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ABSTRACT

In an ecarlier paper the author derived a recursion formula which permits the
exact computation of the aggregate claims distribution in the individual life
model. To save computing time he also proposed an approximative procedure
based on the exact recursion.

In the present contribution the exact recursion formula and the related
approximations are generalized to the individual risk theory model with
arbitrary positive claims. Error bounds for the approximations are given and it
is shown that they are smaller than those of the Kornya-type approxima-
tions.

KEYWORDS
Individual model; recursion formula; aggregate claims distribution; error
bound.

1. INTRODUCTION

Consider a portfolio of independent policies which produce at most one claim
during a certain exposure period. The claim amounts are supposed to be
integral multiples of some convenient monetary unit.

Let the portfolio be classified into a X b classes, as displayed in table 1.

TABLE 1
CLASSIFICATION OF THE PORTFOLIO

Claim amount distribution

S (‘X) f2() Jix) Jalx)

g1 4

42

Claim
probability ¢; 4 "y

9 {
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In table 1 the following notation is used

fi(x): conditional distribution of the claim amounts for a policy in column i
given that a claim has occurred, i = 1,2,...,aand x = 1,2, ..., m;;

g; : probability that a policy of row j produces a claim, j = 1,2, ..., b;
n; :number of policies in column i and row j.

Further set

pi=1—g; : probability that a policy of row j produces no claim;
n; = Z Hy : number of policies with claim probability equal to g;;
i=1
b
n= Z n; : total number of policies;
j=1
a b
m = Z ngm; : maximum possible amount of aggregate claims.

Let S denote the total amount of claims in the exposure period and pg(s) the
probability that S will be precisely s units.

In this paper two recursive procedures are proposed to compute pg(s)
exactly. They are generalizations of the recursion formula of DE PriL (1986)
for the individual life model.

From a practical point of view a disadvantage of these exact procedures is
that they require a lot of computing time when applied to large portfolios, as
illustrated by Kuon et al. (1987) for the individual life case. For this reason it
is shown how the exact algorithm can be used in an approximative way. The
resulting approximations permit to calculate the aggregate claims distribution
up to a prescribed accuracy. The error bounds are easy to calculate and it is
shown that they are smaller than those of the approximations developed by
KoRrNYA (1983) and Hipp (1986). This generalizes the results of DE PrIL (1988)
for the individual life model.

2. EXACT RECURSIVE PROCEDURES

Theorems 1 and 2 contain two versions of a recursive procedure which permits
the exact computation of the aggregate claims distribution. The first is based
on a two stage recursion formula; the second contains higher order convolu-
tions (and is thus in general also a two stage formula).
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THEOREM 1. A two stage recursion formula for pg(s) is

b
(1.a) ps© =[] ("
j=1

(1) sps(s) =Y > ny Y wylx)pss—x)  s=12...,m
x=]

i=1 j=1

where the auxiliary functions w; (x) are given by

(2.a) wy(1) = D p1y
P

x—1
@b) wyx) = 7 [xf,-(x)— > S w,~,-<x—k)] x =23, .m,
p/ k=1

2.c) wix) = = TN iy wix—k)  x=ml,
' pj k=1
Proor. The probability generating function of S is

(3.a) Ps(u) = Z ps(s)u’

a b
(3.b) = ﬂ H +q; G )]
with G,(u) the generating function of the f;{x)
(@) Giu) = Y. filx)u*
x=1

Putting # = 0 in (3.b) gives immediately the starting value (1.a). To prove (1.b),
take the derivative of (3.b)

a b
(5) Pi(u) = Ps(u) ), ) ny Wyu)
i=1 j=1
where W, () denotes an auxiliary function defined as
(6.2) W)=Y, wylx+1)u*
x=0
G
(6.b) = J)
pitq;Gi(u)
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Taking, according to Leibniz’s formula, the derivative of order s—1 of (5) and
putting ¥ = 0 yields formula (1.b).

The recursion formula (2) for the w;(x) is obtained by taking the derivative
of order x—1 of

q; G/ (u) = [pj+q; Gi(u)] W;(u)
and putting ¥ = 0. This completes the proof.

THEOREM 2. A recursion formula for pg(s) is

b
(7.2) ps©@ =[] )"
j=1
a s min (s, km,}
Ab) sps(s) =Y, Y. AGK) Y xfFOpsts—x) s=1,2,...,m
i=1 k=1 x=k
where the coefficients A4 (i, k) are given by
-1 k+1 b \k
®) A(i,k)=!—2n,~j(ﬂ)
k j=1 Pj

and where f;** (x) denotes the k-fold convolution of f;(x).

PrOOF. Expansion of the denominator of (6.b) gives

_ q/ qj . k
W) =2 Gl (u) Z D 2] (Giw))
pj = pj
_ i _1)k+l (E{)k d(G‘;(u))k
k= D u

Taking now the derivative of order x—1 of both sides leads to an explicit
representation of the wy(x)

X 1K+ \k
&) wy(x) = Y (w-l)—(ﬂ) xf* ) x=1,2,...
k=]x/m k pj

where ]x/m;[ denotes the smallest integer greater than or equal to x/m;.
The theorem is proved by inserting (9) in (1.b) and interchanging the order
of the summations over x and k.

ReEMARK 1. The k-fold convolution of the f;(x) in (7.b) can be computed by
the usual recursive definition of convolutions or by the recursion formula
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described in DE PRrRIL (1985). In some special cases an explicit expression for
this convolution can be given, so that pg(s) can be computed by a one stage
recursion formula.

REMARK 2. Notice that the general results also hold for infinite m;’s. If one
takes m; = oo for all i several summation limits look simpler and formula (2.c)
can be dropped. Nevertheless the formulas are presented for finite m,’s since in
practical applications the claim amounts will be bounded and in programming
the algorithms it will be necessary to know the exact limits of the summa-
tions.

3. APPLICATIONS AND SPECIAL CASES

First consider the following special cases.

SPECIAL CASE 1. The individual life model! is obtained by putting f;(x) = 6,
where i represents a risk sum and §,, denotes the Kronecker delta.
Since f;**(x) = Jy; ., the recursion (7) reduces to

b
(10.a) ps©@ =TT (py
j=1

min (@, s) [s/]]

(10.b)  sps(s) = Y. Y aGkpsG—ki) s=1,2...m

i=1 k=1

with

b \k
an ali k) = (-0 Y ,,(1)

j=1

and where [s/i] denotes the greatest integer less than or equal to s/i. This
formula is theorem 1 of DE PRrIL (1986).

SPECIAL CASE 2. A recursion formula for the number of claims can be obtained
by putting @ = 1 and f,(x) = ;.. Then fi**(x) = J,, and (7) reduces to

b
(12.2) ps©@ =[] (p)"
j=1
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5

(12.b) sps(s) = Y, a®pss—k)  s=1,2....m
k=1
with
b Nk
(13) a(k) = (1Y n,("-’)
i=1 Pj

This formula can be found in WHITE and GREVILLE (1959).

More general illustrations of the model considered in this paper, in which the
amount of a claim is a random variable in the proper sense, are presented in
the following examples. Some inspiration for these applications was found in
the textbook of BOWERS et al. (1986).

ExAMPLE 1. A life coverage with a double indemnity provision provides the
death benefit to be doubled when death is caused by accidental means. Let the
probability of an accidental death, given that there is a death, be constant and’
denoted by @. Then, the conditional claim amount distribution will be defined

by
l—a x =1
a x=2i
filx) =
elsewhere

The k-fold convolution of the f;(x) may be written as

k
(h )(1—a)2k—"a"—k x=hi with h=kk+1,... 2k
[ (x) =

0 elsewhere

Substituting this expression into (7), and reversing the role of k and 4, leads to
the following recursion formula

b
(14.a) ps© =[] (p)"
j=1
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min (a,s)  [3/i]

(14b)  sps(s) = Y. Y, b K ps(s—k) s=12,...m

i=1 k=1

with

k (__l)h+l h b q; h
(15) bk =ik Y - \( )(1—a)2h-kakhz ng(-’)
h=Tki2[ h k—h = P

It is clear that in the limiting case @ = 0 (15) reduces to (11) and thus (14) to
(10).

ExAMPLE 2. A hospital insurance provides a flat daily benefit during hospital-
ization. Let the members of the covered group be classified into a X b classes
according to the following two criteria : the amount i of the benefit per day and
the probability g; to enter a hospital during the reference period. Assume that
the distribution of the length of stay in the hospital is the same for each
member. Denote by ¢ the maximum number of days for which benefits are paid
and by f(t) the probability of continuance of a hospital claim for ¢ days,
t=1,2,...,c. In this case the model can be applied by setting

) B(t) x=1t with t=1,2,...,¢
Jilx) =
0 elsewhere
A similar application is that of short-term disability insurance. For ¢ = 2 this
example reduces of course to example 1.

ExAMPLE 3. A fire insurance company covers # structures against fire damage
up to an amount stated in the contract. Assume that fires are mutually
independent events and that the probability of more than one claim per
structure is zero. The contracts are classified into a X b classes according to the
following two criteria: the contract amount m; and the probability g, of a fire
within a given time period. In fire insurance the claim amount has a wide
variability. Therefore, assume that the conditional distribution of the claim
amounts, given that a claim has occurred, is uniformly distributed over the
interval from 1 to the contract amount, that is

1
filx) = — for x=1,2,...,m
m;

It can be shown that an explicit expression for the k-fold convolution of the
fi(x) is given by
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]
. _ (=1 [k x—m;y—1
ey ( ) ( k-1

y=0 m;

) x=kk+1,..., km,
y

See e.g. problem 18 on page 284 of FELLER (1968). The probabilities pg(s) can
thus, in principle, be computed by a one stage recursion formula. It should
however be noticed that several consecutive values of f;**(x) are needed, so
that it would presumably be much faster to use a two stage formula and
compute the convolutions recursively.

4. APPROXIMATIONS DERIVED FROM THE EXACT PROCEDURE

It is clear that a rigorous computation of (7) necessistates a lot of computer
time, especially if a is large and if the f;(x) are defined for more than a few
values. In practical applications however the g; will be small, so that the
coefficients A4 (i, k) will tend to zero (very) fast if k increases. The exact
formula (7) can thus be used in an approximative way by truncating the
summation over k. If the coefficients A4 (i, k) are neglected for k > r, the
following r-th order approximations p{’(s) of ps(s) are obtained

b
(16.2) P9 =TT ()"
j=1

a min(r,s) min (s, km;)
(16.b) sp)=[] > 4Gk Y xff)pP-x) s=1,2,...,m.

=1 k=1 x=k
It is immediately seen that these approximations are exact for the first
values
an pP(s) = ps(s) for s=0,1,...,r

For future reference the generating function of the p{’ (s) is denoted by

m

(18) POw) =Y pQs)u
s=0

Set also

(19) POw) =Y pfs)u’
s=0

where p{ (s) is defined for s > m by extending the range of formula (16.b) to
all positive integers.
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5. ERROR BOUNDS FOR THE APPROXIMATIONS p{’(s)

Our derivation of error bounds will be based on the theory of partial ordering
of real power series. This method was also used by Kornya (1983) and DE
PRIL {1988). To render this presentation self-contained, let us first repeat some
results.
oG e 8}
DEFINITION. Let A (u) = z apu* and B(u) = by u* be power series.
k=0 k=0
Then say that 4(u) <, B(u) provided that, for any non-negative integer n, the
sum of the first n+1 coefficients satisfies

n n
Z a, < Z bk.
k=0 k=0

NoTATION. Let A(u)= Zakuk. Then, denote by | A(u) | . the power series
k=0

| Au)

0
u = Z I ay I uk.
k=0

LEMMA. Let A(u), B(u) and C(u) be power series, then

G

Dolaw <, Y lal| it Y |a| <o
k=0

k=0

iy |A@+Bw)

WSu AW |+ | B@w) |4

i) | A@) B [u<. [A@) |4 | B@)

iv) | 1—expAu) |, <.exp(| Aw) |)—1;

vy If | A@w) |, <. | B@w) |.,
then | A(w) |, |Cw) |.<. |Bw) |, | Cw)

u»s

viy If | A) |, <, | B@w) |,
then exp (| A) | )1 <,exp(| Bu) | )—1.

THEOREM 3. If ¢; < 1/2, j = 1,2,..., b, then

(20) Y | pss)—pPs) | < 01
s=0

with
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LSyt (p)“

r+1i= i=1 i

@1 e(r) =

PRrROOF. From the lemma it follows that
| Ps@)=PY' @) |u <4 | Ps)= PO W) |,

<u | Ps@w) |+ | 1=exp(In P w)—1n Ps(w)) |,
(22) <,exp (| In P ()~ In Pg(u) |,)—1

Considering (3.b) In Pg(u) can be written as

a b
In Pg(u) = Inps(©0) + Y, D n,,-ln(l + ﬂG,'(u))

=1 j=1 pj
(23) = Inps(0) + Z Y, AGK) (G @)
k=1 i=1
To derive an expression for In P’ (u) consider the derivative
[e0)
PiOw) =), spf@u
s=1
© a min(r,s) min (s, km)
=YY Y 4G Y xfpP
s=1 i=1 k=1 x=k
(s—x)u!

r a km, 0
D 2 AGKH Y xfH) Y pfs—x)w!
k=1 i=1 x=k sS=X

0

PO W) kil Zl 4G, K) kka xS ) !
Integration gives -

(29 In P’ (1) = In ps(0) + ; Zl A, k) (G;w))*
Now (23) and (24) lead to

| n PO~ Ps@) [, = | )

k=r+1 i=1

<), Y 46w |

i=l k=r+l
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so that by (22)
| Ps)= PP ) |, <,e0~1

which proves the theorem.

6. COMPARISON WITH KORNYA’S APPROXIMATIONS

The method of Kornya (1983) was originally written for a life portfolio and
generalized by Hipp (1986) to the individual model with arbitrary positive
claims.

‘To derive the Kornya approximations write the logarithm of (3.b) as

a b
n, [ln(l +ﬂG,-(u)) ~In 1+if)
i=1 j=1 pj Pj
_1)k+l

a b 0
(29) =X X my
= =1

(
1 k

In Ps(u)

I
g

4 ) (G, (w)y—1)
pj

I
~.
I

Further, denote the generating function of Kornya’s r-th order approximation
k§(s) of ps(s) by

(26) KQ@) =) k9w
5=0
Then, In K§” (1), and thus the k¥’ (s), are defined by neglecting in (25)

g; \*
the terms in (~i) for k > r
Pj

b _1k+l
Q7) In K& @) = Y, Z Z ) ( )((G(u))"—l)

i=1 j=1 D;
The approximations can be calculated recursively as
(28.2) k¥ (0) = exp C(0)

min (s, r max m;)

@8b) skP@)= Y xCOX)KPs-x)  s=1,2...

x=1
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where the C(x) denote the Taylor coefficients of In K{” (u)

rmax m;

MK @) = Y CO(x)u
x=0

that is
a h r k k
-1 )
(29.2) co@=Y Yoy Y (q)
i=1 j=1 k=1 k p;
u b min (r, x) (_1)k+l g k
@b V=2 Yo Y () St (x)
=1 j=1 k=]x/m] ])/-

x=1,2, ..., rmax m;.

Notice that the k¢ (s) are—in principle —defined for all non-negative integers
s, while the p{’(s) are defined over the correct range s = 0, 1, ..., m. An error
bound for the k£’ (s) is given in the following theorem.

THEOREM 4. If ¢; < 1/2, = 1,2,..., b, then

(30) Y | psl)—k(s) | < -1
s=0
with
) 1 b P q; r+1
31) 3(ry = Y my|p ) ()
r+li= = pi=4; 1\ p

ProOF. The proof follows immediately from

| Ps)— K (u) |, <, exp (| In KO u)—1n Pg(u) | )—1
and

| In K{)(u)—1n Pg(u)

u

k=r+1 k i=1 j=1 i
%L (__l)k+l a b g k
+ e ] S KA
k=r+1 k i=1 j=1 ,Dj u
] a b S\ r+t 0 k % Nk
eI Ld I D ERA I W
r+1 i=y j=1 p/' k=0 1),- k=0 [)/
= 50)
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An immediate consequence of the theorem is that the approximations are
asymptotically correct

(32) lim k$(s) =

r— oL

{ps(s) s=0,1,....m
=m+1l,m+2, ...

Note that the bound given here is smaller than the one originally given by
Kornya (1983). Further details can be found in DE PrIL (1988).

REMARK 3. From (24) and (27) one has that
In P{7(u) = In K (u)—In k¢ (0)+ In pg(0)

so that the following relationship exists

(33) P& (s) k$ (s) s=0,1,...,m.

A consequence of (33) is that the p§’ (s) can be computed in an alternative way
by using the recursion (28), but then starting with the exact value pg(0) in
(28.a). This can also be seen by inserting (9) in (7) and neglecting the terms in
(q,«/p,)k for k > r. Clearly this implies that both approximations can be
computed with about the same effort.

REIMERS (1988) made a numerical comparison in the case of life portfolios
which seems to indicate that it is faster to use the algorithm (28) than (16). This
must be due to the computer language, the programming style and the
implementation of the algorithms. Indeed, both algorithms are in fact two
versions of the same procedure. They can be obtained from each other by
reversing the summations over x and k.

7. COMPARISON WITH HIPP'S APPROXIMATIONS

An alternative to the Kornya approximations has been proposed by
Hipp (1986).

His approximations have as interesting property that the first order approx-
imation coincides with the usual compound Poisson approximation in the
collective risk theory model.

The starting point is to write In Pg(u) as

In Pg(u)

If

YN nyIn[1+¢;(Giw)—1)]

i=

.

k+1

b oG
Znuz ( “"qj(G()_l)k

=1 k=1

Ma

(34) =

I
-
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Then, the generating function
(35) HYw) =), i) u
s=0

of Hipp’s r-th order approximations 4§’ (s) is defined by neglecting in (34) the
terms in q,’-‘ for k > r

a b r -1 k+1
(36) mH @)=Y > nyy, (k)q,-k (Gi(u)—1)*
i=1 j=1

The 4§’ (s) can be calculated by a recursion formula similar to (28). An error
bound for these approximations is given in the following theorem.

THEOREM 5. If ¢; < 1/2,j=1,2,..., b, then

(37) Y. ps)=hP(s) | <"1
s=0
with
a ) r+1
(38) o(r) = — Z Y ny 29
i=t j=1 p_,-—q_,-

ProoOF. One has

| Ps(u)—H (u)

w <uexp (| In HY (w)—1In Ps(u) | ,)—1

with
o0 (_ 1)k+| a b
| nHP @)~ Ps@) |, = | D, — Y D nyqf (Giw)— D
- k=r+]1 k =1 =1 "
1 a b s3] . .
<. Yong Y, g (Giw)+1)
r+1 21 j=1 k=r+1 u
1 a b el
Su Z Z nij Z (2‘11)
r+1i=1 j=1 k=r+1
=0o(r)
which proves the theorem.
From this theorem one has immediately that
=0,1,...,m
(39) lim hQ(s) = {pS(S) :
roo 0 s=m+l,m+2, ...
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The way of convergence of the different approximations can be seen by
comparing (17), (32) and (39).

8. CONCLUSION

The paper has focused on two problems: the derivation of an exact recursion
formula for the aggregate claims distribution and its numerical evaluation by
means of approximations.
The recursions given in the theorems 1 and 2 are exact formulae for the
probabilities pg(s). These formulae are mainly of theoretical interest.
For practical applications a compromise between accuracy and computa-
tional effort is found by deriving, in a natural way, approximations p§’ (s) from
the exact recursion. These approximations are easy to compute and even exact
for the first values. From the theorems 3, 4 and 5 it follows that
e(r) < 6(r) < a(r), so that the p{’(s) give rise to smaller error bounds than
the approximations proposed by KorNyA (1983) and Hipp (1986). Since the
computational work is about the same in the three case, preference should be
given to the approximations derived here.
In typical applications a value of r equal to 3 or 5 will give very satisfactory
results.
In practice the computation of the aggregate claims distribution will proceed
as follows
i) Choose a value of r for which the magnitude of error ¢*” — 1, with &(r)
given by (21), is sufficiently small.

ii) Compute the convolutions f**(x) for i =1,2,...,a, k=1,2,...,r and
x=kk+1,... km,

iii) Compute the coefficients A4 (i, k), defined by (8), for i=1,2,...,a and
k=1,2,...,r

iv) Calculate the approximations p{’(s) recursively by means of (16).

An alternative is to replace steps iii) and iv) by
iii)’ Compute the coefficients C“(x), defined by (29.b), for

x=1,2,..., rmax m;
iv)’ Calculate the approximations p§’(s) recursively by means of (28), where

b
(28.a) is replaced by p§’ (0) = n (p)"
j=1
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