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Abstract
We construct universal G-zips on good reductions of the Pappas-Rapoport splitting models for PEL-type Shimura
varieties. We study the induced Ekedahl-Oort stratification, which sheds new light on the mod p geometry of
splitting models. Building on the work of Lan on arithmetic compactifications of splitting models, we further
extend these constructions to smooth toroidal compactifications. Combined with the work of Goldring-Koskivirta
on group theoretical Hasse invariants, we get an application to Galois representations associated to torsion classes
in coherent cohomology in the ramified setting.
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1. Introduction

This paper deals with the mod p geometry and arithmetic of some Shimura varieties at ramified places.
More precisely, we study the reduction modulo p of the splitting models for PEL-type Shimura varieties
constructed by Pappas-Rapoport in [49]. For smooth splitting models, we explore the mod p Hodge
structures on their special fibers by constructing universal F-zips with additional structure of fixed
type (determined by the Hodge cocharacter). Then we derive some consequences for the geometry
and coherent cohomology. In particular, we reprove the main results of Bijakowski-Hernandez [6] by
different methods. We also clarify and generalize the work of Reduzzi-Xiao [56] in the ramified Hilbert
case.
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PEL moduli spaces are central objects to study in arithmetic geometry and the Langlands program.
If the associated reductive group is unramified at p, Kottwitz constructed smooth integral PEL moduli
spaces in [30]. In the general setting, Rapoport and Zink in [55] introduced similar and generalized
integral PEL moduli spaces 𝒜naive. These are called naive integral models, as shown by Pappas in [45]
that in some ramified unitary case, the moduli scheme 𝒜naive fails to be flat over O𝐸 , the ring of integers
of the local reflex field E. To study integral models of PEL-type Shimura varieties in the ramified case,
in [49] Pappas and Rapoport introduced the so-called splitting integral models 𝒜spl. Roughly speaking,
in the setting of [49], the associated p-adic reductive group G has the form of a Weil restriction and the
ramification comes mainly from restriction of scalars. After fixing the data, the model 𝒜spl is proposed
as a relative moduli space over the naive integral model 𝒜naive, the latter constructed in [55]. For any
scheme S over O𝐸 , 𝒜naive(𝑆) classifies abelian schemes with PEL structure 𝐴 = (𝐴, 𝜆, 𝜄, 𝛼) over S.
Fix a sufficiently large field extension 𝐹 |𝐸 . For a scheme S over O𝐹 , 𝒜spl(𝑆) classifies (𝐴,ℱ•), where
𝐴 ∈ 𝒜naive(𝑆) andℱ• is a filtration on the cotangent bundle𝜔𝐴/𝑆 , satisfying certain conditions related to
the ramification data. Pappas and Rapoport proved that the model 𝒜spl over O𝐹 admits nice properties.
In particular, there is a scheme Mspl (called the splitting local model) over O𝐹 , so that 𝒜spl and Mspl

sit in a local model diagram. Moreover, by construction Mspl can be realized as a twisted product of
unramified local models. There is a natural morphism 𝒜spl → 𝒜naive, which is the composition of
the forgetful morphism 𝒜spl → 𝒜naive

O𝐹 over O𝐹 and the base change projection map 𝒜naive
O𝐹 → 𝒜naive.

Pappas and Rapoport defined the canonical model 𝒜 as the scheme-theoretic image of this morphism.
Then 𝒜 is a flat integral model over O𝐸 . In case that the group G is tamely ramified and 𝑝 � |𝜋1 (𝐺𝑑𝑒𝑟 ) |,
then up to the Hasse principle the scheme 𝒜 should coincide with the Kisin-Pappas integral models
[28]. We refer to [49] for more information and details on the general theory of splitting models (so
far only available in the PEL-type case) and to [46, 47, 51] for some recent progress on the canonical
models.

The most well-known splitting models come from the example of Hilbert modular varieties. In this
case, 𝒜 = 𝒜naive and the special fiber of 𝒜 was previously studied by Deligne and Pappas in [13]. Let
L be a totally real field of degree 𝑔 > 1 and p a prime number. Let 𝜅 |F𝑝 be a large enough finite field
and MDP = 𝒜 ⊗ 𝜅 the Deligne-Pappas moduli space over 𝜅, which parameterizes abelian schemes with
real multiplication given by O𝐿 together with polarization and level structure. If p is unramified in L,
this is a smooth scheme (a special case of the Kottwitz models [30]). Here we are mainly concerned
with the case where p ramifies in L. Then MDP is only a normal scheme that is singular (cf. [13]).
By contrast, the special fiber of 𝒜spl over 𝜅, in this case denoted by MPR, is smooth and the natural
morphism

MPR → MDP

is a resolution of singularities. In [56] Reduzzi and Xiao constructed g partial Hasse invariants on MPR

by carefully exploring the structure of Pappas-Rapoport filtrations. On the other hand, in the ramified
case the number of partial Hasse invariants onMDP is strictly less than g (see the introduction of [56] and
the references therein). Reduzzi and Xiao applied these g partial Hasse invariants to MPR to construct
Galois pseudorepresentations attached to torsion Hecke eigenclasses in the coherent cohomology. This
shows a big advantage to work with splitting models. The space MPR and the partial Hasse invariants on
it have been serving as a basic tool in the study of geometry and arithmetic of Hilbert modular varieties,
for example, see the recent works of Sasaki [58] and Diamond-Kassaei [14].

In the more general PEL setting, recently Bijakowski and Hernandez in [6] studied some aspects of
the mod p geometry of splitting models. More precisely, they proved that 𝒜spl with maximal level at p
is smooth under some conditions on the PEL datum. Roughly, these conditions are to ensure that at a
p-adic place 𝑣𝑖 , the group has the form Res𝐹𝑖 |Q𝑝 𝐻𝑖 , where 𝐻𝑖 is unramified over 𝐹𝑖 , and the level at
p is hyperspecial for these 𝐻𝑖 . In particular, this excludes the ramified unitary groups (labeled as type
(AR) in [6]) as local factors. Bijakowski and Hernandez also proved that the 𝜇-ordinary locus (defined
as the maximal Newton stratum) is open and dense in the special fiber 𝒜

spl
0 of 𝒜spl. For this, they
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introduced a so-called Hodge stratification and proved that the maximal Hodge stratum (which contains
the 𝜇-ordinary locus) is open and dense.

In this paper, we essentially work in the same setting as that in [6]. Our first key observation is that
one can modify the local model diagram between 𝒜spl and Mspl constructed in [49] to a local model
diagram between 𝒜spl and

∏
𝑖, 𝑗.𝑙M

loc(G𝑙𝑖, 𝑗 , 𝜇𝑙𝑖, 𝑗 ), a product of unramified local models related to the
PEL datum, cf. Proposition A.8. This is not quite surprising, as we already mentioned above that the
splitting local modelMspl = Mspl(G, 𝜇) was constructed in [49] as a twisted product of unramified local
modelsMloc(G𝑙𝑖, 𝑗 , 𝜇𝑙𝑖, 𝑗 ). Let G be the reductive group defined by the PEL datum, which we assume to be
connected (thus we exclude the type D case), and {𝜇} the attached geometric conjugacy class of Hodge
cocharacters of G. In the following we often fix a suitable choice of 𝜇 in this conjugacy class. Recall
that 𝐸 |Q𝑝 is the field of definition of {𝜇} and 𝐹 |𝐸 is a large enough extension (so that G splits over
F). The group scheme related to the modified local model diagram is Gspl, a reductive group over O𝐹 ,
which is the reductive model of the split group 𝐺𝐹 . On the other hand, let G be the parahoric model
of G over Z𝑝 associated to the integral PEL datum. The local model diagram of [49] corresponds to a
morphism of algebraic stacks

𝒜spl → [Mspl (G, 𝜇)/GO𝐹 ],

which is more suited to study the canonical model 𝒜 and its related canonical local model. On the other
hand, the local model diagram here corresponds to a morphism

𝒜spl → [Mloc(Gspl, 𝜇)/Gspl],

where Mloc(Gspl, 𝜇) =
∏
𝑖, 𝑗 ,𝑙M

loc(G𝑙𝑖, 𝑗 , 𝜇𝑙𝑖, 𝑗 ). If there is an i such that the finite extension 𝐹𝑖 |Q𝑝 is
ramified, then in general

GO𝐹 ≠ Gspl.

From the modified diagram here, we can immediately deduce the smoothness of 𝒜spl if the local factors
G𝑖 satisfy the same condition as that in [6] (compare [6] Theorem 2.30 and Remark 2.31). Under this
condition, the parahoric subgroup 𝐾𝑝 = G (Z𝑝) is in fact very special in the sense of [71].

In fact, the above observation on the modified local model diagram leads us to go much further.
Recall that the theory of F-zips was introduced and studied by Moonen-Wedhorn in [43] as a candidate
for a mod p Hodge structure. This notion has been promoted and enlarged by Fontaine-Jannsen [17],
Drinfeld [15], and Bhatt-Lurie [9]. Here we work with the generalization of F-zips in another direction:
the notion of G-zips for a reductive group G over a finite field, cf. [53, 54]. Back to splitting models of
PEL-type Shimura varieties, we will work with smooth splitting models 𝒜spl from now on (in particular,
this excludes the ramified unitary group case). Let 𝜅 be the residue field of O𝐹 and 𝒜

spl
0 the special

fiber of 𝒜spl over 𝜅.
Theorem 1.1 (Theorem 3.13).
(1) There is a natural Gspl

0 -zip of type 𝜇 over 𝒜spl
0 , where Gspl

0 is a reductive group over F𝑝 constructed
from the PEL datum such that Gspl

0,𝜅 = Gspl ⊗O𝐹 𝜅.
(2) The induced map to the moduli stack of Gspl

0 -zips of type 𝜇

𝜁 : 𝒜spl
0 → Gspl

0 -Zip𝜇𝜅

is smooth and surjective.

Let us first comment on the related reductive groups appearing here. For 𝒜spl
0 , the group Gspl

0 replaces
Grdt

0 , the maximal reductive quotient of the special fiber G0 of G. The group Grdt
0 is mainly related to the

geometry of 𝒜0, the special fiber of the canonical model 𝒜. Recall that there is a natural morphism
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𝒜
spl
0 → 𝒜0. The difference between Gspl

0 and Grdt
0 reflects the ramification data. Indeed, at a p-adic place

𝑣𝑖 , the local factors of the two groups admit the following description:

Gspl
0,𝑖 = Res𝜅𝑖 |F𝑝 𝐻

𝑒𝑖
𝑖 , Grdt

0,𝑖 = Res𝜅𝑖 |F𝑝 𝐻𝑖 ,

where 𝜅𝑖 is the residue field of 𝐹𝑖 , 𝑒𝑖 is the ramification index of the extension 𝐹𝑖 |Q𝑝 , and 𝐻𝑖 is a
reductive group over 𝜅𝑖 . Note that the Hodge cocharacter 𝜇 of G over F naturally admits a reduction to
a cocharacter of Gspl

0 over 𝜅.
Now we briefly explain the construction of the universal Gspl

0 -zip of type 𝜇. In the unramified PEL
case, we have 𝒜0 = 𝒜naive

0 = 𝒜
spl
0 and the construction is direct, cf. [43, 65] and [70]. However, in the

ramified case, the construction becomes rather indirect and complicated. Since a general PEL datum
is involved, we illustrate the ideas by working with the example of Hilbert-Siegel case. For the general
case, see sections 2 and 3. Then the PEL datum (𝐵, ∗, 𝑉, 〈·, ·〉,O𝐵,Λ) is of type C and 𝐵 = 𝐿 is a totally
real field, which we assume [𝐿 : Q] > 1. We further assume that there is only one finite place v of L
over p and the local field 𝐹1 := 𝐿𝑣 is ramified over Q𝑝 , i.e., the ramification index 𝑒 = [𝐹1 : 𝐹ur

1 ] > 1,
where 𝐹ur

1 is the maximal unramified subextension of 𝐹1 over Q𝑝 . Let 𝑓 = [𝐹ur
1 : Q𝑝] = [𝜅1 : F𝑝],

where 𝜅1 is the residue field of 𝐹1, so that [𝐹1 : Q𝑝] = 𝑒 𝑓 . Let 𝐾 𝑝 ⊂ 𝐺 (A𝑝𝑓 ) be a fixed sufficiently
small open compact subgroup. Recall 𝐹 |𝐹1 is a fixed large enough extension with residue field 𝜅. For
any 𝜅-scheme S, let 𝐴 = (𝐴, 𝜆, 𝜄, 𝛼) be an S-point of 𝒜naive = 𝒜naive

𝐾 𝑝 . Then we have an exact sequence
of locally free sheaves of O𝑆-modules

0 → 𝜔𝐴/𝑆 → 𝐻1
dR(𝐴/𝑆) → Lie𝐴∨/𝑆 → 0.

In the unramified case, this exact sequence, together with the Frobenius and Verschiebung morphisms,
defines the F-zip with additional structure of type 𝜇 over 𝒜spl

0 . However, in our ramified case here, it
turns out a posteriori that the type of the Hodge filtrations constructed in this way will vary, which
reflects the singularities of 𝒜0 in some sense.

Indeed, we have the Kottwitz-Rapoport stratification on 𝒜0 (see later), and on each stratum by [59]
we have a Grdt

0 -zip of a certain type (dependent on this stratum). Recall the natural map 𝒜
spl
0 → 𝒜0. We

can pullback these Grdt
0 -zips to the corresponding preimages of KR strata in 𝒜

spl
0 . But these do not give

the correct object that we want. Here, to construct the Gspl
0 -zip of fixed type 𝜇 over 𝒜spl

0 , we have to take
into account the splitting structures. It is here that our modified local model diagram (over 𝜅)

𝒜
spl
0 → [Mloc(Gspl, 𝜇)0/Gspl

𝜅 ]

plays the key role. Under our smoothness assumption, the underlying topological space of
[Mloc (Gspl, 𝜇)0/Gspl

𝜅 ] has only one point. Then the construction is guided by the constructions in [59]
subsections 3.3 and 3.4. On the other hand, we remark that it is very hard to work with the original
local model diagram 𝒜

spl
0 → [Mspl(G, 𝜇)0/G𝜅 ] of [49]. The quotient stack [Mspl (G, 𝜇)0/G𝜅 ] is quite

complicated, and in fact it is not known whether the set of G𝜅 -orbits on Mspl (G, 𝜇)0 is finite or not in
general (cf. [3] section 8 and [4]).

Let us discuss in more detail the construction of the Gspl
0 -zip of fixed type 𝜇 over 𝒜spl

0 . Let (𝐴,ℱ•)
be an S-valued point of 𝒜0

spl. Then by definition 𝐴 = (𝐴, 𝜆, 𝜄, 𝛼) ∈ 𝒜naive(𝑆), ℱ• = {ℱ𝑙
𝑗 } is a Pappas-

Rapoport filtration of the O𝐹1 ⊗Z𝑝 O𝑆-module 𝜔𝐴/𝑆 . To explain this term, we write H = 𝐻1
dR (𝐴/𝑆),

which is an O𝐹ur
1
⊗Z𝑝 O𝑆-module, hence it has a decomposition

H =
⊕
𝑗

H 𝑗 ,
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where H 𝑗 is the locally free sub O𝑆-module of H, where O𝐹ur
1

acts by the fixed embedding 𝜎𝑗 : O𝐹ur
1
→

O𝐹 . For each j, there is a pairing on H 𝑗 induced from the pairing on H coming from the polarization
𝜆. Similarly, we have a decomposition 𝜔𝐴/𝑆 =

⊕
𝑗 𝜔 𝑗 with 𝜔 𝑗 ⊂ H 𝑗 for each 1 ≤ 𝑗 ≤ 𝑓 . The Pappas-

Rapoport filtration is by definition a filtration of locally direct O𝑆-factors of each 𝜔 𝑗 .

0 = ℱ0
𝑗 ⊂ ℱ1

𝑗 ⊂ · · · ⊂ ℱ𝑒
𝑗 = 𝜔 𝑗 ⊂ H 𝑗

with O𝐹1/(𝑝) � 𝜅1 [𝑇]/(𝑇𝑒) = 𝜅1 [𝜀1] action, such that 𝜅1 acts on ℱ𝑙
𝑗 by 𝜎𝑗 : O𝐹ur

1
→ 𝜅; for all

1 ≤ 𝑙 ≤ 𝑒, ℱ𝑙
𝑗 /ℱ

𝑙−1
𝑗 is locally free of rank 𝑑𝑙𝑗 and 𝜀1ℱ

𝑙
𝑗 ⊂ ℱ𝑙−1

𝑗 .
The O𝐹ur

1
-action on Λ induces a decomposition Λ =

⊕
𝑗 Λ 𝑗 . For each embedding 𝜎𝑙𝑗 : O𝐹1 ↩→ O𝐹

which extends 𝜎𝑗 : O𝐹ur
1
↩→ O𝐹 , we set Λ𝑙𝑗 = Λ 𝑗 ⊗O𝐹1 ,𝜎

𝑙
𝑗
O𝐹 (note that the lattice Λ𝑙𝑗 is denoted by

Ξ𝑙𝑗 in [49, Proposition 5.2]) and Λ𝑙 =
⊕

𝑗 Λ
𝑙
𝑗 . Set Λ𝑙𝑗 ,0 = Λ𝑙𝑗 ⊗O𝐹 𝜅 and Λspl

0 =
⊕

𝑙

⊕
𝑗 Λ

𝑙
𝑗 ,0. One can

show that there is a standard F-zip structure on Λspl
0 , whose Hodge filtration is given by the cocharacter

𝜇 over 𝜅.
For 𝑆 = 𝒜0

spl and (𝐴,ℱ•) ∈ 𝒜0
spl (𝑆) the universal object, one can associate a module

M :=
𝑒⊕
𝑙=1

𝑓⊕
𝑗=1

M𝑙
𝑗 , with M𝑙

𝑗 := 𝜀−1
1 ℱ𝑙−1

𝑗 /ℱ𝑙−1
𝑗 .

Then each M𝑙
𝑗 is a locally free O𝑆-module, and locally isomorphic to Λ𝑙𝑗 ⊗O𝐹 O𝑆 , cf. [49]. Now the idea

is to transfer the Hodge and conjugate filtrations on H to filtrations on each M𝑙 :=
⊕

𝑗 M𝑙
𝑗 , and to show

that the F-zip structure on H induces an F-zip structure on M. To this end, one can first complete the
filtration of𝜔 to a full filtration ofH, then apply the Frobenius and Verschiebung morphisms successively
to the full filtration, and make use of the usual relation Ker 𝐹 = Im𝑉,Ker𝑉 = Im 𝐹 to succeed. In fact,
we proceed by an alternative and equivalent approach. For any 1 ≤ 𝑗 ≤ 𝑓 , inspired by [56] we construct
explicit linear maps 𝐹𝑙𝑗 : M𝑙−1

𝑗 → M𝑙
𝑗 , 𝑉

𝑙
𝑗 : M𝑙

𝑗 → M𝑙−1
𝑗 for each 2 ≤ 𝑙 ≤ 𝑒 (which are easy to

construct), and 𝜎−1-linear (𝜎-linear) maps 𝐹1
𝑗 : M𝑒

𝑗−1 → M1
𝑗 , 𝑉

1
𝑗 : M1

𝑗 → M𝑒
𝑗−1 (which are induced

by the Frobenius and Verschiebung, and the definition of 𝑉1
𝑗 is a little subtle). Now for each 1 ≤ 𝑙 ≤ 𝑒,

M𝑙 =
⊕ 𝑓

𝑗=1 M𝑙
𝑗 is a locally free O𝑆 [𝜀1]-module with 𝜅1 action, and locally M𝑙 � Λ𝑙 ⊗O𝐹 O𝑆 . For

each l, set 𝐹𝑙 =
⊕

𝑗 𝐹
𝑙
𝑗 and 𝑉 𝑙 =

⊕
𝑗 𝑉

𝑙
𝑗 . We have the following linear morphisms:

M1
𝐹2

�� M2

𝑉 2
��

𝐹3
��
· · ·

𝑉 3
��

𝐹𝑒 �� M𝑒 .
𝑉 𝑒

��

and semilinear morphisms (𝐹1 is 𝜎-linear and 𝑉1 is 𝜎−1-linear)

M𝑒
𝐹1

�� M1.
𝑉 1

��

Then (see Lemmas 3.7 and 3.6 respectively)

(1) For 2 ≤ 𝑙 ≤ 𝑒, we have Im 𝐹𝑙 = Ker 𝑉 𝑙 , Ker 𝐹𝑙 = Im 𝑉 𝑙 .
(2) There is a canonical isomorphism 𝑔 : M1 → M1 sending Ker 𝑉1 to Im 𝐹1.

Therefore we get an F-zip

(M =
⊕
𝑙

M𝑙 , 𝐶 =
⊕
𝑙

Ker 𝐹𝑙 , 𝐷 =
⊕
𝑙

Ker 𝑉 𝑙 , 𝜑•)
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over 𝒜spl
0 . Moreover, there are natural compatible symplectic forms and O𝐿-action on M. Comparing

with the standard F-zip structure on Λspl
0 , we get the Gspl

0 -zip of type 𝜇 over 𝒜spl
0 . Roughly, the process of

transforming H to M is a way of “semisimplification”. During this transformation the different types of
Grdt

0 -zips become uniform as Gspl
0 -zips, which reflects some key features of the resolution of singularities

𝒜
spl
0 → 𝒜0. Note that even in the Hilbert case, the above construction reveals more complete geometric

information than that in [56]. For more details, see Proposition 3.8 and subsection 3.2.
Let 𝑘 = 𝜅 be an algebraic closure of 𝜅. By Theorem 1.1, we get an induced stratification

𝒜
spl
𝑘 =

∐
𝑤 ∈𝐽𝑊

𝒜
spl,𝑤
𝑘

which we call the Ekedahl-Oort (EO) stratification. Here the index set 𝐽𝑊 is the subset of the (absolute)
Weyl group of Gspl

0 defined by the cocharacter 𝜇 in the usual way, which is equipped with the partial
order � as that in [53, 54]. By Theorem 1.1, each stratum 𝒜

spl,𝑤
𝑘 is non-empty, smooth, and we have the

usual closure relation for the EO strata given by �. In fact, the nonemptiness is more subtle, requiring
additional efforts. We prove the nonemptiness by comparing the minimal EO stratum of 𝒜spl

𝑘 with the
minimal EKOR stratum of 𝒜𝑘 (see below) in Proposition 3.11, and show the minimal EKOR stratum is
nonempty in the Appendix (Proposition A.15) by adapting the method of He-Zhou [26].

We can compare the EO strata with some other naturally raised strata. Recall the natural morphism

𝜋 : 𝒜spl
𝑘 → 𝒜𝑘 ,

which is a resolution of singularities: as in the Hilbert case ([13]) the scheme 𝒜𝑘 is usually singular in
the ramified case. On 𝒜𝑘 , we have the following stratifications:

◦ Newton stratification, which can be constructed by studying the associated F-isocrystals with addi-
tional structure.

◦ Kottwitz-Rapoport (KR) stratification 𝒜𝑘 =
∐
𝑤 ∈Adm(𝜇)𝐾𝑝 𝒜

𝑤
𝑘 , which is induced from the local

model diagram for 𝒜𝑘 and the geometry ofMloc
𝑘 , cf. [49, 40, 21].

◦ Ekedahl-Kottwitz-Oort-Rapoport (EKOR) stratification 𝒜𝑘 =
∐
𝑥∈𝐾𝑝Adm(𝜇) 𝒜

𝑥
𝑘 , which can be con-

structed as in [59], see the Appendix of the current paper; in particular, see Example A.11 for more
information on EKOR strata in the Hilbert case.

While on 𝒜
spl
𝑘 we have the following stratifications:

◦ Newton stratification, which can be constructed by forgetting the splitting structures and considering
the associated F-isocrystals with additional structure,

◦ Hodge stratification, which is constructed in [6],
◦ Ekedahl-Oort stratification, which is constructed in this paper.

The Newton stratification on 𝒜
spl
𝑘 naturally factors through 𝒜𝑘 . In subsection 3.6 we will show that the

Hodge stratification also factors through 𝒜𝑘 . Moreover, the resulting stratification on 𝒜𝑘 is coarser than
the Kottwitz-Rapoport stratification. On the other hand, the Ekedahl-Oort stratification on 𝒜

spl
𝑘 does not

factor through 𝒜𝑘 in general. Nevertheless, one can try to compare the EO strata of 𝒜spl
𝑘 with pullbacks

of KR and EKOR strata of 𝒜𝑘 under 𝜋. On each KR stratum 𝒜𝑤
𝑘 , we have a Grdt

0 -zip of type 𝐽𝑤 , see
[59] and our Appendix. Pulling back to 𝒜

spl
𝑘 , we get a family of Grdt

0 -zips of different types. It is curious
to study the relationship with our Gspl

0 -zip of fixed type 𝜇. In doing so, we prove the following results.

Theorem 1.2 (Propositions 3.15 and 3.16).
(1) Let 𝒜𝑤0

𝑘 be the maximal KR stratum of 𝒜𝑘 . Then 𝜋 induces an isomorphism

𝜋−1 (𝒜𝑤0
𝑘 ) ∼→ 𝒜𝑤0

𝑘 ;
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furthermore 𝜋−1 (𝒜𝑤0
𝑘 ) is also the maximal Hodge stratum (called the generalized Rapoport locus

in [6]).
(2) 𝜋−1(𝒜𝑤0

𝑘 ) is a disjoint union of some EO strata of 𝒜spl
𝑘 , and moreover these EO strata are exactly

pullbacks of the EKOR strata contained in 𝒜𝑤0
𝑘 . Thus the isomorphism 𝜋−1 (𝒜𝑤0

𝑘 ) ∼→ 𝒜𝑤0
𝑘 refines

into isomorphisms between the corresponding EO and EKOR strata.

In particular, using a result of He-Nie [24], we can deduce that the maximal EO stratum coincides
with the 𝜇-ordinary locus, cf. Corollary 3.17. Thus by Theorem 1.1 we reprove the open density of the
𝜇-ordinary locus of 𝒜spl

𝑘 , cf. [6].
Once we have the morphism

𝜁 : 𝒜spl
0 → Gspl

0 -Zip𝜇𝜅 ,

we get Hasse invariants on 𝒜
spl
0 by pulling back the group-theoretic Hasse invariants on the stack

Gspl
0 -Zip𝜇𝜅 constructed by Goldring-Koskivirta in [20]. Note that in [5] Bijakowski and Hernandez have

constructed Hasse invariants for the 𝜇-ordinary locus (which is also our maximal EO stratum) by an
explicit method. It would be interesting to compare their construction with our construction here. On
the other hand, in the Hilbert case, in subsection 4.4 we do compare the EO strata and Hasse invariants
here with those constructed in [56].

To proceed as in [56] and [20] to get applications to Galois representations, we need arithmetic
compactifications of splitting models and we have to extend the above construction to the compactifi-
cations. Fortunately, the arithmetic (toroidal and minimal) compactifications for splitting models with
good properties have already been established by Lan in [37], based on his previous constructions in
[33, 35, 36]. At this point, we have to slightly modify the integral model 𝒜spl = 𝒜

spl
𝐾 𝑝 by considering

the open and closed subspace

Mspl
𝐾 ⊂ 𝒜

spl
𝐾 𝑝

studied in [37]. Here 𝐾 = 𝐾 𝑝𝐾𝑝 and 𝐾𝑝 = G (Z𝑝). All previous constructions and results also hold for
Mspl
𝐾 by simple modifications. For projective and smooth compatible collections of cone decompositions

Σ, by [37] we have a toroidal compactification Mspl,tor
𝐾,Σ , together with a proper surjective morphism

to the minimal compactification
∮

: Mspl,tor
𝐾,Σ → Mspl,min

𝐾 . As we are working with smooth Mspl
𝐾 , the

compactification Mspl,tor
𝐾,Σ is also smooth by [37] Proposition 3.4.14. We write their special fibers as Mspl

𝐾,0
and Mspl,tor

𝐾,Σ,0.

Theorem 1.3 (Theorem 5.4).

(1) The Gspl
0 -zip of type 𝜇 on Mspl

𝐾,0 extends to a 𝐺 (A𝑝𝑓 )-equivariant Gspl
0 -zip of type 𝜇 on Mspl,tor

𝐾,Σ,0.
(2) The induced map 𝜁 tor : Mspl,tor

𝐾,Σ,0 → Gspl
0 -Zip𝜇𝜅 is smooth.

The extension of Gspl
0 -zip is easy to construct, as the canonical extension of the universal de Rham

bundle together with its Hodge filtration has already been given by Lan in [37], so we just repeat
the above construction. To prove the smoothness of 𝜁 tor, we adapt some ideas of Andreatta [2] in the
unramified Hodge-type case. We also prove that EO strata here are well-positioned in the sense of Lan-
Stroh [38]. By the well-positionedness in fact we get another proof of the smoothness of 𝜁 tor (this is the
approach taken in [38] for the unramified PEL case).

Before talking about arithmetic applications, we note another advantage of the smooth splitting
models Mspl

𝐾 . As the modified local model diagram for Mspl
𝐾 is similar to that in the unramified case, we

get naturally automorphic vector bundles on Mspl
𝐾 as in the classical procedure. In contrast, automorphic

vector bundles do not extend to the singular integral model M𝐾 , the corresponding open and closed
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subspace of 𝒜 = 𝒜𝐾 𝑝 . We also get canonical and subcanonical extensions of automorphic vector
bundles to Mspl,tor

𝐾,Σ , as the local model diagram extends. Moreover, pullbacks of canonical extensions of
automorphic vector bundles satisfy similar properties as in the unramified case (cf. [34] Proposition 5.6).
In particular, we have the relative vanishing of higher direct images for the projection

∮
: Mspl,tor

𝐾,Σ →
Mspl,min
𝐾 , cf. Proposition 5.3 and [37] Theorem 4.4.9.
Theorems 1.1 and 1.3 allow us to deduce some further consequences on the mod p geometry and

arithmetic related to PEL-type Shimura varieties with ramifications arising from Weil restrictions. As an
illustration, we discuss congruences of mod p automorphic forms and Galois representations associated
to torsion classes in coherent cohomology. For some other possible applications, see [14] and [66]. From
Theorem 1.3, we get extensions of Hasse invariants to toroidal compactifications. Then we can apply
Goldring-Koskivirta’s machinery of Hasse-regular sequences introduced in [20], which formalizes some
key properties of the subschemes defined by Hasse invariants. Indeed, the key technical conditions 6.4.2
and 7.1.2 of [20] have been verified in our setting as above. Let S be the finite set of primes ℓ where 𝐾ℓ is
not hyperspecial. Let 𝑃𝜇 ⊂ 𝐺𝐹 be the parabolic subgroup associated to the cocharacter 𝜇 : G𝑚,𝐹 → 𝐺𝐹

in the usual way (see the paragraph above Corollary 2.4), L ⊂ 𝑃𝜇 the Levi subgroup and 𝑉𝜂 ∈ Rep𝐹L
an irreducible representation of highest weight 𝜂. Using our modified local model diagram, we get the
associated integral automorphic vector bundle V𝜂 on Mspl

𝐾 and the subcanonical extension Vsub
𝜂 of V𝜂 to

Mspl,tor
𝐾,Σ . For each integers 𝑖 ≥ 0, 𝑛 ≥ 1, the Hecke algebra H𝑆 acts on the cohomology groups

𝐻𝑖 (Mspl,tor
𝐾,Σ,O𝐹 /𝜛𝑛 ,Vsub

𝜂 ),

where𝜛 is a uniformizer ofO𝐹 . LetH𝑖,𝑛
𝜂 be its image in the endomorphism algebra. Fix a representation

𝑟 : 𝐿𝐺 → GL𝑚 of the Langlands dual group over C (and fix an isomorphism C � Q𝑝). With all the
geometric ingredients at hand, one can prove the following theorem by the same arguments as in [20].

Theorem 1.4 (Theorem 6.3). Suppose that for any regular C-algebraic cuspidal automorphic repre-
sentation 𝜋′ of G with 𝜋′∞ discrete series, the pair (𝜋′, 𝑟) satisfies the condition 𝐿𝐶𝑝 of subsection 6.3,
which roughly says the existence of GL𝑚-valued p-adic Galois representation attached to 𝜋′ satisfying
the local-global compatibility outside S.

(1) For any 𝑖 ≥ 0, 𝑛 ≥ 1, 𝜂 ∈ 𝑋∗(𝑇)+L, there exists a continuous Galois pseudo-representation

𝜌 : Gal(Q/Q) −→ H𝑖,𝑛
𝜂 ,

such that 𝜌(Frob 𝑗𝑣 ) = 𝑇
( 𝑗)
𝑣 for all 𝑣 ∉ 𝑆, where Frob𝑣 is the geometric Frobenius at v and𝑇 ( 𝑗)

𝑣 ∈ H𝑖,𝑛
𝜂

is the element defined in subsection 6.3.
(2) Let 𝜋 be a C-algebraic cuspidal automorphic representation of G such that 𝜋∞ is a (C-algebraic)

nondegenerate limit of discrete series and 𝜋𝐾𝑝𝑝 ≠ 0. Then (𝜋, 𝑟) also satisfies 𝐿𝐶𝑝 .

As [20], this theorem is a consequence of a result that the Hecke action on 𝐻𝑖 factorizes through
𝐻0 with increased weight, which is in turn deduced by the machinery of Hasse invariants on toroidal
compactifications, see Theorem 6.1.

For the unramified PEL-type case, Theorem 1.4 is due to [20] (the key technical conditions 6.4.2
and 7.1.2 there hold for the unramified PEL type case), which recovers the main result of [16] (for
the unramified Hilbert case), and completes the work of Boxer [7] by a different approach. We refer
to [20] subsection 10.1 for further discussions on the appearance of nondegenerate limit of discrete
series in higher coherent cohomology of Shimura varieties. Recall that since 𝐾𝑝 ⊂ 𝐺 (Q𝑝) is a very
special parahoric subgroup, irreducible smooth representations 𝜋𝑝 of 𝐺 (Q𝑝) such that 𝜋𝐾𝑝𝑝 ≠ 0 can
be classified by their spherical parameters, see [71] section 6. The significance of Theorem 1.4 lies in
the flexibility it provides for the construction of automorphic Galois representations, in the sense that
we allow the p-component of the automorphic representation 𝜋 to be ramified as 𝜋𝐾𝑝𝑝 ≠ 0. It reproves
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[56] Theorem 1.1 in the Hilbert case by a different method. We also mention that a similar result has
been given in [52] in the ramified setting, but there the integral structure is given by the strange integral
models introduced by Scholze using perfectoid geometry. As all these works demonstrate, Theorem 1.4
should be useful when studying modularity lifting problems, cf. [10].

In this paper we restrict to the PEL case, since so far splitting models for Shimura varieties have
only been constructed in this setting ([49]). It would be interesting and useful to construct splitting
models in more general Hodge and abelian type cases. This would certainly require quite different ideas
and independent treatments. Once more general splitting models are available, we do expect that our
constructions in this paper would naturally extend.

This paper is organized as follows. In section 2, we fix the PEL datum and discuss the corresponding
Pappas-Rapoport splitting models. In particular, under a basic assumption on the datum we prove the
smoothness of splitting models by a modified local model diagram. In section 3, we construct the
universal Gspl

0 -zip of type 𝜇 over the smooth special fiber 𝒜
spl
0 and study the induced Ekedahl-Oort

stratification. As an application, we prove the open density of the 𝜇-ordinary locus. Along the way we
also show that the Hodge stratification constructed in [6] descends to 𝒜0. In section 4, we discuss Hasse
invariants on 𝒜

spl
0 , by pulling back those on the zip stack constructed by Goldring-Koskivirta. We also

discuss some concrete examples, in particular we compare the Hasse invariants and EO strata here
with those constructed by Reduzzi-Xiao in [56] in the Hilbert case. In section 5, we first review Lan’s
constructions of arithmetic compactifications for splitting models, then we extend the universal Gspl

0 -zip
to the smooth toroidal compactifications Mspl,tor

𝐾,Σ,0 and prove the smoothness of the induced morphism
𝜁 tor. In section 6, we apply the method of Goldring-Koskivirta [20] to deduce similar consequences
on Hecke algebras and Galois representations associated to torsion classes in coherent cohomology of
smooth splitting models. Finally, in the Appendix we discuss related local model diagrams for general
parahoric levels, and briefly review the construction of EKOR stratification on 𝒜0.

2. Splitting models of PEL-type Shimura varieties with good reduction

In this section, we review the definition of Pappas-Rapoport splitting models for PEL-type Shimura
varieties, following [49] and [37], for a maximal level at p. In the Appendix A we will work with more
general parahoric levels, and discuss the related local model diagrams and EKOR stratifications, which
are needed in the main text for the maximal level case. Our setting here is the same as that in [6]. In fact,
we will reprove the main results of loc. cit. by a different approach.

2.1. Integral PEL datum

2.1.1. PEL datum
Fix a prime 𝑝 > 2. Let (𝐵, ∗, 𝑉, 〈·, ·〉,O𝐵,Λ, ℎ) be an integral PEL datum at p. This means (see [30, 55,
33])

◦ B is a finite dimensional semisimple algebra over Q with a positive involution ∗. We further assume
that 𝐵Q𝑝 is isomorphic to a product of matrix algebras over finite extensions of Q𝑝 (note that we
allow the extensions to be ramified over Q𝑝).

◦ V is a finitely generated faithful B-module.
◦ 〈·, ·〉 : 𝑉 × 𝑉 → Q is a nondegenerate symplectic form on V such that 〈𝑏𝑣, 𝑤〉 = 〈𝑣, 𝑏∗𝑤〉 for all
𝑣, 𝑤 ∈ 𝑉 and 𝑏 ∈ 𝐵.

◦ O𝐵 is a ∗-invariant Z(𝑝) -order of B such that O𝐵 ⊗ Z𝑝 is a maximal Z𝑝-order of 𝐵Q𝑝 .
◦ Λ is a O𝐵 ⊗Z𝑝-lattice in𝑉Q𝑝 , such that 〈·, ·〉 induces a (not necessarily perfect) pairing Λ×Λ → Z𝑝 .
◦ G is the algebraic group over Q of (similitude) automorphisms of (𝑉, 〈·, ·〉), i.e., for any Q-algebra R,

we have

𝐺 (𝑅) = {𝑔 ∈ GL𝐵 (𝑉𝑅) | 〈𝑔𝑧, 𝑔𝑧′〉 = 𝑐(𝑔)〈𝑧, 𝑧′〉 for some 𝑐(𝑔) ∈ 𝑅×, ∀ 𝑧, 𝑧′ ∈ 𝑉𝑅}.
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We further require the group G to be connected.
◦ ℎ : S = ResC |R(G𝑚) → 𝐺R is a group homomorphism that defines a Hodge structure of type

{(−1, 0), (0,−1)} on 𝑉R and the form
〈
·, ℎ(

√
−1)·

〉
is symmetric and positive definite. (Note that

(Λ, 〈·, ·〉, ℎ) is a PEL-type O𝐵-lattice in the sense of [33] Definition 1.2.1.3.)
◦ 𝜇 : G𝑚,C → 𝐺C is the Hodge cocharacter associated to h.

We make some explicit description of this datum, which will be fixed in the rest of this paper. By
assumption, there is a decomposition (as a product of ∗-invariant simple factors)

𝐵Q𝑝 �
𝑟∏
𝑖=1

𝐵𝑖 =
𝑟∏
𝑖=1

M𝑚𝑖 (𝑅𝑖),

where for each 1 ≤ 𝑖 ≤ 𝑟 , 𝑅𝑖 is a product of finite extensions (maybe ramified) ofQ𝑝 . Let 𝐼 := {1, . . . , 𝑟}
be the index set. For each 𝑖 ∈ 𝐼, let 𝐹𝑖 be the set of ∗-invariant elements in 𝑅𝑖 , which is a field over Q𝑝 .
Since we require the group G to be connected, we can decompose the index set I into four types: (C),
(AL), (AU), and (AR) (see also [6] subsection 2.2, but note that our I is the quotient of their {1, . . . , 𝑟}
by the induced action of ∗). For each 𝑖 ∈ 𝐼, its type is defined by

(C): if ∗ induces the identity on 𝑅𝑖 , so we have 𝑅𝑖 = 𝐹𝑖 .
(AL): if 𝑅𝑖 � 𝐹𝑖 × 𝐹𝑖 and ∗ exchanges the two factors.
(AU): if ∗ is an automorphism of order 2 on 𝑅𝑖 , and 𝑅𝑖 |𝐹𝑖 an unramified quadratic extension.
(AR): if ∗ is an automorphism of order 2 on 𝑅𝑖 , and 𝑅𝑖 |𝐹𝑖 a ramified quadratic extension.

As in this paper, we are mainly interested in good reduction of splitting models, we will make the
following assumption:

For each index 𝑖 ∈ 𝐼, its type is 𝑛𝑜𝑡 (AR).

Thus our setting is the same as that in [6]. In the unramified case, see also [65] section 2.
For each 𝑖 ∈ 𝐼, let

𝑛𝑖 = 𝑒𝑖 𝑓𝑖

be the degree of 𝐹𝑖 overQ𝑝 , where 𝑒𝑖 is the ramification index and 𝑓𝑖 the residue degree of 𝐹𝑖 |Q𝑝 . Denote
by 𝐹ur

𝑖 the maximal unramified extension of Q𝑝 inside 𝐹𝑖 . Then 𝑒𝑖 = [𝐹𝑖 : 𝐹ur
𝑖 ] and 𝑓𝑖 = [𝐹ur

𝑖 : Q𝑝].
The decomposition of 𝐵Q𝑝 induces a decomposition

𝑉Q𝑝 =
𝑟⊕
𝑖=1

𝑉𝑚𝑖𝑖 .

For each 𝑖 ∈ 𝐼, the existence of the ∗-symplectic form implies that 𝑉𝑖 is a vector space over 𝐹𝑖 of even
dimension, so we write

𝑑𝑖 =
1
2

dim𝐹𝑖 𝑉𝑖 , thus dimQ𝑝 𝑉𝑖 = 2𝑑𝑖𝑛𝑖 .

We have an isomorphism

O𝐵 ⊗ Z𝑝 �
𝑟∏
𝑖=1

M𝑚𝑖 (O𝑅𝑖 )
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with O𝑅𝑖 the maximal order of 𝑅𝑖 , and the induced decomposition

Λ =
𝑟⊕
𝑖=1

Λ𝑚𝑖𝑖 ,

where each Λ𝑖 is an O𝑅𝑖 -lattice in 𝑉𝑖 , and there is an induced pairing 〈·, ·〉𝑖 : Λ𝑖 × Λ𝑖 → O𝑅𝑖 if i is of
type (C) or (AL), and 〈·, ·〉𝑖 : Λ𝑖 × Λ𝑖 → O𝐹𝑖 if i is of type (AU).

2.1.2. Rational group structure
The restriction of the pairing 〈·, ·〉 on 𝑉𝑖 defines an algebraic group 𝐺𝑖 = Res𝐹𝑖 |Q𝑝 𝐻𝑖 over Q𝑝: for any
𝐹𝑖-algebra R, we have

𝐻𝑖 (𝑅) = {𝑔𝑖 ∈ GL𝐵𝑖 (𝑉𝑖,𝑅) | 〈𝑔𝑖𝑥, 𝑔𝑖𝑦〉 = 𝑐𝑖 (𝑔𝑖)〈𝑥, 𝑦〉 for some 𝑐𝑖 (𝑔𝑖) ∈ 𝑅×, ∀ 𝑥, 𝑦 ∈ 𝑉𝑖,𝑅}.

Then

𝐺Q𝑝 ⊂
∏
𝑖∈𝐼

𝐺𝑖

is the subgroup such that the local similitude factors 𝑐𝑖 are the same and defined over Q𝑝 . From now
on, we fix an isomorphism of fields C � Q𝑝 . Then we view 𝜇 as a cocharacter of G over Q𝑝 . Let F be
a fixed sufficiently large finite Galois extension of Q𝑝 containing all embeddings of 𝐹𝑖 to Q𝑝 such that
𝐺𝐹 is split. Then the cocharacter 𝜇 is defined over F and we can write

𝜇 : G𝑚,𝐹 → 𝐺𝐹 ⊂
∏
𝑖∈𝐼

𝐺𝑖,𝐹 .

For each 𝑖 ∈ 𝐼, the projection of 𝐺𝐹 to 𝐺𝑖,𝐹 induces a cocharacter

𝜇𝑖 : G𝑚,𝐹 → 𝐺𝑖,𝐹 .

For each 𝑖 ∈ 𝐼, we order the embeddings 𝐹ur
𝑖 ↩→ 𝐹 as 𝜎𝑖,1, . . . 𝜎𝑖, 𝑓𝑖 . For each 1 ≤ 𝑗 ≤ 𝑓𝑖 , there are

𝑒𝑖 extensions of 𝜎𝑖, 𝑗 to embeddings 𝐹𝑖 ↩→ 𝐹, ordered and denoted by 𝜎𝑙𝑖, 𝑗 : 𝐹𝑖 → 𝐹, for 1 ≤ 𝑙 ≤ 𝑒𝑖 .
We have the decompositions

𝑉𝑖,𝐹 =
𝑓𝑖⊕
𝑗=1

𝑉𝑖, 𝑗 , 𝑉𝑖, 𝑗 =
𝑒𝑖⊕
𝑙=1

𝑉 𝑙𝑖, 𝑗 .

For each 1 ≤ 𝑗 ≤ 𝑓𝑖 , the space 𝑉𝑖, 𝑗 is the subspace of 𝑉𝑖,𝐹 such that 𝐹ur
𝑖 acts through 𝜎𝑖, 𝑗 , and for each

1 ≤ 𝑙 ≤ 𝑒𝑖 the space 𝑉 𝑙𝑖, 𝑗 is the subspace of 𝑉𝑖, 𝑗 such that 𝐹𝑖 acts through 𝜎𝑙𝑖, 𝑗 . Note that we also have

2𝑑𝑖 = rank𝐹 𝑉 𝑙𝑖, 𝑗 ,

and the pairing 〈·, ·〉 on 𝑉𝑖 induces pairings 〈·, ·〉 : 𝑉 𝑙𝑖, 𝑗 × 𝑉
𝑙
𝑖, 𝑗 → 𝐹 (which in fact are defined over 𝐹𝑖).

For each 𝑖 ∈ 𝐼, as 𝐺𝑖 = Res𝐹𝑖 |Q𝑝 𝐻𝑖 , we have

𝐺𝑖,𝐹 =
∏

𝜎𝑙𝑖, 𝑗 :𝐹𝑖→𝐹

𝐺𝑙𝑖, 𝑗 ,
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where in the index 𝜎𝑙𝑖, 𝑗 runs through all 1 ≤ 𝑗 ≤ 𝑓𝑖 and 1 ≤ 𝑙 ≤ 𝑒𝑖 , and each 𝐺𝑙𝑖, 𝑗 is (isomorphic to) a
copy of 𝐻𝑖,𝐹 . So the cocharacter

𝜇𝑖 : G𝑚,𝐹 → 𝐺𝑖,𝐹 =
∏
𝑗 ,𝑙

𝐺𝑙𝑖, 𝑗 ,

induces a cocharacter

𝜇𝑙𝑖, 𝑗 : G𝑚,𝐹 → 𝐺𝑙𝑖, 𝑗

for each 1 ≤ 𝑗 ≤ 𝑓𝑖 and 1 ≤ 𝑙 ≤ 𝑒𝑖 .
Since the only weights of 𝜇 : G𝑚,𝐹 → 𝐺𝐹 are 0 and 1, we get an induced decomposition

𝑉𝐹 = 𝑊 ⊕𝑊 ′,

where 𝑧 ∈ 𝐹× acts on W (resp. 𝑊 ′) by 1 (resp. z). This implies that the pairing 〈·, ·〉 induces an
isomorphism

𝑊 � (𝑊 ′)∨ := Hom𝐹 (𝑊 ′, 𝐹).

We can also decompose the F-vector space W as

𝑊 =
𝑟⊕
𝑖=1

𝑊𝑚𝑖
𝑖 , 𝑊𝑖 =

𝑓𝑖⊕
𝑗=1

𝑊𝑖, 𝑗 and 𝑊𝑖, 𝑗 =
𝑒𝑖⊕
𝑙=1

𝑊 𝑙
𝑖, 𝑗 .

We have similar decompositions for 𝑊 ′. For each 𝑖, 𝑗 , 𝑙, we have 𝑉 𝑙𝑖, 𝑗 = 𝑊 𝑙
𝑖, 𝑗 ⊕ (𝑊 ′)𝑙𝑖, 𝑗 . Let 𝑑𝑙𝑖, 𝑗 =

dim𝐹 𝑊
𝑙
𝑖, 𝑗 . If we write 𝑑𝑙𝑖, 𝑗 = 𝑑𝜎𝑙𝑖, 𝑗 to make explicit the embedding𝜎𝑙𝑖, 𝑗 , then there is an induced ∗-action

on {𝜎𝑙𝑖, 𝑗 }𝑖, 𝑗 ,𝑙 and we set (𝑑𝑙𝑖, 𝑗 )
∗ := 𝑑 (𝜎𝑙𝑖, 𝑗 )∗ . The natural isomorphism𝑊 � (𝑊 ′)∨ gives the identity

(𝑑𝑙𝑖, 𝑗 )
∗ = dim𝐹 (𝑊 ′)𝑙𝑖, 𝑗 , and 𝑑𝑙𝑖, 𝑗 + (𝑑𝑙𝑖, 𝑗 )

∗ = 2𝑑𝑖 .

We can make these data more explicit according to the type of i: recall 𝐺𝑖 = Res𝐹𝑖 |Q𝑝 𝐻𝑖

(C): in this case 𝑅𝑖 = 𝐹𝑖 , dim𝐹𝑖 𝑉𝑖 = 2𝑑𝑖 , 𝐻𝑖 � GSp2𝑑𝑖 . We have

𝑑𝑙𝑖, 𝑗 = dim𝐹 𝑊
𝑙
𝑖, 𝑗 = dim𝐹 (𝑊 ′)𝑙𝑖, 𝑗 = 𝑑𝑖

for each 1 ≤ 𝑗 ≤ 𝑓𝑖 and 1 ≤ 𝑙 ≤ 𝑒𝑖 .
(AL): in this case 𝑅𝑖 = 𝐹𝑖 × 𝐹𝑖 , so we have a decomposition

𝑉𝑖 = 𝑈𝑖 ⊕ 𝑈∨
𝑖

with dim𝐹𝑖 𝑈𝑖 = 𝑑𝑖 , 𝐻𝑖 � GL𝑑𝑖 ×G𝑚. Then there are induced decompositions 𝑉 𝑙𝑖, 𝑗 = 𝑈𝑙𝑖, 𝑗 ⊕
(𝑈∨)𝑙𝑖, 𝑗 , 𝑊

𝑙
𝑖, 𝑗 = 𝐴𝑙𝑖, 𝑗 ⊕ (𝐴∨)𝑙𝑖, 𝑗 and (𝑊 ′)𝑙𝑖, 𝑗 = (𝐴′)𝑙𝑖, 𝑗 ⊕ ((𝐴′)∨)𝑙𝑖, 𝑗 . Let 𝑎𝑙𝑖, 𝑗 = dim𝐹 𝐴

𝑙
𝑖, 𝑗 , 𝑏

𝑙
𝑖, 𝑗 =

dim𝐹 (𝐴′)𝑙𝑖, 𝑗 , then by similar notations as above

(𝑎𝑙𝑖, 𝑗 )
∗ = 𝑏𝑙𝑖, 𝑗 and 𝑎𝑙𝑖, 𝑗 + 𝑏

𝑙
𝑖, 𝑗 = 𝑑𝑖

for each 1 ≤ 𝑗 ≤ 𝑓𝑖 and 1 ≤ 𝑙 ≤ 𝑒𝑖 .
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(AU): in this case 𝑅𝑖 |𝐹𝑖 is an unramified quadratic extension, and 𝑉𝑖 is a Hermitian space over 𝑅𝑖 |𝐹𝑖 ,
𝐻𝑖 = GU(𝑉𝑖 , 〈·, ·〉𝑖). We have 𝑊 𝑙

𝑖, 𝑗 = 𝐴𝑙𝑖, 𝑗 ⊕ 𝐵𝑙𝑖, 𝑗 and (𝑊 ′)𝑙𝑖, 𝑗 = (𝐴′)𝑙𝑖, 𝑗 ⊕ (𝐵′)𝑙𝑖, 𝑗 . Let 𝑎𝑙𝑖, 𝑗 =

dim𝐹 𝐴
𝑙
𝑖, 𝑗 , 𝑏

𝑙
𝑖, 𝑗 = dim𝐹 (𝐴′)𝑙𝑖, 𝑗 , then by similar notations as above

(𝑎𝑙𝑖, 𝑗 )
∗ = 𝑏𝑙𝑖, 𝑗 and 𝑎𝑙𝑖, 𝑗 + 𝑏

𝑙
𝑖, 𝑗 = 𝑑𝑖

for each 1 ≤ 𝑗 ≤ 𝑓𝑖 and 1 ≤ 𝑙 ≤ 𝑒𝑖 .

In the rest of the paper, the index (𝑖, 𝑗 , 𝑙) will always be a tuple of integers running through 𝑖 ∈ 𝐼, 1 ≤
𝑗 ≤ 𝑓𝑖 and 0 ≤ 𝑙 ≤ 𝑒𝑖 .

2.1.3. Integral group structure
Now we discuss the integral group-theoretic data that will be needed later. Consider the parahoric group
scheme G over Z𝑝 defined by the integral PEL datum (O𝐵, ∗,Λ, 〈·, ·〉). Recall the decomposition Λ =⊕𝑟

𝑖=1 Λ
𝑚𝑖
𝑖 , where each Λ𝑖 is an O𝑅𝑖 -lattice in 𝑉𝑖 together with an induced form 〈·, ·〉𝑖 : Λ𝑖 ×Λ𝑖 → O𝑅𝑖

(i of type (C) or (AL)) or 〈·, ·〉𝑖 : Λ𝑖 ×Λ𝑖 → O𝐹𝑖 (i of type (AU)). Let G𝑖/Z𝑝 be the parahoric subgroup
of 𝐺𝑖 associated to (Λ𝑖 , 〈·, ·〉𝑖), then

G ⊂
∏
𝑖∈𝐼

G𝑖

is the subgroup of elements with the same local similitude factors defined over Z×𝑝 . For each i, the O𝐹𝑖 -
lattice Λ𝑖 is self dual with respect to the form 〈·, ·〉𝑖 , so that the above group 𝐻𝑖 is unramified over 𝐹𝑖 .
By abuse of notation, we still denote by 𝐻𝑖 its reductive integral model over O𝐹𝑖 . Then we have

G𝑖 = ResO𝐹𝑖 |Z𝑝 𝐻𝑖 .

Recall that we have fixed a large enough field extension 𝐹 |Q𝑝 . Let 𝜅 (resp. 𝜅𝑖 for each 𝑖 ∈ 𝐼) be
the residue field of F (resp. 𝐹𝑖 for each 𝑖 ∈ 𝐼). For each 𝑖 ∈ 𝐼, we denote also by 𝐻𝑖 the associated
reductive group over 𝜅𝑖 . Consider the artinian 𝜅𝑖-algebra defined by the quotient of the polynomial ring
𝜅𝑖 [𝜀𝑖] := 𝜅𝑖 [𝑥]/(𝑥𝑒𝑖 ). Then we have

G𝑖,0 := G𝑖 ⊗Z𝑝 F𝑝 � Res𝜅𝑖 [𝜀𝑖 ] |F𝑝 𝐻𝑖 .

By [44, Appendice 3], there is an exact sequence

1 → 𝑈 → G𝑖,0 → Res𝜅𝑖 |F𝑝 𝐻𝑖 → 1,

where U is a connected unipotent subgroup of G𝑖,0. Let Grdt
𝑖,0 be the maximal reductive quotient of G𝑖,0.

So we have

Grdt
𝑖,0 � Res𝜅𝑖 |F𝑝 𝐻𝑖 .

This group is the similitude automorphism group associated to

Λrdt
𝑖,0 := Λ𝑖,0 ⊗𝜅𝑖 [𝜀𝑖 ] 𝜅𝑖 , where Λ𝑖,0 = Λ𝑖 ⊗Z𝑝 F𝑝 ,

which admits an induced 𝜅𝑖 [𝜀𝑖]-action and a pairing 〈·, ·〉𝑖 : Λ𝑖,0 ×Λ𝑖,0 → 𝜅𝑖 (for i of type (C) or (AU))
or 〈·, ·〉𝑖 : Λ𝑖,0 × Λ𝑖,0 → 𝜅𝑖 × 𝜅𝑖 (for i of type (AL)). Let Grdt

0 be the maximal reductive quotient of G0.
We have similarly an inclusion

Grdt
0 ⊂

∏
𝑖∈𝐼

Grdt
𝑖,0.
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2.1.4. The group Gspl
0

For each 𝑖 ∈ 𝐼, we define the group Gspl
𝑖,0/F𝑝 as the similitude automorphism group associated to (Λrdt

𝑖,0)
𝑒𝑖

with its natural pairing. Then we have an isomorphism

Gspl
𝑖,0 � Res𝜅𝑖 |F𝑝 𝐻

𝑒𝑖
𝑖 .

Putting together, we define

Gspl
0 ⊂

∏
𝑖∈𝐼

Gspl
𝑖,0

as the subgroup of element with the same F𝑝-local similitude factors. For each 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 𝑓𝑖 , 1 ≤
𝑙 ≤ 𝑒𝑖 , by our choice of F, 𝐺𝑙𝑖, 𝑗 is a split reductive group over F. We denote by the same notations the
reductive group scheme over O𝐹 and 𝜅. Then each 𝜇𝑙𝑖, 𝑗 extends to a cocharacter of 𝐺𝑙𝑖, 𝑗 over O𝐹 and
thus a cocharacter over 𝜅:

𝜇𝑙𝑖, 𝑗 : G𝑚,𝜅 → 𝐺𝑙𝑖, 𝑗 .

The cocharacters 𝜇𝑙𝑖, 𝑗 then define a cocharacter of
∏
𝑖∈𝐼 G

spl
𝑖,0 over 𝜅. One can check carefully that it

factors through Gspl
0,𝜅 :

𝜇 =
∏
𝑖, 𝑗 ,𝑙

𝜇𝑙𝑖, 𝑗 : G𝑚,𝜅 → Gspl
0 ⊗F𝑝 𝜅 ⊂

∏
𝑖, 𝑗 ,𝑙

𝐺𝑙𝑖, 𝑗 .

Fix an 𝑖 ∈ 𝐼. For each 1 ≤ 𝑗 ≤ 𝑓𝑖 , 1 ≤ 𝑙 ≤ 𝑒𝑖 , we also define an O𝐹 -lattice as

Λ𝑙𝑖, 𝑗 := Λ𝑖 ⊗O𝐹𝑖 ,𝜎
𝑙
𝑖, 𝑗

O𝐹 .

The pairing on Λ𝑖 induces a natural pairing on the O𝐹 -lattice Λ𝑙𝑖, 𝑗 , and the similitude automorphism
group is isomorphic to 𝐺𝑙𝑖, 𝑗 over O𝐹 . In contrast to the rational case, in general G𝑖,O𝐹 does not split as
a product of 𝐺𝑙𝑖, 𝑗 due to ramification. So we define the split O𝐹 -lattice as

Λspl :=
⊕
𝑖∈𝐼

Λspl,𝑚𝑖
𝑖 , Λspl

𝑖 :=
⊕
𝑗 ,𝑙

Λ𝑙𝑖, 𝑗 ,

where and in the following the indexes j and l (in the second direct sum) run over 1 ≤ 𝑗 ≤ 𝑓𝑖 and
1 ≤ 𝑙 ≤ 𝑒𝑖 . There are naturally induced pairings on Λspl and Λspl

𝑖 . Let Gspl and Gspl
𝑖 be the corresponding

group schemes over O𝐹 . Then Gspl
𝑖 =

∏
𝑗 ,𝑙 𝐺

𝑙
𝑖, 𝑗 , and we have the inclusion as before

Gspl ⊂
∏
𝑖∈𝐼

Gspl
𝑖

by requiring having the same Z×𝑝-local similitude factors. Over F we have the following isomorphism

Λspl
𝑖 ⊗O𝐹 𝐹 � 𝑉𝑖 ⊗Q𝑝 𝐹,

compatible with additional structures on both sides. Thus Gspl is the split reductive model of G over F.
Note that there is a natural homomorphism

G𝑖,O𝐹 → Gspl
𝑖
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which is not an isomorphism in general as remarked above. Therefore, in general we have

GO𝐹 � Gspl.

For each 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 𝑓𝑖 , 1 ≤ 𝑙 ≤ 𝑒𝑖 , set

Λ𝑙𝑖, 𝑗 ,0 = Λ𝑙𝑖, 𝑗 ⊗O𝐹 𝜅 and Λ𝑙𝑖,0 =
𝑓𝑖⊕
𝑗=1

Λ𝑙𝑖, 𝑗 ,0.

For each 1 ≤ 𝑙 ≤ 𝑒𝑖 , we have the natural isomorphism

Λrdt
𝑖,0 ⊗F𝑝 𝜅 � Λ𝑙𝑖,0 =

𝑓𝑖⊕
𝑗=1

Λ𝑙𝑖, 𝑗 ,0.

Therefore,

Λspl
𝑖,0 := Λspl

𝑖 ⊗O𝐹 𝜅 =
⊕
𝑗 ,𝑙

Λ𝑙𝑖, 𝑗 ,0 = Λrdt,𝑒𝑖
𝑖,0 ⊗F𝑝 𝜅.

So Gspl
𝑖,0 ⊗ 𝜅 is the similitude automorphism group associated to Λspl

𝑖,0, and 𝜇𝑖 is a cocharacter of Gspl
𝑖,0

defined over 𝜅. By construction, we have an isomorphism of reductive groups over 𝜅:

Gspl
0 ⊗F𝑝 𝜅 � Gspl ⊗O𝐹 𝜅.

In other words, Gspl
0 is an F𝑝 model of the special fiber of Gspl. Moreover, one can analyze the decom-

position of Λspl
𝑖,0 induced by 𝜇𝑖 exactly as in the characteristic zero case (see the end of in 2.1.2).

2.2. Smooth Pappas-Rapoport splitting models

Recall that we have 𝜇 : G𝑚,Q𝑝 → 𝐺
Q𝑝

the Hodge cocharacter of G over Q𝑝 . Let E be the field of
definition of the conjugacy class attached to 𝜇. Then by the assumption on F, we have 𝐸 ⊂ 𝐹.

Let 𝐾 𝑝 be a sufficiently small open compact subgroup of 𝐺 (A𝑝𝑓 ), which will be fixed in the rest of
this section. By works of Kottwitz [30] and Rapoport-Zink [55], there is a scheme 𝒜naive = 𝒜naive

𝐾 𝑝 over
O𝐸 representing the following moduli problem (see [55] chapter 6 for more details): for any O𝐸 -scheme
S, 𝒜naive(𝑆) classifies the isogeny classes of tuples (𝐴, 𝜆, 𝜄, 𝛼), where

◦ 𝐴/𝑆 is an abelian scheme,
◦ 𝜆 : 𝐴→ 𝐴∨ is a Z×(𝑝) -polarization,
◦ 𝜄 : O𝐵 → End𝑆 (𝐴) ⊗Z Z(𝑝) is an O𝐵-structure of (𝐴, 𝜆), which is compatible with the Rosatti

involution.
◦ 𝛼 is a 𝐾 𝑝-level structure.

Its generic fiber 𝒜naive
𝐸 is called the rational moduli space with respect to the PEL datum.

For any O𝐸 -scheme S and a point 𝐴 ∈ 𝒜naive(𝑆), there is an exact sequence of O𝑆-modules

0 → 𝜔𝐴/𝑆 → 𝐻1
dR (𝐴/𝑆) → Lie𝐴∨/𝑆 → 0,
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where 𝜔𝐴/𝑆 is the sheaf of invariant differentials. For simplicity, write 𝜔 = 𝜔𝐴/𝑆 , and H = 𝐻1
dR (𝐴/𝑆).

The action of O𝐵 ⊗ Z𝑝 on the O𝑆-modules H and 𝜔 induces decompositions

H =
⊕
𝑖∈𝐼

H𝑚𝑖
𝑖 , H𝑖 =

𝑓𝑖⊕
𝑗=1

H𝑖, 𝑗 , 𝜔 =
⊕
𝑖∈𝐼

𝜔𝑚𝑖𝑖 , 𝜔𝑖 =
𝑓𝑖⊕
𝑗=1

𝜔𝑖, 𝑗 ,

and similarly for Lie𝐴∨/𝑆 . For each 𝑖, 𝑗 , we have an exact sequence of O𝑆-modules

0 → 𝜔𝑖, 𝑗 → H𝑖, 𝑗 → Lie𝐴∨/𝑆,𝑖, 𝑗 → 0.

As 𝜄 is compatible with 𝜆, there is an isomorphism

H𝑖, 𝑗 � H∨
𝑖, 𝑗 .

H𝑖, 𝑗 is a self-dualO𝑆-module of rank 2𝑑𝑖𝑒𝑖 . If i is an index of type (AL), there is a natural decomposition
H𝑖, 𝑗 = H′

𝑖, 𝑗 ×H′∨
𝑖, 𝑗 such that H′

𝑖, 𝑗 is an O𝑆-module and H′∨
𝑖, 𝑗 := Hom(H′

𝑖, 𝑗 ,O𝑆). Moreover, the pairing
of H𝑖, 𝑗 is given by the natural pairing of product of dual objects.

For each 𝑖 ∈ 𝐼, let 𝜋𝑖 be a uniformizer of O𝐹𝑖 . Moreover, for each triple (𝑖, 𝑗 , 𝑙), set

𝜋𝑙𝑖, 𝑗 = 𝜎
𝑙
𝑖, 𝑗 (𝜋𝑖).

For each 𝑖, 𝑗 , 𝑙, we define two polynomials as

𝑄≤𝑙
𝑖, 𝑗 (𝑇) =

𝑙∏
𝑘=1

(𝑇 − 𝜋𝑘𝑖, 𝑗 ) and 𝑄>𝑙𝑖, 𝑗 (𝑇) =
𝑒𝑖∏

𝑘=𝑙+1
(𝑇 − 𝜋𝑘𝑖, 𝑗 ).

Definition 2.1 (See also Definition A.4). Let S be an O𝐹 -scheme and 𝐴 = (𝐴, 𝜄, 𝜆, 𝛼) ∈ 𝒜naive(𝑆) with
the associated H and 𝜔 together with the induced additional structure. A splitting structure with respect
to 𝐴 is given by the datum ℱ• = (ℱ𝑙

𝑖, 𝑗 ): for each 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 𝑓𝑖 , there is a filtration of O𝑆-modules
with O𝐹𝑖 -action

0 = ℱ0
𝑖, 𝑗 ⊂ ℱ1

𝑖, 𝑗 ⊂ · · · ⊂ ℱ𝑒𝑖
𝑖, 𝑗 = 𝜔𝑖, 𝑗 ,

such that

(1) For each 1 ≤ 𝑙 ≤ 𝑒𝑖 , ℱ𝑙
𝑖, 𝑗 and H𝑖, 𝑗/ℱ𝑙

𝑖, 𝑗 are finite locally free O𝑆-modules.
(2) Write [𝜋𝑖] for the action of 𝜋𝑖 ∈ O𝐹𝑖 . Then for all 1 ≤ 𝑙 ≤ 𝑒𝑖 , we have

([𝜋𝑖] − 𝜋𝑙𝑖, 𝑗 ) ·ℱ
𝑙
𝑖, 𝑗 ⊂ ℱ𝑙−1

𝑖, 𝑗 ,

i.e., (𝜋𝑖 ⊗ 1 − 1 ⊗ 𝜎𝑙𝑖, 𝑗 (𝜋𝑖)) ·ℱ
𝑙
𝑖, 𝑗 ⊂ ℱ𝑙−1

𝑖, 𝑗 .
(3) The O𝑆-module ℱ𝑙

𝑖, 𝑗/ℱ
𝑙−1
𝑖, 𝑗 is locally free of rank 𝑑𝑙𝑖, 𝑗 for all 1 ≤ 𝑙 ≤ 𝑒𝑖 .

(4) For each 1 ≤ 𝑙 ≤ 𝑒𝑖 , let ℱ𝑒𝑖+𝑙
𝑖, 𝑗 = 𝑄>𝑒𝑖−𝑙𝑖, 𝑗 (𝜋𝑖)

−1
ℱ𝑒𝑖−𝑙
𝑖, 𝑗 . Then we require that

ℱ𝑒𝑖+𝑙
𝑖, 𝑗 = ℱ𝑒𝑖−𝑙,⊥

𝑖, 𝑗 and ([𝜋𝑖] − 𝜋𝑒𝑖𝑖, 𝑗 ) · · · ( [𝜋𝑖] − 𝜋
𝑒𝑖+𝑙−1
𝑖, 𝑗 )ℱ𝑒𝑖+𝑙

𝑖, 𝑗 ⊂ ℱ𝑒𝑖−𝑙
𝑖, 𝑗 .

Here ℱ𝑒𝑖−𝑙,⊥
𝑖, 𝑗 is the orthogonal complement of ℱ𝑒𝑖−𝑙

𝑖, 𝑗 in H𝑖, 𝑗 under the pairing on H𝑖, 𝑗 induced
by the polarization 𝜆.

More explicitly, we have the following description of splitting structures according to the type of i
(see the notations in 2.1.2; see also [6] subsections 2.3 and 2.4):
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◦ (C): We have 𝑅𝑖 = 𝐹𝑖 and for each index 𝑖, 𝑗 , 𝑙, 𝑑𝑙𝑖, 𝑗 = 𝑑𝑖 . One has a filtration

0 = ℱ0
𝑖, 𝑗 ⊂ ℱ1

𝑖, 𝑗 ⊂ · · · ⊂ ℱ𝑒𝑖
𝑖, 𝑗 = 𝜔𝑖, 𝑗 ⊂ H𝑖, 𝑗 ,

where for each 1 ≤ 𝑙 ≤ 𝑒𝑖 , ℱ𝑙
𝑖, 𝑗 is a locally a direct factor of rank 𝑑𝑖𝑙, and the filtration satisfies the

relations as in conditions (2) and (4) above.
◦ (AL): We have 𝑅𝑖 = 𝐹𝑖 × 𝐹𝑖 , and H𝑖 = H′

𝑖 ⊕ H′∨
𝑖 . For each j, the splitting structure is reduced to a

filtration

0 = ℱ0
𝑖, 𝑗 ⊂ ℱ1

𝑖, 𝑗 ⊂ · · · ⊂ ℱ𝑒𝑖
𝑖, 𝑗 = 𝜔

′
𝑖, 𝑗 ⊂ H′

𝑖, 𝑗 ,

where each ℱ𝑙
𝑖, 𝑗 is locally a direct factor of rank 𝑎1

𝑖, 𝑗 + · · · + 𝑎𝑙𝑖, 𝑗 , and the filtration satisfies condition
(2) above.

◦ (AU): We have a quadratic unramified field extension 𝑅𝑖 |𝐹𝑖 . For each j, we have a further decompo-
sition

𝜔𝑖, 𝑗 = 𝜔
′
𝑖, 𝑗 ⊕ (𝜔′

𝑖, 𝑗 )∨

given by the unramified O𝑅𝑖 -action, and the splitting structure is reduced to a filtration

0 = ℱ0
𝑖, 𝑗 ⊂ ℱ1

𝑖, 𝑗 ⊂ · · · ⊂ ℱ𝑒𝑖
𝑖, 𝑗 = 𝜔

′
𝑖, 𝑗 ⊂ H𝑖, 𝑗 ,

where each ℱ𝑙
𝑖, 𝑗 is locally a direct factor of rank 𝑎1

𝑖, 𝑗 + · · · + 𝑎𝑙𝑖, 𝑗 , and the filtration satisfies the above
condition (2).

Finally, we can give the definition of the splitting model over 𝒜naive, cf. [49].

Definition 2.2. The splitting model 𝒜spl over O𝐹 is the scheme that represents the following moduli
problem: for any scheme S over O𝐹 , 𝒜spl (𝑆) is the isomorphism classes of tuples (𝐴,ℱ•), where

◦ 𝐴 = (𝐴, 𝜆, 𝜄, 𝛼) is an S-point of 𝒜naive.
◦ ℱ• = (ℱ𝑙

𝑖, 𝑗 ) is a splitting structure of 𝐴.
◦ The isomorphism is given by Z×(𝑝) -isogenies between abelian schemes with O𝐵-structures and split-

ting structure.

Let 𝐴univ be the universal abelian scheme over 𝒜naive with the associated H and 𝜔. By the notation
of [37], we have

𝒜spl = Spl+(H,𝜔, 𝜄)/𝒜naive⊗O𝐹 .

By [49] section 15 and [37] Lemma 2.3.9, there is a canonical isomorphism of schemes over F

𝒜spl ⊗O𝐹 𝐹 � 𝒜naive ⊗O𝐸 𝐹.

Proposition 2.3. Assume that each 𝑖 ∈ 𝐼 has type either (C), or (AL), or (AU), then the splitting model
𝒜spl is smooth over O𝐹 .

Proof. Let 𝒜spl be the scheme over O𝐹 such that for any O𝐹 -scheme S

𝒜spl(𝑆) = {(𝐴,ℱ•, 𝜏 = {𝜏𝑙𝑖, 𝑗 })},

where (𝐴,ℱ•) is an S-point of 𝒜spl and for each 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 𝑓𝑖 , 𝜏 is a collection of isomorphisms

𝜏𝑙𝑖, 𝑗 : Ker((𝜋𝑖 − 𝜎𝑙𝑖, 𝑗 (𝜋𝑖)) |H𝑖, 𝑗/ℱ𝑙−1
𝑖, 𝑗

) � Λ𝑙𝑖, 𝑗 ⊗O𝐹 O𝑆 .
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By Propositions 5.2 and 9.2 of [49], when i is of type (AL) or type (C), such an isomorphism exists
locally. Moreover, when i is of type (AU), the same proof equally applies.

Let M𝑙
𝑖, 𝑗 = M

loc(𝐺𝑙𝑖, 𝑗 , 𝜇
𝑙
𝑖, 𝑗 ) be the unramified local models over O𝐹 . Then we have the following

local model diagram (which is a special case of the local model diagram in Proposition A.8):

𝒜spl

𝜋

����
��
��
��
�

𝑞

���
��

��
��

��
�

𝒜spl ∏
𝑖, 𝑗 ,𝑙M

𝑙
𝑖, 𝑗 ,

where the index (𝑖, 𝑗 , 𝑙) runs through 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑓𝑖 , 1 ≤ 𝑙 ≤ 𝑒𝑖 , the morphism q is smooth and
given by

(𝐴,ℱ•, 𝜏) ↦→ (𝜏𝑙𝑖, 𝑗 (ℱ
𝑙
𝑖, 𝑗/ℱ

𝑙−1
𝑖, 𝑗 ))

1≤𝑙≤𝑒𝑖
𝑖∈𝐼 ,1≤ 𝑗≤ 𝑓𝑖 ,

which is
∏
𝑖, 𝑗 ,𝑙 𝐺

𝑙
𝑖, 𝑗 -equivariant. The morphism 𝜋 is the natural forgetful morphism, which is a∏

𝑖, 𝑗 ,𝑙 𝐺
𝑙
𝑖, 𝑗 -torsor.

We have excluded the index of type (AR), so the right-hand side of the local model diagram is a
product of unramified local models with hyperspecial level, which is known to be smooth. This shows
that 𝒜spl is smooth over O𝐹 . �

Let 𝒜 be the scheme-theoretic image of the natural morphism

𝒜spl → 𝒜naive ⊗O𝐸 O𝐹 → 𝒜naive.

Then 𝒜 is flat over O𝐸 . Moreover, 𝒜 admits a local model diagram, cf. Proposition A.7. Thus under
the condition of Proposition 2.3, the morphism

𝒜spl −→ 𝒜

is a resolution of singularities. Note that in this case, the associated parahoric subgroup 𝐾𝑝 = G (Z𝑝) is
very special in the sense of [71] Definition 6.1. The purpose of this paper is to show that in our ramified
setting, the smooth splitting model 𝒜spl admits many nice properties as in the unramified setting.

Recall that the Hodge cocharacter 𝜇 : G𝑚,𝐹 → 𝐺𝐹 defines a parabolic subgroup 𝑃𝜇 = {𝑔 ∈
𝐺𝐹 | lim𝑡→0 𝜇(𝑡)𝑔𝜇(𝑡)−1 exists} over F in the usual way. For any (𝑉, 𝜂) ∈ Rep𝐹𝑃𝜇, we have the
associated automorphic vector bundle V over

𝒜spl ⊗O𝐹 𝐹 � 𝒜naive ⊗O𝐸 𝐹 � 𝒜 ⊗O𝐸 𝐹,

cf. [41]. Since G is split over F, we have a canonical reductive model O𝐹 , which by abuse of notation we
still denote by G (the precise meaning of the notation G will be clear from the context; sometimes as in
the last subsection we denote it by Gspl). Moreover, the parabolic 𝑃𝜇 extends to a parabolic subgroup over
O𝐹 , which by abuse of notation we still denote by 𝑃𝜇, and (𝑉, 𝜂) naturally extends to a representation
of 𝑃𝜇 over O𝐹 . In general, it is hard to extend V to a vector bundle on 𝒜O𝐹 . Nevertheless, we have

Corollary 2.4. V extends canonically to a vector bundle on 𝒜spl.
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Proof. Note that the integral flag variety over O𝐹 is ℱℓ(𝐺, 𝜇) = 𝐺/𝑃𝜇 =
∏
𝑖, 𝑗 ,𝑙M

𝑙
𝑖, 𝑗 . The diagram in

the proof of the above proposition is the diagram of schemes over O𝐹

𝒜spl

𝑞

���
��

��
��

��
�

𝜋

����
��
��
��

𝒜spl ℱℓ(𝐺, 𝜇).

Then we can construct an integral canonical model of V over 𝒜spl by using this diagram as in [41]. �

By abuse of notation, we still denote by V the integral automorphic vector bundle over 𝒜spl. We
discuss the example of the standard representation Λspl. Let (𝐴univ, 𝜆, 𝜄) be the universal abelian scheme
over 𝒜spl and H = 𝐻1

dR (𝐴
univ/𝒜spl). Then as before we have decompositions H =

⊕
𝑖H

𝑚𝑖
𝑖 ,H𝑖 =⊕

𝑗 H𝑖, 𝑗 . We have also the universal splitting structure ℱ• on H. For each 𝑖, 𝑗 , 𝑙, we define

M𝑙
𝑖, 𝑗 = Ker((𝜋𝑖 ⊗ 1 − 1 ⊗ 𝜎𝑙𝑖, 𝑗 (𝜋𝑖)) |H𝑖, 𝑗/ℱ𝑙−1

𝑖, 𝑗 ).

Then the automorphic vector bundle over 𝒜spl associated to Λspl is

M =
⊕
𝑖

M𝑚𝑖
𝑖 , M𝑖 =

⊕
𝑗 ,𝑙

M𝑙
𝑖, 𝑗 .

3. F-zips with additional structure and Ekedahl-Oort stratification

In this section, we keep our assumption that there is no index of type (AR), so we have a smooth splitting
integral model 𝒜spl/O𝐹 . We will construct a universal F-zip with additional structure over the special
fiber 𝒜spl

0 of 𝒜spl. Then we study some basic properties of the induced Ekedahl-Oort stratification on
𝒜

spl
0 .

3.1. F-zips and G-zips

We first recall the notion of F-zips ([43]). For any F𝑝-scheme S and any object M over S, we write 𝑀 (𝑝)

for the pullback of M under the absolute Frobenius of S.

Definition 3.1. Let S be a scheme over F𝑝 and 𝜎 : 𝑆 → 𝑆 be the absolute Frobenius of S. An F-zip over
S is a tuple 𝑀 = (𝑀,𝐶•, 𝐷•, 𝜑•) where

◦ M is a locally free sheaf of finite rank on S;
◦ 𝐶• = (𝐶𝑖)𝑖∈Z is a descending filtration on M and each 𝐶𝑖 is a locally free O𝑆-module;
◦ 𝐷• = (𝐷𝑖)𝑖∈Z is an ascending filtration on M and each 𝐷𝑖 is a locally free O𝑆-module;
◦ 𝜑• = (𝜑𝑖)𝑖∈Z and for each i, 𝜑𝑖 : 𝐶𝑖/𝐶𝑖+1 → 𝐷𝑖/𝐷𝑖−1 is a 𝜎-linear map whose linearization

𝜑lin
𝑖 : (𝐶𝑖/𝐶𝑖+1) (𝑝) → 𝐷𝑖/𝐷𝑖−1

is an isomorphism.

Next we briefly review the notion of G-zips and the theory of G-zip stacks ([53, 54]) for later use in
this section. Let G be a connected reductive group over F𝑝 , and 𝜒 be a cocharacter of G defined over a
finite field 𝜅 |F𝑝 . Let 𝑃+ (resp. 𝑃−) be the parabolic subgroup of 𝐺𝜅 such that its Lie algebra is the sum
of spaces with non-negative weights (resp. nonpositive weights) in Lie(𝐺𝜅 ) under Ad ◦𝜒. We will also
write 𝑈+ (resp. 𝑈−) for the unipotent radical of 𝑃+ (resp. 𝑃−). Let L be the common Levi subgroup of
𝑃+ and 𝑃−.
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Definition 3.2. Let S be a scheme over 𝜅.

(1) A G-zip of type 𝜒 over S is a tuple 𝐼 = (𝐼, 𝐼+, 𝐼−, 𝜄) consisting of
◦ a right 𝐺𝜅 -torsor I over S,
◦ a right 𝑃+-torsor 𝐼+ ⊂ 𝐼,
◦ a right 𝑃 (𝑝)

− -torsor 𝐼− ⊂ 𝐼,
◦ an isomorphism of 𝐿 (𝑝) -torsors 𝜄 : 𝐼 (𝑝)+ /𝑈 (𝑝)

+ → 𝐼−/𝑈 (𝑝)
− .

(2) A morphism (𝐼, 𝐼+, 𝐼−, 𝜄) → (𝐼 ′, 𝐼 ′+, 𝐼 ′−, 𝜄′) of G-zips of type 𝜒 over S consists of equivariant
morphisms 𝐼 → 𝐼 ′ and 𝐼± → 𝐼 ′± that are compatible with inclusions and the isomorphism 𝜄 and 𝜄′.

One can prove that the category of F-zips of rank n is equivalent to the category of GL𝑛-zips, see [54]
8A. More generally, for a classical group G, a G-zip is equivalent to the F-zip associated to its natural
faithful representation, together with the additional structure corresponding to the linear algebraic data
defining the group, cf. [54] section 8.

The category of G-zips of type 𝜒 over S will be denoted by 𝐺-Zip𝜒𝜅 (𝑆). This defines a category
fibered in groupoids 𝐺-Zip𝜒𝜅 over 𝜅.

Theorem 3.3 [54]. The fibered category 𝐺-Zip𝜒𝜅 is a smooth algebraic stack of dimension 0 over 𝜅.

Denote by Frob𝑝 : 𝐿 → 𝐿 (𝑝) , 𝑙 ↦→ 𝑙 (𝑝) the relative Frobenius of L, and define 𝐸𝐺,𝜒 by the fiber
product

𝐸𝐺,𝜒 ��

��

𝑃 (𝑝)
−

��
𝑃+ �� 𝐿

Frob𝑝 �� 𝐿 (𝑝)

Then we have

𝐸𝐺,𝜒 = {(𝑝+ := 𝑙𝑢+, 𝑝− := 𝑙 (𝑝)𝑢−) | 𝑙 ∈ 𝐿, 𝑢+ ∈ 𝑈+, 𝑢− ∈ 𝑈 (𝑝)
− }.

It acts on𝐺𝜅 from the left-hand side as follows: for (𝑝+, 𝑝−) ∈ 𝐸𝐺,𝜒 (𝑆) and 𝑔 ∈ 𝐺𝜅 (𝑆), set (𝑝+, 𝑝−)·𝑔 :=
𝑝+𝑔𝑝

−1
− .

Theorem 3.4 [54]. We have an isomorphism of algebraic stacks [𝐸𝐺,𝜒\𝐺𝜅 ] � 𝐺-Zip𝜒𝜅 .

Let 𝐵 ⊂ 𝐺 be a Borel subgroup and 𝑇 ⊂ 𝐵 a maximal torus. Let 𝑊 := 𝑊 (𝐵,𝑇) be the absolute
Weyl group, and 𝐼 := 𝐼 (𝐵,𝑇) be the set of simple reflections defined by B. Let 𝐽 ⊂ 𝐼 be the simple
roots whose inverse are roots of 𝑃+. Let𝑊𝐽 be the subgroup of W generated by J, and 𝐽𝑊 be the set of
elements w such that w is the element of minimal length in some coset 𝑊𝐽𝑤

′. By [53] section 6, there
is a partial order � on 𝐽𝑊 . Let 𝑘 = 𝜅 be an algebraic closure of 𝜅, and 𝜑 : 𝑊 → 𝑊 the isomorphism
induced from the Frobenius of G. There is a distinguished element 𝑥 ∈ 𝑊 satisfying certain technical
conditions, see [53] 12.2.

Theorem 3.5 [53]. For 𝑤 ∈ 𝐽𝑊 , and (𝐵′, 𝑇 ′) a Borel pair of 𝐺𝑘 such that 𝑇 ′ ⊂ 𝐿𝑘 and 𝐵′ ⊂ 𝑃 (𝑝)
−,𝑘 , let

𝑔, �𝑤 ∈ 𝑁𝐺𝑘 (𝑇 ′) be the representative of 𝜑−1 (𝑥) and w respectively, and 𝐺𝑤 ⊂ 𝐺𝑘 the 𝐸𝐺,𝜒-orbit of
𝑔𝐵′ �𝑤𝐵′. Then

(1) The orbit 𝐺𝑤 does not depend on the choices of �𝑤,𝑇 ′, 𝐵′ or g.
(2) The orbit𝐺𝑤 is a locally closed smooth subvariety of𝐺𝑘 . Its dimension is dim(𝑃) + 𝑙 (𝑤). Moreover,

𝐺𝑤 consists of only one 𝐸𝐺,𝜒-orbit.
(3) Denote by | [𝐸𝐺,𝜒\𝐺𝜅 ] ⊗ 𝑘 | the topological space of [𝐸𝐺,𝜒\𝐺𝜅 ] ⊗ 𝑘 , and 𝐽𝑊 the topological

space induced by the partial order �. Then the association 𝑤 ↦→ 𝐺𝑤 induces a homeomorphism
𝐽𝑊 � |[𝐸𝐺,𝜒\𝐺𝜅 ] |.
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In the following, we will apply the above results to the pair (𝐺, 𝜒) = (Gspl
0 , 𝜇) constructed in

subsection 2.1.

3.2. Construction of the universal Gspl
0 -zip on 𝒜

spl
0

Let 𝜅 be the residue field of O𝐹 and 𝜎 the absolute Frobenius of 𝜅. We will construct a universal Gspl
0 -zip

of type 𝜇 over the special fiber

𝒜
spl
0 = 𝒜spl ⊗O𝐹 𝜅

of 𝒜spl. As in the unramified case, we will first construct a vector bundle M over 𝒜
spl
0 , which can

be viewed as a semisimplification of the de Rham cohomology of the universal abelian scheme for
the additional structure. The construction of such a vector bundle was already mentioned below [56,
Corollary 2.10] for Hilbert modular varieties.

For any 𝜅-scheme S, 𝒜spl
0 (𝑆) classifies the isogeny classes of (𝐴,ℱ•), where

(1) 𝐴 = (𝐴, 𝜆, 𝜄, 𝛼) is an S-point of 𝒜naive.
(2) ℱ• = (ℱ𝑙

𝑖, 𝑗 ) is a splitting structure of O𝐹 ⊗Z𝑝 O𝑆-module 𝜔𝐴/𝑆 . This means: if we write H =

H1
dR(𝐴/𝑆), it is an O𝐹 ⊗ O𝑆-module, hence has a decomposition

H =
⊕
𝑖∈𝐼

𝑓𝑖⊕
𝑗=1

H𝑚𝑖
𝑖, 𝑗 ,

with H𝑖, 𝑗 a locally free O𝑆-module equipped with a pairing H𝑖, 𝑗 ×H𝑖, 𝑗 → O𝑆 . Similarly, we have
a decomposition 𝜔 =

⊕
𝑖∈𝐼

⊕ 𝑓𝑖
𝑗=1 𝜔

𝑚𝑖
𝑖, 𝑗 . For each 𝑖 ∈ 𝐼, 1 ≤ 𝑗 ≤ 𝑓𝑖 , the splitting structure is a

filtration of locally direct O𝑆-factors of 𝜔𝑖, 𝑗 :

0 = ℱ0
𝑖, 𝑗 ⊂ ℱ1

𝑖, 𝑗 ⊂ · · · ⊂ ℱ𝑒𝑖
𝑖, 𝑗 = 𝜔𝑖, 𝑗 ⊂ H𝑖, 𝑗

with O𝐹𝑖/(𝑝) � 𝜅𝑖 [𝑇]/(𝑇𝑒𝑖 ) = 𝜅𝑖 [𝜀𝑖]-action, such that
(a) 𝜅𝑖 acts on ℱ𝑙

𝑖, 𝑗 by 𝜎𝑖, 𝑗 : O𝐹ur
𝑖
→ 𝜅.

(b) For each 1 ≤ 𝑙 ≤ 𝑒𝑖 , 𝜀𝑖ℱ𝑙
𝑖, 𝑗 ⊂ ℱ𝑙−1

𝑖, 𝑗 .
(c) For each 1 ≤ 𝑙 ≤ 𝑒𝑖 , ℱ𝑙

𝑖, 𝑗/ℱ
𝑙−1
𝑖, 𝑗 is locally free of rank 𝑑𝑙𝑖, 𝑗 .

(d) For each 1 ≤ 𝑙 ≤ 𝑒𝑖 , ℱ𝑙,⊥
𝑖, 𝑗 = (𝜀𝑒𝑖−𝑙𝑖 )−1ℱ𝑙

𝑖, 𝑗 .

Let 𝑆 = 𝒜
spl
0 and 𝐴 be the universal abelian scheme over S. For each triple 𝑖, 𝑗 , 𝑙, we define

M𝑙
𝑖, 𝑗 := 𝜀−1

𝑖 ℱ𝑙−1
𝑖, 𝑗 /ℱ

𝑙−1
𝑖, 𝑗 .

Note that each M𝑙
𝑖, 𝑗 is a locally free O𝑆-module of rank 2𝑑𝑖 . As in the description below Definition 2.1,

in fact we have some reduced description for M𝑙
𝑖, 𝑗 according to the type of i, which we leave to the

reader. Now we write

M =
⊕
𝑖∈𝐼

M𝑚𝑖
𝑖 , M𝑖 =

𝑒𝑖⊕
𝑙=1

𝑓𝑖⊕
𝑗=1

M𝑙
𝑖, 𝑗 ,

then each M𝑙
𝑖, 𝑗 is locally isomorphic to Λ𝑙𝑖, 𝑗 ⊗O𝐹 O𝑆 . First fix 𝑖 ∈ 𝐼 and 1 ≤ 𝑗 ≤ 𝑓𝑖 . For each 1 ≤ 𝑙 ≤ 𝑒𝑖 ,

we have two natural maps:
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(1) If 𝑙 ≠ 1, we have a natural map:

𝑉 𝑙𝑖, 𝑗 : M𝑙
𝑖, 𝑗 → M𝑙−1

𝑖, 𝑗 , 𝑥 ↦→ 𝜀𝑖𝑥,

which is an O𝑆-linear morphism. On the other side, the injection 𝜀−1
𝑖 ℱ𝑙−2

𝑖, 𝑗 ↩→ 𝜀−1
𝑖 ℱ𝑙−1

𝑖, 𝑗 induces an
O𝑆-linear morphism

𝐹𝑙𝑖, 𝑗 : M𝑙−1
𝑖, 𝑗 → M𝑙

𝑖, 𝑗 .

(2) If 𝑙 = 1, let 𝑉𝑖, 𝑗 : H𝑖, 𝑗 → H𝑖, 𝑗−1 be the Verschiebung morphism and 𝐹𝑖, 𝑗 : H𝑖, 𝑗−1 → H𝑖, 𝑗 the
Frobenius morphism. The map 𝑉𝑖, 𝑗 induces a natural map

𝑉1
𝑖, 𝑗 : M1

𝑖, 𝑗 → M𝑒𝑖
𝑖, 𝑗−1, 𝑥 ↦→ 𝑉𝑖, 𝑗 (𝜀1−𝑒𝑖

𝑖 (𝑥)),

which is 𝜎−1-linear. Similarly, 𝐹𝑖, 𝑗 induces a 𝜎-linear map

𝐹1
𝑖, 𝑗 : M𝑒𝑖

𝑖, 𝑗−1 → M1
𝑖, 𝑗 , 𝑥 ↦→ 𝐹𝑖, 𝑗 (𝑥).

Now for each 1 ≤ 𝑙 ≤ 𝑒𝑖 , define

M𝑙
𝑖 :=

𝑓𝑖⊕
𝑗=1

M𝑙
𝑖, 𝑗 , Λ𝑙𝑖 :=

𝑓𝑖⊕
𝑗=1

Λ𝑙𝑖, 𝑗 .

Each M𝑙
𝑖 is a locally free O𝑆 [𝜀𝑖]-module with a 𝜅𝑖-action, and we have locally an isomorphism

M𝑙
𝑖 � Λ𝑙𝑖 ⊗O𝐹 O𝑆 .

(Note that the latticeΛ𝑙𝑖, 𝑗 is denoted byΞ𝑙𝑖, 𝑗 in [49, Proposition 5.2.]) We also have locally an isomorphism

M𝑖 =
𝑒𝑖⊕
𝑙=1

M𝑙
𝑖 �

𝑒𝑖⊕
𝑙=1

Λ𝑙𝑖,0 ⊗ O𝑆 = Λspl
𝑖,0 ⊗ O𝑆 .

Each M𝑖 is a locally free O𝑆-module of rank 2𝑒𝑖 𝑓𝑖𝑑𝑖 . For each 𝑖, 𝑙, let 𝐹𝑙𝑖 =
⊕

𝑗 𝐹
𝑙
𝑖, 𝑗 and𝑉 𝑙𝑖 =

⊕
𝑗 𝑉

𝑙
𝑖, 𝑗 .

We have constructed the following linear morphisms:

M1
𝑖

𝐹2
𝑖 �� M2

𝑖
𝑉 2
𝑖

��

𝐹3
𝑖 ��

· · ·
𝑉 3
𝑖

��

𝐹
𝑒𝑖
𝑖 �� M𝑒𝑖

𝑖 .
𝑉
𝑒𝑖
𝑖

��

and semilinear morphisms (𝐹1
𝑖 is 𝜎-linear and 𝑉1

𝑖 is 𝜎−1-linear)

M𝑒𝑖
𝑖

𝐹1
𝑖 �� M1

𝑖 .
𝑉 1
𝑖

��

Lemma 3.6. There is a canonical isomorphism 𝑔𝑖 : M1
𝑖 → M1

𝑖 sending Ker(𝑉1
𝑖 ) to Im(𝐹1

𝑖 ).

Proof. We can reduce to the case 𝑆 = Spec 𝑅 for a ring R over 𝜅. For 𝑒𝑖 = 1, we have 𝐹1
𝑖 = Frob, 𝑉1

𝑖 =
Ver, so we can assume that 𝑒𝑖 ≥ 2. Note that

Ker(𝑉1
𝑖, 𝑗 ) = 𝜀

𝑒𝑖−1
𝑖 Ver−1(ℱ𝑒𝑖

𝑖, 𝑗 ), Im(𝐹1
𝑖, 𝑗 ) = Frob(ℱ𝑒𝑖

𝑖, 𝑗 ).
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For each j, fix an isomorphismH𝑖, 𝑗 � 𝑅[𝜀𝑖]2𝑑𝑖 and lift it to H̃𝑖, 𝑗 = 𝑅[[𝑡]]2𝑑𝑖 such that H̃𝑖, 𝑗/(𝑡𝑒𝑖 ) = H𝑖, 𝑗 .
For each ℱ𝑙

𝑖, 𝑗 ⊂ H𝑖, 𝑗 , let ℱ̃𝑙
𝑖, 𝑗 be its lifting in H̃𝑖, 𝑗 . One can lift the Frobenius and Verschiebung

morphisms of H𝑖 to injections of H̃𝑖 , such that

Ver(H̃𝑖, 𝑗 ) = ℱ̃𝑒𝑖
𝑖, 𝑗−1, Frob(ℱ̃𝑒𝑖

𝑖, 𝑗−1) = 𝑡
𝑒𝑖H̃𝑖, 𝑗 .

This gives the following isomorphism:

𝑡𝑒𝑖−1H̃𝑖, 𝑗
Ver
�

�� 𝑡𝑒𝑖−1ℱ̃𝑒𝑖
𝑖, 𝑗−1

Frob
�

�� 𝑡𝑒𝑖−1𝑡𝑒𝑖H̃𝑖, 𝑗
·𝑡−𝑒𝑖
�

�� 𝑡𝑒𝑖−1H̃𝑖, 𝑗 .

Such an isomorphism sends the lifting of Ker(𝑉1
𝑖, 𝑗 ) to the lifting of Im(𝐹1

𝑖, 𝑗 ). After modding out by (𝑡𝑒𝑖 )
of the above isomorphism, we get an isomorphism

𝑔𝑖 : M1
𝑖 → M1

𝑖

sending Ker(𝑉1
𝑖, 𝑗 ) to Im(𝐹1

𝑖, 𝑗 ). �

Lemma 3.7. For each integer 2 ≤ 𝑙 ≤ 𝑒𝑖 , we have the following identities:

Im(𝐹𝑙𝑖 ) = Ker(𝑉 𝑙𝑖 ), Ker(𝐹𝑙𝑖 ) = Im(𝑉 𝑙𝑖 ).

Moreover, we have

rank(Ker(𝑉 𝑙𝑖, 𝑗 )) = 𝑑
𝑙
𝑖, 𝑗 and rank(Ker(𝐹𝑙𝑖, 𝑗 )) = 𝑑𝑖 − 𝑑

𝑙
𝑖, 𝑗 .

Proof. By our definition, for each 𝑙 ≥ 2, we have

Ker(𝐹𝑙𝑖, 𝑗 ) = Im(𝑉 𝑙𝑖, 𝑗 ) = ℱ𝑙
𝑖, 𝑗 , Im(𝐹𝑙𝑖, 𝑗 ) = Ker(𝑉 𝑙𝑖, 𝑗 ) = 𝜀

−1
𝑖 ℱ𝑙−2

𝑖, 𝑗 .

The rank of ℱ𝑙
𝑖, 𝑗/ℱ

𝑙−1
𝑖, 𝑗 is 𝑑𝑙𝑖, 𝑗 by the definition of splitting structures. �

Recall that M𝑙
𝑖, 𝑗 = 𝜀

−1
𝑖 ℱ𝑙−1

𝑖, 𝑗 /ℱ
𝑙−1
𝑖, 𝑗 � ℱ2𝑒𝑖−𝑙+1

𝑖, 𝑗 /𝜀𝑖ℱ2𝑒𝑖−𝑙+1
𝑖, 𝑗 . The symplectic pairing on ℱ2𝑒𝑖−𝑙+1

𝑖, 𝑗 ⊂
H𝑖, 𝑗 induces a pairing on M𝑙

𝑖, 𝑗 .
Recall the group Gspl

0 constructed in 2.1.4 as a similitude group with respect to the vector space Λspl
0

with its symplectic form 𝜓. Recall that we have introduced a cocharacter

𝜇 =
∏
𝑖, 𝑗 ,𝑙

𝜇𝑙𝑖, 𝑗 : G𝑚,𝜅 → Gspl
0,𝜅 .

Such a datum gives the parabolic subgroups 𝑃+, 𝑃− of Gspl
𝜅 and corresponding unipotent groups𝑈+,𝑈−,

and the common Levi subgroup 𝐿 = 𝑃+ ∩ 𝑃− as in the previous subsection. The cocharacter 𝜇 induces
a standard F-zip

(Λspl
0 , 𝐶0, 𝐷0, 𝜑0,•).

Moreover, the above construction gives an F-zip

(M =
⊕
𝑖

M𝑚𝑖
𝑖 , 𝐶 =

⊕
𝑖

Ker(𝐹𝑖)𝑚𝑖 , 𝐷 =
⊕
𝑖

Ker(𝑉𝑖)𝑚𝑖 , 𝜑•)
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over 𝒜spl
0 , equipped with a natural symplectic form 𝜓 and an O𝐵-action with the natural isomorphisms

𝜑• : M/𝐶 � 𝐷𝜙 , 𝐶 � (M/𝐷)𝜙 ,

where 𝜙 =
∏
𝑖 𝜙𝑖 : Gspl

0 → Gspl
0 is the group isomorphism given by

𝜙𝑖 : Gspl
𝑖,0 → Gspl

𝑖,0 , (𝑥1, . . . , 𝑥𝑒𝑖 ) ↦→ (𝑥2, . . . , 𝑥𝑒𝑖 , 𝑥
𝑝
1 ),

and 𝐷𝜙 is the same module D but with Gspl
0 -action twisted by 𝜙. The subvector bundles C and D are

totally isotropic with respect to the symplectic form 𝜓 on M.

Proposition 3.8. We have

(1) 𝐼 := 𝐼𝑠𝑜𝑚((M, 𝜓), (Λspl
0 , 𝜓)) is a Gspl

0 -torsor over 𝒜spl
0 .

(2) 𝐼+ := 𝐼𝑠𝑜𝑚(M ⊃ 𝐶 ⊃ 0,Λspl
0 ⊃ 𝐶0 ⊃ 0) is a 𝑃+-torsor over 𝒜spl

0 .
(3) 𝐼− := 𝐼𝑠𝑜𝑚(M ⊃ 𝐷 ⊃ 0,Λspl

0 ⊃ 𝐷0 ⊃ 0) is a 𝑃𝜙− -torsor over 𝒜spl
0 .

(4) We have an 𝐿𝜙-equivariant isomorphism 𝜄 : (𝐼+/𝑈+)𝜙 � 𝐼−/𝑈𝜙
− .

In the above, all the isomorphisms preserve the natural additional structure.

Proof. By the proofs of Propositions 2.3 and A.8, there is a local model diagram

𝒜
spl
0

𝜋

����
��
��
�� 𝑞

���
��

��
��

�

𝒜
spl
0 𝑀 loc,

where 𝑀 loc is the special fiber of Mloc(Gspl, 𝜇), q sends (𝑥 = (𝐴,ℱ•), 𝜏 : M𝑥 � Λspl
0 ) to 𝜏(M𝑥 ⊃

𝐶𝑥) ∈ 𝑀 loc = Gspl
0 /𝑃+. By the same arguments as in [59, §3.4], we have

◦ 𝐼 = 𝒜
spl
0 is a Gspl

0 -torsor;
◦ 𝐼+ = 𝑞−1 (Λspl

0 ⊃ 𝐶0) is a 𝑃+-torsor;

Recall the forgetful map 𝒜
spl
0 → 𝒜0. There is a conjugate local model diagram for 𝒜0:

𝒜0

𝜋

		��
��
��
�� 𝑞𝑐



��
���

���
��

𝒜0 𝑀 loc,𝑐 (G0, 𝜇)

where 𝑀 loc,𝑐 (G0, 𝜇) classifies the conjugate filtration of𝒜0 defined in [59] and 𝑞𝑐 is a smooth morphism
(same as [59, Theorem 3.4.2]) sending points of 𝒜0 to corresponding conjugate filtration. Let

𝑀spl,𝑐 (G0, 𝜇) → 𝑀 loc,𝑐 (G0, 𝜇)
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be the scheme over k classifying the splitting structures of 𝑀 loc,𝑐 (G0, 𝜇). The pull-back of the morphism
𝑞𝑐 gives the conjugate splitting local model diagram

𝒜
spl
0

𝜋

����
��
��
�� 𝑞𝑐



��
��

��
��

��

𝒜
spl
0 𝑀spl,𝑐 (G0, 𝜇).

By the previous method of constructing local model diagram of splitting models, there is a local model
diagram:

𝒜
spl
0

𝜋

����
��
��
�� 𝑞𝑐

��	
		

		
		

	

𝒜
spl
0 𝑀 loc,𝑐

where 𝑀 loc,𝑐 := 𝑀 loc,𝑐 (Gspl
0 , 𝜇) and 𝑞𝑐 is a Gspl

0 -equivariant smooth morphism sending (𝑥 = (𝐴,ℱ•), 𝜏 :
M𝑥 � Λspl

0 ) to 𝜏(𝐷𝑥 ⊂ M𝑥) ∈ 𝑀 loc,𝑐 := Gspl
0 /𝑃𝜙− . Combining these diagrams we have

◦ 𝐼− := 𝑞𝑐,−1 (𝐷0 ⊂ Λspl
0 ) is a 𝑃𝜙− -torsor. This follows from the same argument of 𝐼+ using the conjugate

local model diagram;
◦ There is an 𝐿𝜙-equivariant isomorphism 𝜄 : (𝐼+/𝑈+)𝜙 � 𝐼−/𝑈𝜙

− . This follows from Lemma 3.6 and
Lemma 3.7.

�

Let 𝜙′ =
∏
𝑖 𝜙

′
𝑖 be the group isomorphism given by

𝜙′𝑖 : Gspl
𝑖,0 → Gspl

𝑖,0 , (𝑥1, . . . , 𝑥𝑒𝑖 ) ↦→ (𝑥𝑒𝑖 , 𝑥
𝑝
1 , . . . , 𝑥

𝑝
𝑒𝑖−1).

Then we have 𝜙 · 𝜙′ = 𝜙′ · 𝜙 = 𝜎, so 𝐼 𝜙′
− is a 𝑃 (𝑝)

− -torsor and

𝜄𝜙
′

: (𝐼+/𝑈+) (𝑝) � 𝐼 𝜙
′

− /𝑈 (𝑝)
−

is an 𝐿 (𝑝) -equivariant isomorphism. This is the universal Gspl
0 -zip of type 𝜇 over 𝒜spl

0 , i.e., there is a
morphism of algebraic stacks over 𝜅:

𝜁 : 𝒜spl
0 → Gspl

0 -Zip𝜇𝜅 .

Definition 3.9. The fibers of 𝜁 are called the Ekedahl-Oort strata of 𝒜spl
0 .

Note that for each 1 ≤ 𝑖 ≤ 𝑟 , by construction we have in fact a universal Gspl
𝑖,0-zip of type 𝜇𝑖 over 𝒜spl

0 ,
thus a morphism

𝜁𝑖 : 𝒜spl
0 → Gspl

𝑖,0-Zip𝜇𝑖𝜅 .

Via the inclusion Gspl
0 ⊂

∏
𝑖 G

spl
𝑖,0, the universal Gspl

0 -zip of type 𝜇 over 𝒜spl
0 induces a

∏
𝑖 G

spl
𝑖,0-zip of type∏

𝑖 𝜇𝑖 , which is isomorphic to the product of all the Gspl
𝑖,0-zip of type 𝜇𝑖 .
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3.3. Smoothness of 𝜁

The dimension formula, closure relation, and smoothness of the EO (Ekedahl-Oort) strata follow from
the following proposition.

Proposition 3.10. The morphism 𝜁 : 𝒜spl
0 → Gspl

0 -Zip𝜇𝜅 is smooth.

Proof. Let k be the algebraic closure of 𝜅. Consider the following cartesian diagram

𝒜
spl#
𝑘

𝜁 #
��

��

Gspl
𝑘

��
𝒜

spl
𝑘

�� Gspl
0 -Zip𝜇𝜅 ⊗ 𝑘.

The smoothness of 𝜁 is equivalent to the smoothness of 𝜁#, which is also equivalent to the surjectivity
of the induced map on tangent spaces at points of 𝒜spl#(𝑘).

Recall Gspl
0 -Zip𝜇𝜅 � [𝐸\Gspl

0 ]. Let 𝑥# be a closed point of 𝒜spl
𝑘 with image x in 𝒜

spl
𝑘 . Let A be the

complete local ring of 𝒜spl
𝑘 at x. Consider the cartesian diagram

𝑋
𝛼 ��

��

Gspl
𝑘

��
Spec 𝐴 �� Gspl

0 -Zip𝜇𝜅 ⊗ 𝑘

The morphism 𝑋 → Spec 𝐴 is a trivial E-torsor isomorphic to 𝐼𝑢𝑔 for an A-point 𝑢𝑔 of Gspl. Let
𝑈− ⊂ Gspl

𝑘 be the opposite unipotent subgroup determined by 𝜇, then A is isomorphic to the complete
local ring of𝑈− at identity. The trivialization induces an isomorphism and translates 𝛼 into the morphism
𝛽 : Spec 𝐴×𝑘𝐸𝑘 → Gspl

𝑘 given by for any k-scheme T, on T-points 𝛽 : (𝑢, 𝑙, 𝑢+, 𝑢−) ↦→ 𝑙𝑢+𝑢𝑔(𝑙 (𝑝)𝑢−)−1.
Now the same method of the last paragraph of [70, Theorem 4.1.2] shows that the map on the tangent
space at x is surjective. �

3.4. Nonemptiness of EO strata

Recall that we have natural morphisms over 𝜅:

𝒜
spl
0 → 𝒜0 → 𝒜naive

0 .

In the following we work over 𝑘 = 𝜅. Although we are primarily interested in the geometry of EO strata
of 𝒜spl

𝑘 , sometimes it would be helpful to study the geometry of 𝒜𝑘 together. On 𝒜naive
𝑘 , there is a KR

(Kottwitz-Rapoport) stratification given by the isomorphism class of 𝜔𝐴/𝑆 , cf. [23]. By [49, 40, 21],
there is also a KR stratification

𝒜𝑘 =
∐

𝑤 ∈Adm(𝜇)𝐾

𝒜𝑤
𝑘

indexed by the 𝜇-admissible set: let 𝐾 = 𝐾𝑝 = G (Z𝑝) and Adm(𝜇)𝐾 be the 𝜇-admissible set of level K
as introduced in [25], which is the partially ordered set of all KR types of level K. By the discussions
in 2.1.3, we have a decomposition 𝐾 =

∏
𝑖∈𝐼 𝐾𝑖 and thus Adm(𝜇)𝐾 =

∏
𝑖∈𝐼 Adm(𝜇𝑖)𝐾𝑖 . We also have

an EKOR (Ekedahl-Kottwitz-Oort-Rapoport) stratification of 𝒜𝑘 , which is a refinement of the KR

https://doi.org/10.1017/fms.2025.10091 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10091


Forum of Mathematics, Sigma 27

stratification, such that for each 𝑤 ∈ Adm(𝜇)𝐾 , we have a morphism of algebraic stacks

𝜁𝑤 : 𝒜𝑤
𝑘 → Grdt

0 -Zip𝐽𝑤 ,

see subsections A.3 and A.4 in the Appendix for more details. If 𝑤 = (𝑤𝑖) ∈
∏
𝑖∈𝐼 Adm(𝜇𝑖)𝐾𝑖 , for each

i, we have in fact a morphism 𝜁𝑤𝑖 : 𝒜𝑤
𝑘 → Grdt

0,𝑖-Zip𝐽𝑤𝑖 , the i-th component of 𝜁𝑤 .

Proposition 3.11. Let 𝜋 : 𝒜
spl
𝑘 → 𝒜𝑘 be the natural forgetful morphism. Let 𝑥 ∈ 𝒜spl (𝑘) and

𝑦 = 𝜋(𝑥) ∈ 𝒜(𝑘).

◦ If x is a minimal EO point of 𝒜spl (𝑘) (i.e., x lies in the minimal EO stratum), then y is a minimal
EKOR point of 𝒜(𝑘) (i.e., y lies in the minimal EKOR stratum, cf. [59] 1.2.5).

◦ If y is a minimal EKOR point, then there exists 𝑥 ′ ∈ 𝜋−1 (𝑦) ⊂ 𝒜spl(𝑘) such that 𝑥 ′ is a minimal EO
point.

Proof. Both the involved Gspl
0 -zip and Grdt

0 -zips admit decompositions over the indices i. We proceed
according to the type of i.

Case (AL/AU): For each j, write
∑
𝑙 𝑑

𝑙
𝑖, 𝑗 = 𝑡 𝑗𝑑𝑖 + 𝑠 𝑗 , where 0 ≤ 𝑠 𝑗 < 𝑑𝑖 , and

𝜔min := (𝜀𝑒𝑖−𝑡 𝑗−1
𝑖 )⊕𝑠 𝑗

⊕
(𝜀𝑒𝑖−𝑡 𝑗𝑖 )⊕𝑑𝑖−𝑠 𝑗 .

Then a point 𝑦 ∈ 𝒜0 is a minimal KR point if and only if

𝜔𝑦,𝑖, 𝑗 � 𝜔min
⊕

𝜔′
min

(cf. [48] section 3; here𝜔′
min and the splitting structure is determined by such structure on𝜔min). Assume

that 𝑥 = (𝐴,ℱ•) ∈ 𝒜spl (𝑘) is a minimal EO point and 𝑦 = 𝜋(𝑥). The minimal condition is equivalent to

(1) ℱ1
𝑖, 𝑗 ⊂ Ker(𝑉1

𝑖, 𝑗 ) or Ker(𝑉1
𝑖, 𝑗 ) ⊂ ℱ1

𝑖, 𝑗 ⊂ 𝜀−1
𝑖 ℱ0

𝑖, 𝑗 .
(2) For each 𝑙 ≥ 2, ℱ𝑙

𝑖, 𝑗 ⊂ 𝜀
−1
𝑖 ℱ𝑙−2

𝑖, 𝑗 or 𝜀−1
𝑖 ℱ𝑙−2

𝑖, 𝑗 ⊂ ℱ𝑙
𝑖, 𝑗 ⊂ 𝜀

−1
𝑖 ℱ𝑙−1

𝑖, 𝑗 .

This forces

𝜔𝑥,𝑖, 𝑗 � 𝜔min
⊕

𝜔′
min,

so 𝑦 = 𝜋(𝑥) is a minimal KR point, which is then a minimal EKOR point by condition (1). Conversely,
if y is a minimal EKOR point, then by conditions (1) and (2) above, there is a splitting structure ℱ• of
y, such that 𝑥 ′ = (𝑦,ℱ•) minimal.

Case (C): A point 𝑦 ∈ 𝒜0 is a minimal KR point if and only if 𝜔𝑦,𝑖, 𝑗 isomorphic to

𝜔min := ((𝜀 �𝑒𝑖/2�
𝑖 )

⊕
(𝜀 �𝑒𝑖/2�
𝑖 ))⊕𝑑𝑖 ⊂ 𝑘 [𝜀𝑖] ⊕2𝑑𝑖 .

A similar construction as above gives the proof of type (C). �

Corollary 3.12. The morphism 𝜁 is surjective.

Proof. By Proposition A.15, the EKOR strata of 𝒜0 are nonempty. Hence, minimal EO points of 𝒜spl
𝑘

exist by Proposition 3.11. The smoothness of 𝜁 : 𝒜spl
0 → Gspl

0 -Zip𝜇𝜅 plus the fact that its image contains
a minimal point imply the surjectivity of 𝜁 . �

We summarize the above results in a theorem, which describes the expected properties of the Ekedahl-
Oort stratification.

Theorem 3.13. We have the following basic properties of the EO strata on smooth splitting models.
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(1) There is a smooth surjective morphism

𝜁 : 𝒜spl
0 → Gspl

0 -Zip𝜇𝜅

of algebraic stacks.
(2) Let 𝐽𝑊 be the topological space of Gspl

0 -Zip𝜇𝑘 , and define the EO stratum as 𝒜spl,𝑤
𝑘 := 𝜁−1 (𝑤) for

each 𝑤 ∈ 𝐽𝑊 . Then each EO stratum 𝒜
spl,𝑤
𝑘 is a smooth and locally closed subscheme of dimension

𝑙 (𝑤), with the closure relation by the partial order �, i.e.,

𝒜
spl,𝑤
𝑘 =

∐
𝑤′ �𝑤

𝒜
spl,𝑤′

𝑘 , for all 𝑤 ∈ 𝐽𝑊.

3.5. The 𝜇-ordinary locus

Let𝑈 ⊂ 𝒜
spl
𝑘 be the maximal EO stratum, then by Theorem 3.13, U is open dense in 𝒜

spl
𝑘 .

Recall the Kottwitz set 𝐵(𝐺, 𝜇) (see subsection A.5). The universal abelian scheme with additional
structure (𝐴, 𝜆, 𝜄) over 𝒜spl

0 defines as usual a map

Newt : 𝒜spl
0 (𝑘) −→ 𝐵(𝐺, 𝜇),

which by construction factors through 𝒜0 (𝑘) and 𝒜naive
0 (𝑘).

Definition 3.14. The fibers of Newt define a decomposition of 𝒜spl
𝑘 , which we call the Newton strati-

fication of 𝒜spl
𝑘 . Moreover, as G is quasi-split at p, there is a unique maximal Newton stratum in 𝒜

spl
𝑘 ,

called the 𝜇-ordinary locus.

When the group G is unramified over Q𝑝 , Moonen [42] proved that the 𝜇-ordinary locus coincides
with the maximal EO stratum of 𝒜𝑘 = 𝒜

spl
𝑘 . This fact was generalized to general Hodge-type Shimura

varieties with good reduction at p in [68]. We will prove that for the ramified PEL-type case, the same
result holds for smooth splitting models. As in the last subsection, we will apply the geometry of KR
and EKOR stratifications of 𝒜𝑘 . Recall that Adm(𝜇)𝐾 is the 𝜇-admissible set of level K, which is the
partially ordered set of all KR types of level K. As 𝐾 ⊂ 𝐺 (Q𝑝) is a special parahoric subgroup, by [57,
Theorem 4.2, Corollary 4.6] the set Adm(𝜇)𝐾 has a unique maximal element.

Proposition 3.15. Let 𝑤0 be the maximal element of Adm(𝜇)𝐾 and 𝒜𝑤0
𝑘 the maximal KR stratum of

𝒜𝑘 . Then the morphism 𝜋 : 𝒜spl
𝑘 → 𝒜𝑘 induces an isomorphism over 𝒜𝑤0

𝑘 , i.e., 𝜋 : 𝜋−1 (𝒜𝑤0
𝑘 ) ∼→ 𝒜𝑤0

𝑘 .

Proof. For every 𝑖, 𝑗 , let {𝑎𝑙𝑖, 𝑗 | 1 ≤ 𝑙 ≤ 𝑒𝑖} be a permutation of {𝑑𝑙𝑖, 𝑗 | 1 ≤ 𝑙 ≤ 𝑒𝑖} such that

𝑎1
𝑖, 𝑗 ≥ 𝑎2

𝑖, 𝑗 ≥ · · · ≥ 𝑎𝑒𝑖𝑖, 𝑗 .

We define a module 𝜔max,𝑖 =
⊕

𝑗 𝜔max,𝑖, 𝑗 , where

𝜔max,𝑖, 𝑗 := 𝑘 [𝜀𝑖]𝑎
𝑒𝑖
𝑖, 𝑗

⊕
(𝜀𝑖)𝑎

𝑒𝑖−1
𝑖, 𝑗 −𝑎𝑒𝑖𝑖, 𝑗

⊕
· · ·

⊕
(𝜀𝑒𝑖−1
𝑖 )𝑎

1
𝑖, 𝑗−𝑎

2
𝑖, 𝑗 .

The maximal KR stratum 𝒜𝑤0
𝑘 can be described as follows: 𝑥 ∈ 𝒜𝑤0

𝑘 (𝑘) if and only if the following
condition (dependent on the type of the index i) holds:

◦ Case (AL/AU): Under the natural decomposition 𝜔𝑥,𝑖 = 𝜔𝑥,𝑖,1
⊕

𝜔𝑥,𝑖,2 given by the 𝑅𝑖/𝐹𝑖-action,
we require that 𝜔𝑥,𝑖,1 � 𝜔max,𝑖 .

◦ Case (C): We require that 𝜔𝑥,𝑖 � 𝜔max,𝑖 = 𝑘 [𝜀𝑖]𝑑𝑖 ⊂ 𝑘 [𝜀𝑖]2𝑑𝑖 .
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This condition comes from the explicit description of the maximal element in Adm(𝜇𝑖)𝐾𝑖 .
Let 𝑥 ∈ 𝒜𝑤0

𝑘 (𝑘). In the case (C) we have 𝑎𝑙𝑖, 𝑗 = 𝑑
𝑙
𝑖, 𝑗 for all l, then𝜔max,𝑖, 𝑗 [𝜀𝑙𝑖] has rank 𝑑1

𝑖, 𝑗 +· · ·+𝑑𝑙𝑖, 𝑗 .
This forces

ℱ𝑙
𝑖, 𝑗 = 𝜔𝑥,𝑖, 𝑗 [𝜀

𝑙
𝑖] .

Hence the splitting structure over 𝜔𝑥,𝑖, 𝑗 is unique. The case (AL/AU) is similar. Therefore the splitting
structure over 𝜔𝑥 is unique, and 𝜋 : 𝜋−1 (𝒜𝑤0

𝑘 ) � 𝒜𝑤0
𝑘 is an isomorphism. �

Since there is a unique maximal KR stratum in 𝒜𝑘 , we have a unique maximal EKOR stratum in 𝒜𝑘 .
Recall that for each 1 ≤ 𝑖 ≤ 𝑟 , we have Gspl

𝑖,0 � Grdt,𝑒𝑖
𝑖,0 . We get a map Gspl

0 → Grdt
0 which is induced by the

projection to the first factor Gspl
𝑖,0 → Grdt

𝑖,0 for each i. Let 𝜇′ be the cocharacter of Grdt
0 induced by 𝜇 under

this map. As a continuation of Proposition 3.15, we have

Proposition 3.16. Let 𝑈KR = 𝒜𝑤0
𝑘 be the maximal KR stratum of 𝒜𝑘 . Then the morphism 𝜁 : 𝒜spl

𝑘 →
Gspl

0 -Zip𝜇𝑘 induces a morphism

𝜁1 : 𝜋−1 (𝑈KR) → Grdt
0 -Zip𝜇

′

𝑘 .

Moreover, the natural morphism 𝜋 : 𝒜spl
𝑘 → 𝒜𝑘 induces a commutative diagram

𝜋−1(𝑈KR)

𝜋 �
��

𝜁1 �� Grdt
0 -Zip𝜇

′

𝑘

𝑈KR

𝜁2

��











where 𝜁2 = 𝜁𝑤0 is the zip morphism on the maximal KR stratum of 𝒜𝑘 constructed in subsection A.3.

Proof. The projection Gspl
0 → Grdt

0 induces a morphism Gspl
0 -Zip𝜇𝑘 → Grdt

0 -Zip𝜇
′

𝑘 . Composing with
𝜁 : 𝒜spl

𝑘 → Gspl
0 -Zip𝜇𝑘 and restricting to 𝜋−1(𝑈KR), we get a morphism

𝜁1 : 𝜋−1 (𝑈KR) → Grdt
0 -Zip𝜇

′

𝑘 .

By Proposition 3.15, the splitting structure over 𝑈KR is unique, hence the EO strata in 𝜋−1 (𝑈KR) are
uniquely determined by the fiber of 𝜁1. In other words, the restriction of the universal Gspl

0 -zip of type
𝜇 to 𝜋−1(𝑈KR) is uniquely determined by the associated Grdt

0 -zip of type 𝜇′. To prove that the above
diagram commutes, we need to show that this Grdt

0 -zip is the pullback (under 𝜋) of the Grdt
0 -zip on 𝑈KR

given by 𝜁2 = 𝜁𝑤0 .
Let 𝑥 = (𝐴, 𝜆, 𝜄, 𝛼) ∈ 𝑈KR (𝑘) and 𝑦 = 𝜋−1 (𝑥). We will explicitly compare the Grdt

0 -zips at x and y.
The argument will be dependent on the type of the indexes i. We first investigate the Grdt

0 -zip at x.
Case (AL/AU): Fix an isomorphism

H𝑥,𝑖 � Λ𝑘,𝑖 = 𝑘 [𝜀𝑖] ⊕2𝑑𝑖 𝑓𝑖

and Λ𝑘,𝑖 decomposes as𝑊 ⊕𝑊 ′, with𝑊 = 𝑘 [𝜀𝑖] ⊕𝑑𝑖 𝑓𝑖 ,𝑊 ′ the dual of W. There are induced Frobenius
morphism F and Verschiebung morphism V on Λ𝑘,𝑖 . The F-zip associated to x (with Grdt

𝑖,0-structure)
induces an F-zip with 𝜅𝑖-action 𝑀 = (𝑊,𝐶, 𝐷, 𝜄) given by

𝑊 = 𝑘 [𝜀𝑖] ⊕𝑑𝑖 𝑓𝑖 , 𝐶 = Ker(𝑉 |𝑊 ), 𝐷 = Ker(𝐹 |𝑊 ),

and M determines the F-zip associated to x.
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By the proof of Proposition 3.15, we have 𝐶 =
⊕

𝑗 𝐶 𝑗 , where

𝐶 𝑗 � 𝑘 [𝜀𝑖] ⊕𝑎
𝑒𝑖
𝑖, 𝑗

⊕
(𝜀𝑖)⊕(𝑎

𝑒𝑖−1
𝑖, 𝑗 −𝑎𝑒𝑖𝑖, 𝑗 )

⊕
· · ·

⊕
(𝜀𝑒𝑖−1
𝑖 )⊕(𝑎

1
𝑖, 𝑗−𝑎

2
𝑖, 𝑗 ) .

The EO strata inside 𝑈KR are determined by an F-zip (𝑀 ′, 𝐶 ′, 𝐷 ′, 𝜄′) with Grdt
𝑖,0-structure (recall that

G𝑖,0 = Res𝜅𝑖 [𝜀𝑖 ] |F𝑝 𝐻𝑖 ,Grdt
𝑖,0 = Res𝜅𝑖 |F𝑝 𝐻𝑖). More precisely, we have

◦ 𝑀 ′ = 𝑀/𝜀𝑖𝑀 = 𝑘 ⊕𝑑𝑖 .
◦ 𝐶 ′ is the natural image of C in 𝑀 ′, we have 𝐶 ′ =

⊕
𝑗 𝐶

′
𝑗 and dim𝑘 𝐶

′
𝑗 = 𝑎

𝑒𝑖
𝑖, 𝑗 .

◦ Under the natural isomorphism 𝜀𝑒𝑖−1
𝑖 𝑀 � 𝑀 ′, let 𝐷 ′ := 𝐷 ∩ 𝜀𝑒𝑖−1

𝑖 𝑀 , we have 𝐷 ′ =
⊕

𝑗 𝐷
′
𝑗 and

dim𝑘 𝐷
′
𝑗 = 𝑑𝑖 − 𝑎

𝑒𝑖
𝑖, 𝑗 .

◦ The morphisms 𝐹,𝑉 of M restrict to the morphisms

𝐹 : 𝑀 ′ → 𝜀−1
𝑖 (𝜀𝑖𝐶)/(𝜀𝑖𝐶) and 𝑉 : 𝜀−1

𝑖 (𝜀𝑖𝐶)/(𝜀𝑖𝐶) → 𝑀 ′.

Composing with the natural isomorphism (same as Lemma 3.6)

𝜀−1
𝑖 (𝜀𝑖𝐶)/(𝜀𝑖𝐶) � 𝑀 ′

give semilinear isomorphisms 𝐹 ′, 𝑉 ′ of 𝑀 ′, such that

Ker(𝐹 ′) = Im(𝑉 ′) = 𝐷 ′, Ker(𝑉 ′) = Im(𝐹 ′) = 𝐶 ′.

The morphism 𝜄′ = (𝜄′0, 𝜄
′
1) is induced from 𝐹 ′, 𝑉 ′.

The type of a Grdt
𝑖,0-zip is determined by a cocharacter 𝜇′ associated to the tuple (𝑎𝑒𝑖𝑖, 𝑗 ) 𝑗 (up to conjugate).

Case (C): Fix an isomorphism

H𝑥,𝑖 � Λ𝑘,𝑖 = 𝑘 [𝜀𝑖] ⊕2𝑑𝑖 𝑓𝑖 .

The F-zip associated to x (with Grdt
𝑖,0-structure) induces an F-zip 𝑀 = (Λ𝑘,𝑖 , 𝐶, 𝐷, 𝜄), 𝐶 = Ker(𝑉), 𝐷 =

Ker(𝐹). In this case, we have 𝑑𝑙𝑖, 𝑗 = 𝑑𝑖 , and 𝐶 =
⊕

𝑗 𝐶 𝑗 , where

𝐶 𝑗 � 𝑘 [𝜀𝑖] ⊕𝑑𝑖 ⊂ 𝑘 [𝜀𝑖] ⊕2𝑑𝑖 .

Similar to the case (AL/AU), such data induce an F-zip (𝑀 ′, 𝐶 ′, 𝐷 ′, 𝜄′) with Grdt
𝑖,0-structure, with type

(1𝑔, 0𝑔)𝑒𝑖 𝑓𝑖 .
On the other hand, fixing an isomorphism M𝑦 � Λspl

𝑘 with associated F-zip (Λspl
𝑘 , 𝐶, 𝐷, 𝜄), we have

M𝑒𝑖
𝑖 = 𝜀−1

𝑖 (𝜀𝑖𝐶)/𝜀𝑖𝐶, M1
𝑖 = 𝜀

𝑒𝑖−1
𝑖 Λ𝑘,𝑖 .

By identifying M𝑒𝑖
𝑖 and M1

𝑖 , our construction in subsection 3.2 induces the same F-zip with Grdt
𝑖,0-

structure (𝑀 ′, 𝐶 ′, 𝐷 ′, 𝜄′) as that at x. This finishes the proof. �

Corollary 3.17. The 𝜇-ordinary locus of 𝒜spl
𝑘 coincides with the maximal EO stratum, thus it is open

dense in 𝒜
spl
𝑘 .
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Proof. Note that the Weil restriction of a quasi-split group remains quasi-split, so the group 𝐺Q𝑝 is
quasi-split. Let 𝑈EKOR be the maximal EKOR stratum of 𝒜𝑘 . Then 𝑈EKOR ⊂ 𝑈KR. The main result of
[24] shows that the 𝜇-ordinary locus of 𝒜𝑘 is the same as𝑈EKOR. By the above proposition, we have

𝜋−1(𝑈EKOR) = 𝑈,

hence the maximal EO stratum U coincides with the 𝜇-ordinary locus of 𝒜spl
𝑘 . �

The open density of the 𝜇-ordinary locus was proved in [6, Theorem 1.2] by a different method.

3.6. Hodge strata and pullbacks of Kottwitz-Rapoport strata

In [6], Bijakowski-Hernandez introduced a Hodge stratification. Here, we provide an interpretation of
their Hodge stratification in our language.

Recall the local setup of [5, 6]. Let L be a finite extension of Q𝑝 of degree 𝑛 = 𝑒 𝑓 , where e is
the ramification index, and f the residue degree of 𝐿 |Q𝑝 . Let 𝜋 be a uniformizer of O𝐿 . Let G be a
p-divisible group over k with O𝐿 action 𝜄, such that its height is 𝑛ℎ. This is the local geometric datum
in the case of type (AL). In the case of type (C) or (AU), we require moreover that there to be a
polarization 𝜆 : G → G∨ of G. Note that even in the type (AL) case, we have a natural polarization
𝜆 : G × G∨ → G∨ × G. Let (𝑀, 𝐹) be the contravariant F-crystal associated to the p-divisible group
G. Then M is a finite free 𝑊 (𝑘)-module of rank 𝑛ℎ and 𝐹 : 𝑀 → 𝑀 a 𝜎-linear injective morphism.
The O𝐿-action induces a decomposition of the𝑊 (𝑘)-module

𝑀 =
⊕
𝜏∈𝐽

𝑀𝜏 ,

where 𝐽 := Hom(O𝐿ur ,𝑊 (𝑘)), and 𝑀𝜏 is the 𝑊 (𝑘)-submodule of M such that O𝐿-acts through
𝜏 : O𝐿ur → 𝑊 (𝑘). In the case of type (C) or (AU), there is an induced perfect pairing 𝑀 × 𝑀 → 𝑊 (𝑘)
from 𝜆, which is compatible with the decomposition. As F is 𝜎-linear, we have

𝐹 (𝑀𝜎−1𝜏) ⊂ 𝑀𝜏 .

For each 𝜏 ∈ 𝐽, there is an isomorphism

𝑀𝜏/𝐹 (𝑀𝜎−1𝜏) �
⊕

1≤𝑖≤ℎ
𝑊 (𝑘)/𝑎𝜏,𝑖𝑊 (𝑘),

where each 𝑎𝜏,𝑖 ∈ 𝑊 (𝑘) − {0} and we assume that

𝑣(𝑎𝜏,1) ≥ 𝑣(𝑎𝜏,2) ≥ · · · ≥ 𝑣(𝑎𝜏,ℎ).

For each 0 ≤ 𝑖 ≤ ℎ, the i-th coordinate of the Hodge polygon is:

HdgO𝐿 ,𝜏 (𝑀, 𝐹) (𝑖) := 𝑣(𝑎𝜏,1) + · · · + 𝑣(𝑎𝜏,ℎ−𝑖+1).

Note that our polygon is upper convex, whereas [5] uses lower convex polygon. All statements of loc.
cit. about polygons still hold, after replacing minimal by maximal. The Hodge polygon of G = (G, 𝜄, 𝜆)
is defined as a polygon starting at (0, 0) and ending at (ℎ, 𝑑) such that for 0 ≤ 𝑖 ≤ ℎ

Hdg(G) (𝑖) = 1
𝑓

∑
𝜏∈𝐽

HdgO𝐿 ,𝜏 (𝑀, 𝐹) (𝑖),
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where 𝑑 = 1
𝑓

∑
𝜏∈𝐽 𝑑𝜏 and 𝑑𝜏 =

∑ℎ
𝑖=1 𝑣(𝑎𝜏,𝑖). The precise form of the pair of numbers (ℎ, 𝑑) depends

on the type (C), (AL) or (AU) which is being studied. Note that since we have an isomorphism

𝜔G � 𝑀/𝐹𝑀

as O𝐿-modules, the Hodge polygon of G depends only on the O𝐿-module 𝜔G.
Now fix integers 0 ≤ 𝑑𝑙𝜏 ≤ ℎ for 𝜏 ∈ 𝐽, 1 ≤ 𝑙 ≤ 𝑒, we say that (𝑀, 𝐹) satisfies the Pappas-Rapoport

condition with respect to 𝜇 := (𝑑𝑙𝜏), if for every 𝜏, there exists a filtration

𝐹𝜏𝑀𝜎−1 (𝜏) = Fil0 𝑀𝜏 ⊂ Fil1 𝑀𝜏 ⊂ · · · ⊂ Fil𝑒 𝑀𝜏 = 𝑀𝜏 ,

such that

◦ For each 0 ≤ 𝑙 ≤ 𝑒, Fil𝑙 𝑀𝜏 is a sub𝑊 (𝑘)-module of 𝑀𝜏 ,
◦ One has 𝜋 · Fil𝑙 𝑀𝜏 ⊂ Fil𝑙−1 𝑀𝜏 for all 1 ≤ 𝑙 ≤ 𝑒,
◦ Fil𝑙 𝑀𝜏/Fil𝑙−1 𝑀𝜏 is a k-vector space of dimension 𝑑𝑙𝜏 for all 1 ≤ 𝑙 ≤ 𝑒.

Given the Pappas-Rapoport condition with respect to 𝜇, the maximal possible Hodge polygon is given
by the polygon PR(𝜇), where for each 𝜏, let

PR𝜏 (𝜇) (𝑠) :=
1
𝑒

𝑒∑
𝑙=1

max(𝑠 − ℎ + 𝑑𝑙𝜏),

and PR(𝜇) is the average of PR𝜏 (𝜇) for 𝜏 ∈ 𝐽. Recall the following result

Theorem 3.18 [5]. Let G = (G, 𝜄, 𝜆, Fil•) be a p-divisible group over a perfect field k of characteristic
p, with an O𝐿-action, plus a Pappas-Rapoport condition given by 𝜇 = (𝑑𝑙𝜏)𝜏,𝑙 . We have three polygons
associated to G, the Newton polygon (upper convex) Newt(G) and the Hodge polygon Hdg(G) with
respect to G, and a PR polygon PR(𝜇) determined by the Pappas-Rapoport condition with respect to 𝜇.
One has the following inequalities:

Newt(G) ≤ Hdg(G) ≤ PR(𝜇).

Using our language, let 𝑥 ∈ 𝒜spl(𝑘), and G𝑥 the p-divisible group associated to x. Then G𝑥

decomposes as direct sum G𝑥 =
⊕𝑟

𝑖=1 G𝑥,𝑖 , and each G𝑥,𝑖 is a p-divisible group over k with O𝐹𝑖 -
action and polarization 𝜆, plus a PR condition with respect to 𝜇𝑖 . So for each i, there are three polygons
Newt𝑖 (𝑥) := Newt(G𝑥,𝑖),Hdg𝑖 (𝑥) := Hdg(G𝑥,𝑖), PR(𝜇𝑖) associated to x. Note that for each i, we have
an isomorphism of O𝐹𝑖 -module 𝜔𝑥,𝑖 � 𝜔G𝑥,𝑖 .

Corollary 3.19. Let𝑈KR be the maximal open dense KR stratum of 𝒜𝑘 and 𝜋 : 𝒜spl
𝑘 → 𝒜𝑘 the forgetful

morphism. For each 𝑥 ∈ 𝒜
spl
𝑘 , we have Hdg𝑖 (𝑥) = PR(𝜇𝑖) for all i if and only if 𝑥 ∈ 𝜋−1 (𝑈KR).

Proof. This follows from the description of the maximal KR stratum in the proof of Proposition 3.15. �

Note that 𝜋−1 (𝑈KR) is the generalized Rapoport locus in [6], where it is defined as the maximal Hodge
stratum of 𝒜spl

𝑘 . Also note in general the closure relation does not hold for the Hodge stratification, as
claimed by [6].

We give a group-theoretic reformulation of Hodge polygon. For simplicity, we assume 𝑟 = 1 (the
general case follows by combining the independent data for all 𝑖 ∈ 𝐼) in our previous notations. Let
𝐹1 be a finite extension over Q𝑝 of degree 𝑛1 = 𝑒1 𝑓1, with 𝑒1 its ramification index and 𝑓1 its residue
degree. We also fix an unramified group H over 𝐹1 and let 𝐺1 = Res𝐹1 |Q𝑝 𝐻. The maximal parahoric
subgroup of 𝐺1(Q𝑝) is 𝐾 = 𝐻 (O𝐹1 ), where we use the same H as the reductive model of H. Let Q̆𝑝
be the completion of maximal unramified extension of Q𝑝 . For simplicity, we will write 𝐺̆1 = 𝐺1 (Q̆𝑝)
and similar symbols for other groups.
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Choose a maximal torus 𝑇 ⊂ 𝐺1 and N its normalizer. Let 𝐼 be the Iwahori subgroup of 𝐺̆1. The
Iwahori-Weyl group is

𝑊 = 𝑁 (Q̆𝑝)/(𝑇 (Q̆𝑝) ∩ 𝐼).

We have the following isomorphism

𝑊 � 𝑋∗(𝑇)Γ0 �𝑊0,

where Γ0 = Gal(Q𝑝/Q̆𝑝) and 𝑊0 is the relative Weyl group of 𝐺Q̆𝑝 . Let 𝐾̆ ⊂ 𝐺̆1 be the induced
parahoric subgroup and

𝑊𝐾 = (𝑁 (Q̆𝑝) ∩ 𝐾̆)/(𝑇 (Q̆𝑝) ∩ 𝐼) ⊂ 𝑊,

then𝑊𝐾 � 𝑊0 is the section of𝑊0 in𝑊 , since K is a special parahoric subgroup. The following natural
bijection

𝑊𝐾 \𝑊/𝑊𝐾 � 𝑋∗(𝑇)Γ0/𝑊0

gives the natural injective map

ℎ : 𝑊𝐾 \𝑊/𝑊𝐾 → 𝑋∗(𝑇)+Γ0 ,Q
.

Since 𝐺1 is a Weil restriction of 𝐻/𝐹1, this implies

𝐺̆1 = 𝐻 (𝐹1 ⊗Q𝑝 Q̆𝑝) =
∏

𝜏:𝐹ur
1 →Q̆𝑝

𝐻 (𝐹̆1).

For simplicity, we just write 𝐺̆1 = 𝐻̆ 𝑓1 , where 𝐻̆ = 𝐻 (𝐹̆1). Similarly we have 𝑇Q̆𝑝 � 𝑇 𝑓1 with 𝑇1 ⊂ 𝐻 a
maximal torus, which induces natural maps

𝑋∗(𝑇)Γ0 ,Q � (𝑋∗(𝑇1)Γ0 ,Q) 𝑓 → 𝑋∗(𝑇1)Γ0 ,Q.

The last map sends (𝜒1, . . . , 𝜒 𝑓 ) to 1
𝑓 (𝜒1 + · · · + 𝜒 𝑓 ). Composing this map with h gives us a map

Hdg : 𝑊𝐾 \𝑊/𝑊𝐾 → 𝑋∗(𝑇1)+Γ0 ,Q
.

Recall the 𝜇-admissible set Adm(𝜇)𝐾 ⊂ 𝑊𝐾 \𝑊/𝑊𝐾 . Restricting Hdg to it gives the following propo-
sition.

Proposition 3.20. For 𝑥 ∈ 𝒜spl(𝑘), let 𝑤 ∈ Adm(𝜇)𝐾 be the KR type of 𝜋(𝑥) ∈ 𝒜(𝑘). Then the Hodge
polygon of x is given by Hdg(𝑤) ∈ 𝑋∗(𝑇1)+Γ0 ,Q

.

Proof. Let (𝑀, 𝐹) be the F-crystal with additional structure attached to x, which depends only on 𝜋(𝑥).
The isomorphism class of 𝑀/𝐹𝑀 asO𝐿 ⊗𝑊 (𝑘)-module is given by an element in Adm(𝜇)𝐾 , consisting
of a tuple in 𝑋∗(𝑇)Γ0 . The average of the tuple in 𝑋∗(𝑇)Γ0 gives the Hodge polygon of the F-crystal
(𝑀, 𝐹), which is (as usual) viewed as an element of 𝑋∗(𝑇1)+Γ0 ,Q

. �

Corollary 3.21. The Hodge stratification of 𝒜spl
𝑘 descends to 𝒜𝑘 under the map 𝜋 : 𝒜spl

𝑘 → 𝒜𝑘 . In
particular, each Hodge stratum of 𝒜spl

𝑘 is a finite disjoint union of preimages of Kottwitz-Rapoport
strata of 𝒜𝑘 under the natural map 𝜋 : 𝒜spl

𝑘 → 𝒜𝑘 .

Recall that Corollary 3.19 states that the maximal Hodge stratum is exactly the preimage of the
maximal Kottwitz-Rapoport stratum. One checks easily that Hdg(𝑤0) = PR(𝜇).
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4. Hasse invariants for EO strata

In this section, we apply the general theory of group-theoretical Hasse invariants of [19, 20] to the
smooth scheme 𝒜

spl
0 , by the map 𝜁 : 𝒜spl

0 → Gspl
0 -Zip𝜇𝜅 constructed in the last section. We will discuss

some examples.

4.1. Group-theoretical Hasse invariants

We come back to the setting of subsection 3.1. Let (𝐺, 𝜇) be a cocharacter datum over F𝑝 , this means
that G is a connected reductive group over F𝑝 and 𝜇 is a cocharacter of G defined over a finite field 𝜅
over F𝑝 . Recall that (𝑃+, 𝑃−) is the pair of opposite parabolic subgroups of 𝐺𝜅 determined by 𝜇, and
𝐿 := 𝑃− ∩ 𝑃+ the Levi subgroup of 𝐺𝜅 . Let 𝑈+ (resp. 𝑈−) the unipotent radical of 𝑃+ (resp. 𝑃−). The
zip group 𝐸𝐺,𝜇 is the subgroup of 𝐺𝜅 × 𝐺𝜅

𝐸𝐺,𝜇 = {(𝑝+ = 𝑙𝑢+, 𝑝− = 𝑙 (𝑝)𝑢−) ∈ 𝑃+ × 𝑃 (𝑝)
− | 𝑙 ∈ 𝐿, 𝑢+ ∈ 𝑈+, 𝑢− ∈ 𝑈 (𝑝)

− }.

It acts on 𝐺𝜅 as (𝑝+, 𝑝−) · 𝑔 := 𝑝+𝑔𝑝−1
− . By Theorem 3.4, there is a canonical isomorphism of stacks

𝐺-Zip𝜇𝜅 � [𝐸𝐺,𝜇\𝐺𝜅 ] .

Let 𝑘 = 𝜅 and 𝐺-Zip𝜇 = 𝐺-Zip𝜇𝑘 = [𝐸𝐺,𝜇,𝑘\𝐺𝑘 ]. Given 𝜆 ∈ 𝑋∗(𝐿), which can be viewed as an
element of 𝑋∗(𝐸𝐺,𝜇) through the projection 𝐸𝐺,𝜇 → 𝐿, one can associate a line bundle V (𝜆) over
[𝐸𝐺,𝜇,𝑘\𝐺𝑘 ] such that

𝐻0([𝐸𝐺,𝜇,𝑘\𝐺𝑘 ],V (𝜆)) = { 𝑓 : 𝐺𝑘 → A1
𝑘 | 𝑓 (𝑔𝑥) = 𝜆(𝑔) 𝑓 (𝑥) for all 𝑔 ∈ 𝐸𝐺,𝜇,𝑘 , 𝑥 ∈ 𝐺𝑘 }.

Let S be a scheme or an algebraic stack over k with a morphism 𝜁 : 𝑆 → 𝐺-Zip𝜇.

Definition 4.1. For every 𝑤 ∈ 𝐽𝑊 , denote by 𝑆𝑤 the EO stratum of S associated to w, i.e., 𝑆𝑤 = 𝜁−1 (𝑤)
and 𝑆𝑤 its Zariski closure in S. A Hasse invariant for (𝜆, 𝑆𝑤 ) is a section ℎ𝑤 ∈ 𝐻0 (𝑆𝑤 ,V (𝑛𝜆)) for
some positive integer n, such that its nonvanishing locus 𝐷 (ℎ𝑤 ) is 𝑆𝑤 . If such ℎ𝑤 exists for all w, then
𝜆 is called a Hasse generator for S.

The following proposition shows that the Hasse generator is unique up to 𝑘× if it exists.

Proposition 4.2 [19]. Let 𝜆 ∈ 𝑋∗(𝐿) and𝑈𝜇 the unique open dense E-orbit in 𝐺𝑘 , then

(1) One has dim𝑘 (𝐻0 (𝐺-Zip𝜇,V (𝜆))) ≤ dim𝑘 (𝐻0(𝑈𝜇,V (𝜆))) ≤ 1.
(2) There is a positive integer 𝑁𝜇 such that the space 𝐻0(𝑈𝜇,V (𝑁𝜇𝜆)) has dimension one.

Recall that a cocharacter datum (𝐺, 𝜇) is Hodge type if there is a symplectic embedding𝐺 ↩→ GSp2𝑔
over F𝑝 such that 𝜇 induces the standard minuscule cocharacter of GSp2𝑔. For such datum, there is a
Hodge line bundle V (𝜂𝜔) over [𝐸𝐺,𝜇\𝐺𝜅 ] by pull-back from the given symplectic embedding of G (in
general V (𝜂𝜔) depends on the symplectic embedding). We have the following theorem.

Theorem 4.3 [19]. Let (𝐺, 𝜇) be a cocharacter datum over F𝑝 and assume that 𝜇 is minuscule. For
𝑝 > 2, the stack 𝐺-Zip𝜇 admits a Hasse generator.

Moreover, if (𝐺, 𝜇) is Hodge type (𝑝 = 2 allowed), then the Hodge line bundle is associated to a
Hasse generator.
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4.2. Length Hasse invariants

Keep notations as above. Let 𝑑 = 〈2𝜌, 𝜇〉, where 𝜌 is the half sum of positive (absolute) roots of G.
Recall the subsets 𝐺𝑤 ⊂ 𝐺𝑘 as in Theorem 3.5 attached to 𝑤 ∈ 𝐽𝑊 . For any integer 0 ≤ 𝑗 ≤ 𝑑, define

𝐺 𝑗 =
⋃

ℓ (𝑤)= 𝑗
𝐺𝑤

with the reduced subscheme structure. It is called the j-th length stratum of 𝐺𝑘 . By [20], we have the
following identities:

𝐺 𝑗 =
⋃

ℓ (𝑤)= 𝑗
𝐺𝑤 =

⋃
ℓ (𝑤) ≤ 𝑗

𝐺𝑤 .

In the rest of this section, assume that (𝐺, 𝜇) is of Hodge type.
Proposition 4.4 ([20, Proposition 5.2.2]). There exists an integer 𝑁 ′ ≥ 1 such that for each 0 ≤ 𝑗 ≤ 𝑑,
a section ℎ 𝑗 ∈ 𝐻0 ([𝐸𝐺,𝜇,𝑘\𝐺 𝑗 ],V (𝜂𝜔)𝑁

′ ) such that 𝐷 (ℎ 𝑗 ) = [𝐸𝐺,𝜇,𝑘\𝐺 𝑗 ].
Such ℎ 𝑗 will be called a length Hasse invariant.
Now we assume that S is a k-scheme and 𝜁 : 𝑆 → 𝐺-Zip𝜇 is a morphism of stacks

(maybe not smooth). For a character 𝜆 ∈ 𝑋∗(𝐿), write V𝑆 (𝜆) = 𝜁∗(V (𝜆)). For 𝑤 ∈ 𝐽𝑊
and 𝑗 ∈ {0, . . . , 𝑑}, we define the locally closed subsets of S: 𝑆𝑤 , 𝑆∗𝑤 , 𝑆 𝑗 , 𝑆∗𝑗 as preimage of
[𝐸𝐺,𝜇,𝑘\𝐺𝑤 ], [𝐸𝐺,𝜇,𝑘\𝐺𝑤 ], [𝐸𝐺,𝜇,𝑘\𝐺 𝑗 ], [𝐸𝐺,𝜇,𝑘\𝐺 𝑗 ], respectively, equipped with reduced sub-
scheme structure from S.
Proposition 4.5 ([20, Proposition 5.2.3]). Assume that
(1) The scheme S is equi-dimensional of dimension d.
(2) The stratum 𝑆𝑤 is non-empty for all 𝑤 ∈ 𝐽𝑊 .
(3) The stratum 𝑆𝑒 = 𝑆0 is zero-dimensional.
Then we have:
(1) The schemes 𝑆 𝑗 and 𝑆∗𝑗 are equi-dimensional of dimension j.
(2) The sections ℎ 𝑗 are injective; equivalently 𝑆 𝑗 is open dense in 𝑆∗𝑗 .
(3) For 𝑤 ∈ 𝐽𝑊 , 𝑆𝑤 is equi-dimensional of dimension ℓ(𝑤).

4.3. Hasse invariants on splitting models

Back to splitting models, let 𝑆 = 𝒜
spl
𝑘 . Recall that by Theorem 3.13, there is a smooth surjective

morphism

𝜁 : 𝑆 → Gspl
0 -Zip𝜇𝑘 .

For each 𝑤 ∈ 𝐽𝑊 , let 𝑆𝑤 = 𝜁−1 (𝑤) be the EO stratum of S. By our construction, Gspl
0 is the similitude

group of the lattice Λspl
0 with a pairing induced from that on Λ, hence the pair (Gspl

0 , 𝜇) is of Hodge
type and the general theory of Hasse invariants applies. For simplicity, here in the following we denote
E = 𝐸Gspl

0 ,𝜇,𝑘
.

Corollary 4.6. There exists an integer 𝑁 ≥ 1 such that for every 𝑤 ∈ 𝐽𝑊 , there exists a section
ℎ𝑤 ∈ 𝐻0([E\Gspl

0,𝑤 ],V (𝑁𝜂𝜔)) whose non-vanishing locus is precisely [E\Gspl
0,𝑤 ].

Corollary 4.7. Fix a large enough integer N as in the above corollary. For every EO stratum
𝑆𝑤 ⊂ 𝑆, the section 𝜁∗(ℎ𝑤 ) ∈ 𝐻0(𝑆𝑤 , 𝜔𝑁Hdg) is 𝐺 (A𝑝𝑓 )-equivariant, and its non-vanishing locus is
𝐷 (𝜁∗ (ℎ𝑤 )) = 𝑆𝑤 .
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Here we denote 𝜔Hdg as the Hodge line bundle with weight 𝜂𝜔 on 𝑆 = 𝒜
spl
𝑘 . We will use the same

symbols ℎ𝑤 as their pullbacks to 𝑆𝑤 and call them the Hasse invariants of S. We also have the length
Hasse invariants on S, and by our previous results in section 3, Proposition 4.5 holds for S.

4.4. Example: Hilbert modular varieties

Now consider the splitting models of Hilbert modular varieties. We would like to compare our construc-
tion with that of Reduzzi-Xiao in [56].

Let 𝐿 |Q be a totally real field extension and 𝐺 = (Res𝐿 |QGL2)det∈Q× the similitude group associated
to the Hilbert moduli space with respect to L. Fix a prime number p and a prime to p level structure
𝐾 𝑝 ⊂ 𝐺 (A𝑝𝑓 ), which is defined in [56] as Γ00 (N )-level structures. Let F be a Galois extension of Q𝑝
containing all the p-adic factors of L. Then we have a splitting model 𝒜spl defined over O𝐹 with level
𝐾 𝑝 . Let k be an algebraic closure of the residue field of O𝐹 , and 𝒜

spl
0 = 𝒜spl ⊗ 𝑘 .

For any k-scheme S, 𝒜spl
0 (𝑆) classifies the isomorphism class of tuples (𝐴, 𝜆, 𝛼,ℱ•), where

(1) (𝐴, 𝜆) is a polarized abelian scheme over S with O𝐿-action, with level structure 𝛼.
(2) ℱ• = (ℱ𝑙

𝑖, 𝑗 )1≤𝑖≤𝑟 ,1≤ 𝑗≤ 𝑓𝑖 ,0≤𝑙≤𝑒𝑖 , each ℱ𝑙
𝑖, 𝑗 is a locally free sheaf over S such that

◦ 0 = ℱ0
𝑖, 𝑗 ⊂ ℱ1

𝑖, 𝑗 ⊂ · · · ⊂ ℱ𝑒𝑖
𝑖, 𝑗 = 𝜔𝐴/𝑆,𝑖, 𝑗 and each ℱ𝑙

𝑖, 𝑗 is stable under the O𝐿-action.
◦ each subquotient ℱ𝑙

𝑖, 𝑗/ℱ
𝑙−1
𝑖, 𝑗 is a locally free O𝑆-module of rank one.

◦ the O𝐹 -action on each subquotient ℱ𝑙
𝑖, 𝑗/ℱ

𝑙−1
𝑖, 𝑗 factors through 𝜎𝑙𝑖, 𝑗 : O𝐿 → O𝐹 .

Consider 𝑆 = 𝒜
spl
0 and (𝐴, 𝜆, 𝛼,ℱ•) the universal object over S. The sheaf H𝑖, 𝑗 = 𝐻1

dR (𝐴/𝑆)𝑖, 𝑗 is a
locally free O𝑆 [𝜀𝑖]-module (𝜀𝑒𝑖𝑖 = 0) of rank two, where the 𝜋𝑖-action is given by 𝜀𝑖 . For each 𝑖, 𝑗
denote 𝜔𝑖, 𝑗 = 𝜔𝐴/𝑆,𝑖, 𝑗 .

For each 𝑖, 𝑗 , 𝑙, let ℎ𝑙𝑖, 𝑗 be the partial Hasse invariant defined by [56], which is a section of a certain
line bundle over S. For a point 𝑥 = (𝐴,ℱ•) ∈ 𝑆(𝑘), the construction of partial Hasse invariants shows
that
◦ For 2 ≤ 𝑙 ≤ 𝑒𝑖 , ℎ𝑙𝑖, 𝑗 (𝑥) = 0 if and only if 𝜀𝑖ℱ𝑙

𝑖, 𝑗 = ℱ𝑙−2
𝑖, 𝑗 .

◦ For 𝑙 = 1, ℎ1
𝑖, 𝑗 (𝑥) = 0 if and only if ℱ1

𝑖, 𝑗 = Ker(Ver1
𝑖, 𝑗 ).

The vanishing loci of these ℎ𝑙𝑖, 𝑗 cut out the stratification in [56]. We claim that their stratification
coincides with the Ekedahl-Oort stratification defined in this paper.

For each 𝑖, 𝑗 , 𝑙 we have a locally free sheaf M𝑙
𝑖, 𝑗 = 𝜀

−1
𝑖 ℱ𝑙−1

𝑖, 𝑗 /ℱ
𝑙−1
𝑖, 𝑗 . Let M𝑖 =

⊕
𝑗 ,𝑙M𝑙

𝑖, 𝑗 . By our
construction in subsection 3.2, there is a natural 𝐺𝑖 := Res𝜅𝑖 |F𝑝 GL𝑒𝑖2 -zip

(M𝑖 , 𝐶𝑖 , 𝐷𝑖 , 𝜑0, 𝜑1)

of type 𝜇𝑖 = (1, 0)𝑒𝑖 𝑓𝑖 over S. The maps 𝑉 𝑙𝑖, 𝑗 : M𝑙
𝑖, 𝑗 → M𝑙−1

𝑖, 𝑗 (for 𝑙 ≥ 2) and 𝑉1
𝑖, 𝑗 : M1

𝑖, 𝑗 → M𝑒𝑖 , (𝑝)
𝑖, 𝑗−1

(for 𝑙 = 1) induce maps

𝑉 𝑙𝑖, 𝑗 : 𝜔𝑙𝑖, 𝑗 → 𝜔𝑙−1
𝑖, 𝑗 𝑙 ≥ 2, and 𝑉1

𝑖, 𝑗 : 𝜔1
𝑖, 𝑗 → 𝜔𝑒𝑖 , (𝑝)𝑖, 𝑗−1 = 𝜔𝑒𝑖 ,⊗𝑝𝑖, 𝑗−1

by restriction to 𝜔. Such morphisms give sections of 𝜔𝑙−1
𝑖, 𝑗

⊗
(𝜔1

𝑖, 𝑗 )−1 and 𝜔𝑒𝑖 ,⊗𝑝𝑖, 𝑗−1
⊗

(𝜔1
𝑖, 𝑗 )−1 respec-

tively, which are the partial Hasse invariants of Reduzzi-Xiao. More precisely, 𝜔𝑙𝑖, 𝑗 is just a Frobenius
twisted version of 𝜔𝜏𝑙𝔭𝑖 , 𝑗

in [56], i.e., (𝜔𝑙𝑖, 𝑗 )
(𝑝) = 𝜔𝜏𝑙𝔭𝑖 , 𝑗

. Now by [27, Proposition 5.2.3], every codimen-
sion one closed Ekedahl-Oort stratum of zip stacks can be cut out from zip partial Hasse invariants. So
we at least have codimension one closed EO strata coincide with those in Reduzzi-Xiao’s definition.

In the Hilbert case, any EO stratum can be cut out from codimension one strata as the associated Weyl
group is isomorphic to (Z/2Z)𝑛. So all the EO strata of splitting models of Hilbert modular varieties
coincide with the strata constructed by the partial Hasse invariants in [56].
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4.5. Example: Hilbert-Siegel case

Let L be a totally real field over Q with 𝑛 = [𝐿 : Q] > 1 and

𝐺 = (Res𝐿 |Q GSp2𝑔)det∈Q×

the similitude subgroup of Res𝐿 |Q GSp2𝑔. In fact one can also work with Shimura varieties associated to
the sightly larger group Res𝐿 |Q GSp2𝑔, which is of abelian type, by taking some suitable group quotient
which does not change the geometry at p, see, for example, [8, 61, 16, 31]. Fix a prime to p level
𝐾 𝑝 ⊂ 𝐺 (A𝑝𝑓 ) which is sufficiently small. Let 𝒜spl be the splitting model over O𝐹 corresponding to G.
Note that when 𝑔 = 1, we return to the Hilbert case in the last subsection.

As 𝐿 = 𝐵, we have

𝐿 ⊗Q Q𝑝 �
𝑟∏
𝑖=1

𝐹𝑖

and

Gspl
0 ⊂

𝑟∏
𝑖=1

(Res𝜅𝑖 |F𝑝 GSp2𝑔)𝑒𝑖 .

Recall that the EO index set of GSp2𝑔 is {0, 1}𝑔 (see [65, §5.4]), so the EO index set 𝐽𝑊 of 𝒜spl
0 can

be identified with ({0, 1}𝑔)𝑛, under the isomorphism Gspl
0,𝜅 ,𝑑𝑒𝑟 ⊗F𝑝 𝑘 � (Sp2𝑔)𝑛. Given 𝑥 = (𝐴,ℱ•) ∈

𝒜
spl
0 (𝑘), the EO type of x can be written as a tuple 𝑎 = (𝑎𝑙𝑖, 𝑗 ), where 𝑎𝑙𝑖, 𝑗 ∈ {0, 1}𝑔. For each index

𝑖, 𝑗 , 𝑙, by the construction in subsection 3.2 at the point x, we have an F-zip structure at the standard
tuple (Λ𝑙𝑖, 𝑗 ⊗ 𝜅, 𝐶

𝑙
0,𝑖, 𝑗 , 𝐷

𝑙
0,𝑖, 𝑗 ) (of type 𝜇𝑙𝑖, 𝑗 ) by trivializing the filtrations

M𝑙
𝑖, 𝑗 ⊃ 𝐶

𝑙
𝑖, 𝑗 ⊃ 0, and 0 ⊂ 𝐷𝑙𝑖, 𝑗 ⊂ M𝑙+1

𝑖, 𝑗 .

The classification of F-zips of type 𝜇𝑙𝑖, 𝑗 is given by the set {0, 1}𝑔. This gives the element 𝑎 = (𝑎𝑙𝑖, 𝑗 ) ∈
({0, 1}𝑔)𝑛 with respect to x.

We give a description of the 𝜇-ordinary Hasse invariants. For each i and 𝑙 ≥ 2, we have defined a
map 𝑉 𝑙𝑖 : M𝑙

𝑖 → M𝑙−1
𝑖 , which reduces to a morphism

𝑉 𝑙𝑖 : 𝜔𝑙𝑖 → 𝜔𝑙−1
𝑖 , where 𝜔𝑙𝑖 :=

⊕
𝑗

𝐶𝑙𝑖, 𝑗 .

For 𝑙 = 1, we have the morphism

𝑉1
𝑖 : 𝜔1

𝑖 → (𝜔𝑒𝑖𝑖 )
⊗𝑝 .

Taking summation induces a morphism

det(𝑉𝑖) : det(𝜔1
𝑖 )
⊗

· · ·
⊗

det(𝜔𝑒𝑖𝑖 ) → det(𝜔1
𝑖 )
⊗

· · ·
⊗

det(𝜔𝑒𝑖−1
𝑖 )

⊗
det(𝜔𝑒𝑖𝑖 )

⊗𝑝 ,

and a global section

ℎ𝑖 ∈ 𝐻0(𝒜spl
0 , det(𝜔𝑒𝑖𝑖 )

⊗(𝑝−1) ).

Let h be the product of the ℎ𝑖 , which is a section of the product of the line bundles det(𝜔𝑒𝑖𝑖 )
⊗(𝑝−1) . It

coincides with the 𝜇-ordinary Hasse invariant coming from the zip stack.
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4.6. Example: Unitary Shimura varieties

Let 𝐿+ be a totally real field and 𝐿 |𝐿+ a totally imaginary quadratic extension. We denote by 𝑐 ∈
Gal(𝐿/𝐿+) the nontrivial element. Let 𝐼 = Hom(𝐿+,Q) and for any 𝜎 ∈ 𝐼 we fix a choice of extension
𝜏 : 𝐿 → Q of 𝜎. Then we have Hom(𝐿,Q) = 𝐼

∐
𝐼 ◦ 𝑐.

Let V be an L-vector space of dimension n together with a hermitian form 〈·, ·〉. We assume that
this form is not totally definite. Let 𝐺 = 𝐺𝑈 (𝑉, 〈·, ·〉) be the associated reductive group of unitary
similitudes over Q. Let (𝑝𝜏 , 𝑞𝜏)𝜏∈𝐼 be the signature of 𝐺R so that 𝐺R = 𝐺 (

∏
𝜏∈𝐼 𝑈 (𝑝𝜏 , 𝑞𝜏)) and we

get a standard ℎ : ResC |R G𝑚 → 𝐺R. If we write 𝐺1 = 𝑈 (𝑉, 〈·, ·〉) as the corresponding unitary group
over Q, then 𝐺1 = Res𝐿+ |Q𝑈, where U is the unitary group over 𝐿+ defined by (𝑉, 〈·, ·〉).

Let 𝑝 > 2 be a prime and Λ ⊂ 𝑉Q𝑝 be a PEL O𝐿-lattice. We get a parahoric group scheme G over
Z𝑝 . Let 𝑣1, · · · , 𝑣𝑟 be the places of 𝐿+ over p. For each 𝑣𝑖 , as in subsection 2.1, we assume that 𝑣𝑖 is
unramified in L, thus we have the following two cases:

◦ (AL): 𝑣𝑖 splits in L,
◦ (AU): 𝑣𝑖 is inert in L.

Fix a tame level 𝐾 𝑝 ⊂ 𝐺 (A𝑝𝑓 ) and let 𝐾 = G (Z𝑝)𝐾 𝑝. Let E be the local reflex field and 𝐹 |Q𝑝 a
sufficiently large field extension as before. We get integral models over O𝐹 of the associated PEL
moduli space 𝒜

spl
𝐾 → 𝒜𝐾 ⊗O𝐸 O𝐹 .

Over the algebraically closed field k, the group Gspl
0,𝑘 is just the associated similitude subgroup of∏

𝑖, 𝑗 ,𝑙

GL𝑑𝑖 ×G𝑚.

Moreover, the cocharacter has a decomposition 𝜇 =
∏
𝑖, 𝑗 ,𝑙 𝜇

𝑙
𝑖, 𝑗 , where each 𝜇𝑙𝑖, 𝑗 has type (𝑑𝑙𝑖, 𝑗 , 𝑑𝑖−𝑑

𝑙
𝑖, 𝑗 ),

corresponding to some (𝑝𝜏 , 𝑞𝜏) above. By the classification of F-zips in [43] and the decomposition of
Gspl

0 , the EO index set 𝐽𝑊 decomposes as

𝐽𝑊 =
∏
𝑖,𝑙

𝑊 𝑙
𝑖 , where 𝑊 𝑙

𝑖 �
∏

1≤ 𝑗≤ 𝑓𝑖

(𝑆𝑑𝑙𝑖, 𝑗 × 𝑆𝑑𝑖−𝑑𝑙𝑖, 𝑗 ) \ 𝑆𝑑𝑖 ,

where 𝑆𝑑𝑖 is the permutation group of 𝑑𝑖 elements, and (𝑆𝑑𝑙𝑖, 𝑗 ×𝑆𝑑𝑖−𝑑𝑙𝑖, 𝑗 ) is the subgroup of 𝑆𝑑𝑖 consisting
of the permutations of the first 𝑑𝑙𝑖, 𝑗 elements and the permutations of the last 𝑑𝑖 − 𝑑𝑙𝑖, 𝑗 elements. For a
precise description of the minimal length representatives for the left coset (𝑆𝑑𝑙𝑖, 𝑗 × 𝑆𝑑𝑖−𝑑𝑙𝑖, 𝑗 ) \ 𝑆𝑑𝑖 , see
[43] subsection 2.6. The partial order � on 𝐽𝑊 is given by the product of the partial orders on 𝑊 𝑙

𝑖 . We
remark that different types of i induce different Frobenius actions on𝑊 𝑙

𝑖 , which induces different partial
orders � on𝑊 𝑙

𝑖 . The construction of Hasse invariants is the same as above.

5. Extensions to compactifications

To study applications to cohomology, we need to extend the previous constructions to compactifications.
In other words, we need to study the degeneration of F-zips with additional structure on splitting models.
Fortunately, the arithmetic compactifications for general splitting models have already been established
by Lan in [37]. Here we single out the special case of smooth splitting models. It turns out the properties
of these compactifications are as good as those in the unramified setting [33].

5.1. Modifications of moduli spaces and integral models

Before talking about compactifications of splitting models, we need to slightly modify our integral
models following [37]. Recall we have fixed a tame level 𝐾 𝑝 ⊂ 𝐺 (A𝑝𝑓 ) and 𝐾 = 𝐾 𝑝G (Z𝑝). Let M𝐾 be
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the integral model over O𝐸 constructed as in [35] (denoted by −→
MH in [35, 36, 37], where H denotes the

level as in loc. cit.). Then we get an open and closed embedding (cf. [37] Corollary 2.4.8) ofO𝐸 -schemes

M𝐾 ↩→ 𝒜𝐾 𝑝 ,

thus composing with the closed immersion 𝒜𝐾 𝑝 ⊂ 𝒜naive
𝐾 𝑝 we get also a closed immersion M𝐾 ⊂ 𝒜naive

𝐾 𝑝 .
On generic fibers, we have an open and closed embedding of E-schemes (cf. [33] Lemma 1.4.4.2)

M𝐾,𝐸 ↩→ 𝒜𝐾 𝑝 ,𝐸 .

Let (H,ℱ, 𝜄) be the polarized O𝐵 ⊗ OM𝐾 -modules (see Definition A.3) associated to the pullback
of the universal object over 𝒜naive. Here in fact ℱ = 𝜔. By the notation of [37] Proposition 2.3.10, we
define the corresponding splitting model as the moduli scheme of splitting structures of (H,ℱ, 𝜄) over
M𝐾 ⊗ O𝐹

Mspl
𝐾 = Spl+(H,ℱ, 𝜄)/M𝐾 ⊗O𝐹 .

Then we get an induced open and closed embedding of O𝐹 -schemes

Mspl
𝐾 ↩→ 𝒜

spl
𝐾 𝑝 .

The difference of these schemes is bounded by the size of failure of the Hasse principle (cf. [33]
Remark 1.4.3.12). All the results in previous sections still hold for Mspl

𝐾 and M𝐾 , as in fact our previous
constructions can be done for the related integral models of the associated Shimura varieties.

5.2. Arithmetic compactifications of splitting models

We briefly review some basic properties of the toroidal and minimal compactifications of Mspl
𝐾 con-

structed by Lan in [37], which will be used in the following.
Recall that we have a morphism Mspl

𝐾 → M𝐾 ⊗O𝐹 . By [35, 36] we choose a toroidal compactification
Mtor
𝐾,Σ of M𝐾 overO𝐸 associated to a compatible collection Σ of cone decompositions. Over M𝐾 , we have

the polarized O𝐵 ⊗OM𝐾 -modules (H,ℱ, 𝜄) associated to the universal abelian scheme with additional
structure as above. By [37] Proposition 3.1.2, the triple (H,ℱ, 𝜄) uniquely extends to an ℒ-set of
polarized O𝐵 ⊗ OMtor

𝐾,Σ
-modules (Hext,ℱext, 𝜄ext). Then we define

Mspl,tor
𝐾,Σ = Spl+(Hext ,ℱext , 𝜄ext)/Mtor

𝐾,Σ⊗O𝐹

as the scheme of splitting structures of (Hext,ℱext, 𝜄ext) over Mtor
𝐾,Σ ⊗ O𝐹 . By [37] Theorem 3.4.1, for

suitable choice of Σ, the scheme Mspl,tor
𝐾,Σ is normal, projective and flat over O𝐹 , and admits a similar

description as the usual compactifications Mtor
𝐾,Σ.

Proposition 5.1. For a projective smooth Σ, the scheme Mspl,tor
𝐾,Σ is projective and smooth over O𝐹 .

Proof. This follows from [37] Propositions 3.4.13, 3.4.14, and our Proposition 2.3.
Alternatively, the smoothness of Mspl,tor

𝐾,Σ can also be seen from the extended local model diagram in
the next subsection. �

From now on we assume that Σ is projective and smooth. Thus the canonical morphism

Mspl,tor
𝐾,Σ → Mtor

𝐾,Σ ⊗ O𝐹

is a resolution of singularities.
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By [37] Propositions 4.1.22, 4.2.31 and 4.2.34, we have the minimal compactification Mspl,min
𝐾 together

with a canonical morphism
∮

: Mspl,tor
𝐾,Σ → Mspl,min

𝐾 , which fits into a commutative diagram of schemes
over O𝐹 :

Mspl,tor
𝐾,Σ

��

��

Mtor
𝐾,Σ ⊗ O𝐹

��
Mspl,min
𝐾

�� Mmin
𝐾 ⊗ O𝐹 .

By loc. cit. Theorem 4.3.1, the minimal compactification Mspl,min
𝐾 admits a similar description to Mmin

𝐾 .
Let 𝑍spl ⊂ Mspl,min

𝐾 be a boundary stratum. There is a corresponding boundary stratum 𝑍 ⊂ Mmin
𝐾 ,

which is an analogue of M𝐾 for some boundary PEL datum (O𝐵, ∗,Λ𝑍 , 〈·, ·〉𝑍 , ℎ𝑍 ) so that we have the
tautological abelian scheme (𝐵, 𝜆, 𝜄) over Z with associated (♯H, ♯ℱ, ♯𝜄). By construction, we have

𝑍spl = Spl+(♯H,♯ℱ,♯ 𝜄)/𝑍 ⊗O𝐹
.

Attached to 𝑍spl and Z, we have the following data:

◦ an admissible cone decomposition Σ𝑍 of some cone P = P𝑍 , as well as a subset Σ+
𝑍 of Σ𝑍 which

forms a cone decomposition of the interior P+ of P.
◦ an arithmetic group Γ = Γ𝑍 acting on P and hence also onΣ𝑍 ; the open cone P+ and the corresponding

Σ+
𝑍 are stable under the action of Γ. As in [38] we may and we shall assume that for each 𝜎 ∈ Σ+

𝑍 ,
the stabilizer Γ𝜎 is trivial.

◦ a finite free abelian group S; let E = E𝑍 be a split torus over Z with character group S.
◦ a normal scheme 𝐶spl which is flat over O𝐹 , together with a proper surjective morphism𝐶spl → 𝑍spl.
◦ a morphism of schemes Ξspl → 𝐶spl which is an E-torsor; for each 𝜎 ∈ Σ𝑍 , we have an affine toroidal

embedding Ξspl ↩→ Ξspl (𝜎) over 𝐶spl with a closed subscheme Ξspl
𝜎 .

◦ for each representative 𝜎 ∈ Σ+
𝑍 of an orbit [𝜎] ∈ Σ+

𝑍/Γ, let 𝑍spl
[𝜎 ] ⊂ Mspl,tor

𝐾,Σ be the corresponding
toroidal boundary stratum, and𝔛spl

𝜎 := (Ξspl (𝜎))∧
Ξspl
𝜎

be the formal completion; then there is a canonical
isomorphism of formal schemes

𝔛spl
𝜎 � (Mspl,tor

𝐾,Σ )∧
𝑍

spl
[𝜎 ]
.

◦ let Ξspl
𝑍 be the full toroidal embedding attached to Σ𝑍 and

𝔛spl := 𝔛spl
𝑍 = (Ξspl

𝑍 )∧
∪𝜏∈Σ+

𝑍
Ξspl
𝜏

the formal completion, then there is a canonical isomorphism

𝔛spl/Γ � (Mspl,tor
𝐾,Σ )∧

∪𝜏∈Σ+
𝑍
/Γ𝑍

spl
[𝜏 ]
.

Note the (disjoint) union ∪𝜏∈Σ+
𝑍 /Γ𝑍

spl
[𝜏 ] is exactly the preimage of 𝑍spl under the natural projection∮

: Mspl,tor
𝐾,Σ → Mspl,min

𝐾 .
◦ there are similar and parallel objects 𝐶,Ξ, etc. for the boundary stratum Z, such that 𝐶spl =

Spl+(♯H,♯ℱ,♯ 𝜄)/𝐶⊗O𝐹
, Ξspl = Spl+(♯H,♯ℱ,♯ 𝜄)/Ξ⊗O𝐹 , etc., see [37] Lemma 3.2.4.
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The same arguments as in the proof of Proposition 2.3 show that

Proposition 5.2. Each boundary stratum 𝑍spl is smooth over O𝐹 .

5.3. Canonical extensions of automorphic vector bundles

Since G is split over F, it defines a reductive group scheme over O𝐹 , denoted by Gspl (or G) as
before. Moreover, recall that as in the paragraph above Corollary 2.4 the parabolic subgroup 𝑃𝜇
extends to a parabolic group scheme of Gspl over O𝐹 . Thus the flag variety ℱℓ(𝐺, 𝜇)𝐹 extends canon-
ically to a smooth scheme Gspl/𝑃𝜇 (the integral flag variety) over O𝐹 which is nothing else but∏
𝑖∈𝐼 ,1≤ 𝑗≤ 𝑓𝑖 ,1≤𝑙≤𝑒𝑖 M

𝑙
𝑖, 𝑗 . We still denote by ℱℓ(𝐺, 𝜇) the integral flag variety over O𝐹 .

Now we have an extension of the local model diagram of schemes over O𝐹 :

�Mspl,tor
𝐾,Σ

𝑞

���
��

��
��

��
�

𝜋



��
��
��
��
�

Mspl,tor
𝐾,Σ ℱℓ(𝐺, 𝜇)

where 𝜋 is a Gspl-torsor and q is Gspl-equivariant. For any representation (𝑉, 𝜂) ∈ RepO𝐹𝑃𝜇, we get
the associated G-equivariant vector bundle 𝑉 on ℱℓ(𝐺, 𝜇). Via the above diagram, we get a vector
bundle Vcan = Vcan

𝜂 on Mspl,tor
𝐾,Σ , which we call the canonical extension of the vector bundle V = V𝜂 on

Mspl
𝐾 . Let 𝐷 ′ be the effective Cartier divisor of [37] Corollary 4.4.4 with 𝐷 ′

𝑟𝑒𝑑 = Mspl,tor
𝐾,Σ \ Mspl

𝐾 and set
Vsub = Vcan(−𝐷 ′), which we call the subcanonical extension of V = V𝜂 .

Let 𝜂 ∈ 𝑋∗(𝑇)+𝐿 and 𝑉 ∈ RepO𝐹 𝐿 the irreducible representation of L of highest weight 𝜂. Recall the
map

∮
: Mspl,tor

𝐾,Σ → Mspl,min
𝐾 .

Proposition 5.3. For any 𝑖 > 0, we have 𝑅𝑖
∮
∗ V

sub
𝜂 = 0.

Proof. This will follow from [37] Theorem 4.4.9, once we have verified that Vcan = Vcan
𝜂 is formally

canonical in the sense of loc. cit. (The definition of this notion there is given by the corresponding
analogue of [36] Definition 8.5.) Recall that this means: for any boundary stratum 𝑍spl of Mspl,min

𝐾 , and
any geometric point 𝑥 over 𝑍spl, there exists a coherent sheaf V0,𝑥 over 𝐶spl,∧

𝑥
such that

(1) for any 𝜎 ∈ Σ+
𝑍 , the pullback Vcan,∧ to 𝔛∧

𝜎,𝑥
is of the form

⊕̂
ℓ∈𝜎∨

(
(Ψspl

𝑍 (ℓ))∧𝑥 ⊗ V0,𝑥

)
,

(2) V0,𝑥 admits a finite filtration whose graded pieces are isomorphic to pullbacks of quasi-coherent
sheaves over O𝐹 via the structural morphism 𝐶

spl,∧
𝑥

→ Spec O𝐹 .

One needs to check that in the smooth reduction case the sheafVcan satisfies the above two conditions.
This can be achieved by modifying the arguments in the proof of [34] Proposition 5.6, where we take
account of the splitting structures everywhere. �

5.4. Extensions of Gspl
0 -zips and Hasse invariants

Recall that 𝜅 is the residue field of O𝐹 and 𝑘 = 𝜅. Let Mspl
𝐾,0 = Mspl

𝐾 ⊗O𝐹 𝑘 , Mspl,tor
𝐾,Σ,0 = Mspl,tor

𝐾,Σ ⊗O𝐹 𝑘

and Mspl,min
𝐾,0 = Mspl,min

𝐾 ⊗O𝐹 𝑘 be the geometric special fibers. By section 3 we have a smooth surjective
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morphism

𝜁 : Mspl
𝐾,0 → Gspl

0 -Zip𝜇𝑘 .

Before discussing extensions of zips to the boundary, we need some group theoretical preparation.
For each 𝑍spl ⊂ Mspl,min

𝐾 and the associated 𝑍 ⊂ Mmin
𝐾 , recall that we have the boundary PEL-type

O𝐵-lattice (Λ𝑍 , 〈·, ·〉𝑍 , ℎ𝑍 ). Over Q, we have the associated parabolic subgroups

𝑄 = 𝑄𝑍 ⊂ 𝑃 = 𝑃𝑍 ⊂ 𝐺,

cf. [38] Lemma 3.3.6 and Definition 3.3.8. More precisely, attached to the boundary stratum 𝑍 ⊂ Mmin
𝐾

we have a symplectic filtration 0 ⊂ 𝑉−2 ⊂ 𝑉−1 ⊂ 𝑉0 = 𝑉 satisfying the condition as in Lemma 3.3.6 of
[38]. The group 𝑃 = 𝑃𝑍 is defined as the stabilizer of this filtration. The group 𝑄 = 𝑄𝑍 is defined as
the kernel of the homomorphism 𝑃 → GL(𝑔𝑟−2𝑉) ×GL(𝑔𝑟0𝑉), (𝑔, 𝑟) ↦→ (𝑟−1𝑔𝑟−2 (𝑔), 𝑔𝑟0 (𝑔)), where
𝑃 → G𝑚, (𝑔, 𝑟) ↦→ 𝑟 is the similitude character. The groups P and Q have the same unipotent radical
U, such that 𝑀ℎ := 𝑄/𝑈 is the reductive group for the rational PEL datum corresponding to Z, and
𝑀 := 𝑃/𝑈 = 𝑀ℎ × 𝑀𝑙 , where 𝑀𝑙 � 𝑃/𝑄 is a reductive group factor of the Levi M, see [38] Definition
3.3.8.

Consider the reductive group Gspl
0 over F𝑝 . We want to adapt the construction of [2] subsection 3.3

to our setting. Consider the induced symplectic filtration

0 ⊂ Λ−2 ⊂ Λ−1 ⊂ Λ0 = Λ

so that

Λ𝑍 = 𝑔𝑟−1Λ = Λ−1/Λ−2,

and the decomposition Λ =
⊕

1≤𝑖≤𝑟 Λ
𝑚𝑖
𝑖 , we get similar filtrations on each Λ𝑖 . Using the fact that each

Λ𝑖 is self-dual over O𝐹𝑖 , by similar construction as in subsection 2.1, we have parabolic subgroups

Qspl
0 ⊂ Pspl

0 ⊂ Gspl
0

with the same unipotent radical 𝑈spl
0 . Let 𝑀spl

0 = Pspl
0 /𝑈spl

0 and 𝑀
spl
ℎ,0 = Qspl

0 /𝑈spl
0 . Then 𝑀

spl
0 =

𝑀
spl
ℎ,0 × 𝑀

spl
𝑙,0 , where 𝑀spl

𝑙,0 = Pspl
0 /Qspl

0 . Recall that we have the cocharacter 𝜇 of Gspl
0 which is defined

over 𝜅, and 𝑃+ := 𝑃𝜇 ⊂ Gspl
0,𝜅 the associated parabolic subgroup. Set 𝑃 := Pspl

0,𝜅∩𝑃+. We get the inclusions

𝑃 ⊂ 𝑃+ ⊂ Gspl
0,𝜅 .

Consider the induced cocharacter 𝜇𝑍 of 𝑀spl
ℎ,0 from ℎ𝑍 . We get a natural morphism

𝛾 : 𝑀spl
ℎ,0-Zip𝜇𝑍𝜅 → 𝑀

spl
0 -Zip𝜇𝑍𝜅 ,

where we denote by the same notation 𝜇𝑍 for the induced cocharacter of 𝑀spl
0 . Identifying 𝑀spl

0 as the
standard Levi of Pspl

0 , the inclusion 𝑀spl
0 ⊂ Gspl

0 induces a morphism

𝜐 : 𝑀spl
0 -Zip𝜇𝑍𝜅 → [𝐸Z \ Gspl

0,𝜅 ],
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where Z = (𝑃, 𝑃 (𝑝)
, 𝜑) is the algebraic zip data for Gspl

0,𝜅 associated to 𝑃. Then the natural inclusion
𝑃 ⊂ 𝑃+ induces a morphism

𝜖 : [𝐸Z \ Gspl
0,𝜅 ] → Gspl

0 -Zip𝜇𝜅 .

We define

𝜏𝑍 = 𝜖 ◦ 𝜐 ◦ 𝛾 : 𝑀spl
ℎ,0-Zip𝜇𝑍𝜅 → Gspl

0 -Zip𝜇𝜅 .

In the following we also write Gspl
𝑍,0 = 𝑀spl

ℎ,0 to indicate its analogue with Gspl
0 .

Given the canonical extensions of automorphic vector bundles to Mspl,tor
𝐾,Σ,0, the constructions of sub-

section 3.2 can be generalized.

Theorem 5.4.

(1) The Gspl
0 -zip of type 𝜇 on Mspl

𝐾,0 extends to a 𝐺 (A𝑝𝑓 )-equivariant Gspl
0 -zip of type 𝜇 on Mspl,tor

𝐾,Σ,0.
(2) The induced map 𝜁 tor : Mspl,tor

𝐾,Σ,0 → Gspl
0 -Zip𝜇𝑘 is smooth.

Proof. For (1), we just repeat the construction in subsection 3.2 starting from (Hext,ℱext, 𝜄ext) together
with its universal splitting structure.

For (2), we follow the idea in the proof of [2] Theorem 3.1. Let 𝑥 ∈ Mspl,tor
𝐾,Σ,0 be a closed point and

𝐶 = ÔMspl,tor
𝐾,Σ,0 ,𝑥

. We need only check that the induced morphism

𝜁𝐶 : Spec 𝐶 → Gspl
0 -Zip𝜇𝑘

is smooth. If 𝑥 ∈ Mspl
𝐾,0, this has been done in Proposition 3.10. So we may assume that 𝑥 ∈ 𝑍spl

[𝜎 ] for
a boundary stratum. Then there is a corresponding point 𝑥 ′ ∈ Ξspl(𝜎) such that 𝐶 = ÔΞspl (𝜎) ,𝑥′ . Let
𝑦 ∈ 𝑍spl be the image of x and 𝐷 = Ô𝑍 spl ,𝑦 . We get an induced morphism∮

: Spec 𝐶 → Spec 𝐷.

Moreover, we have the boundary version 𝜁𝑍 : 𝑍spl → Gspl
0,𝑍 -Zip𝜇𝑍𝑘 and the analogue

𝜁𝐷 : Spec 𝐷 → Gspl
0,𝑍 -Zip𝜇𝑍𝑘

of 𝜁𝐶 . Recall that by Proposition 5.2, 𝑍spl is smooth. We have also a natural morphism

𝜏𝑍 : Gspl
0,𝑍 -Zip𝜇𝑍𝜅 → Gspl

0 -Zip𝜇𝜅 .

To show the smoothness of 𝜁𝐶 : Spec 𝐶 → Gspl
0 -Zip𝜇𝜅 , we proceed in four steps.

Step 1. We show 𝜁𝐶 = 𝜏𝑍 ◦ 𝜁𝐷 ◦
∮

. In other words, the following diagram commutes:

Spec 𝐶
∮
��

𝜁𝐶 �� Gspl
0 -Zip𝜇𝑘 .

Spec 𝐷
𝜁𝐷 �� Gspl

0,𝑍 -Zip𝜇𝑍𝑘

𝜏𝑍

��
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We need to analyze the structure of the Gspl
0 -zip on C in terms of the associated Gspl

0,𝑍 -zip. Consider the
restriction of (Hext,ℱext, 𝜄ext) on 𝑍spl

[𝜎 ] , which we denote by (H♮,ℱ♮, 𝜄♮). By [37] proof of Proposition
3.3.21, there are isomorphisms

ℱ♮ � ♯ℱ ⊕ ♭ℱ, where ♭ℱ = 𝜔𝑇 ∨/𝑍[𝜎 ] .

Moreover, the filtration ℱ•
♮ on ℱ♮ induces filtrations on ♯ℱ and ♭ℱ as [37] Lemma 3.3.11, and by loc.

cit. Corollary 3.3.16 the filtration on ♭ℱ is independent of the filtration on ℱ♮. By the construction in
section 3, the F-zip M♮ (constructed from (H♮,ℱ♮, 𝜄♮)) is a direct sum of the F-zip M𝑍 constructed
from (♯H, ♯ℱ, ♯𝜄) and the F-zip constructed from ♭ℱ. Translating further into the language of Gspl

0 -zips,
we have the factorization of 𝜁𝐶 .

Step 2.
∮

: Spec 𝐶 → Spec 𝐷 is smooth. For this, we apply the local diagrams for Mspl,tor
𝐾,Σ and

𝑍spl to realize C and D as local rings of the corresponding local models, which are also completions
along identities of some unipotent subgroups, see the proof of Proposition 3.10. Then one can prove the
smoothness of

∮
by checking that on tangent spaces it induces a projection.

Step 3. 𝜁𝐷 : Spec 𝐷 → Gspl
0,𝑍 -Zip𝜇𝑍𝑘 is smooth. As 𝑍spl is smooth, the smoothness of 𝜁𝐷 follows from

the boundary version of Proposition 3.10.
Step 4. 𝜏𝑍 : Gspl

0,𝑍 -Zip𝜇𝑍𝑘 → Gspl
0 -Zip𝜇𝑘 is smooth. This follows from a similar argument as the proof

of [2] Lemma 3.4. �

We write 𝑋 tor = Mspl,tor
𝐾,Σ,0 and the fiber of 𝜁 tor at w as 𝑋 tor

𝑤 . Then we get the EO stratification

𝑋 tor =
∐
𝑤 ∈𝐽𝑊

𝑋 tor
𝑤 .

For each 𝑤 ∈ 𝐽𝑊 let 𝑋 tor
𝑤 be the Zariski closure of 𝑋 tor

𝑤 in 𝑋 tor.

Corollary 5.5. The Hasse invariant ℎ𝑤 ∈ 𝐻0(𝑋𝑤 , 𝜔𝑁𝑤Hdg) of Corollary 4.7 extends to a 𝐺 (A𝑝𝑓 )-
equivariant section ℎtor

𝑤 ∈ 𝐻0 (𝑋 tor
𝑤 , 𝜔

𝑁𝑤
Hdg) with non-vanishing locus being precisely 𝑋 tor

𝑤 .

The proof of Theorem 5.4 (2) actually gives us the following (expected) description of 𝜁 tor on the
boundary. Let 𝑍spl

0 ⊂ Mspl,min
𝐾,0 be a boundary stratum and 𝑍

spl,tor
0 :=

∮ −1 (𝑍spl
0 ). We get an induced

morphism
∮

: 𝑍spl,tor
0 → 𝑍

spl
0 .

Proposition 5.6. The restriction

𝜁 tor |
𝑍

spl,tor
0

= 𝜏𝑍 ◦ 𝜁𝑍 ◦
∮
,

where 𝜏𝑍 and 𝜁𝑍 are as in the proof of Theorem 5.4 (2).

Corollary 5.7. Let 𝑒 ∈ 𝐽𝑊 be the minimal element (then ℓ(𝑒) = 0). The associated EO stratum 𝑋𝑒 does
not intersect with the boundary of 𝑋 tor, in other words, we have 𝑋𝑒 = 𝑋 tor

𝑒 . In particular, the conclusions
of Proposition 4.5 hold for 𝑋 tor.

Proof. Similar to [2] Corollary 3.7, this follows from the fact that for each boundary Z, 𝜏𝑍 :
Gspl

0,𝑍 -Zip𝜇𝑍𝑘 → Gspl
0 -Zip𝜇𝑘 is smooth, thus open, therefore its image does not contain the closed point

of Gspl
0 -Zip𝜇𝑘 . Indeed, if its image contained the closed point, it would be surjective and any maximal

chain of points of |Gspl
0 -Zip𝜇𝑘 | would be the image of a maximal chain of points of |Gspl

0,𝑍 -Zip𝜇𝑍𝑘 |. This is
impossible since dim 𝑍 < dim 𝑋 with 𝑋 = Mspl

𝐾,0 (see also the proof of [2] Corollary 3.7). �
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Next, we discuss the well-positionedness of EO strata in the sense of [38] Definition 2.2.1, which is
in fact closely related to the smoothness of 𝜁 tor. Let 𝑍spl be a boundary stratum of Mspl,min

𝐾 . Recall for
each 𝜎 ∈ Σ+

𝑍 , we have Ξspl(𝜎) and its closed subscheme Ξspl
𝜎 . Consider the closed subscheme

Ξspl(𝜎)+ := ∪𝜏∈Σ+
𝑍 ,𝜏⊂𝜎Ξ

spl
𝜏

and the formal completion

𝔛spl,◦
𝜎 := (Ξspl(𝜎))∧Ξspl (𝜎)+ .

By [38] Proposition 2.1.3, the formal scheme Ξspl
𝑍 admits an open covering by 𝔛spl,◦

𝜎 for 𝜎 running
through elements of Σ+

𝑍 , and for each 𝜎 we have an isomorphism

𝔛spl,◦
𝜎 � (Mspl,tor

𝐾,Σ )∧ ∪𝜏∈Σ+
𝑍
,𝜏⊂𝜎𝑍[𝜏 ]

.

For any open affine formal subscheme Spf 𝑅 of 𝔛spl,◦
𝜎 , let W = Spec 𝑅, then we get induced morphisms

W → Mspl,tor
𝐾,Σ , W → Ξspl(𝜎).

By these morphisms, the two stratifications of W induced respectively by those of Mspl,tor
𝐾,Σ and Ξspl (𝜎)

coincide. Let

W0 ⊂ W

be the open stratum, which is the preimage of Mspl
𝐾 and Ξspl under the above morphisms. Now consider

the geometric special fiber Mspl,tor
𝐾,Σ,0 and we denote by the same notations 𝑍spl, 𝐶spl,Ξspl,W, etc. the

corresponding objects base-changed to k. By [38] Definition 2.2.1, a locally closed subset

𝑌 ⊂ Mspl
𝐾,0

is called well-positioned if there exists a collection

(𝑌 ♯𝑍 )𝑍

indexed by the boundary strata of Mspl,min
𝐾,0 , where 𝑌 ♯𝑍 ⊂ 𝑍spl is a locally closed subset (which may be

empty), such that for any Σ, any 𝜎 ∈ Σ+
𝑍 and any Spf 𝑅 as above, if 𝑌 ♯𝑍 ≠ ∅, then under the induced

morphisms

W0 → Mspl
𝐾,0, W0 → 𝑍spl

the preimages of Y and 𝑌 ♯𝑍 in W0 coincide. Here W0 → 𝑍spl is the composition

W0 → Ξspl → 𝐶spl → 𝑍spl.

By [38] Lemma 2.2.2, it suffices to verify the condition for just one collection of cone decompositions
Σ and some affine open covering Spf 𝑅 of each 𝔛spl,◦

𝜎 .

Proposition 5.8. For each 𝑤 ∈ 𝐽𝑊 , the locally closed subset 𝑋𝑤 of 𝑋 = Mspl
𝐾,0 is well-positioned.

Proof. We can translate [38] Lemma 3.4.3 into zips. Indeed, the setting of loc. cit. includes the splitting
model case. Specializing to the case of p-torsion (𝑛 = 1 there), we see that the triple (𝐴[𝑝], 𝜆, 𝜄)
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determines and is determined by the isomorphism classes of (𝑋,𝑌, 𝜙 : 𝑌 → 𝑋) and of (𝐵[𝑝], 𝜆𝐵, 𝜄𝐵).
The splitting structure on𝜔𝐴 is induced by those on 𝑋,𝑌 and𝜔𝐵. For the torus part, the splitting structure
is unique, cf. [37] Corollary 3.3.16. Thus by construction, theGspl

0 -zip attached to (𝐴[𝑝], 𝜆, 𝜄) determines
and is determined by the isomorphism classes by the Gspl

0,𝑍 -zip attached to (𝐵[𝑝], 𝜆𝐵, 𝜄𝐵). See also the
arguments of Step 1 in the proof of Theorem 5.4. Therefore the EO strata are well-positioned. �

Remark 5.9. In [38] subsection 3.5, Lan and Stroh first proved that EO strata in their case (Nm) for a
good prime p are well-positioned. They then deduced that 𝜁 tor is smooth if 𝜁 is, cf. loc. cit. Corollary
3.5.8. Following their idea, we sketch how to deduce the smoothness of 𝜁 tor from Proposition 5.8 as
follows:

By Proposition 3.10, each 𝑋𝑤 is smooth. As 𝑋𝑤 is well-positioned by Proposition 5.8, the partial
toroidal compactification (𝑋𝑤 )tor

Σ of 𝑋𝑤 (in the sense of [38] Definition 2.3.1 and Theorem 2.3.2) is
also smooth by [38] Proposition 2.3.13. By construction, we see that (𝑋𝑤 )tor

Σ equals to the fiber of 𝜁 tor

at w. As each fiber of 𝜁 tor is smooth, we get 𝜁 tor is smooth once we know it is flat. The actual argument
of [38] (proof of Corollary 3.5.8 there) says that étale locally 𝜁 tor factors through 𝐶spl (and 𝑍spl), which
follows from Proposition 5.8.

6. Application to Galois representations

In this section we study the coherent cohomology of the smooth schemes Mspl,tor
𝐾,Σ . We deduce some

consequences for Hecke algebras and Galois representations following the same treatments of [20].

6.1. Hecke actions on coherent cohomology

Recall that 𝐾 = 𝐾 𝑝G (Z𝑝) is our level of moduli spaces. Let S be the finite set of primes ℓ, where 𝐾ℓ is
not hyperspecial. Consider the Hecke algebra

H𝑆 =
′⊗

𝑣∉𝑆

H𝑣 ,

the restricted tensor product of the spherical Hecke algebras H𝑣 = Z𝑝 [𝐾𝑣\𝐺 (Q𝑣 )/𝐾𝑣 ] outside S. We
assume that G is ramified over Q𝑝 , i.e., 𝑝 ∈ 𝑆, since otherwise all the following discussions are covered
by [20].

Consider also the Hecke algebra H𝐾 . There is a natural morphism H𝑆 → H𝐾 . Recall for any
O𝐹 -representation V of L, we have the automorphic vector bundle Vsub on the smooth toroidal com-
pactification Mspl,tor

𝐾,Σ as in subsection 5.3. In the following we describe the action of H𝐾 on the coherent
cohomology groups 𝐻𝑖 (Mspl,tor

𝐾,Σ ,Vsub), so that we get an induced action of H𝑆 . Since the Hecke algebra
H𝐾 is generated by characteristic functions of 𝐾𝑔𝐾 ∈ 𝐾\𝐺 (A 𝑓 )/𝐾 with 𝑔 ∈ 𝐺 (A 𝑓 ), it suffices to
describe the action of 𝐾𝑔𝐾 on 𝐻𝑖 (Mspl,tor

𝐾,Σ ,Vsub). Let 𝐾𝑔 = 𝐾 ∩ 𝑔𝐾𝑔−1. By [37] Proposition 2.4.17, we
get the associated Hecke correspondence

Mspl
𝐾𝑔

𝑝1

��









 𝑝2

���
��

��
��

Mspl
𝐾 Mspl

𝐾 ,

where 𝑝1 is the natural projection, 𝑝2 is the composition of natural projection with 𝑔 : Mspl
𝐾𝑔

∼→ Mspl
𝑔−1𝐾𝑔𝑔

.
For 𝑖 = 1, 2, the inducedΣ𝑖𝑔 = 𝑝∗𝑖Σ are admissible finite rpcd for the level𝐾𝑔. LetΣ𝑔 be a common smooth
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refinement of Σ1
𝑔 and Σ2

𝑔. Then by [37] Proposition 3.4.10, we get an extended Hecke correspondence

Mspl,tor
𝐾𝑔 ,Σ𝑔

𝑞1

����
��
��
�� 𝑞2

���
��

��
��

�

Mspl,tor
𝐾,Σ Mspl,tor

𝐾,Σ ,

where 𝑞𝑖 is the composition

Mspl,tor
𝐾𝑔 ,Σ𝑔

𝑟𝑖−→ Mspl,tor
𝐾𝑔 ,Σ𝑖𝑔

𝜋𝑖−→ Mspl,tor
𝐾,Σ .

The morphisms 𝑟𝑖 satisfy 𝑅 𝑗𝑟𝑖,∗OMspl,tor
𝐾𝑔,Σ𝑔

= 0 for 𝑗 > 0 and 𝑟𝑖,∗OMspl,tor
𝐾𝑔,Σ𝑔

= OMspl,tor
𝐾𝑔,Σ𝑖𝑔

by [37] Proposition

3.4.10 and [36] Proposition 7.5. By [37] Proposition 3.4.14, the schemes Mspl,tor
𝐾𝑔 ,Σ𝑖𝑔

are Cohen-Macaulay

as Mspl
𝐾𝑔

is. Arguing as [20] 8.1.5, we get that the morphisms 𝜋𝑖 are finite flat. Thus we get a trace map

tr𝜋𝑖 : 𝜋𝑖,∗OMspl,tor
𝐾𝑔,Σ𝑖𝑔

−→ OMspl,tor
𝐾,Σ

,

which induces the associated Hecke operator: for each 𝑖 ≥ 0

𝑇𝑔 : 𝐻𝑖 (Mspl,tor
𝐾,Σ ,Vsub) −→ 𝐻𝑖 (Mspl,tor

𝐾,Σ ,Vsub).

Let 𝜛 be a uniformizer of O𝐹 . Recall the Levi subgroup L of 𝑃 = 𝑃𝜇 over O𝐹 . For any 𝑖 ≥ 0, 𝑛 ≥ 1
and (𝑉, 𝜂) ∈ RepO𝐹 𝐿, consider the vector bundle Vsub

𝜂 on Mspl,tor
𝐾,Σ,O𝐹 /𝜛𝑛 . we get an action

H𝑆 −→ End
(
𝐻𝑖 (Mspl,tor

𝐾,Σ,O𝐹 /𝜛𝑛 ,Vsub
𝜂 )

)
.

Let H𝑖,𝑛
𝜂 be its image.

6.2. Factorizations to 𝐻0

For any 𝑖 ≥ 0, 𝑛 ≥ 1 and 𝜂 ∈ 𝑋∗(𝑇)+𝐿 , as in [20] we consider the following set

𝐹 (𝑖, 𝑛, 𝜂) = {𝜂′ ∈ 𝑋∗(𝑇)+𝐿 |H𝑆 → H𝑖,𝑛
𝜂 factors throughH𝑆 → H0,𝑛

𝜂′ }.

With all the ingredients at hand, by the method of [20] we have the same consequences as Theorem
8.2.1 of loc. cit.

Theorem 6.1. For any (𝑖, 𝑛, 𝜂) as above, we have

(1) There exists an arithmetic progression A such that 𝜂 + 𝑎𝜂𝜔 ∈ 𝐹 (𝑖, 𝑛, 𝜂) for all 𝑎 ∈ 𝐴 ∩ Z≥1.
(2) Let C be the cone defined in [20] 3.4.3. Then for all 𝜈 ∈ C and 𝜂1 ∈ 𝐹 (𝑖, 𝑛, 𝜂), there exists

𝑚 = 𝑚(𝜈, 𝑛) ∈ Z≥1 such that for all 𝑗 ∈ Z≥1, we have 𝜂1 + 𝑗𝑚𝜈 ∈ 𝐹 (𝑖, 𝑛, 𝜂).
(3) For all 𝛿 ∈ R≥0, 𝐹 (𝑖, 𝑛, 𝜂) contains a 𝛿-regular character in the sense of [20] Definition N.5.5.

The proof of the above theorem is by the same arguments as in [20] subsections 7.2, 7.3, 8.3 and 9.2.
In particular, one plays with the machinery of Hasse-regular sequences based on our Corollaries 4.7, 5.5
and 5.7, Propositions 4.5 and 5.3, and one applies the associated flag space to increase the regularity. For
the reader’s convenience, we recall that a Hasse regular sequence of length r with 0 ≤ 𝑟 ≤ 𝑑 = dim Mspl

𝐾,𝐹
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on 𝑋 := Mspl,tor
𝐾,Σ,O𝐹 /𝜛𝑛 (in the sense of [20] Definition 7.2.1) is given by a filtration of closed subschemes

𝑋 = 𝑍0 ⊃ 𝑍1 ⊃ · · · ⊃ 𝑍𝑟

together with some integers 𝑎 𝑗 and global sections 𝑓 𝑗 ∈ 𝐻0(𝑍 𝑗 , 𝜔
𝑎 𝑗
Hdg), such that each 𝑓 𝑗 is a lifting of

a length Hasse invariant, and for each 0 ≤ 𝑗 ≤ 𝑟 − 1, we have 𝑍 𝑗+1 = 𝑉 ( 𝑓 𝑗 ). More precisely, on the
reduced locus

𝑋red =
∐
𝑤 ∈𝐽𝑊

𝑋𝑤 ⊃ 𝑍 𝑗 ,red =
∐

𝑤 ∈𝐽𝑊 ,ℓ (𝑤) ≤𝑑− 𝑗
𝑋𝑤 .

By Proposition 4.4, there exists a large integer 𝑁𝑑− 𝑗 and a length 𝑑 − 𝑗 Hasse invariant

ℎ𝑑− 𝑗 ∈ 𝐻0 (𝑍 𝑗 ,red, 𝜔
𝑁𝑑− 𝑗
Hdg )

such that its vanishing locus is 𝑍 𝑗+1,red =
∐
𝑤 ∈𝐽𝑊 ,ℓ (𝑤) ≤𝑑− 𝑗−1 𝑋𝑤 . Then one requires

𝑓 𝑗 ∈ 𝐻0 (𝑍 𝑗 , 𝜔
𝑎 𝑗
Hdg)

to be a lifting of certain power of ℎ𝑑− 𝑗 (which exists by [20] Theorem 5.1.1) for some integer 𝑎 𝑗 ≥ 𝑁𝑑− 𝑗 .
From a regular Hasse sequence of length r, we get an exact sequence of sheaves over 𝑍𝑟−1:

0 −→ Vsub
𝜂 ⊗ 𝜔𝑠Hdg

· 𝑓𝑟−1−→ Vsub
𝜂 ⊗ 𝜔⊗(𝑎𝑟−1+𝑠)

Hdg −→ Vsub
𝜂 ⊗ 𝜔⊗(𝑎𝑟−1+𝑠)

Hdg |𝑍𝑟 −→ 0,

where 𝜔Hdg is the Hodge line bundle and s is an integer. From here, one gets congruences between
cohomology of different degrees using the vanishing result 𝐻𝑖 (𝑍𝑟 ,Vsub

𝜂 ⊗ 𝜔𝑚Hdg) = 0 for 𝑚 ! 0 and
𝑖 > 0 (cf. [20] Lemma 7.1.4). In particular, to study 𝐻𝑖 (𝑋,Vsub

𝜂 ), one performs a Hasse regular sequence
of length i to finally reduce to 𝐻0.

Remark 6.2.

(1) As mentioned above, in the unramified case Theorem 6.1 was proved by Goldring-Koskivirta in
[20]; in this case part (1) also follows from the work of Boxer [7].

(2) In the Hodge type case (which may be ramified), part (1) was proved by Pilloni-Stroh in [52]
(Théorème 3.5 and Remarque 3.9) for some quite different integral models (constructed by Scholze’s
method). As they remarked there, the torsion classes for these integral models seem to be quite
different from those associated to the unramified Kottwitz or Kisin models. Their torsion classes
also seem to be rather different from those associated to the smooth splitting models here.

(3) By [20] Remark 8.2.4, parts (2) and (3) of Theorem 6.1 do not follow the methods of [7] and [52].

6.3. Galois representations

We can now deduce some consequences on Galois representations from Theorem 6.1 as in [20] section
10.

Let 𝑣 ≠ 𝑝 be a finite unramified place of Q for G. Let Frob𝑣 be a geometric Frobenius at v and H𝑣

the unramified Hecke algebra at v. Then we have the Satake isomorphism (cf. [20] (10.2.1))

H𝑣 [
√
𝑣] ∼→ 𝑅(𝐿𝐺𝑣 ) [

√
𝑣],

where 𝑅(𝐿𝐺𝑣 ) is the algebra obtained by restricting character representations of 𝐿𝐺𝑣 to semisimple
𝐿𝐺◦

𝑣 (Q𝑝)-conjugacy classes in 𝐿𝐺𝑣 �Frob𝑣 . If 𝜋𝑣 is an unramified irreducible smooth representation of
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𝐺 (Q𝑣 ), we get the corresponding semisimple 𝐿𝐺◦
𝑣 (Q𝑝)-conjugacy class Sat(𝜋𝑣 ), the Satake parameter

of 𝜋𝑣 .
Let

𝑟 : 𝐿𝐺 → GL𝑚

be a representation of the Langlands dual group. For each place v as above, we get an induced represen-
tation 𝑟𝑣 of 𝐿𝐺𝑣 . Let 𝜋 be a C-algebraic cuspidal automorphic representation of G. If v is an unramified
place of 𝜋, then we get

𝑟𝑣 (Sat(𝜋𝑣 )) ∈ GL𝑚 (Q𝑝).

Let 𝑅𝑎𝑚(𝜋) be the set of ramified places of 𝜋. We say that (𝜋, 𝑟) satisfies 𝐿𝐶𝑝 , if there exists a
continuous semisimple Galois representation

𝜌(𝜋, 𝑟) : Gal(Q/Q) → GL𝑚(Q𝑝)

such that for any 𝑣 ∉ 𝑅𝑎𝑚(𝜋) ∪ {𝑝}, we have

𝜌(𝜋, 𝑟) (Frob𝑣 ) = 𝑟𝑣 (Sat(𝜋𝑣 ))

as GL𝑚(Q𝑝)-conjugacy classes.
For any 𝑗 ≥ 1, the function 𝐿𝐺 (Q𝑝) → Q𝑝 , 𝑔 ↦→ tr(𝑟 (𝑔) 𝑗 ) defines an element of 𝑅(𝐿𝐺𝑣 ) and thus

an element 𝑇 ( 𝑗)
𝑣 (𝑟) ∈ H𝑣 [

√
𝑣]. For any 𝑖 ≥ 0, 𝑛 ≥ 1, 𝜂 ∈ 𝑋∗(𝑇)+𝐿 , let

𝑇
( 𝑗)
𝑣 = 𝑇 ( 𝑗)

𝑣 (𝑟; 𝑖, 𝑛, 𝜂) ∈ H𝑖,𝑛
𝜂

be its image in H𝑖,𝑛
𝜂 . In the following we fix 𝛿 ∈ R≥0 and 𝑟 : 𝐿𝐺 → GL𝑚. Here is the version of

[20] Theorems 10.4.1 and 10.5.1 in the ramified setting. The proof is identical to loc. cit. by applying
Theorem 6.1 here. Part (1) also generalizes Theorem 1.1 of [56].

Theorem 6.3. Suppose that for any 𝛿-regular, C-algebraic cuspidal automorphic representation 𝜋′ with
𝜋′∞ discrete series, the pair (𝜋′, 𝑟) satisfies 𝐿𝐶𝑝 .

(1) For any 𝑖 ≥ 0, 𝑛 ≥ 1, 𝜂 ∈ 𝑋∗(𝑇)+𝐿 , there exists a continuous Galois pseudo-representation

𝜌 : Gal(Q/Q) −→ H𝑖,𝑛
𝜂 ,

such that 𝜌(Frob 𝑗𝑣 ) = 𝑇
( 𝑗)
𝑣 for all 𝑣 ∉ 𝑆.

(2) Let 𝜋 be a C-algebraic cuspidal automorphic representation of G such that 𝜋∞ is a (C-algebraic)
non-degenerate limit of discrete series and 𝜋𝐾𝑝𝑝 ≠ 0. Then (𝜋, 𝑟) also satisfies 𝐿𝐶𝑝 .

Recall that𝐾𝑝 ⊂ 𝐺 (Q𝑝) is a very special parahoric subgroup, and irreducible smooth representations
𝜋𝑝 of 𝐺 (Q𝑝) such that 𝜋𝐾𝑝𝑝 ≠ 0 can be classified by their spherical parameters, see [71] section 6.

6.4. Examples

We discuss some concrete examples where the condition 𝐿𝐶𝑝 is essentially known. In these examples,
the notation L is also used as certain number fields. Thus to avoid confusion, we denote L ⊂ 𝑃𝜇 for the
Levi subgroup.
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6.4.1. Unitary case
We use the notations of subsection 4.6.

For any regular C-algebraic cuspidal automorphic representation 𝜋 of G, the associated Galois
representation satisfying the condition 𝐿𝐶𝑝 is known to exist by the works of many people. We only
mention [22, 62, 11, 12].

Corollary 6.4. For any 𝑖 ≥ 0, 𝑛 ≥ 1, 𝜂 ∈ 𝑋∗(𝑇)+L, there exists a continuous Galois pseudo-
representation

𝜌 : Gal(𝐿/𝐿) −→ H𝑖,𝑛
𝜂 ,

such that 𝜌(Frob 𝑗𝑣 ) = 𝑇
( 𝑗)
𝑣 for all 𝑣 ∉ 𝑆.

Here, when applying Theorem 6.3 we can replace Q by the totally real field L, cf. [20] 10.6. One
may also state and prove a similar version of [20] Theorem 10.5.3 for Galois representations associated
to automorphic representations 𝜋 with nondegenerate limit of discrete series 𝜋∞.

6.4.2. Hilbert-Siegel case
We use the notations of subsection 4.5.

For the group 𝐺 = Res𝐿 |QGSp2𝑔, any regular C-algebraic cuspidal automorphic representation 𝜋 of
G, the associated Galois representation satisfying the condition 𝐿𝐶𝑝 is known to exist for 𝑔 ≤ 2:

◦ for 𝑔 = 1, see [16, 56] and the references therein for the related classical works,
◦ for 𝑔 = 2 this has been intensively studied, see [64, 39, 67, 63] for example,
◦ for general g, see [31, 69] for some recent progress.

Corollary 6.5. Assume the condition 𝐿𝐶𝑝 holds. For any 𝑖 ≥ 0, 𝑛 ≥ 1, 𝜂 ∈ 𝑋∗(𝑇)+L, there exists a
continuous Galois pseudo-representation

𝜌 : Gal(𝐿/𝐿) −→ H𝑖,𝑛
𝜂 ,

such that 𝜌(Frob 𝑗𝑣 ) = 𝑇
( 𝑗)
𝑣 for all 𝑣 ∉ 𝑆.

Here, as above, when applying Theorem 6.3 we can replace Q by the totally real field L. One may
also state and prove a version for Galois representations associated to automorphic representations 𝜋
with nondegenerate limit of discrete series 𝜋∞.

Appendix A. Local models and EKOR stratifications in ramified PEL-type case

In this appendix, we first review the related local model diagrams for integral models of PEL-type
Shimura varieties with general parahoric level at p, following [49]. Then we briefly explain how to
extend the construction of [59] to this setting (the groups of [59] are supposed to be tamely ramified at
p as those in [28], but the construction there only needs local model diagrams as the input).

A.1. Integral models of PEL-type Shimura varieties

We keep the notations and assumptions of section 2. Let G be the connected reductive group defined by
the rational PEL datum and ℒ a multichain of O𝐵-lattices (see Definition A.1). By [49], there are three
integral models 𝒜naive,𝒜, and 𝒜spl of the PEL moduli space over E (with respect to the multichain ℒ).
The models 𝒜naive,𝒜 are defined over O𝐸 and 𝒜spl is defined over O𝐹 . We first recall the definition of
PEL datum with parahoric level structure following [55], see also the appendix of [59] or [23] section 2.
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A.1.1. Parahoric data at p
To simplify the notation, we will write (𝐵, ∗, 𝑉, 𝜓 = 〈·, ·〉,O𝐵,Λ) for the base change of such data in
section 2 to Q𝑝 . So we have

𝐵 �
𝑟∏
𝑖=1

M𝑚𝑖 (𝑅𝑖), O𝐵 �
𝑟∏
𝑖=1

M𝑚𝑖 (O𝑅𝑖 ).

By Morita equivalence, we can decompose the B-module V (resp. any O𝐵-lattice Λ in V) as

𝑉 =
𝑟⊕
𝑖=1

𝑉𝑚𝑖𝑖 ( resp. Λ �
𝑟⊕
𝑖=1

Λ𝑚𝑖𝑖 ),

where each factor 𝑉𝑖 is a free 𝑅𝑖-module (resp. Λ𝑖 is an O𝐵𝑖 -lattice in 𝑉𝑖). Write 2𝑑𝑖 = rank𝐹𝑖 𝑉𝑖 .

Definition A.1.

(1) A chain of O𝐵-lattices in V is a set of totally ordered O𝐵-lattices ℒ such that for every element
𝑥 ∈ 𝐵× which normalizes O𝐵, one has

Λ ∈ ℒ =⇒ 𝑥Λ ∈ ℒ.

(2) A set ℒ of O𝐵-lattices in V is said to be a multichain of O𝐵-lattices if there exists a chain of O𝐵𝑖 -
lattices ℒ𝑖 in 𝑉𝑖 for each 𝑖 = 1, . . . , 𝑚 such that for any member Λ ∈ ℒ one has Λ𝑖 ∈ ℒ𝑖 for all
𝑖 = 1, . . . , 𝑚.

(3) A multichain of O𝐵-lattices ℒ is called self-dual if for every member Λ ∈ ℒ, its dual lattice Λ∨

also belongs to ℒ, where

Λ∨ := {𝑥 ∈ 𝑉 | 𝜓(𝑥,Λ) ⊂ Z𝑝}.

For a multichain ℒ of O𝐵-lattices, we write

G = Gℒ

for the group scheme over Z𝑝 defined by the stabilizer of the multichain ℒ as in [55, §6]. By [21,
Corollary 4.8], for a reductive group of the form𝐺 = Res𝐹 |Q𝑝 𝐺

′, every parahoric group scheme of G is
of the form ResO𝐹 |Z𝑝 G ′ for a unique parahoric group scheme G ′ of𝐺 ′. If we assume that𝐺 ′ unramified,
the stabilizer group scheme G = Gℒ associated to ℒ is always connected. So G is a parahoric group
scheme of G and (since the prime to p level 𝐾 𝑝 is fixed) we write 𝐾 = G (Z𝑝).

A.1.2. Integral models
Now let AV be the category of abelian varieties with O𝐵-actions, where morphisms are prime to p
isogenies.

Definition A.2. Let ℒ be a multichain of O𝐵-lattices in V. A ℒ-set of abelian varieties over a Z𝑝-
scheme S is a functor

ℒ → AV, Λ ↦→ 𝐴Λ,

satisfying the following.
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(1) For each inclusion Λ ⊂ Λ′ in ℒ, a quasi-isogeny 𝐴Λ → 𝐴Λ′ .
(2) For any element 𝑎 ∈ 𝐵× ∩ O𝐵 which normalizes O𝐵 and any member Λ ∈ ℒ, there exists an

isomorphism 𝜃𝑎,Λ : 𝐴𝑎Λ → 𝐴𝑎Λ such that the following diagram commutes

𝐴𝑎Λ
𝜃𝑎,Λ ��

���
��

��
��

�
𝐴𝑎Λ

𝜌𝑎Λ,Λ

��
𝐴Λ

Let ℒ be a self-dual multichain of O𝐵-lattices in V, and fix a sufficiently small open compact
subgroup 𝐾 𝑝 ⊂ 𝐺 (A𝑝𝑓 ). Recall that E is the local reflex field. There is a naive integral model 𝒜naive

ℒ

over O𝐸 , which is a moduli scheme classifying the objects (𝐴ℒ , 𝜆, 𝜂)/𝑆 for each scheme 𝑆/O𝐸 , where

◦ 𝐴ℒ = (𝐴Λ)Λ∈ℒ is a ℒ-set of abelian schemes over S in AV;
◦ 𝜆 = Q× · 𝜆 is a Q-homogeneous principal polarization on 𝐴ℒ;
◦ 𝜂 is a 𝜋1 (𝑆, 𝑠)-invariant 𝐾 𝑝-orbit of isomorphism 𝜂 : 𝑉 ⊗A𝑝𝑓 → 𝑇 𝑝 (𝐴𝑠) which preserves the pairings

up to a scalar in (A𝑝𝑓 )
×. Here 𝑇 𝑝 (𝐴𝑠) is the prime to p Tate module of 𝐴𝑠 and for simplicity we

assume that S is connected.

For the exact meaning of the above terms, we refer to [49, 55, 37] and appendix of [59].
In general the naive model 𝒜naive

ℒ
is not flat over O𝐸 , cf. [45]. In order to define a good integral

model, Pappas and Rapoport introduced an alternative integral model of 𝒜naive
ℒ

⊗O𝐸 𝐹 in [49], where F
is a large enough extension of E (which contains the Galois closure of E overQ𝑝). We briefly recall their
construction. To this end, we find it convenient to use Lan’s formulation of splitting structures ([37]).

Definition A.3 ([37, Definition 2.1.12]). Suppose that S is a scheme over O𝐹 . A ℒ-set of polarized
O𝐵 ⊗ O𝑆-modules is a triple (H,ℱ, 𝜄), where:

(1) H : Λ ↦→ HΛ and ℱ : Λ ↦→ ℱΛ are functors from the category ℒ to the category of O𝐵 ⊗ O𝑆-
modules.

(2) For each Λ ∈ ℒ, bothℱΛ andHΛ/ℱΛ are finite locally freeO𝑆-modules, such thatHΛ/ℱΛ satisfies
the determinant condition.

(3) For other conditions, we refer to Lan’s paper [37].

Definition A.4 ([37, Definition 2.3.3]; see also [49] Definition 14.1). Suppose that S is a scheme over
O𝐹 , and that (H,ℱ, 𝜄) is a ℒ-set of polarized O𝐵 ⊗O𝑆-modules. A splitting structure for (H,ℱ, 𝜄) is
a collection

ℱ• = (ℱ𝑙
𝑖, 𝑗 , 𝜄

𝑙
𝑖, 𝑗 )1≤𝑖≤𝑟 ,1≤ 𝑗≤ 𝑓𝑖 ,0≤𝑙≤𝑒𝑖 ,

where each ℱ𝑙
𝑖, 𝑗 : Λ → ℱ𝑙

Λ,𝑖, 𝑗 is a functor from the category ℒ to the category of O𝐵 ⊗ O𝑆-modules,
and each 𝜄𝑙𝑖, 𝑗 : ℱ𝑙

Λ,𝑖, 𝑗 → HΛ,𝑖, 𝑗 is an injective morphism satisfying the following conditions (identify
ℱ𝑙
𝑖, 𝑗 with its image under 𝜄):

(1) For each Λ ∈ ℒ, we require both ℱ𝑙
Λ,𝑖, 𝑗 and HΛ,𝑖, 𝑗/ℱ𝑙

Λ,𝑖, 𝑗 to be finite locally free O𝑆-modules.
(2) For each Λ ∈ ℒ and 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑓𝑖 , we have a filtration

0 = ℱ0
Λ,𝑖, 𝑗 ⊂ ℱ1

Λ,𝑖, 𝑗 ⊂ · · · ⊂ ℱ𝑒𝑖
Λ,𝑖, 𝑗 = ℱΛ,𝑖, 𝑗

as O𝐵 ⊗ O𝑆-submodule of HΛ,𝑖, 𝑗 . For each integer 0 < 𝑙 ≤ 𝑒𝑖 , the quotient ℱ𝑙
Λ,𝑖, 𝑗/ℱ

𝑙−1
Λ,𝑖, 𝑗 is a

locally free O𝑆-module of rank 𝑑𝑙𝑖, 𝑗 , annihilated by 𝑏 ⊗ 1 − 1 ⊗ 𝜎𝑙𝑖, 𝑗 (𝑏) for all 𝑏 ∈ O𝐹𝑖 .
(3) For each Λ ∈ ℒ and 𝑖 ∈ ℐ, there are periodicity isomorphisms, cf. [37] p. 2475 for more details.
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(4) For each Λ ∈ ℒ and tuples (𝑖, 𝑗 , 𝑙), let (ℱ𝑙
Λ,𝑖, 𝑗 )

⊥ denote the orthogonal complement of ℱ𝑙
Λ,𝑖, 𝑗 in

HΛ∨ ,𝑖, 𝑗 with respect to the perfect pairing HΛ,𝑖, 𝑗 ×HΛ∨ ,𝑖, 𝑗 → O𝑆 . Then∏
0≤𝑘<𝑙

(𝑏 ⊗ 1 − 1 ⊗ 𝜎𝑘𝑖, 𝑗 (𝑏)) ((ℱ𝑙
Λ,𝑖, 𝑗 )

⊥) ⊂ ℱ𝑙
Λ∨ ,𝑖, 𝑗 .

Let𝒜spl
ℒ

be the moduli scheme overO𝐹 classifying the objects (𝐴ℒ , 𝜆, 𝜂,ℱ•) for each scheme 𝑆/O𝐹 ,
where (𝐴ℒ , 𝜆, 𝜂) is an object in 𝒜naive

ℒ
(𝑆) and ℱ• is a splitting structure for the ℒ-set of polarized

O𝐵 ⊗O𝑆-modules associated with (𝐴ℒ , 𝜆, 𝜂). This is the splitting model associated to the PEL datum.
With the notation of [37], we have

𝒜
spl
ℒ

= Spl+(H,ℱ, 𝜄)/𝒜naive
ℒ

⊗O𝐹
.

In the following, we will simply write 𝒜spl and 𝒜naive for the schemes 𝒜spl
ℒ

and 𝒜naive
ℒ

, respectively.
Let 𝒜 be the scheme-theoretic image of the natural morphism

𝒜spl → 𝒜naive ⊗O𝐸 O𝐹 → 𝒜naive.

The natural morphism

𝒜spl → 𝒜

is projective by [37] Proposition 2.3.7. Both 𝒜spl and 𝒜 admit better geometric properties than the
naive integral model 𝒜naive.

A.2. Local models

The local structure of integral models of Shimura varieties is controlled by the associated local models.
There is a naive local model Mnaive associated to the moduli scheme 𝒜naive. Recall that Mnaive :=
Mnaive(G, 𝜇) is the moduli scheme over O𝐸 given by the following definition.

Definition A.5 [55]. A point ofMnaive with values in an O𝐸 -scheme S is given by the following data.

(1) A functor from the category ℒ to the category of O𝐵 ⊗ O𝑆-modules on S:

Λ → 𝑡Λ, Λ ∈ ℒ.

(2) A morphism of functors

𝜑Λ : Λ ⊗Z𝑝 O𝑆 → 𝑡Λ.

We require the following conditions to be satisfied:

(1) 𝑡Λ is a finite locally free O𝑆-module. The O𝐵-action on 𝑡Λ satisfies the determinant condition

det
O𝑆

(𝑎; 𝑡Λ) = det
𝐹
(𝑎;𝑊), 𝑎 ∈ O𝐵 .

(2) The morphisms 𝜑Λ are surjective.
(3) The composition of the following maps is zero for each Λ:

𝑡∗Λ → (Λ ⊗ O𝑆)∗ � Λ̂ ⊗ O𝑆 → 𝑡Λ̂.
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The naive local modelMnaive is usually not flat in the ramified case, cf. [45]. We define the splitting
local model

Mspl = Mspl (G, 𝜇)

as the moduli scheme over O𝐹 classifying the splitting structures over Mnaive ⊗O𝐸 O𝐹 . The splitting
modelMspl admits good properties. Recall that we assume that there is no type (AR) local factors.

Proposition A.6. The splitting local modelMspl is flat over O𝐹 .

Proof. This is a direct generalization of [49, Theorems 5.3 and 9.4]. For the reader’s convenience, we
briefly recall their proofs. Without loss of generality, we may assume that 𝑟 = 1 and we slightly change
the notation: let 𝐺 = 𝐺1 be the associated reductive group over Q𝑝 . So we have

𝐺 = Res𝐹1 |Q𝑝 𝐺
′

for an unramified group 𝐺 ′ over a local field 𝐹1 |Q𝑝 . Since 𝐹 |Q𝑝 contains the Galois closure of 𝐹1, we
have

𝐺𝐹 =
∏

𝜏:𝐹1→𝐹

𝐺 ′
𝜏 , where 𝐺 ′

𝜏 := 𝐺 ′ ⊗𝐹1 ,𝜏 𝐹.

The projection of

𝜇 : G𝑚,𝐹 → 𝐺𝐹 =
∏

𝜏:𝐹1→𝐹

𝐺 ′
𝜏

to each factor 𝐺 ′
𝜏 gives a cocharacter 𝜇𝜏 : G𝑚,𝐹 → 𝐺 ′

𝜏 . Moreover, for each 𝜏 : 𝐹1 → 𝐹, one can
associate an O𝐹 -multichain by

ℒ𝜏 := {Λ𝜏 = Λ ⊗O𝐹1
O𝐹 | Λ ∈ ℒ}.

Such a multichain determines a parahoric subgroup of 𝐺 ′
𝜏 . This gives a local model (over O𝐹 )

Mloc
𝜏 := Mloc(𝐺 ′

𝜏 , 𝜇𝜏)ℒ𝜏 .

By our assumption,𝐺 ′ is unramified over F, soMloc is the same as the naive local model. This means that
for each O𝐹 -scheme S,Mloc(𝑆) classifies the set of multichains {ℱΛ,𝜏}Λ∈ℒ ⊂ ℒ𝜏 which is compatible
with transition maps, and each ℱΛ,𝜏 is Zariski locally on S an O𝑆-direct summand of Λ𝜏 of rank 𝑑𝜏 .

Given the splitting local modelMspl = Mspl (G, 𝜇) over O𝐹 , one has the following diagram (which is
a modified version of the diagrams (5.10) and (9.13) in [49])

M̃spl

𝜋1

����
��
��
��
�

𝜋2

����
���

���
���

Mspl ∏
𝜏:𝐹1→𝐹 M

loc
𝜏 .

For each O𝐹 -scheme S, M̃spl (𝑆) classifies

(ℱ𝑙
Λ, 𝑗 , 𝜑

𝑙
Λ, 𝑗 : Υ𝑙Λ, 𝑗 � Λ𝑙𝑗 ⊗O𝐹 O𝑆)Λ∈ℒ ,

where (ℱ𝑙
Λ, 𝑗 )

𝑙
Λ∈ℒ, 𝑗

∈ Mspl(𝑆), 𝜑𝑙𝑗 is an isomorphism from the O𝑆-module

Υ𝑙Λ, 𝑗 := Ker((𝜋 ⊗ 1 − 1 ⊗ 𝜎𝑙𝑗 (𝜋)) |Λ𝑙
𝑗,𝑆

/ℱ𝑙−1
Λ, 𝑗

)
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to the O𝑆-module Λ𝑙𝑗 ⊗O𝐹 O𝑆 with

Λ𝑙𝑗 := Λ ⊗O𝐹 ,𝜎𝑙𝑗
O𝐹 .

Such a trivialization exists Zariski locally on S by [49, Propositions 5.2, 9.2] (this reference only covers
the case of type (C) and (AL); the case of type (AU) can be proved by the same argument). The map 𝜋1
is the natural forgetful morphism, and 𝜋2 sends (ℱ𝑙

Λ, 𝑗 , 𝜑
𝑙
Λ, 𝑗 ) to 𝜑𝑙Λ, 𝑗 (ℱ

𝑙
Λ, 𝑗/ℱ

𝑙−1
Λ, 𝑗 ) ∈ M

loc
𝜎𝑙𝑗

.

Let G𝑙𝑗 be the subgroup of
∏

Λ∈ℒ Aut(Λ𝑙𝑗 ) compatible with the transition maps of ℒ, and Gspl :=∏
𝑗 ,𝑙 G𝑙𝑗 . Then the action

𝑔𝑙𝑗 · (ℱ
𝑙
Λ, 𝑗 , 𝜑

𝑙
Λ, 𝑗 ) = (ℱ𝑙

Λ, 𝑗 , 𝑔
𝑙
𝑗𝜑
𝑙
Λ, 𝑗 )

makes 𝜋1 a
∏

𝑗 ,𝑙≥2 G𝑙𝑗 -torsor. The other action

𝑔𝑙𝑗 · (ℱ
𝑙
Λ, 𝑗 , 𝜑

𝑙
Λ, 𝑗 ) = ((𝜑𝑙Λ, 𝑗 )

−1𝑔𝑙𝑗𝜑
𝑙
Λ, 𝑗 (ℱ

𝑙
Λ, 𝑗 ), 𝑔

𝑙
𝑗𝜑
𝑙
Λ, 𝑗 )

makes 𝜋2 a
∏

𝑗 ,𝑙≥2 G𝑙𝑗 -torsor. Now the existence of such a diagram of torsors for a smooth group scheme
and the flatness of unramified local models implies the flatness ofMspl. �

Proposition A.7.

(1) Let Mloc = Mloc(G, 𝜇) be the scheme-theoretic image of the natural forgetful morphism Mspl →
Mnaive. Then Mloc coincides with the local model M defined in [40] with respect to the triple
(𝐺, 𝜇, 𝐾ℒ).

(2) We have the following naive local model diagram:

�𝒜naive

𝜋

����
��
��
��
�

𝑞

���
��

��
��

��

𝒜naive Mnaive

(3) We have a local model diagram:

𝒜

𝜋

		��
��
��
�� 𝑞

���
��

��
��

�

𝒜 Mloc

(4) The pullback of the natural morphism Mspl → Mnaive gives the splitting local model diagram with
respect to the group G over O𝐹 ([49, §15])

𝒜spl

𝜋



��
��
��
�� 𝑞

��	
		

		
		

	

𝒜spl Mspl

Proof. We only need to show thatM coincides withMloc, as the other statements are contained in [49].
The imageMloc is flat by the flatness ofMspl. As the generic fiber ofM agrees withMnaive,M is the flat
closure of the generic fiber ofMnaive, which agrees withMloc by definition. �
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In order to study the geometry of 𝒜spl
0 , we would like to show that there is a local model diagram of

splitting models with respect to the splitting group Gspl in the next paragraph. This means that there is
a Gspl-torsor 𝒜spl over 𝒜spl, and a Gspl-equivariant morphism 𝒜spl → Mloc(Gspl, 𝜇).

For every scheme S over O𝐹 and each Λ ∈ ℒ, we define the O𝑆-module Υ𝑙Λ,𝑖, 𝑗 as

Υ𝑙Λ,𝑖, 𝑗 := Ker((𝜋𝑖 ⊗ 1 − 1 ⊗ 𝜎𝑙𝑖, 𝑗 (𝜋𝑖)) |H𝑖, 𝑗/ℱ𝑙
𝑖, 𝑗
).

Consider also the O𝐹 -lattice Λ𝑙𝑖, 𝑗 := Λ𝑖 ⊗O𝐹𝑖 ,𝜎
𝑙
𝑖, 𝑗
O𝐹 . Then Zariski locally there exists an isomorphism

Υ𝑙Λ,𝑖, 𝑗 � Λ𝑙𝑖, 𝑗 ⊗O𝐹 O𝑆 ,

see the proof of Proposition A.6. For every Λ ∈ ℒ, we can define an O𝑆-module MΛ as

MΛ :=
⊕
𝑖

M𝑚𝑖
Λ,𝑖 , MΛ,𝑖 :=

⊕
𝑗 ,𝑙

Υ𝑙Λ,𝑖, 𝑗 ,

so it is locally isomorphic to the O𝐹 -lattice

Λspl :=
⊕
𝑖

Λspl,𝑚𝑖
𝑖 , Λspl

𝑖 :=
⊕
𝑗 ,𝑙

Λ𝑙𝑖, 𝑗 .

Consider the group

Gspl
Λ := Aut(Λspl) ⊂

∏
𝑖, 𝑗 ,𝑙

G𝑙Λ,𝑖, 𝑗 .

We simply define the splitting group Gspl as

Gspl =
⋂
Λ∈ℒ

Gspl
Λ .

For each 𝑖, 𝑗 , 𝑙, let G𝑙𝑖, 𝑗 be the group scheme over O𝐹 defined by the automorphism of the multichain
(Λ𝑙𝑖, 𝑗 )Λ∈ℒ . Then it admits a decomposition as Gspl =

∏
𝑖, 𝑗 ,𝑙 G𝑙𝑖, 𝑗 . Now we define

Mloc(Gspl, 𝜇) :=
∏
𝑖, 𝑗 ,𝑙

Mloc(G𝑙𝑖, 𝑗 , 𝜇𝑙𝑖, 𝑗 ),

where on the right hand side each Mloc(G𝑙𝑖, 𝑗 , 𝜇𝑙𝑖, 𝑗 ) is the local model attached to the pair (G𝑙𝑖, 𝑗 , 𝜇𝑙𝑖, 𝑗 ).
Note that if we consider the natural Gspl-action on Mloc(Gspl, 𝜇), as in the proof of Proposition A.6
we get the following diagram of schemes over O𝐹 for splitting local models (modified version of the
diagrams (5.10) and (9.13) of [49]):

M̃spl(G, 𝜇)
𝜋1

�����
���

���
�

𝑞

����
���

���
���

Mspl (G, 𝜇) Mloc(Gspl, 𝜇)

where 𝜋1 is the
∏
𝑖, 𝑗 ,𝑙≥2 G𝑙𝑖, 𝑗 -torsor, and q is a Gspl-equivariant morphism. Note that 𝑞 = 𝜋2, but here we

only consider the group action on M̃spl(G, 𝜇) given by 𝜋1. One can see that such action is compatible
with the natural

∏
𝑖, 𝑗 ,𝑙≥2 G𝑙𝑖, 𝑗 -action onMloc(Gspl, 𝜇). This motivates the following local model diagram

for splitting integral models.
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Proposition A.8. We have the following local model diagram for splitting models:

𝒜spl

𝜋

����
��
��
��
�

𝑞

����
���

���
���

���
�

𝒜spl Mloc(Gspl, 𝜇) ⊂
∏
𝑖, 𝑗 ,𝑙M

𝑙
Λ,𝑖, 𝑗 ,

where for every O𝐹 -scheme S, 𝒜spl(𝑆) classifies isomorphism classes of

(𝐴ℒ ,ℱℒ , (𝜏
𝑙
Λ,𝑖, 𝑗 : Υ𝑙Λ,𝑖, 𝑗 � Λ𝑙𝑖, 𝑗 ⊗O𝐹 O𝑆)Λ∈ℒ),

with (𝐴ℒ ,ℱℒ) ∈ 𝒜spl (𝑆), and 𝜏ℒ := {𝜏𝑙Λ,𝑖, 𝑗 } can be viewed as a trivialization of the multi-chain
(MΛ)Λ∈ℒ . The morphism 𝜋 is the natural forgetful morphism, which is a Gspl-torsor. The morphism q
is the natural Gspl-equivariant smooth morphism given by

(𝐴ℒ ,ℱℒ , {𝜏
𝑙
Λ,𝑖, 𝑗 }) ↦→ {𝜏𝑙Λ,𝑖, 𝑗 (ℱ

𝑙
Λ,𝑖, 𝑗/ℱ

𝑙−1
Λ,𝑖, 𝑗 )}Λ∈ℒ .

Proof. Combining the diagram in Proposition A.7(4) and the diagram in the proof of Proposition A.6,
one has the following diagram

𝒜spl,#

𝜋′



��
��
��
��
�

𝑞′



��
��

��
��

��
M̃spl (G, 𝜇)

𝜋1

�����
���

���
�

𝑞′′

����
���

���
���

𝒜spl Mspl (G, 𝜇) Mloc(Gspl, 𝜇).

Let ˜̃
𝒜spl be the product of 𝑞′ and 𝜋1, then we have a new diagram

˜̃
𝒜spl

𝜋′′

����
��
��
��
�

𝑞′′′



��
���

���
���

𝒜spl Mloc(Gspl, 𝜇),

where 𝜋′′ is a GO𝐹 ×
∏
𝑖, 𝑗 ,𝑙≥2 G𝑙𝑖, 𝑗 -torsor, and we can check that the same action of 𝜋′′ makes 𝑞′′′ a

GO𝐹 ×
∏
𝑖, 𝑗 ,𝑙≥2 G𝑙𝑖, 𝑗 -equivariant smooth morphism. Note that we always have Λ1

𝑖 ⊂ Λ, so the restriction
of the G-action on Λ induces a natural morphism

GO𝐹 = Aut(Λ ⊗ O𝐹 ) → Aut(
⊕
𝑖

Λ1
𝑖 ) = G1.

So we can push the G-torsor 𝜋′′ along the natural morphism GO𝐹 → G1 to get 𝒜spl, a Gspl =
∏
𝑖, 𝑗 ,𝑙 G𝑙𝑖, 𝑗 -

torsor. Moreover, the GO𝐹 ×
∏
𝑖, 𝑗 ,𝑙≥2 G𝑙𝑖, 𝑗 -action on Mloc(Gspl, 𝜇) factors through Gspl, therefore the

morphism 𝑞′′′ factors through 𝒜spl and induces a Gspl-equivariant morphism 𝑞 : 𝒜spl → Mloc(Gspl, 𝜇).
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This gives the diagram

𝒜spl

𝜋

����
��
��
��

𝑞



��
���

���
��

𝒜spl Mloc(Gspl, 𝜇)

claimed in the proposition. �

A.3. EKOR stratification

Recall that we write 𝜅 for the residue field of O𝐸 , and 𝑘 = 𝜅 for the algebraic closure of 𝜅. We will
construct the EKOR stratification of

𝒜0 := 𝒜 ⊗ 𝑘

from its local model diagram, following the idea of [59].
Fix the triple (𝐺, 𝜇, 𝐾) with associated parahoric group scheme G. We have the attached local model

Mloc = Mloc(G, 𝜇) equipped with a left action of G. Let G0 = G⊗ 𝑘 and 𝑀 loc = Mloc ⊗ 𝑘 . For 𝐾 = G (Z𝑝),
let Adm(𝜇)𝐾 be the 𝜇-admissible set as in [59] 1.2. By [49, 40, 21], we have

Corollary A.9. There is a set-theoretically disjoint union of locally closed subsets

𝑀 loc =
∐

𝑤 ∈Adm(𝜇)𝐾

𝑀𝑤 .

Moreover, we have

(1) The closure 𝑀𝑤 =
∐
𝑣≤𝑤 𝑀

𝑣 ;
(2) Each 𝑀𝑤 consists of a single G0-orbit, and the stabilizer of each closed point is smooth.

The decomposition of 𝑀 loc induces the KR (Kottwitz-Rapoport) stratification

𝒜0 =
∐

𝑤 ∈Adm(𝜇)𝐾

𝒜𝑤
0 ,

where for each 𝑤 ∈ Adm(𝜇)𝐾 , 𝒜𝑤
0 is the fiber of the morphism of algebraic stacks over k induced by

the local model diagram (cf. Proposition A.7 (3))

𝒜0 → [G0\𝑀 loc] .

Each 𝒜𝑤
0 is a locally closed smooth subvariety of 𝒜0, and we have

𝒜𝑤
0 =

∐
𝑤′ ≤𝑤

𝒜𝑤′

0 .

Consider the local model diagram

𝒜0

𝜋

����
��
��
�� 𝑞

���
��

��
��

�

𝒜0 𝑀 loc
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where 𝜋 is a G0-torsor and q is G0-equivariant. For each 𝑤 ∈ Adm(𝜇)𝐾 , let 𝐽𝑤 be the set defined in
1.3.6 of [59], and Grdt

0 the reductive quotient of G0. By the same method of [59, §3], there is a Grdt
0 -zip

of type 𝐽𝑤 over 𝒜𝑤
0 , written as

(I𝑤 , I𝑤+ , I𝑤− , 𝜄).

The tuple (I𝑤 , I𝑤+ , I𝑤− , 𝜄) then induces a morphism of stacks

𝜁𝑤 : 𝒜𝑤
0 → Grdt

0 -Zip𝐽𝑤 .

The proof of [59, Theorem 3.4.11] gives

Corollary A.10. The morphism 𝜁𝑤 is smooth.

Let 𝑊 = 𝑊Grdt
0

be the Weyl group of Grdt
0 . Then the underlying topological space of Grdt

0 -Zip𝐽𝑤 is
given by the partially ordered set 𝐽𝑤𝑊 . For each 𝑥 ∈ 𝐽𝑤𝑊 , define 𝒜𝑥

0 := 𝜁−1
𝑤 (𝑥). Then 𝒜𝑥

0 is a locally
closed subvariety of 𝒜𝑤

0 . Letting 𝑤 ∈ Adm(𝜇)𝐾 vary, we get

𝒜0 =
∐

𝑤 ∈Adm(𝜇)𝐾 ,𝑥∈𝐽𝑤𝑊
𝒜𝑥

0 .

We will call such decomposition the EKOR stratification of 𝒜0.
The index set of EKOR strata is in fact given by the partially ordered set (𝐾 Adm(𝜇), ≤𝐾,𝜎) of [59]

1.2. There is a natural surjection

𝜋 : 𝐾 Adm(𝜇) → Adm(𝜇)𝐾 ,

such that for every 𝑤 ∈ Adm(𝜇)𝐾 , the fiber 𝜋−1 (𝑤) is bijective to the partially ordered set 𝐽𝑤𝑊 by [59]
1.3.6.

Example A.11 (EKOR strata of Hilbert modular varieties). Consider 𝐵 = 𝐿, a totally real field over Q
and 𝑉 = 𝐿2, then G is a subgroup of Res𝐿 |Q GL2. In this case, the canonical model 𝒜 (with maximal
parahoric level at p) was constructed in [13] and coincides with 𝒜naive. Let 𝑥 = (𝐴, 𝜆, 𝜄, 𝛼) ∈ 𝒜0(𝑘)
and H, 𝜔 the corresponding k-vector spaces as above. For each 𝑖, 𝑗 , H𝑖, 𝑗 � 𝑘 [𝜀𝑖]2 and 𝜔𝑖, 𝑗 ⊂ H𝑖, 𝑗 is a
𝑘 [𝜀𝑖]-submodule with k-dimension 𝑒𝑖 , so there is an integer 𝑎𝑖, 𝑗 such that

𝜔𝑖, 𝑗 � (𝜀𝑎𝑖, 𝑗𝑖 ) ⊕ (𝜀𝑒𝑖−𝑎𝑖, 𝑗𝑖 ), for a unique integer 0 ≤ 𝑎𝑖, 𝑗 ≤ � 𝑒𝑖
2
� .

For each tuple 𝑎 = (𝑎𝑖, 𝑗 ) such that 0 ≤ 𝑎𝑖, 𝑗 ≤ � 𝑒𝑖2 �, let

𝒜𝑎
0 := {𝑥 ∈ 𝒜0 | 𝜔𝑥,𝑖, 𝑗 � (𝜀𝑎𝑖, 𝑗𝑖 ) ⊕ (𝜀𝑒𝑖−𝑎𝑖, 𝑗𝑖 ) for all 𝑖, 𝑗}.

Then

𝒜0 =
∐
𝑎

𝒜𝑎
0

is the KR stratification of 𝒜0. The stratum 𝒜𝑎
0 is locally closed subvariety of 𝒜0 of dimension

∑
𝑖, 𝑗 (𝑒𝑖 −

2𝑎𝑖, 𝑗 ) with closure relation given by

𝑎 ≤ 𝑎′ if and only if 𝑎𝑖, 𝑗 ≥ 𝑎′𝑖, 𝑗 for all 𝑖, 𝑗 .

Now consider the tuple 𝑎 = (𝑎𝑖, 𝑗 ) such that 𝑥 ∈ 𝒜𝑎
0 (𝑘), then 𝑎𝑖, 𝑗 is the maximal integer such that

𝜔𝑖, 𝑗 ⊂ 𝜀
𝑎𝑖, 𝑗
𝑖 H𝑖, 𝑗 .
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If we write 𝑀𝑖, 𝑗 = H𝑖, 𝑗/𝜀𝑖H𝑖, 𝑗 , the Verschiebung map H𝑖, 𝑗+1 → H𝑖, 𝑗 induces a morphism

𝑉𝑖, 𝑗 : 𝑀𝑖, 𝑗+1 → 𝜀
𝑎𝑖, 𝑗
𝑖 H𝑖, 𝑗/𝜀

𝑎𝑖, 𝑗+1
𝑖 H𝑖, 𝑗 � 𝑀𝑖, 𝑗 .

Conversely, we first assume that 𝑎𝑖, 𝑗 < 𝑒𝑖/2, the Frobenius map H𝑖, 𝑗 → H𝑖, 𝑗+1 induces a morphism

𝐹𝑖, 𝑗 : 𝑀𝑖, 𝑗 � 𝜀
𝑎𝑖, 𝑗
𝑖 H𝑖, 𝑗/𝜀

𝑎𝑖, 𝑗+1
𝑖 H𝑖, 𝑗 → 𝜀

2𝑎𝑖, 𝑗
𝑖 H𝑖, 𝑗+1/𝜀

2𝑎𝑖, 𝑗+1
𝑖 H𝑖, 𝑗+1 � 𝑀𝑖, 𝑗+1.

For 𝑎𝑖, 𝑗 = 𝑒𝑖/2, let 𝐹𝑖, 𝑗 = 0, then we have the tuple

(𝑀 :=
⊕
𝑖, 𝑗

𝑀𝑖, 𝑗 , 𝐹 :=
⊕
𝑖, 𝑗

𝐹𝑖, 𝑗 , 𝑉 :=
⊕
𝑖, 𝑗

𝑉𝑖, 𝑗 )

such that M is a k-vector space with semilinear morphisms 𝐹,𝑉 satisfying the equation

Im(𝐹) = Ker(𝑉), Ker(𝐹) = Im(𝑉).

The type of the F-zip (𝑀,Ker(𝑉),Ker(𝐹), 𝜑•) is determined by the dimension of Ker(𝑉), which is
equal to the number of the indices (𝑖, 𝑗) such that 𝑎𝑖, 𝑗 ≠ 𝑒𝑖/2. More explicitly, consider the function

𝛿(𝑢) =
{

0, 𝑢 = 0;
1, 𝑢 ≠ 0.

For each tuple 𝑎 = (𝑎𝑖, 𝑗 ) corresponding to a KR stratum 𝒜𝑎
0 , set

𝑡𝑎 :=
∑
𝑖, 𝑗

𝛿(𝑒𝑖 − 2𝑎𝑖, 𝑗 ).

There are 𝑡𝑎 + 1 EKOR strata contained in 𝒜𝑎
0 . The EKOR type of a point 𝑥 ∈ 𝒜𝑎

0 (𝑘) is given by an
integer 0 ≤ 𝑡𝑥 ≤ 𝑡𝑎, and the EKOR stratum containing x has dimension dim(𝒜𝑎

0 ) − 𝑡𝑥 .

A.4. Global construction of EKOR stratification

We will show that the closure relation of the EKOR strata is given by the partially ordered set
(𝐾 Adm(𝜇), ≤𝐾,𝜎). All results and detailed definitions come from [59, §4] with exactly the same
proofs (note that thanks to the recent works [1, 18] the perfection of the geometric special fiber 𝑀 loc

of the local model here can be embedded into the associated Witt vector affine flag variety, similar to
the tamely ramified case used in [59]). So we omit all proofs in this subsection and refer to loc. cit. for
detailed arguments.

Keep the notations as in the last subsection. Let 𝐶 (G, 𝜇) be the index set of central leaves in [59, §1].
There is a prestack Shtloc

𝜇,𝐾 over 𝑘 = F𝑝 classifying G-Shtukas of type 𝜇, whose k-points are given by

Shtloc
𝜇,𝐾 (𝑘) = 𝐶 (G, 𝜇).

There is a prestack Shtloc(∞,1)
𝜇,𝐾 over k, parameterizing the so-called (∞, 1)-restricted local Shtukas. For

sufficiently large integer m, there is an algebraic stack Shtloc(𝑚,1)
𝜇,𝐾 over k, parameterizing the so-called

(𝑚, 1)-restricted local Shtukas, such that (see [59, Lemma 4.2.4])

| Shtloc(∞,1)
𝜇,𝐾 | � | Shtloc(𝑚,1)

𝜇,𝐾 | � 𝐾 Adm(𝜇).
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We also have natural maps (which are perfectly smooth by [59, Proposition 4.2.5])

Shtloc
𝜇,𝐾 → Shtloc(∞,1)

𝜇,𝐾 → Shtloc(𝑚,1)
𝜇,𝐾 → [G0\𝑀 loc] .

Consider the perfection 𝒜
pf
0 = lim←−−𝜎𝒜0 of 𝒜0. Then the same proof of [59, Proposition 4.4.1] shows

that there exists a morphism of prestacks

𝒜
pf
0 → Shtloc

𝜇,𝐾 .

Composing this morphism with the natural morphism Shtloc
𝜇,𝐾 → Shtloc(𝑚,1)

𝜇,𝐾 , we get a morphism of
stacks

𝑣𝐾 : 𝒜pf
0 → Shtloc(𝑚,1)

𝜇,𝐾 .

Recall that the local model diagram gives the morphism of stacks

𝜆𝐾 : 𝒜pf
0 → [G0\𝑀 loc],

which is perfectly smooth. The same proof as [59, Theorem 4.4.3] (there is a small gap in the last step
of the proof concerning the involved diagram, which is inherited from the corresponding place of the
work of Xiao-Zhu; but a small modification without the commutativity of that diagram will make the
argument still work, cf. [60].) shows

Theorem A.12. The following diagram commutes:

𝒜
pf
0

𝑣𝐾 ��

𝜆𝐾 ���
��

��
��

��
Shtloc(𝑚,1)

𝜇,𝐾

𝜋𝐾

��
[G0\𝑀 loc]

Moreover, 𝑣𝐾 is perfectly smooth.

Consider the morphism of stacks

𝑣𝐾 : 𝒜pf
0 → Shtloc(𝑚,1)

𝜇,𝐾 .

We know that | Shtloc(𝑚,1)
𝜇,𝐾 | � 𝐾 Adm(𝜇), the fibers of 𝑣𝐾 are then the EKOR strata of 𝒜pf

0 . As we have
the identification of underlying topological spaces

|𝒜pf
0 | = |𝒜0 |.

The perfect smoothness of 𝑣𝐾 shows that

Corollary A.13. For any 𝑥 ∈ 𝐾 Adm(𝜇), the Zariski closure of the EKOR stratum 𝒜𝑥
0 is given by

𝒜𝑥
0 =

∐
𝑥′ ≤𝐾,𝜎 𝑥

𝒜𝑥′

0 .

A.5. Nonemptiness of EKOR strata

We recall the proof of nonemptiness of EKOR strata following [26]. Our situation is slightly different
from loc. cit. as the groups there are required to be tamely ramified at p. Nevertheless their method
equally applies to our case.
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Let 𝜏𝜇 be the minimal element in Adm(𝜇) with respect to the Bruhat order. Let 𝐼 be a fixed Iwahori
subgroup of 𝐺̆ := 𝐺 (Q̆𝑝). For simplicity, we may assume that the lattice ℒ is determined by a finite
index set 𝐽 = {0, . . . , 𝑚}.

Let 𝐵(𝐺) be the set of 𝜎-conjugacy classes in 𝐺̆. Recall that the Kottwitz set (the index set of the
Newton stratification of 𝒜0) is

𝐵(𝐺, 𝜇) = {[𝑏] ∈ 𝐵(𝐺) | 𝜅([𝑏]) = 𝜇#, 𝜈([𝑏]) ≤ 𝜇}.

There is a unique basic element [𝑏0] ∈ 𝐵(𝐺, 𝜇). By [29, Theorem 1], the basic locus of 𝒜0 is non-
empty. Let 𝑥 = (𝐴 𝑗 , 𝜆 𝑗 , 𝛼) 𝑗∈𝐽 ∈ 𝒜(𝑘) be a point in the basic locus. Let 𝐷 𝑗 be the Dieudonné module
of 𝐴 𝑗 [𝑝∞] and N be the common rational Dieudonné module. Then 𝐷 𝑗 form a lattice chain inside N.
The Frobenius gives 𝛿 ∈ 𝐺̆ such that [𝛿] = [𝑏0] ∈ 𝐵(𝐺, 𝜇).

For any 𝑤 ∈ 𝑊𝐾 \𝑊/𝑊𝐾 and 𝑏 ∈ 𝐺̆, The affine Deligne-Lusztig variety is defined as

𝑋𝐾,𝑤 (𝑏) = {𝑔 ∈ 𝐺̆/𝐾̆ | 𝑔−1𝑏𝜎(𝑔) ∈ 𝐾̆𝑤𝐾̆}.

If 𝐾̆ = 𝐼, we simply write the corresponding affine Deligne-Lusztig variety as 𝑋𝑤 (𝑏). For an element
𝑤 ∈ 𝑊 , let �𝑤 be a representative of it in 𝐺̆. The following lemma will be used in the proof of
nonemptiness of EKOR strata.

Lemma A.14.

(1) �𝜏𝜇 is central.
(2) 𝑋𝜏𝜇 (𝛿) is non-empty.

Proof. Recall that we have the isomorphism

𝑊 � 𝑊𝑎 � 𝜋1 (𝐺)Γ0 ,

where𝑊𝑎 is the affine Weyl group of G. Under this isomorphism, the minimal element 𝜏𝜇 corresponds
to (id, 𝜇#) ∈ 𝑊𝑎 � 𝜋1 (𝐺)Γ0 . By the proof of [50, Appendix, Lemma 14], such element lifts to the torus
𝑇 ⊂ 𝐺̆. So 𝜏𝜇 is central in𝑊 and its lift is also central in 𝐺̆.

We have

𝑋𝜏𝜇 (𝛿) ≠ ∅ ⇐⇒ 𝐼𝜏𝜇 𝐼 ∩ [𝛿] ≠ ∅

by definition. As 𝜏𝜇 is a 𝜎-straight element in 𝑊 , 𝐼𝜏𝜇 𝐼 lies in a single 𝜎-conjugacy class of 𝐺̆ by [25,
Theorem 5.1.(a)]. Moreover, such conjugacy class is given by [𝛿]. This shows the nonemptiness of
𝑋𝜏𝜇 (𝛿). �

Proposition A.15. We have 𝒜𝑥
0 ≠ ∅ for all 𝑥 ∈ 𝐾 Adm(𝜇)

Proof. By Lemma A.14 (2), there is an element 𝑔 ∈ 𝑋𝜏𝜇 (𝛿). Then 𝑔−1𝛿𝜎(𝑔) ∈ 𝐼 �𝜏𝜇 𝐼. Lemma A.14 (1)
shows that 𝛿𝜎(𝑔) ∈ 𝑔 �𝜏𝜇 𝐼. This gives

𝑝𝑔𝐷 𝑗 ⊂ 𝛿𝜎(𝑔)𝐷 𝑗 = �𝜏𝜇𝑔𝐷 𝑗 ⊂ 𝑔𝐷 𝑗 ,

which essentially shows that

Frob(𝑔𝐷 𝑗 ) = 𝛿𝜎(𝑔)𝐷 𝑗 ⊂ 𝑔𝐷 𝑗 .

Thus 𝑔𝐷 𝑗 corresponds to a p-divisible group which is isogenous to 𝐴 𝑗 [𝑝∞], so we get an abelian
variety 𝑔𝐴 𝑗 . The polarization 𝜆 𝑗 and O𝐵-action extends naturally to 𝑔𝐴 𝑗 . The prime to p level structure
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𝛼 also extends to 𝑔𝐴 𝑗 ; we thus obtain a triple (𝑔𝐴 𝑗 , 𝑔𝜆 𝑗 , 𝛼). This triple gives a k-point 𝑔𝑥 ∈ 𝒜𝐼 (𝑘).
By construction, 𝑔𝑥 must live in the minimal EKOR stratum. Then by closure relation, we get the
nonemptiness of EKOR strata. �
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