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LIFTING UNCONDITIONALLY CONVERGING SERIES AND
SEMIGROUPS OF OPERATORS

MANUEL GONZALEZ AND ANTONIO MARTINEZ- ABEION

We introduce and study two semigroups of operators I{, and U, defined in terms
of unconditionally converging series. We prove a lifting result for unconditionally
converging series that allows us to show examples of operators in U,.. We obtain
perturbative characterisations for these semigroups and, as a consequence, we derive
characterisations for some classes of Banach spaces in terms of the semigroups. If
UL (X,Y) is non-empty and every copy of ¢g in Y is complemented, then the same
is true in X. We solve the perturbation class problem for the semigroup U_, and
we show that a Banach space X contains no copies of £y if and only if for every
equivalent norm |-| on X, the semiembeddings of (X,]-|) belong to U, .

1. INTRODUCTION

Tauberian operators, introduced by Kalton and Wilansky [12], are useful in Banach
space theory because they preserve some isomorphic properties of sets in Banach spaces.
For example, the second factor in the factorisation given in [5] is tauberian and, since
tauberian operators preserve the relative weak compactness of bounded sets, it follows
that weakly compact operators factorise through reflexive Banach spaces. We refer to
the survey [7]-for further information about tauberian operators.

The class of tauberian operators is a semigroup and has analogous properties to
that of upper semi-Fredholm operators, replacing finite dimensional spaces by reflexive
spaces. We refer to {7, 10] for details. Moreover, upper semi-Fredholm operators, taube-
rian operators and other semigroups of operators defined in terms of sequences admit
perturbative characterisations [10].

Here we define two new semigroups of operators, denoted U, and U_, in terms of the
action of the operators over unconditionally converging series. We obtain a perturbative
characterisaticn: An operator T € B(X,Y’) belongs to U, if and only if for every compact
operator K € B(X,Y) the kernel N(T + K)) contains no copies of ¢;. As a consequence
we derive an algebraic characterisation of operators in U, , we show that a Banach space
X contains no copies of £, if and only if every semiembedding of X belongs to U/, , and
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we characterise Banach spaces whose non-reflexive (respectively, infinite dimensional)
subspaces contain ¢ in terms of U, .

We prove a lifting result for unconditionally converging series, analogous to Lohman’s
lifting for weakly Cauchy sequences [15]. As a consequence, we show that operators with
closed range and kernel containing no copies of ¢y belong to U, , and operators with closed
range and cokernel containing no complemented copies of £; belong to U_. We refer to
[9] for other lifting results for sequences.

We also prove that operators in U, preserve an isomorphic property: if there exists
an operator T' € U, (X,Y) and every subspace of ¥ isomorphic to cg is complemented,
then the same is true for X. Separable spaces, or more generally, weakly compactly
generated spaces, satisfy this property.

For the dual semigroup U_ we also obtain a perturbative characterisation: T €
B(X,Y) belongs to U_ if and only if for every compact operator K € B(X,Y) the
cokernel Y/R(T) contains no complemented copies of ¢;. As a consequence, we derive
characterisations of Banach spaces whose non-reflexive (respectively, infinite dimensional)
quotients contain a complemented copy of #; in terms of &_. We also solve the pertur-
bation class problem for the semigroup U_: given an operator K € B(X,Y), we have
T+ K elU_ forevery T € U_(X,Y) if and only if the conjugate K* is unconditionally
converging.

We use standard notations: X and Y are Banach spaces and By denotes the closed
unit ball of X. The class of (bounded linear) operators from X to Y is B(X,Y), the
dual of X is X*, and given an operator T € B(X,Y), we denote by T* : Y* — X* the
conjugate operator of T, by R(T) and N(T) the range and kernel of T, and by Y/R(T)
the cokernel of T. Moreover, N is the set of all positive integers. We identify X with a
subspace of X™*.

2. THE SEMIGROUPS

o0
Recall that a series Z Zn in a Banach space X is weakly unconditionally Cauchy if
n=1

oo

> lz*(zn)| < oo for all 2* € X*. A series is unconditionally converging if every subseries
n=1

is convergent.

An operator T € B(X,Y) is said to be unconditionally converging, denoted T €
U(X,Y), if it takes weakly unconditionally Cauchy series into unconditionally converging
series. The following characterisation will be useful. We refer to [18, p.270] for a proof.

PROPOSITION 2.1. Anoperator T € B(X,Y) is unconditionally converging if
and only if given a subspace M of X, if the restriction T|ys is an isomorphism then M
contains no copies of cg.

The definition of the semigroup U, is opposite in some sense to that of the uncon-
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ditionally converging operators.
DEFINITION 2.2: An operator T € B(X,Y) belongs to the class U, if for every
<] o0

weakly unconditionally Cauchy series Z T, in X, if Z Tz, is unconditionally converging

n=1 n=1
oo
then »_ z, is unconditionally converging
n=1
REMARK 2.3. (a) It readily follows from the definition that the class U, is stable

under products and under unconditionally converging perturbations:

TeU (X,Y)and SeU.(Y,Z) = ST cU,(X,2);
TeU,(X,Y)and K €eU(X,Y) = T+Kel,(X,Y).

(b) Since a Banach space X contains no copies of ¢ if and only if every weakly uncon-
ditionally Cauchy series in X is unconditionally converging [2, Theorem 5], we have

T € U.(X,Y) = N(T) contains no copies of co.

Now we prove a lifting result for unconditionally converging series and derive some
consequences. Given a subspace M of a Banach space X, we denote by gar : X — X/M
the quotient map.

THEOREM 2.4. Let M be a subspace of X containing no copies of cg. If Y _ z, is

n=1
o0

a weakly unconditionally Cauchy series in X, and Z gdmZ, Is unconditionally converging,

n=1
o0

then Y z, is unconditionally converging
n=1

o0
PRroOF: Clearly, it is enough to show that > z, is convergent.

n=1
o0

Suppose that Z Zy is non-convergent. Then there are a number § > 0 and integers
n=1

1 <my €y <mg € ng <...so that, denoting yg := Tm, + ...+ Tn,, we have ||yg|| > 6.

The sequence (yx) is weakly null and bounded away from 0. Therefore, using the

Bessaga-Pelczynski selection principle [2, C.1], we can select a basic subsequence (z,) of
o

(yx). This subsequence is equivalent to the unit vector basis of ¢y because Z Zn 18 weakly

n=1
unconditionally Cauchy [2, Lemma 1J.

o
Moreover, since Zqun is unconditionally converging, we have that (gaz,) con-
n=1
verges in norm to 0. Then we can find a sequence (w,) in M such that Jim [lwn — zaf] =0,

and a standard perturbation argument for basic sequences implies that a subsequence of
(wy,) is equivalent to the basis of ¢y, which gives a contradiction. 0
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COROLLARY 2.5. IfT € B(X,Y) has closed range and its kernel contains no
copies of ¢y, then T € U, :

PROOF: It is enough to observe that T" can be written as the composition of the
quotient map X — X/N(T) and an isomorphism (into). 0

The following result is well-known. We prove it as an application of our lifting result.

COROLLARY 2.6. The class of Banach spaces that contain no copies of ¢y has
the three-space property.

ProOOF: Let M be a subspace of X and assume M and X/M contain no copies of
co- If we denote by Q: X —X /M the quotient map, given a weakly unconditionally
Cauchy series Z z,, we have that Z Qz, is weakly unconditionally Cauchy in X/M,

=1 n=1
hence uncondltlonally converging because X/M contains no copies of ¢, and applying

the lifting result we conclude that Z Z, is unconditionally converging. 0
n=1
The operators in U, can be characterised by their action over sequences equivalent
to the unit vector basis of ¢y and in terms of the kernels of the perturbations by operators
inl.
PROPOSITION 2.7. ForT € B(X,Y) the following statements are equivalent:
(a) TelU(X,Y);
(b) if (z,) C X is equivalent to the unit vector basis of ¢y then there exists
k € N such that (T'z,),, is equivalent to the unit vector basis of co;
(c) there is no (normalised) sequence (z,) in X equivalent to the unit vector
basis of ¢y and such that klim Tz, =0.
—00

PROOF: (a)=>(b) Assume (z,), is a sequence in X equivalent to the unit vector
basis of ¢y, but (I'z,),, is equivalent to this basis for no k € N. Then we can find a
sequence of scalars (an) such that |a,| <1 for all n and a sequence of integers 1 < m; <
ny < mg € ng < --- so that, denoting yi = apm, Tm, + ... + Gn, Tn,, we have that (yx) is
equivalent to the unit vector basis (gf co, but | Tyx|| — 0. By passing to a subsequence we

may assume || Tyx|| < 27%. Then Y _ Ty is unconditionally converging, and we conclude
k=1
that T ¢ U,.
(b)=(c) is trivial.
(c)=>(a) Assume that T ¢ U, (X,Y). Then there is a weakly unconditionally Cauchy
o0 o0

series 3 zx in X which is not unconditionally converging, such that Z Tz, is uncon-

k=1
ditionally converging. Now, proceeding as in the proof of Theorem 2 4 we obtain a

sequence (yx) equivalent to the unit vector basis of ¢y and such that khm Ty, =0, and
~»00

the normalised sequence given by z := ||yc|| ™" v shows that (c) fails. 0
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THEOREM 2.8. An operator T € B(X,Y) belongs to U, if and only if for every
compact operator K € B(X,Y) the kernel N(T + K) contains no copies of cp.

ProOOF: The direct implication was shown in Remark 2.3.

For the converse, assume T does not belong to I/,. By Proposition 2.7, we can find

(zn) in X equivalent to the unit vector basis of ¢y, and (f,) bounded in X* such that
f,’(.’l]j) = (5,']' and ”fn“ “T.’L’n” < 2™, Then

Kz .= - io: fo(z)Tz,
n=1

defines a compact operator K € B(X,Y) such that N(T + K) contains the subspace
generated by (z,). 0

As a consequence of the perturbative characterisation, we derive “algebraic” char-
acterisations.

COROLLARY 2.9. ForT € B(X,Y), the following statements are equivalent:

() TeUs(X,Y);

(b) for every Banach space Z and every L € B(Z,X), we have TL € U(Z,Y)
only if L € U(Z, X);

(c) for every subspace M C X, if the restriction T |y belongs to U(M,Y),
then M contains no copies of cg.

PRrROOF: (a)=(b) Assume T € U, (X,Y) and let L € B(Z, X) be an operator such
that TL € U(Z,Y). Let Y _ 2z be a weakly unconditionally Cauchy series in Z. Thus
3" TLz is unconditionally converging, and since T € U (X,Y), the series Y Lz; must
be unconditionally converging.

(b)=(c) 1t is enough to observe that the inclusion operator ips : M — X belongs
to U(M, X) if and only if M does not contain copies of ¢ [2, Theorem 5].

(c)=(a) Assume T ¢ U,.(X,Y). By Theorem 2.8 there is a compact operator K €
B(X,Y) such that M := N(T + K) contains a copy of ¢;. As Tipy = —Kipg, we have
that Tips is compact, hence Ty € U, and M contains a copy of cg. 0

Recall that T € B(X,Y) is said to be upper semi-Fredholm if it has closed range
and finite dimensional kernel, and T is said to be tauberian if its second conjugate T** €
B(X**,Y**) satisfies T**(X**\ X) C Y**\ Y. We denote by F,(X,Y) and 7,(X,Y)
the classes of upper semi-Fredhom operators and tauberian operators, respectively. Both
classes admit a perturbative characterisation. The result for F is classic.

PROPOSITION 2.10. [10, Theorem 1.a] An operator T € B(X,Y) belongs to
F, (respectively, T,) if and only if for every compact operator K € B(X,Y) the kernel
N(T + K) is finite dimensional (respectively, reflexive).

COROLLARY 2.11. For every pair of Banach spaces X, Y we have
f+(Xa Y) C 7;‘(X’ Y) C u+(XaY)
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REMARK 2.12. Although the components of the semigroup F, are open subsets of
B(X,Y), this is not always true for the components of 7 and U,. This fact can be seen
using an example similar to one given in [1].

In the space fy(cp) := {(z,,) ! Tn € ¢o and Z”In”z < oo}, we consider the
n=1

operator T € B(ég(c()),ég(co)) given by T(z,) := (x,/n). It easily follows from the
definition that T is tauberian, hence it belongs to U,. However, the operators T,, €
B(Zz(co),fg(co)) given by

To(z1,29,...) = (z1,...,2,,0,0,...),

satisfy lim |7 — T,|| = 0 and ker(T;) contains a copy of ¢y for every n. Hence T belongs
to the boundaries of U, (Zg(co), Zz(co)) and ﬁ(ﬂz(co), Zz(co)).

As a consequence of the perturbative characterisations, we characterise some classes
of Banach spaces. Recall that a Banach space X is said to be hereditarily cq if every
infinite dimensional subspace of X contains copies of cp.

PROPOSITION 2.13. Let X be a Banach space.

(a) Thespace X is hereditarilyco if and only if for every Y we have U, (X,Y) =
Fi(X,Y).

(b) Non-reflexive subspaces of X contain copies of ¢y if and only if for every Y
we have U, (X,Y) = TL(X,Y).

(c) Reflexive subspaces of X are finite dimensional if and only if for every Y
we have T.(X,Y) = FL(X)Y).

ProoF: (a) If X is not hereditarily ¢, then it contains an infinite dimensional
subspace M containing no copies of ¢y. By Corollary 2.5, the quotient map gas belongs
to U \ Fy4. The direct implication follows directly from Theorem 2.8.

The proof of the other parts is analogous. 0

We consider now Banach spaces X such that all their subspaces isomorphic to ¢
are complemented. This is the case when X is separable, weakly compactly generated,
or more generally, when X is weakly compactly determined [6, Lemma VI1.2.4]. Next we
show that operators in U, preserve this class.

PROPOSITION 2.14. Assume that U,(X,Y) is non-empty. If every subspace
of Y isomorphic to ¢y is complemented, then the same is true for X.

PROOF: Let M be a subspace of X isomorphic to ¢g. Taking T € U,(X,Y), by
Proposition 2.7 there is a subspace N of M such that M/N is finite dimensional and the
restriction T'|y is an isomorphism. Since N is isomorphic to ¢y, we have that T(N) is
complemented. Now, if L is a complement of T(N), then T~!(L) is a complement of N;
hence N and M are complemented subspaces of X. 1]
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Given a semigroup S of operators, Lebow and Schechter [13] define the perturbation
class PS, for spaces X,Y such that S(X,Y) is not empty, as follows:

PS(X,Y):={A€B(X,Y):T+A€cS forevery T € S(X, Y)}.

Recall that an operator T € B(X,Y) is said to be strictly singular if there is no
infinite dimensional M of X such that the restriction T'|p is an isomorphism. The
perturbation class for the upper semi-Fredholm operators contains the strictly singular
operators, and it is a well-known open problem whether these classes coincide, even in
the case X =Y [17].

We have seen in Remark 2.3 that the perturbation class for U, (X,Y) contains
U(X,Y). Next we show that they coincide whenever subspaces of X and Y isomorphic
to ¢y are complemented.

PROPOSITION 2.15. Assume that U, (X,Y) is nonempty and that every sub-
space of Y isomorphic to ¢y is complemented. Then we have PU,(X,Y) =U(X,Y).

ProOF: Take A € B(X,Y) which is not in U. It follows from Proposition 2.1 that
there exists a subspace M of X isomorphic to c¢g such that the restriction Al is an
isomorphism. From the hypothesis and Proposition 2.14, by passing to a complemented
subspace of M we may assume that

X=U®MandY =V & AM),

with U and V isomorphic to X and Y, respectively.
Now we can define an operator T € B(X,Y') such that T|p = Alpy, T(U) C V and
T|y belongs to U,. Clearly T € U,. However, T+ A & U,. 0

Now we introduce the dual semigroup.

DEFINITION 2.16: An operator T € B(X,Y) belongs to the class I_ if its conju-
gate operator T belongs to U,..

We denote by U¢ the dual operator ideal of U; that is,
UX,Y):={T € B(X,Y): T" e U}.
The following characterisation of the operators in U? will be useful. We refer to (18,

Lemma p.272] for a proof.

PROPOSITION 2.17. An operator T € B(X,Y) belongs to U® if and only if
there is no subspace M of X isomorphic to ¢, such that the restriction T'|ys is an isomor-
phism and T(M) is complemented in Y .

REMARK 2.18. (a) It is not difficult to derive from the previous result that the dual X*
of a Banach space X contains no copies of ¢g if and only if X contains no complemented
copies of ¢; [2, Theorem 4].
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(b) Similarly as in the case of Uy, the class U_ satisfies the following properties:

TeU_(X,Y) and SeU_(Y,Z) = STeclU_(X,2).
TeU_(X,Y) and K eUH(X,Y) = T+KeclU_(X,Y).

TeU (X,Y) = Y/R(T) contains no complemented copies of ¢;.

(c) An operator T € B(X,Y) with closed range and cokernel Y/R(T) containing
no complemented copies of ¢; belongs to U_. This is consequence of Corollary 2.5 and
duality.

(d) We have that T* € U_ implies T € U, , because T is a restriction of T**. However,
the converse implication is not true. If we consider a Banach space Z containing no copies
of ¢y such that Z** contains a copy of cg, then the zero operator 0z in Z belongs to Uy,
but its second conjugate 0% does not.

We can take as Z the hereditarily reflexive predual of ¢;, obtained by Bourgain and
Delbaen [3].

Now we give a perturbative characterisation for /_.
THEOREM 2.19. AnoperatorT € B(X,Y) belongs to U_ if and only if for every

compact operator K € B(X,Y), the cokernel Y/R(T + K) contains no complemented
copies of £;.

PRrROOF: The direct implication follows from Remark 2.18. For the converse, assume
T ¢ U_; equivalently, T* ¢ U,. By Proposition 2.7, we can select a sequence (f,) in Y*
equivalent to the unit vector basis of ¢y and such that Jim 1T fall = 0.

Using a result of Johnson and Rosenthal [11, Remark 3.1] we can select a subsequence
(gn) of (f») and a bounded sequence (y,) in Y such that gx(y;) = 0. Moreover, we can
assume that ||T*g.|| ||ynl| < 27™. Therefore, the expression

00

Kz := Z (T 90 )(2)Yn

n=1

defines a compact operator K € B(X,Y’) whose conjugate is given by
o0
K*'f= z f(yn)T.gn-
n=1

Thus (gn) is contained in N(T* + K*) = [Y/R(T + K)|; hence Y/R(T + K) contains a
complemented copy of ¢;. -0

Now we can give algebraic characterisations of ¢/_. Note that the identity Ix of a
Banach space X belongs to &¢ if and only if X contains no complemented copies of ¢;.

CoROLLARY 2.20. ForT € B(X,Y), the following assertions are equivalent:
(a) TeU;
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(b) for every Z and every A € B(Y, Z), if AT € U® then A € U%;

(c) for every closed subspace M of Y, if guT € U?, then Y/M contains no
complemented copies of ¢;.

PROOF: (a)=(b) f T € U_ and AT € U? then T* € U, and T*A* € U. Theorem
2.9 gives that A* € U, hence A € A%

(b)=>(c) Assume M is a subspace of Y such that guT € U?. Hypothesis (b) leads
to ga € UY; equivalently, the dual of Y/M contains no copies of cp.

(¢)=>(a) Assume T ¢ U_. By Theorem 2.19, there is a compact operator K €
B(X,Y) such that [Y/R_(T:-T)r contains a copy of ¢y. Let M := R(T + K). Since K
is compact, —qu K = quT is compact, so gy T € U?, but qar ¢ UC. 0

An operator T € B(X,Y) is said to be lower semi-Fredholm, denoted T € F_ [13] or
cotauberian [19], denoted T € T_, if T* belongs to F, or T, respectively. Both classes
are semigroups and admit perturbative characterisations.

PrOPOSITION 2.21. [10, Theorem 1.b] Given T € B(X,Y), we have that
T € F. (respectively, T_) if and only if for every compact operator K € B(X,Y) the
cokernel Y/R(T + K) is finite dimensional (respectively, reflexive).

COROLLARY 2.22. For every pair of Banach spaces X, Y we have
F(X,Y)CT_(X,Y)cU_(X,Y).

Using the perturbative characterisations for the semigroups F_, 7_ and /. we can
derive characterisations for some classes of Banach spaces. The proof is analogous to
that of Proposition 2.13.

PROPOSITION 2.23. Let X be a Banach space.

(a) Quotients of X containing no complemented copies of ¢, are finite dimen-
sional if and only if for every Y we have U_(Y, X) = F_(Y, X).

(b) Quotients of X containing no complemented copies of ¢; are reflexive if and
only if for every Y we have U_(Y, X) = T_(Y, X).

(c) Reflexive quotients of X are finite dimensional if and only if for every Y
we have T_(Y, X) = F_(Y, X).

Now we study the perturbation class of 4. Recall that an operator T' € B(X,Y) is
said to be strictly cosingular if a closed subspace NV of Y is finite codimensional whenever
R(T) + N =Y. The perturbation class for the lower semi-Fredholm operators contains
the strictly cosingular operators, and it is an open problem whether they coincide [17].

We have observed in Remark 2.18 that the perturbation class for Z_ contains %
Next we show that these classes coincide for operators acting in the same space.

PROPOSITION 2.24. The perturbation class of U_ coincides with U®.
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PROOF: Assume that U_(X,Y’) is not empty, and that A € B(X,Y) does not belong
to U?. 1t follows from Proposition 2.17 that there exists a subspace M of X isomorphic
to £, such that the restriction A|y is an isomorphism and A(M) is complemented. As in
the proof of Proposition 2.14, we get that M is also complemented in X, and using the
argument in the proof of Proposition 2.15, we may assume that

X=UeMandY =V & A(M),

with U and V isomorphic to X and Y, respectively.
Now we can define an operator T € B(X,Y) such that T|p = A|p, T(U) C V and
T|y belongs to U_. Clearly T € U_. However, T + A ¢ U_. 0

3. SEMIEMBEDDINGS AND SEMIGROUPS

Here we show the relation between operators in U, and semiembeddings. Recall
that T' € B(X,Y) is said to be a semiembedding if T is injective and T By is closed. This
concept, introduced in [16], has found applications in the study of the Radon-Nikodym
property [4].

Semiembeddings are not stable under isomorphic renorming of the initial space [16],
but it has been proved by Saint-Raymond (see [4, Proposition 1.6]) that an operator
T € B(X,Y) is a semi-embedding under some equivalent norm for X if and only if it is
injective and its range T(X) is an F,-set; that is, a countable union of closed sets. These
operators are called F,-embeddings.

We shall present two examples of semiembeddings not belonging to U, but we also
show that F,-embeddings of X belong to U, (X,Y) if (and only if) X contains no copies
of b

ExamPLES. (a) The operator S € B({y, £2), given by S(z,) := (z,/n), is an injective
conjugate operator; hence it is a semiembedding. However, S € U, because it carries the
unit vector basis of ¢y C €« into a norm null sequence.

(b) For 1 € p < oo, the natural inclusion ¢ € B(Lw[O, 1], L,|0, 1]) is a semiem-
bedding; in fact, a sequence in the unit ball of L, converging in the Ly-norm has a
subsequence converging almost everywhere to a measurable function which belongs to
the unit ball of Ly, too.

However, 7 is not U, since given a sequence of pairwise disjoint, measurable subsets
C, C [0,1] with u(Cy) > 0, the corresponding sequence of characteristic functions x¢, is

. . . . . . 1
equivalent in Leo to the unit vector basis of co, but lim Ixc.ll, = Jim w(Ca)? = 0.

THEOREM 3.1. A Banach space X contains no copies of £y, if and only if for
every equivalent norm |-| in X, the semiembeddings of (X,|-|) into any Banach space
belong to U...
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ProoF: Suppose T € B(X,Y) is a semiembedding and T ¢ U,.(X,Y). By Propo-
sition 2.7 there exists a sequence (z,) C X equivalent to the unit vector basis of ¢y and

(o]
such that Y _ [Tz, < co.

n=1

We select a constant M such that for every finite sequence of scalars {¢,...,t,}
with max;giga [ti| € M we have {2, + --- + t,z, € Bx. Since T(By) is closed, for
[s o]

every (t;) € foo with ||(;)||o < M we have that Y ¢;T'z; is absolutely convergent to some
i=1

vector y € TBx. Then
o0
(tn) € boo — T7! (Z t,,T:c,,) €X
n=1

defines an operator R € B(£y, X) such that [|R|| < M~! and R |, is an isomorphism. By
a result of Rosenthal (see [14, Proposition 2.f.4]), there exists an infinite subset A C N
so that R |¢,(4) is an isomorphism. Hence X contains a copy of £.

Conversely, if X contains a copy of £, then X is isomorphic to ¢, x Y for some Y.
Now, if we endow the products £, X Y and ¢, x Y with the supremum norms, we have
that T((z,,), y) = ((z,, /n), y) defines a semiembedding of £, X Y into €3 x Y which is
not in U,.. 0

COROLLARY 3.2. Assume that X contains no copies of {y,.
(a) Every semiembedding T : X — 'Y belongs to U,..
(b) If there exists a semiembedding T : X — Y and every subspace of Y

isomorphic to ¢y is complemented, then the same is true for X.

Next we show that operators of U, defined on C[0, 1] or L[0, 1] preserve a copy of
the whole space.

PROPOSITION 3.3. Suppose X is C[0,1] or L[0,1]. Then for every T €
U, (X,Y) there exists a subspace M of X isomorphic to X, such that the restriction
T |p is an isomorphism.

PROOF: Assume I, is a disjoint sequence of closed, non-empty subintervals of [0, 1].
We denote by C,, the subspace of functions with (essential) support contained in I,.

If T |c, is an isomorphism for some 7, then have finished. Otherwise we can select
a sequence of normalised functions f, € C,, with lim IT fall = 0. Since (f,) is equivalent

to the unit vector basis of ¢y, we obtain T ¢ U, , a contradiction. 0
Finally we state some open questions.
PROBLEMS. Suppose X is C[0,1] or L[0, 1], and Y is any Banach space.

(a) Is it true that T € U4 (X,Y) if there is no normalised disjoint sequence
(fa) in X such that Jim T/l =07
(b) Is it true that U (X,Y) is open in B(X,Y)?
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We refer to [8] for a positive answer to similar questions for tauberian operators on
L:[0,1).
REFERENCES
(1] T. Alvarez and M. Gonzilez, ‘Some examples of tauberian operators’, Proc. Amer. Math.
Soc. 111 (1991), 1023-1027.
[2] C. Bessaga and A. Pelczynski, ‘On basis and unconditional convergence of series in Ba-
nach spaces’, Studia Math. 17 (1958), 151-164.
[3}] J. Bourgain and F. Delbaen, ‘A class of special Loo-spaces’, Acta Math. 145 (1980),
155-176.
{4] J. Bourgain and H.P. Rosenthal, ‘Applications of the theory of semi-embeddings to Ba-
nach space theory’, J. Funct. Anal. 52 (1983), 149-188.
[5] W.J. Davis, T. Figiel, W.B. Johnson and A. Pelczynski, ‘Factoring weakly compact
operators’, J. Funct. Anal. 17 (1974), 311-327.
[6] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces
(Longman Scientific and Technical, New York, NY, 1993).
[7] M. Gonzilez, ‘Properties and applications of tauberian operators’, Eztracta Math. 5
(1990), 91-107.
[8] M. Gonzilez and A. Martinez-Abejon, ‘Tauberian operators on L;(u) spaces’, Studia
Math. 125 (1997), 289-303. ’
{9] M. Gonzédlez and V.M. Onieva, ‘Lifting results for sequences in Banach spaces’, Math.
Proc. Cambridge Phil. Soc. 105 (1989), 117-121.
[10] M. Gonzélez and V.M. Onieva, ‘Characterizations of tauberian operators and other semi-
groups of operators’, Proc. Amer. Math. Soc. 108 (1990), 399-405.
(11] W.B. Johnson and H.P. Rosenthal, ‘On w*-basic sequences and their application to the
study of Banach spaces’, Studia Math. 43 (1972), 77-99.
[12] N. Kalton and A. Wilansky, ‘Tauberian operators on Banach spaces’, Proc. Amer. Math.
Soc. 57 (1976), 251-255.
[13] A.Lebow and M. Schechter, ‘Semigroups of operators and measures of noncompactness’,
J. Funct. Anal. 7 (1971), 1-26.
(14] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces
(Springer-Verlag, Berlin, Heidelberg, New York, 1977).
[15] R.H. Lohman, ‘A note on Banach spaces containing ¢,’, Canad. Math. Bull. 19 (1976),
365-367.
(16] H.P. Lotz, N.T. Peck, H. Porta, ‘Semi-embeddings of Banach spaces’, Proc. Edinburgh
Math. Soc. 22 (1979), 233-240.
[17] A. Pietsch, Operator ideals {(North-Holland, 1980).
[18] D. Przeworska-Rolewicz and S. Rolewicz, Equations in linear spaces (P.W.N., Warszawa,
1968).
[19] D.G. Tacon, ‘Generalized Fredholm transformations’, J. Austral Math. Soc. 37 (1984),
89-97.
Departamento de Matemdticas Departamento de Matemaéticas
Facultad de Ciencias Facultead de Ciencias
Universidad de Cantabria Universidad de Oviedo
39071 Santander, Spain 33007 Oviedo, Spain

https://doi.org/10.1017/50004972700031488 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700031488

