α = cos φ for 0< φ < π/2, the formula for P can be written as

P(cos φ)=
∫ φ

−φ

cos(φ)h(ρ) dρ

cos(ρ)
√

cos2(ρ)− cos2(φ)
,

where h is the unique function of (−π/2, π/2) such that

h(ρ) dρ

cos ρ
=

dr

r
,

that is,

h(ρ) dρ = exp
(

1− r2

2

)
dr.

Since

− sin (ρ) dρ = (1− r2) exp
(

1− r2

2

)
dr = (1− r2)h(ρ) dρ,

it follows that

h(ρ)=
sin(ρ)

r2 − 1
,

so

h(ρ)2 =
1− cos2 ρ

(1− r2)2
=

1− r2 exp(1− r2)

(1− r2)2
.

It follows that h(−π/2)= 1, and that h(π/2)= 0. We also see that h(0)= 1/
√

2.
In fact, it is straightforward to compute that h′′ ≤ 0 on (−π/2, π/2) and that

the graph looks like Figure A.2 (see Note A.2 below). In particular, note that
h(ρ) > (π/2− ρ)/π = 1/2− ρ/π . So we compute

P(cos(φ)) >
∫ φ

−φ

cos(φ)((1/2)− (ρ/π))

cos(ρ)
√

cos2 (ρ)− cos2 (φ)
dρ

=

∫ φ

−φ

(1/2) cos(φ)

cos(ρ)
√

cos2 (ρ)− cos2 (φ)
dρ

=
π

2
. (A.1)

The integral can be computed using basic calculus but is tricky (see Note A.3).
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σ

σ

ρ 

ρ 

–π /2 π /2

 = h(  )

FIGURE A.2.

Then h(ρ)≡ 1, so the integral equals π because any two geodesics on the unit
sphere intersect at antipodal points and are thus separated by a distance of exactly π .

Thus P(cos(φ)) > π/2 for 0< φ < π/2. Note also that h(ρ) < 1 except when
ρ =−π/2, so for 0< φ < π/2, P(cos(φ)) < 2E(cos(θ))= π , twice the value of the
integral. In particular, we have π/2< P(α) < π for all 0< α < 1. Thus, there are no
other simple closed geodesics. 2

NOTE A.2. Simple calculus suffices to show that h′′ ≤ 0 on (−π/2, π/2). We
compute that h′′ is the positive function (1− R)−6 exp((1− R)/2) times

g(R)=−1− 4R − 6R2
− R4

+ (2+ 12R − 2R2) exp(R − 1)

where R = r2. So it is sufficient to show g(R)≤ 0 for R ≥ 0. We divide the region
into nine intervals and prove this for each one. The intervals are [0, 1.24504],
[1.24504, 1.24505], [1.24505, 2.129], [2.129, 2.13], [2.13, 2.17], [2.17, 2.171],
[2.171, 2.7794], [2.7794, 2.781], [2.781,∞).

We now look at when g′′(R) is positive. We compute

g′′(R)=−12− 12R2
+ (22+ 4R − 2R2) exp(R − 1)≤ 0

if and only if

exp(R − 1)≤
12+ 12R2

22+ 4R − 2R2 ,

which is true if and only if

R − 1≤ ln(12+ 12R2)− ln(22+ 4R − 2R2).

Setting
m(R)= ln(12+ 12R2)− ln(22+ 4R − 2R2)− R + 1
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we compute

m′′(R)=
4(67+ 21R − 56R2

− 26R3
+ 17R4

+ R5)

(1+ R2)2(−11− 2R + R2)2
,

the positivity of which is determined by the numerator. Of course, this
function is only meaningful up until 1+ 2

√
(3)≈ 4.464 when ln(22+ 4R − 2R2)

becomes undefined. Since this is a fifth-degree polynomial we can trust our
numerical estimation of the roots. These are approximately (rounding final
digit) {1.245 044 9, 2.129 08,−1.060+ 0.510i,−18.254,−1.060− 0.510i}. The
two roots which fall in our range are 1.245 044 9 and 2.129 08.

Testing values shows that between 0 and 1.245 04 the concavity m′′(R) is positive.
At R = 1, m(R)= m′(R)= 0, so on this range m(R)≥ 0, so g′′ ≤ 0. Since g(1)=
g′(1)= 0, this suffices to show that g(R)≤ 0 on the first interval.

For the second interval, [1.245 04, 1.245 05], we overestimate g(R) by noting that it
has the form p1(R)+ p2(R) exp(R − 1). Since p1(R) is always negative and p2(R)
is positive for 3−

√
10< R < 3+

√
10, we overestimate by setting exp(R − 1) to

its max value on the range – in this case, exp(0.245 05). This gives a fourth-
degree polynomial p(R)= p1(R)+ p2(R) exp(0.245 05). It is easy to characterize
the positive and negative intervals of this polynomial by solving for the roots. In this
case, we find 0> p(R)≥ g(R) over the second interval.

For the third interval, [1.245 05, 2.129], we note that m′′(R) is negative. So
it suffices to check the values at the endpoints to show m(R) > 0. These are
m(1.245 05) > 0.0029 and m(2.129) > 0.0008. Thus m(R) > 0 over this interval, so
g′′ is negative. Since g(1.245 05) <−0.0005 and g′(1.245 05) <−0.008, this tangent
line gives us that g(R) < 0 on this interval.

The fourth interval, [2.129, 2.13], is similar to the second interval. We have
0> p(R)= p1(R)+ p2(R) exp(1.13)≥ g(R).

For the fifth interval, [2.13, 2.17], m′′(R) > 0, so m is bounded below on this
interval by the tangent line at 2.17. Since the slope is m′(2.17) <−0.019 67, the
lowest point reached is at m(2.17) > 0.000 002. So m(R) > 0, which implies that
g′′(R) < 0. Since g(2.13) <−0.09 and g′(2.13) <−0.2, this tangent line shows that
g(R) < 0 for this interval.

The sixth interval, [2.17, 2.171], is again similar to the second. In this case
0> p(R)= p1(R)+ p2(R) exp(1.171)≥ g(R).

For the seventh interval, [2.171, 2.7794], m′′(R) > 0, so the secant line between
m(2.171) <−0.000 017 and m(2.7794) <−0.000 018 shows that m(R) < 0. Thus
g′′(R) > 0. So the secant line between g(2.171) <−0.1 and g(2.7794) <−0.1 shows
that g(R) < 0.

The eighth interval, [2.7794, 2.781], is similar to the second. In this case 0>
p(R)= p1(R)+ p2(R) exp(1.781) > g(R).

For the ninth interval, [2.781,∞), we look at g(4) =−24+ (26− 4R −
2R2) exp(R − 1). Since, for R ≥ 2.742>

√
14− 1, (26− 4R − 2R2) < 0, then
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g(4)(R) < 0. Now, g(3)(2.781) <−4.2, g′′(2.781) <−0.004, g′(2.781) <−0.05, and
g(2.781) <−0.19, so g(R) < 0 for all R ≥ 2.781.

NOTE A.3. The integral is computed as follows:

P(cos(φ)) >
∫ φ

−φ

(1/2) cos(φ)

cos(ρ)
√

cos2 (ρ)− cos2 (φ)
dρ

=

∫ φ

0

cos(φ)

cos(ρ)
√

cos2 (ρ)− cos2 (φ)
dρ

=

∫ c

1

−c

u
√

u2 − c2
√

1− u2
du,

where c = cos(φ) and u = cos(ρ). Then substituting v = u2 gives

=
c

2

∫ 1

c

1

u2
√

u2 − c2
√

1− u2
2u du

=
c

2

∫ 1

c2

1

v
√
(v − c2)(1− v)

dv

=
c

2

∫ 1

c2

1

v
√
((c2 − 1)/2)2 − (v − (1+ c2)/2)2

dv.

Now, we substitute v = (c2
− 1)/2 sin(θ)+ (1+ c2)/2 and get

c

2

∫ π/2

−π/2

(c2
− 1)/2 cos(θ)

((c2 − 1)/2 sin(θ)+ ((1+ c2)/2))(c2 − 1)/2 cos(θ)
dθ,

which equals

c

2

∫ π/2

−π/2

1

(c2 − 1)/2 sin(θ)+ ((1+ c2)/2)
dθ.

So the integral can be evaluated as

c

2

[
2
c

tan−1
(

tan(θ/2)(1+ c2)− 1+ c2

2c

)]π/2
−π/2
= tan−1 c + tan−1

(
1
c

)
=
π

2
.

Another way to attain this equality is to do the calculation for P for the round metric
on the unit sphere.
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