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Abstract
In this study, a novel smart surface-morphing technique is devised that dynamically optimises roughness parameter
on a sphere with varying flow conditions to minimise drag. A comprehensive series of experiments are first per-
formed to systematically study the effect of dimple depth ratios in the range of 0 ≤ k/d ≤ 2× 10−2 across a Reynolds
number range of 6× 104 ≤ Re ≤ 1.3× 105. It is observed that k/d significantly affects both the onset of the drag crisis
and the minimum achievable drag. For a constant Re, drag monotonically reduces as k/d increases. However, there
is a critical threshold beyond which drag starts to increase. Particle image velocimetry (PIV) reveals a delay in flow
separation on the sphere’s surface with increasing k/d, causing the flow separation angle to shift downstream. This
results in a smaller wake size and reduced drag. However, when k/d exceeds the critical threshold, flow separation
moves upstream, causing an increase in drag. Using the experimental data, a predictive model is developed relating
optimal k/d to Re for minimising drag. This control model is then implemented to demonstrate closed-loop drag
control of a sphere. The results demonstrate up to a 50 % reduction in drag compared with a smooth sphere, across
all Reynolds numbers tested.

Impact Statement
Our experimental study devised a novel surface-morphing strategy that adaptively adjusts surface topography
in response to flow velocity, significantly reducing drag on a sphere. We systematically explored the effect of
dimple depth ratio across a Reynolds number range and identified an optimal dimple depth for each Reynolds
number. As dimple depth increases, drag decreases until reaching a critical point, after which drag rises due to
upstream flow separation. This demonstrates that precise control of dimple depth can regulate flow separation
over bluff bodies. We developed a predictive model linking optimal dimple depth to Reynolds number, which
was successfully implemented for real-time drag reduction of up to 50 %. The dimples autonomously adjust to
varying flow velocities to maintain minimal drag. These findings offer a transformative solution for adaptive
flow control, with significant potential to enhance the efficiency and maneuverability of unmanned underwater
and aerial vehicles across broad engineering applications.

1. Introduction
Bluff bodies experience large drag due to flow separation as a consequence of steep adverse pressure
gradient. This can significantly affect the structural stability and aerodynamic/hydrodynamic perfor-
mance of the body. One of the widely studied bluff bodies is a sphere, which represents one of the most
fundamental and symmetric three-dimensional prototypes. A hallmark study which uncovered the flow
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physics around a sphere was conducted by Achenbach (1972), where a sphere was tested over a Reynolds
number range of 5× 104 ≤ Re ≤ 6× 106. A sudden decrease in the drag coefficient was observed at a
critical Reynolds number of 3.7× 105. At critical Reynolds number, the boundary layer over the sphere
surface transitions from laminar to turbulent delaying the flow separation leading to significant drag
reduction, also known as the drag crisis. In the post-critical regime, the flow separation location starts
moving upstream that leads to an increase in drag (Achenbach 1972, 1974b).

Several studies have investigated passive strategies for reducing drag on a sphere using surface mod-
ifications. These modifications enhance near-wall flow momentum, transitioning the boundary layer
from laminar to turbulent, which delays flow separation and reduces drag (Bearman & Harvey 1976;
Maxworthy 1969; Choi et al. 2008, 2006; Sareen et al. 2024a). Surface modification by dimples is one
of the passive methods able to delay flow separation on a sphere (Smits & Ogg 2004). A systematic
analysis of the drag performance on a dimpled sphere was first performed by Davies (1949) who stud-
ied the dynamics of a spinning golf ball, finding that adding dimples increased the flying distance of
the ball. Bearman & Harvey (1976) reported that the addition of dimples reduced the critical Re num-
ber when compared with a smooth counterpart, and performed a first analysis on the optimal shape of
the elements, concluding that hexagonal dimples developed slightly lower drag than circular elements.
The mechanisms behind the performance improvements were noted as the effectiveness of dimples in
tripping the boundary layers and delaying the flow separation over the sphere surface.

Choi et al. (2006) reported that the velocity fluctuations increase along the separating shear layer
producing vortical structures and high momentum near the wall which overcomes the adverse pressure
gradient and hence delays the flow separation. A direct numerical simulation (DNS) study conducted by
Beratlis et al. (2019) found that the mean turbulent kinetic energy starts to increase at a position of 51◦
due to dimples, leading to modifications in the velocity profiles and overcoming the effect of adverse
pressure gradient. Nevertheless, the authors reported that, in the post-critical regime, dimples would
decrease the mean skin friction coefficient and incur a local pressure penalty which increased the total
drag force by approximately 50 %.

While there have been several studies investigating the flow over a dimpled sphere, there is a lack of
systematic study investigating the effect of dimple depth ratios for a wide range of Reynolds number.
Previous research by Choi et al. (2006) and Bearman & Harvey (1976) only studied one dimple depth
corresponding to professional golf sport. A preliminary study by Aoki et al. (2012) studied only three
dimple depths (lower than the minimum dimple depth ratio investigated in this study) and lacked any
particle image velocimetry measurements investigating the near-wake behaviour. Furthermore, although
the drag reduction capabilities of dimples on the surface of a sphere are well known, prior preliminary
studies have suggested that these benefits are strongly correlated with the Reynolds number. To overcome
this limitation, an active surface morphing strategy is needed to actively change the dimple depth on-
demand or adaptively with changing flow condition to minimise drag across a wide range of Reynolds
numbers.

Terwagne et al. (2014) used wrinkling instabilities in thin stiff films on curved, compliant sub-
strates, activated through pneumatic actuation, to generate intricate hierarchical surface patterns such
as labyrinthine structures and hexagonal dimples. Their study revealed that increasing the roughness
parameter of hexagonal dimple-like patterns shifts the drag crisis to lower Reynolds numbers. Previous
research on surface morphing techniques has similarly demonstrated that the roughness parameter (or
dimple depth ratio, in the case of dimples) plays a crucial role in controlling flow over bluff bodies. While
Terwagne et al. (2014) proposed a pneumatically actuated surface morphing technique, their approach
is relatively complex, relying on the sophisticated wrinkling instability of thin stiff films on curved
compliant substrates. This mechanism generates various intricate hierarchical surface patterns, such as
labyrinths and hexagonal dimples. However, most of these patterns lack demonstrated hydrodynamic
benefits, with the exception of hexagonal dimple-like structures. In contrast, our study significantly sim-
plifies the surface morphing technique and generates only dimples, which have a well-established effect
on reducing drag on a sphere. This simple and easy to design and implement surface morphing technique
enables a straightforward and adaptive method for flow control over a sphere.
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Figure 1. (a) A brief schematic (not to scale) of the experimental set-up. (b) Schematic of the dimpled
sphere model. Here, dd is the dimple diameter, k is the dimple depth and d is the sphere diameter.

Using this morphable approach, we first systematically investigate the impact of fixed dimple depth
ratio (k/d) on aerodynamic drag and flow characteristics of a sphere for a wide range of Reynolds num-
bers. The dimple coverage ratio is maintained at the optimal value, consistent with Choi et al. (2006)
and dynamically similar to a real golf ball (Titleist DT-Distance) without rotation. We then use the com-
prehensive experimental data to develop a predictive model relating optimal dimple depth ratio k/d and
Reynolds number Re. We then implement the predictive model to demonstrate the closed-loop control
approach, whereby the dimple depth changes in real-time as the flow velocity is changed.

The present paper is organised as follows. Section 2 describes the experimental methodology com-
prising experimental set-up and development of the morphable sphere. Section 3 discusses the main
findings of the experiment, while § 4 summarises all the main findings of the present study and draws
conclusions.

2. Experimental methods
The experiments were conducted in an open-loop wind tunnel at the Department of Aerospace
Engineering at the University of Michigan, Ann Arbor, with a test section of 0.6 m width, 0.6 m depth and
3 m length. The wind tunnel was capable of producing steady flow speeds of 5 ≤U[m s−1] ≤ 22. The free
stream turbulence intensity levels were within Ti = 1.8 % for the range of flow speeds tested. Although
this value is relatively high compared with other studies, previous work has shown that Ti < 2 % have a
limited impact on the drag production of a sphere in the subcritical Re range (Achenbach (1974a)).

A brief schematic of the experimental set-up is shown in figure 1. The sphere is mounted from the
top of the test section with a holding structure containing a load cell. The sphere is supported with a
cylindrical support rod of diameter 5 mm, which is 20 times smaller than the sphere diameter. Sareen
et al. (2018) conducted systematic experiments to investigate the impact of a support rod on the flow
around a sphere. Their findings indicated that a diameter ratio (sphere diameter/rod diameter) of ≥20
results in negligible effects of the support rod on the wake and forces acting on the sphere within the
subcritical Reynolds number range. Additionally, the length of the support rod was set to one sphere
diameter to minimise wall effects while maintaining structural integrity, in line with previous stud-
ies (Sareen et al. 2018, 2024b). The blockage ratio, defined as the diameter of the sphere against the
width of the test section (d/W = 0.16), is small enough to neglect the blockage effect on the flow field
(Achenbach 1974a).

The spheres considered in this study are constructed using a stereolithography (SLA) resin three-
dimensional (3-D) printer (Form 3, FormLabs) with a resolution of 25 μm. The morphology of the
dimples are defined by two aspects: the dimple diameter (dd) and the dimple depth (k). In line with Choi
et al. (2006), the ratio between the diameter of the dimple and sphere is kept constant at dd /d = 0.087,
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Figure 2. (a) A schematic of the morphable sphere’s pneumatic actuation system, which can actuate
precise dimple depth on demand. (b) An image of the morphable sphere shifting from a smooth (left) to a
dimpled configuration with increasing dimple depth as depressurisation levels in the core are increased
using the pneumatic actuation system.

while the normalised dimple depth (k/d) is varied from 0 (smooth configuration) to 0.02 in small incre-
ments. Two types of models are considered in this study: a sphere with rigid dimples and a morphable
sphere with active dimples. The former is built with similar non-dimensional parameters as Choi et al.
(2006) for validation purposes (d = 0.08 m, dd /d = 0.087, k/d = 0.004 and 384 dimples uniformly dis-
tributed over the sphere surface (Nd)). The sphere with morphing capabilities (d = 0.1 m, dd /d = 0.087,
k/d = 0− 0.02 and 296 dimples across the surface (Nd)) is built that can actively change its dimple depth
on-demand. In the morphable sphere, the total number of dimples Nd is reduced compared with the study
by Choi et al. (2006) to ensure structural integrity, leading to a coverage ratio (area of dimples against
total surface area of the sphere) ofΦ = 55.6 %.

The method for actuating dimples on the sphere’s surface is outlined in figure 2. The morphable
sphere consists of a 3-D-printed rigid inner skeleton with circular holes uniformly distributed over its
surface. The inner skeleton is covered by a pre-stretched thin latex membrane of thickness 0.276± 0.001
mm and shear modulus of 340± 12 kPa, as depicted in figure 2(a). Pre-stretching ensured that no flut-
tering of the latex membrane occurred during the testing. Dimples are actuated by depressurising the
sphere’s core using a vacuum pump (Kamoer KLVP6) with a maximum pressure of − 85 kPa, con-
trolled by an Arduino UNO. The dimple depth can be precisely controlled with a resolution of 0.01 mm
by varying the pump’s activation time, illustrated in figure 2(b). Once the desired depth is attained, an
Arduino-controlled solenoid valve seals the vacuum at the core of the sphere, maintaining the desired
dimple depth. To establish the relationship between pump activation time and dimple depth ratio (k/d),
the surface deformations are measured using a 3-D scanner with a 5 μm resolution. Dimple depth is
recorded for various pump activation times, repeating the process three times for each dimple depth.
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Figure 3. Calibration chart showing the variation of dimple depth k [mm] as a function of the pump acti-
vation time [s]. The error bars represents the uncertainty in the measurements and are mostly contained
inside the markers.

Subsequently, as shown in figure 3, a polynomial fit is applied to the data points, yielding a control
model to determine the necessary depressurisation characteristics for achieving the desired k/d. It is
important to note here that the maximum pressure due to the flow at the highest Reynolds number tested
was only approximately 0.3 kPa, which is an order of magnitude smaller than the vacuum pressure levels
required to actuate the dimples. Thus, any surface deformation over the sphere surface due to the flow
can be neglected.

The forces acting on the spheres were measured with a six-axis force sensor (ATI mini40 IP65), with
a resolution of 0.01 N in the streamwise and spanwise force directions. The frequency response range
of the ATI mini40 force sensor is up to 1.4 kHz, as per the technical documentation of the sensor. The
forces were acquired at a sampling frequency of 1 kHz, for a duration of 1 minute, with each data point
repeated at least three times. The non-dimensional time, defined as t∗ = tU∞/d, varied from 5300 to
11 500 across the Re range considered. Additionally, all data samples collected at different Re values
were independent of each other. After each data point acquisition, the wind tunnel is stopped. Then,
after letting the flow come to full rest, we zero the load cell, input the required new velocity and acquire
a new data point, ensuring independence between samples. The reported streamwise force (drag) is
defined as

CD =
2FD

ρU2∞A
, (2.1)

where FD represents the drag force in N, ρ is the fluid density, U∞ denotes the free stream flow velocity
and A is the projected area of the sphere, calculated as A= πd2/4. The data acquisition and analysis was
performed using Matlab and Python. We measured the force on the isolated support rod after removing
the sphere and adjusting the end condition with an end plate, resulting in a drag coefficient of CD = 1.2,
which aligns well with previous studies (Schlichting & Gersten 2016). The drag of an isolated support
rod was then subtracted from the total drag measured by the sensor to provide a precise estimate of
the drag of an isolated sphere. The propagation of uncertainties in the measurements δCD has been
calculated following the procedure stated by Taylor & Thompson (1982):

δCD =

√(
∂CD

∂FD
δFD

)2

+

(
∂CD

∂U
δU

)2

, (2.2)

where δFD and δU correspond to the uncertainty in the force and velocity readings. The values obtained
with the previous equation are later combined with the random error (σCD

= σ/
√

N), where N is the
number of repetitions and σCD

is the standard deviation of the drag coefficient, as follows:
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Table 1. Table showing matrix of characteristic parameters followed in the present study.
Here, U∞ is the free stream velocity, d is sphere diameter, ν is kinematic viscosity of air,
k is the dimple depth, dd is the dimple diameter and Nd is the total number of dimples

Reynolds number Re=U∞d/ν 60 000–130 000
Dimple depth ratio k/d 0.000–0.02
Sphere diameter d 80 mm (validation), 100 mm
Dimple diameter dd 8.67 mm
Dimple depth k 0–2 mm
Dimple area coverage ratio Φ=Nddd

2/(4d2) 55.6 %

UCD =

√(
σCD

)2
+ (δCD )2. (2.3)

The random uncertainty of the mean varied from 0.8 % at Re= 60 000 to 0.2 % at Re= 130 000. The flow
velocity fields were captured using 2-D-2C particle image velocimetry (PIV). The laser plane is aligned
along the streamwise direction (XY plane), passing through the centre of the sphere. The flow was seeded
with polydisperse aerosol by atomising di-ethyl-hexyl-sebacat (DEHS) solution into particles using a
LaVision Aerosol Generator. DEHS particles have a mean size of 1 μm and a density of 0.91 g cm−3.
The particles were illuminated with an Evergreen 200 dual-pulsed laser with a pulse energy of 200 mJ
and frame rate of 15 Hz. The PIV images were captured with a LaVision Imager CX-5 camera with a
resolution of 2440 × 2040 pixels. The camera was equipped with a 60 mm Nikon lens to give a field of
view of 113× 95 mm. DaVis 11 software was used to cross-correlate the acquired particle image pairs.
The particle displacement between images in a pair was 10 pixels. The flow fields were calculated with
an interrogation window size of 64× 64 pixels with a total of 4 passes and a 75 % overlap, providing
a spatial resolution of 0.03d. The images were captured for 60 s at a rate of 15 Hz, totalling 900 image
pairs. The data are time-averaged over t∗ = tU∞/d ≈ 8100 for Re= 90 000, corresponding to at least 1000
vortex shedding cycles.

The matrix of characteristic parameters followed in this study are presented in table 1. Experiments
were conducted for a Reynolds number varying in the range of Re=DU∞/ν = 60 000− 130 000, where
U∞ is the free stream velocity, ν is the kinematic viscosity and d is the sphere diameter. Two types of
spheres are considered in this study. The first one consists of a sphere with rigid dimples for validation
purposes (d = 0.08 m). The second one consists of a morphable sphere of diameter d = 0.1 m. The
normalised diameter of the dimple (dd /d) and the area coverage ratioΦ = 55.6 % is kept constant across
all the cases considered. The normalised dimple depth (k/d) is varied in fine resolutions from 0 (smooth
configuration) to 0.02 (dimple depth = 2 mm).

3. Results and discussion
This section discusses the results obtained in this experimental study. First, we start by validating the
experimental set-up and the morphing strategy with previous studies using spheres with rigid dimples.
Next, we investigate the effect of systematically varying the dimple depth ratio or roughness parameter
(k/d) using the morphing strategy, and compare the evolution of drag coefficient (CD) across a range
of Reynolds number (Re) values. Finally, we discuss the forces results and correlate them with PIV
measurements.

3.1. Validation
For the validation, we compare the drag force on a smooth and rigid dimpled sphere with prior bench-
mark studies. Figure 4 depicts the evolution of CD for various Re values, comparing a smooth sphere
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Figure 4. CD against Re evolution of rigid and morphable sphere compared with previous studies
(Achenbach 1972; Choi et al. 2006).

(k/d = 0.000) with a sphere featuring fixed dimples at k/d = 0.004. Our findings are juxtaposed with
previous studies with similar characteristics (Achenbach 1972; Choi et al. 2006). For the smooth con-
figuration, we observe a constant CD ≈ 0.5 for Re < 100 000, aligning with prior seminal research work of
Achenbach (1972). Introducing dimples triggers laminar to turbulent boundary layer transition leading
to delay in the flow separation over the sphere surface (Choi et al. 2006). This leads to an earlier onset of
drag crisis with a notable reduction in CD for Re values after the drag crisis. This effect is evident in the
drag characteristics of the sphere with fixed k/d = 0.004 dimples. Consistent with Choi et al. (2006), we
observe a CD crisis starting at Re= 70 000, and reaching a minimum CD of 0.23 at Re= 100 000. While
our minimum CD value is slightly higher than that reported by Choi et al. (2006), our results exhibit a
comparable trend.

To ensure that the morphing strategy can generate and maintain a fixed dimple depth that compares
well with its rigid counterpart for the Reynolds numbers tested in the study, we also compare the drag
force on a dimpled sphere with rigid dimples to a dimpled sphere actuated using the morphable approach.
In figure 4, we compare the CD values between a sphere with rigid dimples and fixed dimples obtained
via the morphable approach at k/d = 0.004. We find good agreement, particularly at Re < 100 000, both
in overall drag values and in the trend of the drag crisis. However, at higher Re, the morphable sphere
exhibits a slightly higher CD, possibly attributed to differences in the number of dimples present on the
surface, since the area coverage ratio, or the total area of the surface covered by rough elements, has
been previously noted to influence the sphere’s CD performance (Aoki et al. 2003). Nonetheless, the
similarities in the drag crisis trend validate the morphing approach, confirming the morphing system’s
ability to achieve the expected k/d with high precision.

Figure 5 shows a power spectra density (PSD) on the raw CD signals for the morphable sphere with
smooth configuration at Re= 60 000. As evident from the figure, there is a characteristic peak corre-
sponding to the vortex shedding frequency, highlighted by a red dashed line located at approximately
19 Hz, leading to a Strouhal number (St = fd/U∞), where d is the sphere diameter and f is the vortex
shedding frequency, of St = 0.21, in line with previous studies (Achenbach 1974a).

In summary, the results discussed in this section provide validation for the current experimental set-
up and the morphing strategy. In the following, we discuss the effect of the roughness parameter or
the dimple depth ratio on the drag of a sphere for the Reynolds number range Re= 60 000− 130 000.
We will then correlate them with the PIV results. Finally, we will employ the experimental results to
develop a model that relates optimal k/d and Re to minimise drag across the entire range of Reynolds
numbers tested in the study. This control model will then be used to demonstrate the adaptive morphing
capabilities developed in the current study.
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Figure 5. PSD analysis of the morphable sphere under smooth configuration at Re= 60 000. The dashed
red line denotes the dominant frequency in the drag force signal.

3.2. Drag of a morphing sphere for varying k/d and Re
Figure 6 presents the evolution of the drag coefficient (CD) against the Reynolds number (Re) for dim-
ple depth ratios (k/d) varying from 0 (corresponding to a smooth configuration) to k/d = 0.02. Overall,
two discernible trends emerge with increasing k/d, as shown separately in figures 6(a) and 6(b). In
Regime I, as illustrated in figure 6(a), as k/d increases in the range of 0.002 ≤ k/d ≤ 0.006, the crit-
ical Reynolds number Rec decreases. The critical Reynolds number at which the drag rapidly drops
reduces with increasing k/d, reaching values of Re= 70 000 for k/d = 0.006. This behaviour has also
been reported previously for other surface modifications, such as roughness and surface trips (Choi
et al. 2006; Chae et al. 2019).

Following the attainment of lowest CD, further increase in Re at constant k/d appears to exert limited
influence, as the evolution of CD stabilises across all the dimple depth ratios studied, which is presumably
due to constant flow separation angle on the sphere surface in the post-critical Re range, as also reported
by Choi et al. (2006). It is also noticeable how the minimum CD that can be achieved with the addition of
dimples decreases as k/d is increased in this regime. The sphere with shallowest surface modifications,
k/d = 0.002, leads to a minimum drag of CD = 0.25 at Re= 130 000, resulting in 50 % drag reduction
when compared with its smooth counterpart.

As evident from figure 6(a), there is no one optimal k/d that minimises drag for the entire range of
Reynolds numbers tested. For lower Reynolds number, deeper dimples are more effective in reducing
drag, however, as Re is increased, shallower dimple depth are required to minimise the drag. Thus, if
our goal is to minimise drag for the entire range of Reynolds numbers, we need a strategy whereby we
can adapt dimple depth with the flow condition. By doing so, it will be possible to reduce the CD of a
sphere by at least 40 % across a Re range spanning from 60 000 to 130 000.

In Regime II, shown in figure 6(b), when k/d is further increased from 0.006 < k/d ≤ 0.02, a reversal
in this trend is observed, whereby the drag starts increasing. While for k/d = 0.006, the minimum CD
of 0.3 is observed at Re= 65 000, higher k/d preclude the drag crisis within the range of Re considered.
Overall, we observe that CD reductions decrease as k/d is augmented more than k/d = 0.006, with the
trend in drag against Re shifting up, back towards that of a smooth sphere. The deepest dimple depth
analysed in this study, k/d = 0.02 reports CD values around 0.46, which constitutes a mere 9 % drag
reduction when compared with the smooth configuration. We also note that the effects described at
figure 6(b) highlight the importance of controlling k/d under specific flow conditions, as adjustments in
this parameter can swiftly negate any potential performance advantages.

The effects explained in figure 6 can be further highlighted by analysing the CD evolution against
k/d at fixed Re number, as shown in figure 7(a). Here, we report the drag of the morphable sphere with
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Figure 6. (a) CD against Re evolution for all the k/d considered in this study. (b) Results in an auxiliary
3-D view. Blue colours indicate shallower dimples and red colours note deeper dimples.

(a) (b)

Figure 7. (a) CD against k/d evolution at Re= 90 000 and Re= 120 000. (b) Root-mean-square of the
instantaneous CD at Re= 90 000 and Re= 120 000.
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varying k/d at Re= 90 000 and Re= 120 000. As k/d increases from 0 to 0.005, the drag rapidly drops
reaching maximum reduction of up to almost 50 %. A further increase in k/d beyond this optimal value
leads to a rapid increase in drag eventually approaching that of a smooth sphere. This effect can be seen
for both Re. This corroborates that there is an optimal k/d for each Reynolds number that maximises the
drag reduction. Previous research (and our own observations discussed in the wake measurement sec-
tion) has established that the drag crisis of a dimpled sphere occurs when the boundary layer transitions
from laminar to turbulent. This transition delays the flow separation, thereby reducing drag. However,
when the roughness parameter (in this case, the dimple depth ratio) exceeds a critical threshold, drag
begins to increase, indicating that the location of flow separation moves upstream. This phenomenon
is analogous to the behaviour observed in smooth spheres in the post-critical regime where the drag
begins to increase as flow separation location shifts upstream. Our current research demonstrates a
similar trend with increasing roughness parameters, representing a novel discovery that suggests the
potential for manipulating wake deflection around a sphere solely through roughness.

We also report the root-mean-square (r.m.s.) values of the drag fluctuations in figure 7(b). As evident
from the figure, C ′Drms rapidly drops with increasing k/d reaching almost 50 % lower C ′Drms compared
with that of a smooth sphere. Interestingly, it seems that, after reaching the k/d for minimum C ′Drms,
the values remain stable for both Re at higher k/d although the time-averaged drag coefficient starts
increasing. This finding points towards potential capabilities of dimples to not only reduce the drag of
a sphere, but also to significantly limit force fluctuations, with r.m.s. values of less than 70 % of those
produced by a smooth configuration.

3.3. Near-wake measurements using particle image velocimetry
After describing and analysing the drag reduction capabilities of the morphable sphere actuated with
various fixed dimple depths, we aim to further explain the reasons behind any performance augmentation
by drawing relations between forces and wake characteristics measured with 2-D-2C PIV. The PIV is
performed in an equatorial plane passing through the centre of the sphere. The details of the PIV set-up
are given in § 2.

Figure 8 displays the dimensionless vorticity fields calculated as ω∗Z =ωd/U∞ overlaid with time-
averaged streamlines for dimple depth ratios of k/d = 0− 0.006 at a Reynolds number of Re= 90 000.
The correlated drag coefficient and flow separation location is shown in figure 9. As evident from the
figure, when thedimple depth ratio increases from k/d = 0 to k/d = 0.002, the near-wake characteristics
and the flow separation location remains largely unchanged. This is consistent with the force data shown
in figure 6. However, for k/d = 0.003, notable narrowing of the wake region is clearly evident associated
with significant delay in the flow separation location. This is correlated with the substantial CD reduction
(≈ 30 %) noted earlier. This is associated with a delay in flow separation location from 110◦ to 140◦, as
shown in figure 9.

Increasing the roughness parameter to k/d = 0.004− 0.006 results in negligible changes in the wake
topology and the flow separation location, with the drag coefficient (CD) reaching a plateau within this
range. However, as noted in figure 8, further increasing the dimple depth ratio to k/d = 0.008− 0.02
causes the drag coefficient to rise again. This increase in CD in the post-critical regime is linked to an
upstream shift in the flow separation location, as reported in the recent study by Sudarsana et al. (2024).

To further examine the wake characteristic for various k/d ratios, we illustrate in figure 10 a compar-
ison between CD and the global flow separation angle θs (measured from the leading stagnation point)
of the flow on the surface of the sphere. We determine θs by identifying the point on the body’s sur-
face where Uθ = 0, referencing it to the stagnation point on the sphere (y/d = 0, x/d = − 0.5) (Moore
1958; Kim et al. 2014). The uncertainty in θs is obtained by calculating the angle given by the win-
dow size considered in the PIV processing. Figure 10 presents the averaged normalised vorticity ωZ

∗
overlaid with time-averaged flow streamlines. A contour line where Uθ = 0 is also highlighted in red
colour. The resulting θs and CD values are also displayed at the bottom row of figure 10. As previously
discussed, for a given Reynolds number (Re), there exists an optimal k/d ratio for maximising drag
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(a) (b) (c)

(d) (e) (f)

Figure 8. Dimensionless vorticity ω∗Z =ωd/U∞ flow fields and time-averaged streamlines for several
k/d at Re= 90 000.

reduction. Deviating from this optimal ratio, either by decreasing or increasing k/d, rapidly diminishes
performance benefits. At Re= 90 000, k/d = 0.004 yields the minimum CD = 0.3, corresponding to a
separation angle of θs = 147◦. This reduction in CD compared with its smooth counterpart amounts to
40 %. Correspondingly, the separation angle is delayed by 50◦. Although our measured θs differs from
previous data (with θs = 104◦ for smooth surfaces and θs = 147◦ for k/d = 0.004, while Choi et al. (2006)
reported θs = 82◦ and θs = 110◦ for similar k/d), the strong correlation between CD and θs suggests that
any disparities may stem from variations in sphere dimple arrangements (Aoki et al. 2003). Notably, our
k/d = 0.004 features a lower dimple coverage ratio compared with that of Choi et al. (2006), while the
k/d = 0.000 configuration for the morphable sphere exhibits shallow dimples due to pre-stretching of the
flexible membrane. As k/d is further increased, θs begins to converge back towards the value observed
in the smooth configuration, remarking the trend reversal found during the forces analysis. Overall,
figure 10 establishes that changes in drag are correlated with changes in the global flow separation
location in the subcritical Reynolds number regime tested in this study.

3.4. Model relating optimal k/d and Re for minimising drag
In this section, we use the data presented in § 3.2 to develop an empirical control model relating optimal
k/d and Re for minimising drag. To do so, we follow the approach presented by Chae et al. (2019). The
authors provide an empirical model relating the CD evolution with Re as follows:

CD (Re) =CD,sub− | ΔCD |
(
1 + exp

[−2ln(1/s − 1)
ω

(Re − Rec )

])−1
, (3.1)

where CD, sub is the CD value in the subcritical Reynolds numbers before the drag crisis, ω is the change
in Re between the pre- and post-crisis, Rec is the critical Reynolds number at which drag crisis occurs
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(a) (b)

(c) (d)

Figure 9. (a) Schematics of the main parameters used to fit the CD versus Re model for different k/d
(reproduced from Chae et al. (2019)). (b) ΔCD against k/d, and exponential fit used to obtain the curves
in panel (d) with (3.1). (c) Rec against k/d, and exponential fit used to obtain the curves in panel (d) with
(3.4). (d) CD against Re estimation for 30 dimple depth ratios in equally spaced increments from k/d= 0
to k/d= 0.006. The red line denotes the optimal curve of minimum CD.

and s denotes the steepness of the drag crisis curve, as shown in figure 9. Due to limitations in the Re
range of this study, we use the same values as Chae et al. (2019) for the smooth curve. In line with Chae
et al. (2019), s is kept constant as 0.1, since it provides a good fitting for all the curves considered. Also,
the duration of the drag crisis is set as ω = 25 000. The previous equation assumes the existence of a
subcritical and post-critical Re, which limits its applicability in our study to k/d < 0.006. Nevertheless,
k/d > 0.008 are not providing any CD reduction for the Re considered, making their consideration irrel-
evant for a drag reduction model. The data acquired during the experimental campaign are used to find
the parameters that produce an optimum fit between CD and Re. In figure 9, we introduce the main
parameters used to produce CD versus Re trends for all the spheres, with all the curves fitting the data
with an r2 value higher than 0.9. Once the main parameters are found, we can produce relations between
ΔCD and Rec with k/d (see (3.2) and (3.3)). By doing so, we can project the CD evolution against Re for
any k/d, leading to the curves presented at figure 9. Finally, we can use the new projections to delineate
a relation between k/d and Re for minimum drag production, as depicted by a red line in figure 9,

Rec (k/d) = 280 000 × e(−897×k/d) + 62 600, (3.2)

ΔCD (k/d) = 0.21 × e(−597×k/d) + 0.236, (3.3)

k/dopt (Re) = 0.022 × e(−2.05×10−5Re) + 4.06 × 10−4. (3.4)
This model not only provides a useful relationship between optimal roughness parameter and

Reynolds numbers for minimising drag, but can also serve as the basis for a real-time closed-loop control
implementation that is able to deploy optimum dimple depths adaptively with changing Re conditions. In
the following section, we use this model to showcase real-time close loop implementation, whereby the
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Figure 10. Normalised vorticity ω∗Z flow fields and time-averaged streamlines for k/d= 0.000 and
k/d= 0.004 at Re= 90 000 (top row). CD and θs for several k/d (bottom row). The red line in the top
row represents the contour at which Uθ = 0.

morphable sphere detects flow velocity and adjusts dimple depth automatically in real-time to minimise
the drag.

3.5. Closed-loop control of optimal dimple depth for drag minimisation at varying flow velocities
As previously discussed, the key advantage of our smart morphable approach lies in its ability to dynam-
ically adjust surface topography to minimise drag for varying incoming flow velocity or Reynolds
number (Re). In this section, we introduce a proof-of-concept of closed-loop control strategy designed
to minimise drag across a varying range of flow conditions.

In this closed-loop control approach, the only required parameter is the incoming flow velocity, or Re.
Once Re is determined, the smart morphable sphere (SMS) can calculate the optimal dimple depth for
drag reduction using the model in (3.4). However, this typically requires an additional sensor to measure
flow velocity, which increases system complexity and cost. To address this challenge, we developed an
alternative method. In the subcritical regime, the drag coefficient of a smooth sphere remains constant
(CD ≈ 0.55). Leveraging this property, we estimate Re directly from instantaneous force sensor data.
With this estimate, the SMS adjusts the dimple depth to the optimal k/d using its closed-loop pneumatic
actuation system.

For the proof-of-concept demonstration shown in figure 11, we begin with the SMS in a smooth
configuration (k/d I = 0) at Re I = 120 000. The protocol starts by collecting force data for 60 s, during
which the model estimates the incoming flow velocity and Re by assuming CD = 0.55, using the relation
U∞ =

√
2FD/(ρCD A).
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Figure 11. CD evolution in time demonstrating closed-loop implementation for drag reduction pur-
poses. Top figure: grey line indicates instantaneous CD and red line presents a moving average with a
window of 1 s. Bottom figure: Re recognised by the controller during the closed-loop implementation.
Purple areas indicate velocity changes and green areas denote dimple deployement by the smart mor-
phable sphere. Here, Re I= 120 000, Re II= 90 000, Re III= 60 000, k/d I= 0 (smooth configuration),
k/d II= 0.0023, k/d III= 0.0038 and k/d IV= 0.0075.

Based on this estimate, the model calculates the optimal k/d II = 0.0023 using (3.4) and the dimples
are deployed (indicated by the first green shaded area). This adjustment reduces the overall CD by 50 %
compared with the smooth counterpart.

After 60 s in this state, the flow velocity in the wind tunnel test section is manually altered. The
control model evaluates force data at 5-second intervals and detects a 10 % change in FD compared
with the previous state (indicated by the purple shaded area), signalling a velocity change. The sphere
is returned to its smooth configuration and the velocity estimation and optimal k/d determination pro-
cess are repeated. For an input Re II = 90 000, the control model identifies an optimal k/d III = 0.0038,
reducing CD by 50 % in real-time.

The process is repeated a third time with the input velocity adjusted to achieve Re III = 60 000. The
model determines an optimal k/d IV = 0.0075. In this case, the drag reduction is less pronounced, with
CD reduced to 0.35, a performance improvement of over 36 %.

This demonstration illustrates that the morphable approach effectively minimises drag at specific
Reynolds numbers and dynamically adapts to sudden changes in flow conditions, optimising perfor-
mance across a wide range of Re values. In summary, this section presents a proof-of-concept for a
closed-loop control implementation, where the smart morphable sphere automatically detects changes
in flow velocity and dynamically adjusts dimple depth to its optimal value, minimising drag efficiently.

4. Summary and conclusions
In this study, we devised a novel smart morphing strategy that allows precise control of the surface
topography with changing flow conditions. We first use this strategy to conduct a comprehensive series
of systematic experiments for Reynolds numbers varying in the range of 6× 104 ≤ Re ≤ 1.3× 105 and
dimple depth ratios of 0 ≤ k/d ≤ 2× 10−2 employing simultaneous force and flow field measurements.
It was found that the dimple depth ratio plays a key role in affecting the onset of drag crisis as well as
the minimum drag that could be achieved. While the baseline case (k/d = 0.000) resulted in a constant
CD ≈ 0.55, introducing dimples led to CD reductions of up to 50 % across all Re considered. We observed
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that shallower dimples were more effective in reducing drag at high Re, with k/d = 0.002 triggering a
drag crisis at Re= 130 000, resulting in a drastic 50 % reduction in CD compared with a smooth surface.
As k/d increased, the critical Re value shifted to lower Reynolds numbers of Re= 70 000 at k/d = 0.006,
while drag reduction was capped at 40 %. Further increases in k/d led to a reversal in the drag reduction
trend, with performance benefits for k/d = 0.02 limited to 9 %.

The 2-D-2C PIV was conducted to correlate force evolution with wake characteristics, revealing that
drag reductions were associated with a delay in the global flow separation location over the sphere’s sur-
face. For instance, k/d = 0.004 exhibited a separation angle of θs = 147◦ at Re= 90 000, contrasting with
θs = 104◦ for k/d = 0.000 under the same conditions. Finally, the experimental data was used to develop
a predictive model linking Re to optimal k/d for minimising drag. To prove the real-time implementation
capabilities of the smart morphable sphere, we conducted a proof-of-concept closed-loop implementa-
tion able to deploy optimum dimple depths for a given incoming flow condition for minimising drag,
showing an almost instant drastic CD reduction of 50 %.

This study not only advances our fundamental understanding of how changes in surface topography
influence drag reduction around a sphere but also establishes the groundwork for implementing adaptive
flow control strategies. These strategies can be directly applied to unmanned marine and aerial vehicles.
Future research should extend the range of incoming flow conditions for which this smart morphing
strategy can offer drag benefits and focus on investigating the time evolution of the three-dimensional
periodic structures in the wake. One potential limitation of this study is the influence of the support rod
on force measurements in the supercritical regime. While prior studies (Sareen et al. 2018, 2024a,b)
indicate that the current support rod diameter ratio has minimal impact on the forces and wake in the
subcritical and critical regimes, its effect in the supercritical regime remains uncertain. This is because
flow separation occurs downstream of the support rod, potentially altering the loads acting on the sphere.
Although rear support was not feasible due to experimental constraints, future studies on supercritical
effects should explore alternative mounting strategies to further isolate aerodynamic forces.
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