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LIFTING UNCONDITIONALLY CONVERGING SERIES AND
SEMIGROUPS OF OPERATORS

MANUEL GONZALEZ AND ANTONIO MARTINEZ-ABEJON

We introduce and study two semigroups of operators U+ and U-, defined in terms
of unconditionally converging series. We prove a lifting result for unconditionally
converging series that allows us to show examples of operators in U+. We obtain
perturbative characterisations for these semigroups and, as a consequence, we derive
characterisations for some classes of Banach spaces in terms of the semigroups. If
U+(X, Y) is non-empty and every copy of CQ in Y is complemented, then the same
is true in X. We solve the perturbation class problem for the semigroup U-, and
we show that a Banach space X contains no copies of £oo if and only if for every
equivalent norm | • | on X, the semiembeddings of (X, | • |) belong to U+.

1. INTRODUCTION

Tauberian operators, introduced by Kalton and Wilansky [12], are useful in Banach
space theory because they preserve some isomorphic properties of sets in Banach spaces.
For example, the second factor in the factorisation given in [5] is tauberian and, since
tauberian operators preserve the relative weak compactness of bounded sets, it follows
that weakly compact operators factorise through reflexive Banach spaces. We refer to
the survey [7] for further information about tauberian operators.

The class of tauberian operators is a semigroup and has analogous properties to
that of upper semi-Fredholm operators, replacing finite dimensional spaces by reflexive
spaces. We refer to [7, 10] for details. Moreover, upper semi-Fredholm operators, taube-
rian operators and other semigroups of operators defined in terms of sequences admit
perturbative characterisations [10].

Here we define two new semigroups of operators, denoted U+ and W_, in terms of the
action of the operators over unconditionally converging series. We obtain a perturbative
characterisation: An operator T 6 B(X, Y) belongs to U+ if and only if for every compact
operator K € B(X, Y) the kernel N(T + K) contains no copies of CQ. AS a consequence
we derive an algebraic characterisation of operators in U+, we show that a Banach space
X contains no copies of £00 if and only if every semiembedding of X belongs to U+, and
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we characterise Banach spaces whose non-reflexive (respectively, infinite dimensional)
subspaces contain CQ in terms of U+.

We prove a lifting result for unconditionally converging series, analogous to Lohman's
lifting for weakly Cauchy sequences [15]. As a consequence, we show that operators with
closed range and kernel containing no copies of CQ belong to U+, and operators with closed
range and cokernel containing no complemented copies of l\ belong to U-. We refer to
[9] for other lifting results for sequences.

We also prove that operators in U+ preserve an isomorphic property: if there exists
an operator T 6 U+(X,Y) and every subspace of Y isomorphic to c0 is complemented,
then the same is true for X. Separable spaces, or more generally, weakly compactly
generated spaces, satisfy this property.

For the dual semigroup U- we also obtain a perturbative characterisation: T e
B(X, Y) belongs to W_ if and only if for every compact operator K € B(X, Y) the
cokernel Y/R(T) contains no complemented copies of i\. As a consequence, we derive
characterisations of Banach spaces whose non-reflexive (respectively, infinite dimensional)
quotients contain a complemented copy of l\ in terms of U-. We also solve the pertur-
bation class problem for the semigroup £L: given an operator K € B(X, Y), we have
T + K e U- for every T e U-(X, Y) if and only if the conjugate K* is unconditionally
converging.

We use standard notations: X and Y are Banach spaces and B\ denotes the closed
unit ball of X. The class of (bounded linear) operators from X to Y is B(X,Y), the
dual of X is X*, and given an operator T £ B(X, Y), we denote by T* : Y* —> X* the
conjugate operator of T, by R(T) and N(T) the range and kernel of T, and by Y/R(T)
the cokernel of T. Moreover, N is the set of all positive integers. We identify X with a
subspace of X**.

2. THE SEMIGROUPS
oo

Recall that a series ^2 xn in a Banach space X is weakly unconditionally Cauchy if
n=l

oo
^2 |a;*(:En)| < oo for all x* € X*. A series is unconditionally converging if every subseries
n=l

is convergent.
An operator T € B(X, Y) is said to be unconditionally converging, denoted T e

U(X, Y), if it takes weakly unconditionally Cauchy series into unconditionally converging
series. The following characterisation will be useful. We refer to [18, p.270] for a proof.

PROPOSITION 2 . 1 . An operator T € B(X, Y) is unconditionally converging if
and only if given a subspace M of X, if the restriction T\M is an isomorphism then M
contains no copies of CQ.

The definition of the semigroup U+ is opposite in some sense to that of the uncon-
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ditionally converging operators.

DEFINITION 2.2: An operator T e B(X, Y) belongs to the class U+ if for every
OO CO

weakly unconditionally Cauchy series ^2 xn i n X, if ^2 Txn is unconditionally converging
n=l n=l

oo
then ^2 xn is unconditionally converging

n=l

REMARK 2.3. (a) It readily follows from the definition that the class U+ is stable
under products and under unconditionally converging perturbations:

T e U+(X, Y) and 5 € U+{Y, Z) => ST £ U+{X, Z);

TeU+(X,Y) and K eU{X,Y) => T + K eU+{X,Y).

(b) Since a Banach space X contains no copies of CQ if and only if every weakly uncon-
ditionally Cauchy series in X is unconditionally converging [2, Theorem 5], we have

f € U+(X, Y) => N(T) contains no copies of CQ.

Now we prove a lifting result for unconditionally converging series and derive some
consequences. Given a subspace M of a Banach space X, we denote by qM : X —> X/M
the quotient map.

CO

THEOREM 2 . 4 . Let M be a subspace ofX containing no copies ofco. If^2 x" 1S

n = l
CO

a weakly unconditionally Cauchy series in X, and ^2 QMxn is unconditionally converging,
n=l

CO

then ^2 xn is unconditionally converging
n = l

oo

PROOF: Clearly, it is enough to show that ^2 xn is convergent.
n=l

oo
Suppose that Yl xn is non-convergent. Then there are a number 5 > 0 and integers

7 1 = 1

1 ^ mi ^ ni < m2 ^ ri2 < . . . so that, denoting y* := xmic + . . . + xnit, we have \\yk\\ > 6.

The sequence (y/t) is weakly null and bounded away from 0. Therefore, using the
Bessaga-Pelczynski selection principle [2, C.I], we can select a basic subsequence (zn) of

oo

(yk). This subsequence is equivalent to the unit vector basis of CQ because ^2 zn is weakly
7 1 = 1

unconditionally Cauchy [2, Lemma 1].
oo

Moreover, since ^2 QMxn is unconditionally converging, we have that (q\fZn) con-
n=l

verges in norm to 0. Then we can find a sequence (wn) in M such that lim ||iun - zn\\ = 0,
n—>oo

and a standard perturbation argument for basic sequences implies that a subsequence of
(wn) is equivalent to the basis of Co, which gives a contradiction. D
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COROLLARY 2 . 5 . IfTe B(X, Y) has closed range and its kernel contains no

copies of Co, then T eU+.

PROOF: It is enough to observe that T can be written as the composition of the
quotient map X —>• X/N{T) and an isomorphism (into). D

The following result is well-known. We prove it as an application of our lifting result.

COROLLARY 2 . 6 . The class ofBanach spaces that contain no copies of c0 has

the three-space property.

PROOF: Let M be a subspace of X and assume M and X/M contain no copies of
c0. If we denote by Q : X —> X/M the quotient map, given a weakly unconditionally

oo oo

Cauchy series ^2xn, we have that ^Qxn is weakly unconditionally Cauchy in X/M;
n=l n=l

hence unconditionally converging because X/M contains no copies of c$, and applying
oo

the lifting result we conclude that "^2 xn is unconditionally converging. D
n=l

The operators in U+ can be characterised by their action over sequences equivalent
to the unit vector basis of CQ and in terms of the kernels of the perturbations by operators
inU.

PROPOSITION 2 . 7 . For T 6 B(X, Y) the following statements are equivalent:

(a) T€U+{X,Y);

(b) if (xn) C X is equivalent to the unit vector basis of CQ then there exists

k e N such that (Txn)n>k is equivalent to the unit vector basis ofco;

(c) there is no (normalised) sequence (xn) in X equivalent to the unit vector

basis of Co and such that lim Txk = 0.
k^oo

PROOF: (a)=>(b) Assume (xn)n is a sequence in X equivalent to the unit vector
basis of Co, but (Txn)n>k is equivalent to this basis for no k € N. Then we can find a
sequence of scalars (an) such that \an\ ^ 1 for all n and a sequence of integers 1 ^ mi ^
ni < m2 < n2 < • • • so that, denoting yk := amkxmk + ... + ankxnk, we have that (yk) is
equivalent to the unit vector basis of Co, but \\Tyk\\ -* 0. By passing to a subsequence we

oo

may assume \\Tyk\\ < 2~k. Then ^Tyk is unconditionally converging, and we conclude

that T £U+.
(b)=>(c) is trivial.

(c)=$>(a) Assume that T ^ U+(X, Y). Then there is a weakly unconditionally Cauchy
oo oo

series ^2 zk in X which is not unconditionally converging, such that ]>̂  Tzn is uncon-
fc=l A = l

ditionally converging. Now, proceeding as in the proof of Theorem 2.4, we obtain a
sequence (yk) equivalent to the unit vector basis of Co and such that lim Tyk = 0, and

k~^oo
the normalised sequence given by xk := \\yk\\~1 yk shows that (c) fails. D
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THEOREM 2 . 8 . An operator T G B(X, Y) belongs to U+ if and only if for every

compact operator K G B(X, Y) the kernel N(T + K) contains no copies of CQ.

PROOF: The direct implication was shown in Remark 2.3.
For the converse, assume T does not belong to U+. By Proposition 2.7, we can find

(xn) in X equivalent to the unit vector basis of Co, and (/„) bounded in X" such that
fi{Xj) = Stj and ||/n|| ||Txn|| < 2". Then

# * : = - £ fn{x)Txn
n=l

defines a compact operator K G B(X, Y) such that N(T + K) contains the subspace
generated by (xn). D

As a consequence of the perturbative characterisation, we derive "algebraic" char-
acterisations.

COROLLARY 2 . 9 . For T G B(X, Y), the following statements are equivalent:

(a) TeU+(X,Y);
(b) for every Banach space Z and every L G B(Z, X), we have TL G U(Z, Y)

onlyifL<EU(Z,X);
(c) for every subspace M C X, if the restriction T \M belongs to U(M, Y),

then M contains no copies of Co-

PROOF: (a)=>(b) Assume T G U+(X,Y) and let L G B(Z,X) be an operator such
that TL G U(Z,Y). Let ^ 2 t be a weakly unconditionally Cauchy series in Z. Thus
^TLzk is unconditionally converging, and since T G U+(X, Y), the series ^ L z k must
be unconditionally converging.

(b)=>(c) It is enough to observe that the inclusion operator IM : M —> X belongs
to U(M, X) if and only if M does not contain copies of CQ [2, Theorem 5].

(c)=>(a) Assume T £ U+{X, Y). By Theorem 2.8 there is a compact operator K G
B(X,Y) such that M :— N(T + K) contains a copy of CQ. AS TiM = —KiM, we have
that TiM is compact, hence TiM G U, and M contains a copy of CQ. D

Recall that T G B(X, Y) is said to be upper semi-Fredholm if it has closed range
and finite dimensional kernel, and T is said to be tauberian if its second conjugate T" G
B{X",Y") satisfies T"(X"\X) c Y" \ Y. We denote by T+{X,Y) and T+(X,Y)
the classes of upper semi-Fredhom operators and tauberian operators, respectively. Both
classes admit a perturbative characterisation. The result for T+ is classic.

PROPOSITION 2 . 1 0 . [10, Theorem l.a] An operator T G B(X,Y) belongs to
T+ (respectively, T+) if and only if for every compact operator K G B(X, Y) the kernel
N(T + K) is Rnite dimensional (respectively, reflexive).

COROLLARY 2 . 1 1 . For every pair of Banach spaces X, Y we have

T+{X,Y) c T+{X,Y) C U+{X,Y).
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REMARK 2.12. Although the components of the semigroup J-+ are open subsets of
B(X, Y), this is not always true for the components of 7+ and U+. This fact can be seen
using an example similar to one given in [1],

oo

In the space ^(co) := \{xn) : xn 6 Co and ^ ||zn||2 < ooj, we consider the
n=l

operator T S B(i2(co), ^(co)) given by T(xn) := (xn/n). It easily follows from the
definition that T is tauberian, hence it belongs to U+. However, the operators Tn £

given by

Tn(xux2,...) := (xi,...,xn,0,0,...),

satisfy lim \\T - Tn\\ = 0 and ker(Tn) contains a copy of Co for every n. Hence T belongs
n

to the boundaries ofU+(£2(co),£2{co)) and T+foico),^^)).
As a consequence of the perturbative characterisations, we characterise some classes

of Banach spaces. Recall that a Banach space X is said to be hereditarily CQ if every
infinite dimensional subspace of X contains copies of CQ.

PROPOSITION 2 . 1 3 . Let X be a Banach space.

(a) The space X is hereditarily CQ if and only if for every Y we have U+(X, Y) =
T+{X,Y).

(b) Non-reflexive subspaces ofX contain copies ofco if and only if for every Y
we have U+(X, Y) = T+(X, Y).

(c) Reflexive subspaces of X are finite dimensional if and only if for every Y
we have T+(X, Y) = F+{X, Y).

PROOF: (a) If X is not hereditarily c0, then it contains an infinite dimensional

subspace M containing no copies of CQ. By Corollary 2.5, the quotient map q^ belongs

to U+ \ T+- The direct implication follows directly from Theorem 2.8.

The proof of the other parts is analogous. D

We consider now Banach spaces X such that all their subspaces isomorphic to CQ
are complemented. This is the case when X is separable, weakly compactly generated,
or more generally, when X is weakly compactly determined [6, Lemma VI.2.4]. Next we
show that operators in U+ preserve this class.

PROPOSITION 2 . 1 4 . Assume that U+(X,Y) is non-empty. If every subspace
ofY isomorphic to Co is complemented, then the same is true for X.

PROOF: Let M be a subspace of X isomorphic to CQ. Taking T 6 U+(X,Y), by
Proposition 2.7 there is a subspace N of M such that M/N is finite dimensional and the
restriction T\N is an isomorphism. Since TV is isomorphic to Co, we have that T(N) is
complemented. Now, if L is a complement of T(N), then T~l(L) is a complement of N;
hence N and M are complemented subspaces of X. D
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Given a semigroup S of operators, Lebow and Schechter [13] define the perturbation

class VS, for spaces X, Y such that S(X, Y) is not empty, as follows:

VS{X, Y) := [A G B(X, Y) : T + A G 5 for every T G S(X, Y)}.

Recall that an operator T € B(X, Y) is said to be strictly singular if there is no
infinite dimensional M of X such that the restriction T\M is an isomorphism. The
perturbation class for the upper semi-Fredholm operators contains the strictly singular
operators, and it is a well-known open problem whether these classes coincide, even in
the case X = Y [17].

We have seen in Remark 2.3 that the perturbation class for U+(X, Y) contains
U(X, Y). Next we show that they coincide whenever subspaces of X and Y isomorphic
to Co are complemented.

PROPOSITION 2 . 1 5 . Assume that U+(X, Y) is nonempty and that every sub-
space ofY isomorphic to Co is complemented. Then we have VU+(X, Y) = U{X, Y).

PROOF: Take A € B(X, Y) which is not in U. It follows from Proposition 2.1 that
there exists a subspace M of X isomorphic to c0 such that the restriction A\M is an
isomorphism. From the hypothesis and Proposition 2.14, by passing to a complemented
subspace of M we may assume that

X = U®M a.nd Y = V<S> A{M),

with U and V isomorphic to X and Y, respectively.
Now we can define an operator T € B(X, Y) such that T\M = A\M, T(U) C V and

T\v belongs to U+. Clearly T e U+. However, T + A 0 U+. D

Now we introduce the dual semigroup.

DEFINITION 2.16: An operator T € B(X, Y) belongs to the class U- if its conju-
gate operator T" belongs to U+.

We denote by Ud the dual operator ideal of U\ that is,

Ud(X, Y) := {T G B(X, y ) : T ' 6 W ) .

The following characterisation of the operators in Ud will be useful. We refer to [18,
Lemma p.272] for a proof.

PROPOSITION 2 .17 . An operator T e B(X, Y) belongs to Ud if and only if
there is no subspace M of X isomorphic to £i such that the restriction T\M is an isomor-
phism and T(M) is complemented in Y.

REMARK 2.18. (a) It is not difficult to derive from the previous result that the dual X*
of a Banach space X contains no copies of CQ if and only if X contains no complemented
copies of £i [2, Theorem 4].
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(b) Similarly as in the case oiU+, the class U- satisfies the following properties:

T e U-(X, Y) and 5 € U-{Y,Z) => ST € IL(X, Z).

TeU-(X,Y) and K eUd(X,Y) => T + K eU.{X,Y).

T €U_ (X, Y) =>• Y/R(T) contains no complemented copies of t\.

(c) An operator T G B(X, Y) with closed range and cokernel Y/R(T) containing
no complemented copies of l\ belongs to U-. This is consequence of Corollary 2.5 and
duality.

(d) We have that T* € W_ implies T EU+, because T is a restriction of T". However,
the converse implication is not true. If we consider a Banach space Z containing no copies
of Co such that Z** contains a copy of Co, then the zero operator Oz in Z belongs to U+,
but its second conjugate Q*£ does not.

We can take as Z the hereditarily reflexive predual of £i, obtained by Bourgain and
Delbaen [3].

Now we give a perturbative characterisation for U-.

THEOREM 2 . 1 9 . An operator T € B(X, Y) belongs to U_ if and only if for every
compact operator K s B(X,Y), the cokernel Y/R(T + K) contains no complemented
copies of t\.

PROOF: The direct implication follows from Remark 2.18. For the converse, assume
T 4- U-\ equivalently, T* £ U+. By Proposition 2.7, we can select a sequence (/„) in Y*
equivalent to the unit vector basis of CQ and such that lim ||X"/n|| =0 .

Using a result of Johnson and Rosenthal [11, Remark 3.1] we can select asubsequence
(gn) of (/„) and a bounded sequence (yn) in Y such that gk{yi) — &ki- Moreover, we can
assume that ||T*pn|| \\yn\\ < 2~n. Therefore, the expression

Kx := f, {T*gn){x)yn
n=l

defines a compact operator K € B(X, Y) whose conjugate is given by

K'f = E f(yn)T'gn.
n = l

Thus (gn) is contained in N(T* + K*) = [Y/R(T + K)]*; hence Y/R(T + K) contains a
complemented copy of £i. D

Now we can give algebraic characterisations of W_. Note that the identity Ix of a
Banach space X belongs to Ud if and only if X contains no complemented copies of l\.

COROLLARY 2 . 2 0 . ForT e B(X, Y), the following assertions are equivalent:

(a) TeU-;
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(h) for every Z and every A G B(Y, Z), if AT G Ud then A G Ud;

(c) for every closed subspace M ofY, if qMT G Ud, then Y/M contains no

complemented copies of l\.

PROOF: (a)^(b) If T e W_ and AT G Ud then T* G U+ and TM* G U. Theorem

2.9 gives that A* G U, hence .4 G Ad.

(b)=>(c) Assume M is a subspace of Y such that qMT G Wd. Hypothesis (b) leads

to <?M € t/d; equivalently, the dual of Y/M contains no copies of CQ.

(c)=>(a) Assume T £ U-. By Theorem 2.19, there is a compact operator K G

B(X, Y) such that [Y/R(T + K)]* contains a copy of CQ. Let M := R(T + K). Since K

is compact, —QMK — qMT is compact, so qMT G Wd, but qM £ Ud. W

An operator T G S(X, V) is said to be lower semi-Fredholm, denoted T G T- [13] or
cotauberian [19], denoted T G 71, if T* belongs to J-+ or 7+, respectively. Both classes
are semigroups and admit perturbative characterisations.

PROPOSITION 2 . 2 1 . [10, Theorem l.b] Given T G B{X,Y), we have that

T G T- (respectively, 71J if and only if for every compact operator K G B(X, Y) the

cokernel Y/R{T + K) is finite dimensional (respectively, reflexive).

COROLLARY 2 . 2 2 . For every pair of Banach spaces X, Y we have

T.{X, Y) C 71 (X, Y) C U-{X, Y).

Using the perturbative characterisations for the semigroups T-, 71 and £/_ we can
derive characterisations for some classes of Banach spaces. The proof is analogous to
that of Proposition 2.13.

P R O P O S I T I O N 2 . 2 3 . Let X be a Banach space.

(a) Quotients of X containing no complemented copies of l\ are Bnite dimen-
sional if and only if for every Y we have U-{Y, X) = !F-(Y, X).

(b) Quotients of X containing no complemented copies of£i are reflexive if and
only if for every Y we have U-(Y, X) = T-(Y, X).

(c) Reflexive quotients of X are Bnite dimensional if and only if for every Y

we have T-(Y, X) = F_(Y, X).

Now we study the perturbation class of U-. Recall that an operator T G B(X, Y) is
said to be strictly cosingular if a closed subspace N of Y is finite codimensional whenever
R(T) + N = Y. The perturbation class for the lower semi-Fredholm operators contains
the strictly cosingular operators, and it is an open problem whether they coincide [17].

We have observed in Remark 2.18 that the perturbation class for W_ contains Ud.

Next we show that these classes coincide for operators acting in the same space.

PROPOSITION 2 . 2 4 . The perturbation class ofU- coincides with Ud.
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PROOF: Assume that U-(X, Y) is not empty, and that A € B(X, Y) does not belong
to Ud. It follows from Proposition 2.17 that there exists a subspace M of X isomorphic
to t\ such that the restriction A\M is an isomorphism and A(M) is complemented. As in
the proof of Proposition 2.14, we get that M is also complemented in X, and using the
argument in the proof of Proposition 2.15, we may assume that

X = U®M and Y = V® A(M),

with U and V isomorphic to X and Y, respectively.

Now we can define an operator T 6 B{X,Y) such that T\M = A\M, T{U) C V and
T\u belongs to Z/_. Clearly T e W . . However, T + A £ U-. D

3. SEMIEMBEDDINGS AND SEMIGROUPS

Here we show the relation between operators in U+ and semiembeddings. Recall
that T € B(X, Y) is said to be a semiembedding if T is injective and TBx is closed. This
concept, introduced in [16], has found applications in the study of the Radon-Nikodym
property [4].

Semiembeddings are not stable under isomorphic renorming of the initial space [16],
but it has been proved by Saint-Raymond (see [4, Proposition 1.6]) that an operator
T S B(X, Y) is a semi-embedding under some equivalent norm for X if and only if it is
injective and its range T(X) is an 7^-set; that is, a countable union of closed sets. These
operators are called Fa-embeddings.

We shall present two examples of semiembeddings not belonging to U+, but we also
show that i^-embeddings of X belong to U+(X, Y) if (and only if) X contains no copies

Of£oo-

EXAMPLES. (a) The operator 5 £ B(toa,£2), given by S(xn) := (xn/n), is an injective
conjugate operator; hence it is a semiembedding. However, 5 0 U+ because it carries the
unit vector basis of CQ C £OO into a norm null sequence.

(b) For 1 < p < oo, the natural inclusion i € ByZ/oo[0,1], Lp[0,1]J is a semiem-
bedding; in fact, a sequence in the unit ball of L^ converging in the Lp-norm has a
subsequence converging almost everywhere to a measurable function which belongs to
the unit ball of L^ too.

However, i is not U+ since given a sequence of pairwise disjoint, measurable subsets
Cn C [0,1] with /x(Cn) > 0, the corresponding sequence of characteristic functions xcn

 IS

equivalent in L^ to the unit vector basis of Co, but lim | |xc j | p = lim /z(Cn)1/p = 0.

THEOREM 3 . 1 . A Banach space X contains no copies of 4o if aad only if for

every equivalent norm | • | in X, the semiembeddings of (X, \ • |) into any Banach space

belong to U+.
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PROOF: Suppose T e B(X,Y) is a semiembedding and T £ U+{X,Y). By Propo-
sition 2.7 there exists a sequence (xn) C X equivalent to the unit vector basis of Co and

oo

such that ^2 \\Txn\\ < oo.
n=l

We select a constant M such that for every finite sequence of scalars {tx,..., tn)
with maxi^i^n \U\ ̂  M we have t\X\ + • • • + tnxn € Bx- Since T(Bx) is closed, for

oo

every (U) e £«, with ||(*»)Moo ^ M w e n a v e *^a* ^2^xi1S absolutely convergent to some

vector y € TBX- Then

. 7 1 = 1

defines an operator R € £(^oo, X) such that ||i?|| ^ M~l and R 1^ is an isomorphism. By
a result of Rosenthal (see [14, Proposition 2.f.4]), there exists an infinite subset A C N
so that R \tm(A) is an isomorphism. Hence X contains a copy of 4o.

Conversely, if X contains a copy of ^oo, then X is isomorphic to l^ x Y for some Y.
Now, if we endow the products f M x F and £2 x Y with the supremum norms, we have
that T((xn), yj := ({xn/n), y\ defines a semiembedding of E^ x Y into £2 x Y which is
not in U+. D

COROLLARY 3 . 2 . Assume that X contains no copies of £<*,.

(a) Every semiembedding T : X —> Y belongs to 14+.

(b) If there exists a semiembedding T : X -* Y and every subspace of Y
isomorphic to CQ is complemented, then the same is true for X.

Next we show that operators of 14+ defined on C[0,1] or Loo[0,1] preserve a copy of
the whole space.

PROPOSITION 3 . 3 . Suppose X is C[0,1] or L^O, 1]. Then for every T €
U+(X, Y) there exists a subspace M of X isomorphic to X, such that the restriction
T \M is an isomorphism.

PROOF: Assume /„ is a disjoint sequence of closed, non-empty subintervals of [0,1].
We denote by Cn the subspace of functions with (essential) support contained in /„.

If T \cn is an isomorphism for some n, then have finished. Otherwise we can select
a sequence of normalised functions /„ € Cn, with l im| |T/n | | = 0. Since (/„) is equivalent
to the unit vector basis of Co, we obtain T $. 14+, a contradiction. D

Finally we state some open questions.

PROBLEMS. Suppose X is C[0,1] or Loo[0,1], and Y is any Banach space.

(a) Is it true that T € U+(X, Y) if there is no normalised disjoint sequence
(/„) in X such that Jirn^||T/n|| = 0?

(b) Is it true that U+{X, Y) is open in B{X, Y) ?
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We refer to [8] for a positive answer to similar questions for tauberian operators on
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