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FULLY NONLINEAR FLOW OVER SUCCESSIVE OBSTACLES:
HYDRAULIC FALL AND SUPERCRITICAL FLOWS
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Abstract

In this paper we consider the flow of an incompressible, inviscid and homogeneous fluid
over two obstacles in succession. The flow is assumed irrotational and solutions are sought
in which a hydraulic fall occurs over the first obstacle with supercritical flow over the second.
The method used to solve the problem is capable of calculating flows over topography of
any shape.

1. Introduction

The knowledge about fully nonlinear flow over obstacles has increased considerably
in the last decade or two. Much of this work has concentrated on finding flow
solutions over a single obstacle and most often this obstacle has had a special shape.
For example, Forbes [4] considered flow over a semi-elliptical obstacle, Forbes and
Schwartz [7] considered flow over a semi-circle and Dias and Vanden-Broeck [3]
studied flow over a triangular weir. The advantage of using these special shapes is
that a conformal mapping can be used to cater for singularities that occur on the
bottom surface. More recently, techniques for calculating flow over arbitrary bottom
topography have been developed. These include the work of King and Bloor [8]
who used a generalization of the Schwartz-Christoffel transformation, the work of
Belward and Forbes [1] and [2] who used a direct boundary integral solution method
and the work of Read, Belward and Higgins [10] who used a series solution technique.
It is important to note that although these authors presented techniques capable of
calculating flow over arbitrary topography, there has yet been no work devoted to the
study of fully nonlinear flow over successive obstacles.
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In this paper we will utilize the boundary integral technique of Belward and Forbes
[1] and [2] to look at flow over successive obstacles. It is well-known that when
irrotational flow of an inviscid, incompressible fluid occurs over a single obstacle
there are three possible flow configurations. Which flow configuration exists depends
largely on the Froude number, defined as F = u/./gh, where u and h are respectively
the speed and depth of fluid and g is the acceleration due to gravity. The first flow
configuration that may occur is that known as downstream wave flow, where F < 1
throughout the fluid, with wave-free flow ahead of the obstacle and a train of almost
periodic waves downstream. Meteorologists refer to such flow as “lee-wave” flows, as
they occur in the atmosphere, produced by wind over mountains. The second possible
flow configuration is known as critical flow, or as a hydraulic fall, where the fluid is
wave-free ahead of the obstacle with F < 1 and then cascades in a “waterfall-like”
way over the obstacle so F = 1 somewhere over the obstacle with F > 1 in a thin
layer of relatively high speed fluid downstream of the obstacle. This flow is also well-
known to meteorologists (as the severe downslope windstorm), as this configuration is
not uncommon in the atmosphere at the foothills of certain mountain ranges. Belward
and Forbes [2] discuss in further detail a simple model for the atmosphere which
adequately predicts the flows mentioned above. The third possible configuration of
flow over a single obstacle is that known as supercritical flow, where the fluid flows
with F > 1 on either side of the obstacle and the free surface of the fluid is symmetric
about the centre of the obstacle, if it itself is symmetric about its centre.

Given the three basic flow configurations possible for flow over a single obstacle,
we can postulate what flow configurations may occur during flow over two obstacles.
If flow occurs with F < 1 on both sides of the first obstacle we would expect that a
train of almost periodic waves could be generated by the first obstacle. These waves
would then interact with the second obstacle (which can be thought of as producing
its own train of lee waves), with one possible outcome being that the waves could be
amplified or diminished (by addition of waves produced by the second obstacle in or
out of phase with those produced by the first) so that F < 1 in the lee of the second
obstacle. The linear theory discussed in Belward and Forbes [1] certainly predicts this.
Another possible outcome is that if the second obstacle is the correct height for the
Froude number of the flow upstream from it, critical flow could occur over the second
obstacle, so that F > 1 in the lee of the second obstacle. This has been observed
experimentally in the work of Pratt [9]. If the waves produced by the first obstacle
were of high amplitude, the second obstacle may cause these waves to break and thus
no steady flow would exist. When F > 1 everywhere, we would expect supercritical
flow to occur over each of the obstacles, so that the flow would be almost symmetric
within some neighborhood about the centre of each obstacle.

The final possible flow configuration is that where critical flow occurs over the first
obstacle, so F < 1 in the region upstream of it, with supercritical flow (F > 1) in the
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lee of this obstacle and over the second. Again, this has been observed experimentally
by Pratt [9]. In this paper we examine such a flow configuration. Flows involving
waves between the obstacles are more difficult to calculate and are worthy of discussion
in a separate publication.

In Section 2 we present the mathematical formulation of the problem and briefly
discuss the numerical solution procedure. In Section 3 our results will be presented
and comparisons made with results for supercritical flow over a semicircular obstacle
in the work by Forbes and Schwartz [7]. Finally in Section 4 we summarize our
findings and discuss areas for further research.

2. Formulation and numerical method

We consider irrotational flow of a single layer of inviscid, incompressible fluid of
constant density over two obstacles in succession. Far upstream of the first obstacle the
fluid flows with uniform height, H, and with velocity ci. Variables in the problem are
nondimensionalised with respect to H and ¢ and we work purely in a nondimensional
system. The profile of the obstacles is given by y = B(x), where x and y are horizontal
and vertical coordinates respectively. The first obstacle, in the region x < 0, has
dimensionless height &, and the second, in the region x > 0, has dimensionless height
h,. The surface of the fluid is denoted by y = S(x) and is unknown at the outset. Only
flow stationary with respect to the obstacles is considered, so partial derivatives with
respect to time are identically zero. The fluid system prior to nondimensionalisation
is shown in Figure 1, for an actual solution obtained with the method presented later
in this section.

The equations describing this problem are easily obtained from Belward and Forbes
[2] by setting the parameter 8 used in that work to unity. This has the effect of removing
the upper layer, used there to model the upper atmosphere. For completeness we briefly
summarize the equations.

There are two dimensionless parameters describing the flow. There are the upstream
Froude number

c
F =
JgH
and V the fluid speed far downstream of the second obstacle. Note that for critical

flow, V > 1.
We introduce the velocity potential ¢ so that @ = V¢ is the velocity vector.
Continuity then gives

V¢ = 0. 9))
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FIGURE 1. A diagram of the fluid system, flowing over two obstacles represented by y = B(x), the first
with height &, and the second with height h,. The surface y = S(x) is to be obtained; once known,
all other flow quantities can be determined. This profile is a portion of an actual solution obtained with
h; = 0.4, h, = 0.55; the upstream Froude number was calculated to be F = 0.297.

The free surface of the fluid is a streamline, thus

Vo -n=0 on y = S(x). 2
The surface of the obstacle is a streamline, thus

Vé-n=0 on y = B(x). 3)

Here n refers to the normal vector to the free surface and the bottom respectively. The
upstream and downstream conditions are

q— i, S(x)>1 as x — —o0, “4)
q— Vi, Sx)—>1/V as x — oo. (5

Parameterizing the interface using arclength s, as in Belward and Forbes [2], gives the
Bernoulli equation in the form

2
F? (ff) + y(s) = 1F2 +1 (6)

1
2 ds 2
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dx\? dy 2
(@) +(@) - )

both on the free surface. The problem therefore is to solve Equation (1) subject to the
boundary conditions (2), (3), (6) and (7) and the asymptotic conditions (4) and (5).

In order to calculate the location of the unknown surface, the analytic function
x@ =u(@)—iv(z)—1is forined, where u(z) and v(z) are the horizontal and vertical
components of q at the point z = x + iy. This function has the property that it
vanishes at upstream and downstream infinity. Two integro-differential equations are
now obtained, each arising from Cauchy’s integral formula

% x(2)dz —o, )
r

-z

and the arclength condition

where the contour I' consists of the free surface, the bottom surface and the lines
x = x£L with L — oo. The first integro-differential equation uses z* = z(s), a point
on the free surface and has added to the contour a semi-circle of vanishingly small
radius around that point. The second equation uses z* = x* + iB(x*), a point on
the bottom surface and has added to the contour a semi-circle of vanishingly small
radius around that point. In each case the desired equation is obtained by taking the
imaginary part of Equation (8) and using the boundary conditions (2) and (3). Full
details are contained in Belward and Forbes [2].

Finding the location of the free surface now requires a solution to be found to
the two equations resulting from Equation (8), subject to the Bernoulli equation (6),
the upstream and downstream asymptotic conditions, Equations (4) and (5) and the
arclength condition (7).

The numerical solution procedure is exactly that used in Belward and Forbes [2].
We describe the procedure in brief. The free surface is sought at N equally spaced
(with respect to arclength) points sy, 53, ... , Sy, with s; and sy approximating —oo
and oo respectively. A guess is made at y'(s;), ... , ¥'(sy), with y'(s;) = O used to
satisfy uniform flow upstream. It is also necessary to define a grid on the bottom
surface y = B(x). M points x,, x5, ... , xy are chosen, which are spaced equally
with respect to the x-axis. We iterate as follows.

1. Integrate y'(s;) to find y(s;) using y(s,) & y(—o00) = 1.
2. Use the arclength condition (7) to calculate x’(s; ). Integrate to obtain x(s;)
using x(s)) = ;.
Use the Bernoulli equation (6) to find ¢(s;),j = 1,... ,N.
4. Use the second integro-differential equation resulting from (8) by discretising
it after removal of singularity by subtraction. Solve for u(x;), j =2,... ,M

w
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atthe M — 1 points x* = x;,i2 = (x; + x;,)/2. The trapezoidal rule is used
for integration.

5. The first integro-differential equation resulting from (8) is now available as a
cost function, as all flow quantities are known. This equation is used to update
the current approximation to y’(s;) until the norm of the cost function falls
below some predefined value.

The trapezoidal rule is used for all integration because of its ease of implementation.
The use of Simpson’s rule of cubic splines may increase the domain of convergence
slightly. However, as the results produced here are of high quality (as is shown later),
this is seen as unnecessary.

3. Results

In this section we present the results obtained using the numerical method outlined
in the previous section. Before we proceed we show some properties (noted by Forbes
[5]) of the flow we are investigating. Combining the downstream conditions (5) and
the Bernoulli equation (6) we can determine the upstream Froude number in terms of
the downstream fiuid speed, thus

2
F = /———.
V(V+D

Also we can determine the downstream Froude number, Fpg, in terms of the upstream
Froude number:

cV «/EV
Fps= ———==FV/’? = ——. 9
T GV JVVFI1 ®)

The algorithm described in Section 2 was implemented on a computer and used to
study fully nonlinear flow over two obstacles. The topography used had the profile

h 5
{1 +cos mx+9) , -L-5<x<L, -5,
2 L,
—)h -5
B(x) = e 1+ cos M R —-L2+5_SXSL2+5, (10)
2 L,
0, otherwise,

where h, and h, represent the heights of each obstacle, while L, and L, refer to the
half-lengths of each obstacle. Thus the first obstacle was centered on x = —5 and the
second on x = 5.
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Solutions were obtained for a wide range of obstacle heights and widths. The
procedure was as follows. The height of the first obstacle was fixed while the height
of the second obstacle was increased from zero until the algorithm was unable to
compute any further solutions. The initial guess used when the second obstacle was
absent (that is when h, = 0) was a solution obtained using the method described by
Belward and Forbes [2] with the parameter 8 chosen as unity. The initial guess for
each nonzero h, was the solution obtained for the previous A,. In all cases presented
here solutions have been obtained using N = M and have been deemed to be found
when the norm of the cost function falls below 10~°. Convergence testing by observing
the free surface profiles as N and M increase shows that the solutions tend to a limiting
surface profile for sufficiently large N and M.

S(x)

FIGURE 2. The computed free-surface profile for #; = 0.4, h, = 0.55, L, =2 and L, = 1. 321 points
were used to discretise the free surface.

Figure 2 shows a typical solution, obtained using 321 points on the free surface. In
this case the first obstacle had height #, = 0.4 and half-width L, = 2, with the second
having height h; = 0.55 and half-width L, = 1. The upstream Froude number was
calculated to be F = 0.297 with the solution clearly showing a hydraulic fall over
the first obstacle while near symmetric supercritical flow is observed over the second.
Upstream of the first obstacle the solution shows waves of very small amplitude.
These are common in work such as this and are a consequence of forcing uniform
flow at the left side of the computational domain, when in reality it occurs at upstream
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infinity. Downstream of the second obstacle we note an inconsistency on the free
surface which is a further consequence of imposing a finite computational domain.

It was found that the downstream Froude number Fp5 depended only on the height
of the first obstacle. Also as h, increased, Fps increased and F decreased, as results
for flow over a single obstacle would predict. For a given A, theory suggests that the
maximum possible &, is determined by the height at which the flow above the second
obstacle would be such that a crest with an angle of 120° had formed on the surface
of the fluid. At this crest a stagnation point would occur so that the maximum surface
elevation (the height of the crest) found from Equation (6) would be

1
Ssrag:§F2+1' (1D

This phenomenon is discussed fully in Forbes and Schwartz [7].

h,=0.55'
S(x)

hy=0.5
h2=0.4

0‘5 l__ h2=0.3

h2=0.2
h2=0.1

-10 -5 0 5 10

FIGURE 3. Computed free-surface profiles for #; = 0.4 and various h, as indicated.

Figure 3 shows the effect on the free surface of increasing h, while h; is fixed.
Each of the curves in Figure 3 represents the free surface at a different height of
the second obstacle, as indicated to-the right of each crest. The first obstacle had
height h; = 0.4 while L, = 2 and L, = | were fixed half-lengths. Each free surface
was computed using 321 points. Clearly as the second obstacles increases in size,
the curvature at the crest in the free surface also increases while the upstream Froude
number remains almost fixed at F = 0.297. Equation (11) shows that with this Froude
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number, the stagnation height is S;,,, ~ 1.04. From Figure 3 with h, = 0.55 we have
a maximum surface elevation of S,,,. = 0.94 which is about 90% of the maximum
theoretical height, S;4,. To obtain flows closer to the maximum theoretical height,
a technique capable of calculating surface profiles of high curvature is needed. This
would probably involve clustering points near the region of high curvature and we
have not proceeded to look further for these solutions.

ha
0.5

0.3 r

0.2

060l 02 03 04 05, 06
1

FIGURE 4. The shaded region shows the values of h, for which solutions could be computed, for each
value of k.

Figure 4 shows for which heights of the second obstacle solutions could be found,
given the height of the first obstacle, using 161 points on the free surface with L,
and L, as in the previous figure. Note that solutions were not sought in the regions
hy < 0.1 or h; > 0.6. However, there is no reason to suggest solutions would not
exist in those regions if h, were sufficiently small. For &, < 0.45 the general trend
is that as h, increases, so the maximum value for h, for which solutions exist also
increases. This result is not unexpected for the following reason. The downstream
Froude number, Fpg, increases as h, increases and Fp5 > 1 over the second obstacle.
Forbes and Schwartz [7] showed that during supercritical flow over a semi-circular
obstruction, as the Froude number of the flow increased, the maximum height of
the semi-circle for which solutions could be found increased. For h, > 0.45 the
maximum value for h; decreases rapidly. This behavior is almost certainly due to the

https://doi.org/10.1017/50334270000010535 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000010535

456 Shaun R. Belward [10]

high fluid speeds over the second obstacle and large free surface slope over the first
obstacle. A higher-order integration scheme may obtain results for larger 4, in this
region, although it may be the case that no steady solutions exist for such high fluid
speeds. Indeed in Forbes [5] the possibility of the formation of a hydraulic jump is

discussed.
»
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FIGURE 5. A comparison between the results obtained in this study (the squares corresponding to the
downstream Froude number at which flow occurs over the second obstacle of maximum height for a
particular first obstacle) and those obtained for supercritical flow over a semi-circular obstruction (the
circles corresponding to the maximum height for which a solution could be computed for a given Froude
number) in the study of Forbes and Schwartz [7].

Figure 5 allows a direct comparison between the results obtained in this study and
that conducted by Forbes and Schwartz [7] and hence serves to validate our work.
Each square of the graph represents a solution corresponding to a maximum value for
h, for a given h;. Thus each square corresponds to a point on the upper boundary
of the shaded region in Figure 4. In obtaining Figure 5, only flow over the second
obstacle is considered. The scale in the vertical direction is altered so that the fluid at
the point x = 0 has height 1. The vertical axis on Figure 5 then gives the height of
the second obstacle relative to the height of the fluid at x = 0. Thus we define

hy,
S(0)
The position of each square in Figure 4 is determined by the downstream Froude

number, Fps (obtained using Equation (9)), at which the flow occurred and the

2rel = 2-
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relative height of the second obstacle. The circles in Figure 5 correspond to the results
in Figure 8 of the article by Forbes and Schwartz [7] in which supercritical flow over a
semi-circular obstruction was considered. Each circle represents the maximum height
for a semi-circle for which the Newton process used by the authors would converge at
the given Froude number. Clearly the results obtained in our study match and extend
those for flow over a semi-circle. The last two squares furthest to the right in Figure
5 again show that at higher downstream fluid velocities the solution technique is not
capable of calculating flows for a large h, as may be expected.

4. Summary and discussion

This paper has applied the method capable of calculating flow over arbitrary to-
pography, developed by Belward and Forbes [1] and [2], to the problem of flow over
two successive obstacles. Only a single layer of inviscid, incompressible and constant
density fluid was considered and the flow was assumed irrotational. Solutions exhibit-
ing critical flow over the first obstacle and supercritical flow over the second obstacle
were the only solutions sought, although there is no doubt other solution types do exist
as has been verified experimentally by Pratt [9].

The topography used in our computational experiments had the profile given by
Equation (10), although other topography could easily be investigated. The Froude
number at which each flow occurred was determined almost entirely by the height of
the first obstacle; as the height of this obstacle increased, so the downstream Froude
number increased. In general, at higher downstream Froude numbers we are able
to obtain solutions for higher second obstacles. Ultimately the height of the second
obstacle is limited by the formation in the flow above the obstacle of a crest of 120°.
If the first obstacle was too high, fluid speeds downstream became large and the
numerical procedure was unable to compute solutions for second obstacles as high as
would otherwise be expected. Comparison with the results of Forbes and Schwartz [7]
shows that, in the neighborhood of the second obstacle, the supercritical flow over that
obstacle behaves in exactly the way supercritical flow over a semi-circular obstacle

‘behaves. This comparison served to validate our results.

As noted above, configurations in which critical flow occurs over the first obstacle
and supercritical flow over the second are not the only type to be observed. Work is
currently underway to investigate the occurrence of waves between the obstacles and
in the lee of the second. Of particular interest is the possibility that waves may occur
between the obstacles with wave-free flow in the lee of the lee of the second, that is,
that waves produced by the first are effectively cancelled by the second. Such a flow
configuration has already been computed for flow over a single semi-ellipse by Forbes

(4].

https://doi.org/10.1017/50334270000010535 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000010535

458 Shaun R. Belward [12]

The importance of knowledge of flow over successive obstacles is unquestioned
in the meteorological community and work is also underway to utilize the results
obtained here into a model for sheared flow over topography, as may occur in the
atmosphere. This model has already been used to investigate the Morning Glory
phenomenon which occurs in the Gulf of Carpentaria, see Forbes and Belward [6].
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