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ON EULER MIDPOINT FORMULAE
LJ. DEDIC!, M. MATIC! and J. PECARIC?
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Abstract

Modified versions of the Euler midpoint formula are given for functions whose derivatives
are either functions of bounded variation, Lipschitzian functions or functions in L, -spaces.
The results are applied to quadrature formulae.

1. Introduction

S. S. Dragomir, P. Cerone and A. Sofo [6] proved the inequalities

b — 3
%nf”uw,
b +b b — a)**a
faf(t)dt—(b—a)f ("2 )ls< é(y_‘,aﬁ"f"“w (L1
b_ 2
(—8‘iuf"||.,

where f” belongs to the appropriate space, 1/p + 1/g = 1 and p > 1. The first
of these is usually referred to as the midpoint inequality. A simple application of
the midpoint inequality is as follows. Divide the interval [a, b] into v subintervals
of equal length h = (b — a)/v. For given f : [a, b] — R, consider the midpoint
quadrature formula

b
/ f@de=S,()+ p.(f), (12)
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where

S.fy=h) f (a+(2i— 1)%).
i=1

If f is twice differentiable and ||f “||lc < 00, then applying the midpoint inequality
gives the estimate |p,(f )| < (vh3/24)|f" |l for the remainder p, (f ).

A generalisation of (1.1) for n-times differentiable functions has been obtained in
the recent paper [6]. In this paper we give another generalisation of (1.1) and use
it to establish various error estimates for some quadrature rules which generalise the
midpoint quadrature rule (1.2).

In the recent paper [4] we proved the formula

1

1 r -k (x—a),. )
fx)= -I;Ta-_/a f(t)dt—{—; i Bk(b_a> [f(k 1)(b)__f(k l)(a)]

S (=) - B, (=2 (n=1)
n! fla.bl [B" (b - a) B, (b _ a)] df "= (). (1.3)

Here B,(t) are the Bernoulli polynomials, B; = B;(0) the Bernoulli numbers, and
B; (1), k = 0, are periodic functions of period one, related to the Bernoulli polynomi-
als by

Bi(t) = Bi(t), for 0<r<l,
Bi(t+1) = B;(1), for teR,

so that Bj(t) = 1, Bf(?) is a discontinuous function with a jump of —1 at each integer
and B;(t), k > 2, is a continuous function. The sum in (1.3) is taken as zero when
n = 1. The Bernoulli polynomials B,(t), k > 0, are uniquely determined by the
identities

B.(t) =kBi_, (1), k=1, By(1) =1 (1.4)
and
Bi(t + 1) — B.(t) = kt* !, k> 0.

For further details on the Bernoulli polynomials and the Bernoulli numbers see [1]
or [2]. The formula (1.3) is valid for every functionr f : [a, b] = R such that f @D
is a continuous function of bounded variation on [a, b] for some n > 1, and for every
x € [a, b]. Also this formula is an extension of a Krylov formula [7, page 17].

In Section 2 we make use of (1.3) to give modified versions of the Euler midpoint
formula. In Section 3 we use these modified Euler midpoint formulae to prove
some generalisations of (1.1) for functions whose derivatives are either functions of
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bounded variation, Lipschitzian functions or functions from L,-spaces. Finally, in
Section 4, we consider the repeated Euler midpoint formula and the repeated modified
Euler formula which generalise the midpoint quadrature formula (1.2). Applying
the estimates obtained in Section 3, we establish various error estimates for these
generalised quadrature formulae.

2. The Euler midpoint formulae

THEOREM 2.1. Let f : [a, b] — R be such that f ®~V is a continuous function of
bounded variation on (a, b) for some n > 1. For any integer m suchthat0 < m < n/2
define

— (b—a)* (k=1) Q-1
Tu(f) =) —aor Bl e - ¥ @], @.1)
k=1 :

with the convention that the sum is zero whenm = Q, thatis, To(f ) = 0. Ifn = 2r—1,
r > 1, then

/f(t)dt (b—a)f( +”)—T,.l(n

(b-a*! . (@+b)/2—1\ oy
+ (2’. - l)' -/[:z.b] BZr—I ( b —a ) df (t) (22)

Ifn=2r,r>1,then
b
ff(r)dt—(b—a)f( at )—T,_l(m

(b—a)¥ . [(a+b)/2—1 Q-1
T an! /.a.bl[Bz’( b—a ) Bz’<2)]df © @9

and
f f@dt=b-af (a+b) — T.(f)
_ 2r _
+ o /( 0 (%) 0. (2.4)

PROOF. Set x = (a + b)/2 in (1.3) and multiply by b — a to obtain the identity

k
(b—a)f (a-i—b) /f(t)dt+z (b- a) B, (%) [f “ ()~ f *(a)]

_ (b—a)"/ [B:((a+b)/2_t)_3n (l)]df(n—l)(l).
n! la.b} b—a 2
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We have [1, 23.1.19, 23.1.21] By_1(1/2) = 0, k > 1, so that the above identity can
be rewritten as

/ F@di= (- a)f (““’)

b2 _ gy

1
- Z -—(ﬁBu (5) [f @1 (p) _f(Zk-l)(a)]

k=1

(b—a)" » El_-i-__{?_)[?_—f 3 1 _—
PO [ [m(S2E) - (a0, as

where [n] denotes the greatest integer less than or equal to n. The sum on the right-
hand side of (2.5) is taken tobe zeroforn = lorn=2. If n=2r — 1, r > 1, then
[(n—=1)/2)=r —1, B3,_;(1/2) = 0 and (2.5) becomes (2.2). If n = 2r, r > 1, then
again [(n — 1)/2] = r — 1 and (2.5) reduces to (2.3). Finally, note that

o (£52255 n (am
{a.b] b—a

= / B,, (£?+_b)/z;t> df @r=D(t) — B,, (%) [f @r-p) _f(2r—1)(a)]
{a.b]

b—
and
(b — a)2r
@n!

so that (2.3) can be rewritten as (2.4).

1
—T,.,(f) — B,, (5) [f(2r—1)(b) _f(2r-l)(a)] =-T.(f),

REMARK 1. Inthe case when F : [a, b)] — R is such that F’ exists and is integrable
on [a, b], then the Riemann-Stieltjes integral f[a_b] G(t) d F (1) is equal to the Riemann

integral fab G(t) F'(t) dt. Therefore, if f %~V exists for some r > 1 and is integrable
on [a, b], then (2.2) reduces to

f Fdt=b-a)f ("“’) ST

m * (a+b)/2—1 @r-1)
+ ar D)1 /M] B, ( b —a )f (ndr.  (26)

Similarly, if f @7 exists for some r > 1 and is integrable on [a, b], then (2.3) and (2.4)
reduce to

/f(t)dt (b—a)f( +")—T,_.(f)

(b—a)¥ , (a+b)/2—1 o
+ 2r)! /[:z.bl[Bzr( b—a ) BZr( )]f Bde 27)
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and
b
ff(t)dx (b—a)f( at )-T,(f)
b-a)? b)/2 -
o (2';1!) fl 0 (%)f ®wadr, (28
respectively.

3. Generalisations of the midpoint inequality

THEOREM 3.1. Let f : [a, b] — R be such that f "~V is an L-Lipschitzian function
on [a, b] for some n > 1. Assume the notation established by (2.1). Ifn = 2r — 1,
r > 1, then

(b_a)Zr

(27‘)' 4(1—2-2’) IByl L. (B.D

/f(t)dt—(b a)f( ”)+T,-l(f)|

Ifn=2r,r>1,then

b _ a)\2r+1
/f(t)df—(b a)f( at )+Tr—l(f)’ %'—(1—2"2’)|Bz,|L. (G.2)

Also, we have

f fidi—b-a)f ( +”) +T(f)‘

b—a)*t
=T fo 'BZ'(’)"”LSW—ZI&,IL. (33)

PROOF. For an integrable function F : [a, b] — R we have

( _ )2r+1

b
/ F(ndf *" @) S/ |F()ldtL, (34)
la,b) a

since f ®~1 is an L-Lipschitzian function. Applying the above estimate, we get

_ 2r—1 _
(b a) / Bz’,_, ((a+b)/2 I) df(Zr-Z)(t)
[a,b]

@r-1 b—a
(b _ a)2r—l b . (a + b)/2 _y
= _(2—,__1_)1/: B3 (T) dtL
b—a) (2 -
- 22,- _ai)!/ IBZr l(t)ldtL ai)"/ By (1) dtL.
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Because of
2Qr—- D!

(2”)2,_1(1 — 22_2,), O0<t< 1/2, r>2 (3.5

0 < (=1)"Bar1(p) <

and
By (1 —t) =—By_ (), t€[0,1] (3.6)

(see [1, 23.1.14, 23.1.8]), we have

1 172
f \Boys (0)] dt =2 / |Boyi(t)] dt
0 0

172
f By, _ () dt
0

1
=- |-(1 ~2""")B,, — By | =

1
=2 == | By, (1/2) — By, (0)]

(2 —- 21—2r)
r

IBZrl .

In the above calculation we used the identity (1.4) and
By (1/2) = —(1 —2'"%)B,, 3.7)

(see[1, 23.1.21]). The above estimate, in combination with (2.2), proves the inequality
(3.1). Further, using the estimate (3.4), we get

b-a)? . [a+b)2—1t @r-1)
‘ @n)! Ab, [BZ’( b—a ) B”( )]df ®
L b—a) a)” . ((a+b)2—1 1
=" f B ('_b—T'—) BZ’( ) dil
_ »- a)2r+l 172 . 1
=T @n! f.m By () = Bar (5)

_ (b _ a)Zr-H 1 1
=g [ [Bo-54(3)

(=1)""" (Byr(1) = By,(1/2)) 20, 0<t<1

dtL

dtL.

Because of

(see [7, Section 1.2]), on using (3.7) we get

1 1
/ |Bau(6) — Boy(1/2)] dt = / (B (1) — Bar(1/2)) dt
0 0
= B2, (1/2)] = (1 — 2'¥) | By .
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This, in combination with (2.3), proves the inequality (3.2). Finally, we can apply the
estimate (3.4) to obtain

- a)Zr . (@a+b)/2—1t @r=1
‘ (2")' »/[‘a,b] BZr ( b__a )df (t)

b-—a) (| ., (@+b)/2—1
=@ / BZ’( b—a )

_ - a)2r+l 172 . B - a)2r+l 1
sl LG L g MECEE

dtL

which is, by (2.4), the first inequality in (3.3). Further, because of
(=1)" (By(t) —By) >0, O0<t<1

(see [7, Section 1.2]), we have

1
/ | B2, (1) — By | dt = (t) — By,) dit| = |By|
0

and

1 1
/ |Boy ()] dt = [ |Boy(t) — By, + Byl dt
0 4] \
1
< f \Bo () — By ldi + 1Bl = 21Bsl,  (38)
0

which proves the second inequality in (3.3).

As corollaries to the preceding theorem let us state some particular results. Note
that B,(1/2) = —1/12, B4(1/2) = 7/240 and

(b a)2

h(f)=0, T(f)=- [F'®-f'@].

COROLLARY 3.2. Ler f : [a, b] — R be a given function. If f is L-Lipschitzian
on [a, b}, then

L.

a+b)‘ < (b — a)?

ff(r)dr (b—a)f( .

If ' is L-Lipschitzian on [a, b}, then

b N3
[ Fdt— (b - a)f (““’)l <02
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PROOF. Set r = 1 in (3.1) to obtain the first inequality. The second one follows
from (3.2) with r = 1.

REMARK 2. The first inequality established in the above corollary has been proved
by Dragomir in [5] (see also the recent survey paper [3]), while the second extends
the first inequality in (1.1) to a wider class of functions. Namely, if f is such that
f " exists and is bounded, then the second inequality from Corollary 3.2 applies with

L = f "lleo-

COROLLARY 3.3. Let f : [a, b] = R be a given function. If f' is L-Lipschitzian
on [a, b}, then

/f(t)dt—(b— a)f (““’) (b

If f" is L-Lipschitzian on [a, b), then

_ 4
/f(t)dt- b—a)f (““’) v D e - f@)| < C=2L

b- a)3
wJ'

>4 i [Fr®-rf@]| <

192

If f" is L-Lipschitzian on [a, b], then

b b— 2 7(b - a)’
[f(r)dz b-a)f (‘“” ) e - @] s e

PROOF. We have B,(t) = t> — t + 1/6 and by a simple calculation we get
fol |B2(1)|dt = 1/9+/3. To prove the first assertion we apply the first inequality
in (3.3) with r = 1. The second inequality follows from (3.1) with r = 2, while the
third follows from (3.2) with r = 2.

THEOREM 3.4. Let f : [a, b] — R be such that f "~V is a continuous function of
bounded variation on [a, b] for some n > 1. Assume the notation established by (2.1)
and denote by V2(f "=V the total variation of f "V on[a, b]. Ifn =2r— 1, r > 2,
then

f F)dt—(b-a)f ( ”) + T,_.(f)’

b—a 2r-1
< (—(27_)1—),‘6151’( | Bor— 1 ()] VE(F #72)

2(b — a)¥"!
<
- (2”)2r—l(l —_ 22—2!)

Vab(f (2r—2)). (39)

The first inequality holds for r = 1 too.
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Ifn=2r,r>1, then

f F@)de— (b— a)f ( “’) + T,-.(f)l

(b a)Zr
@

———2(1 = 27)[B, |V, (f ¥7). (3.10)
Also, we have

_ 2r
/f(t)dt—(b—a)f( +b)+T(f)l Co BV ). @

PROOF. If F : [a, b] — R is bounded on [a, b] and the Stieltjes integral

/ F(t)df ®(r)
{a.b]

exists, then

/ F@ydf*"(n| < max | F(1)] Vo). (3.12)
[a.b] tela,

Using the above estimate we get for r > 1
® - a)>"! /’ (a+b)/2 -1t _
_— B, — T ) df ¥
(2r - 1)' ta,b] 2r-1 b —a f ( )
(b a)*! . (@a+b)/2—1t
B3, —b-—
—Qa

—————— max
T @2r—1)! telab
max |Ba,—1(1)] Vo (F ).

_ (b—a)*!
T @2r—1)! rela

Vb(f (2r—2))

By (2.2), this implies the first inequality in (3.9). Also, for r > 2, using (3.5) and
(3.6) we get

2(2r — 1)!
(2”)2r-|(1 —_ 22—2r) ’

max | B, (t)| <
tela,b)

which implies the second inequality in (3.9). Further, using (3.12) we get

(b - a)” . f(a+b)/2—1 @r-1
‘ @n)! L.b, [32’( b—a ) Bz’( )]df @

b - a)*> . [(a+b)/2—1 1 .
< Gy e B ( b—a ) = B (5) W
»- a)z’

Vb(f(Zr—I))‘

1
X | B2, (1) — By, (5)

- @) IEIabl
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Now, the fact that

max | By, (1) — B, (1/2)] = | By — B (1/2)| = 2(1 — 27%)| By|

(see [7, Section 1.2]) together with (2.3) imply (3.10). Finally, applying the estimate
(3.12), we get

(b - a)* . [l@a+b)/2 -1t @r-1
’ - f[ B (—_—b /2 ) df 0 (r)

(b—a)” L, (la+b)/2—1t by g (2r—1)
= @ tglln.b] B, ( b—a ) Y )
_ (b _ a)2r

b @2r-1)
= o max | B2 ()] V(f )-

Using maxco,1} | B2,(¢)| = | B2,| and (2.4) gives (3.11).

COROLLARY 3.5. Let f : [a,b] — R be a given function. If f has bounded
variation on {a, b), then

f f(dt—(b—a)f (“+b)| < b;“V:m.

If f' has bounded variation on [a, b], then

b b —
/f(t)dr—(b—a)f("+ )‘_( . Ve,

PROOF. To prove the first assertion, apply the first inequality in (3.9) with r = 1
and note that max,c, 1) |B1(¢#)| = max,po 1) |t — 1/2] = 1/2. The second assertion
follows from (3.10) with r = 1.

REMARK 3. The first inequality of Corollary 3.5 can be found in [3], while the
second extends the third inequality in (1.1) to a wider class of functions. Namely, if f
is such that f” exists and belongs to the space L,[a, b], then the second inequality
from Corollary 3.5 applies with V>(f') replaced by || f “|l,.

COROLLARY 3.6. Let f : [a,b] — R be a given function. If f’ has bounded
variation on [a, b), then

2 b 2
_/f(t)dt—(b— ) (““’) D e -r@l| < Cvey.
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If f” has bounded variation on [a, b), then

b 2
[f(z)dr—(b of (““’) O e -r'@]| <

If f" has bounded variation on [a, b), then

b b—a)? b—a)’
f f @) dt —(b—a)f (” ) ( ") [Fe-f @] <=2 38;') VE(E™).

(b—a)’

b ”n
T 1243 A

PROOF. The first inequality follows from (3.11) with r = 1. To prove the second,
note that max,o 1) |B3(f)| = max,qo.q |22 — 312/2 + 1/2| = 1/12+/3 and apply the
first inequality in (3.9) with r = 2. Finally, the third inequality follows from (3.10)
with r = 2.

THEOREM 3.7. Let f : [a, b] — R be such that f ™ € L,[a, b] for some n > I.
Assume the notation established by (2.1). Ifn =2r — 1, r = 2, then

f Fdt— (b - a)f ( +”)+T, 1(f)|

b-a ! @r-n 2(b — a)¥!
< 2D max ax By, (DIIf h =< PSP

The first inequality holds for r = 1 too. If n = 2r, r > 1, then
(b— a)2r
@r)!

2r—
1f &=

2(1=-27)| B |l f s

/f(t)dt—(b a)f( +l’)+r, o)<

Also, we have
(b—a)¥
2

PROOF. Since f ™ € L[a, b], f "' has bounded variation on [a, b] and

a+b

2
1B2|1lf 1.

(b—a)f ( )+T,(f) <

b
VE(F D) = f FO@1de = I D,

Now apply Theorem 3.4 to obtain the inequalities stated in the theorem.

COROLLARY 3.8. Let f : [a, b] = R be a given function. If f' € L\{a, b], then
a+b b-a
(Hdt —(b— )f( )‘S 3 M-

If f” € Ly[a, b], then
b b — a)?
ff(t)dt b —a)f (“+ )[_( D1
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PROOF. Apply Corollary 3.5 with the same argument as in the proof of the preceding
theorem.

REMARK 4. The first inequality of the above corollary can be found in [3], while
the second coincides with the third inequality in (1.1).

COROLLARY 3.9. Let f : [a, b] — R be a given function. If f "e L,[a b], then
b b 2 2
/f(t)dt— (b—a )f( ot ) ( “) [F'®)-f @] < “) T

If f” € L\la,b], then

b a+b b- a)2 (b—a)?
d_ b_ nt
fnf(t) f—( a)f( : ) [ @ -7 @]| < 1

If f™ € Lyla, b}, then

b b-a)? b—a)’
/f(t)dt—(b— or (22)-S2 1r'e-r@)| < S,

PROOF. Apply Corollary 3.6 with the same argument as in the proof of the preceding
theorem.

THEOREM 3.10. Let (p, q) be apair of conjugate exponents, thatis,1 < p,q < o0,
1/p+1/g=1lorp =00,qg=1. Letf :[a,b] > Rbesuchthat f™ € L,la,b]
for some n > 1 and assume the notation established by 2.1). Ifn =2r — 1, r > 1,
then

f FOdt = (b-af ( +”)+T,-,(f>

b _ 2r-1+1/q 1 1/g
= '(-(2:1)—1), ( / IBz,_l(t)I”dt) IF =1, (3.13)
Y A

Ifn=2r,r>1,then

/ f@di - (b-a)f ( +b)+ T,-l(f)'
(b— a)2r+l/q 1 1
=< —anr (‘/; By, (1) — Ba, (5)

Also, we have
() dt — (b— a)f (%f) + T,(f)‘

b — g)¥rtV/ae 1 1/q
= (—% ( f | B2, (D)7 dt) IFen,. (3.15)
N 0

q 1/q
dt) (A (3.14)
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PROOF. By applying the Holder inequality we have

b — 2r-1 b b)/2 —
((2r f)l)! / Bz‘"'((a +b 3/a t)f (2’-”(0‘“‘

G- (., ((@a+b/2-1\|
=@r- (/ Bz’"'( )

b—a
_ (- a)¥r-'+\e : q v @r-1)
=TG- A [By,a ()10 de ) |f lip.

l/q
dt) I &1,

Now apply the above estimate to the formula (2.6) to get (3.13). We get the inequalities
(3.14) and (3.15) by a similar argument, using (2.7) and (2.8), respectively.

COROLLARY 3.11. Let f : [a, b] = Rbesuchthat f ™ € Ly{a, b]for somen > 1
and assume the notation established by (2.1). If n =2r — 1, r > 1, then

b b—a)”
f f () dr— (b~ a)f( ar )+Tr-1(f)‘ ( (23 4(1=27) By | If @Vl

Ifn=2r,r > 1, then

@n!

b 2r+1
/f(t)dt—(b a)f( ar )+T_|(f)‘ —L(l—2l_2r)|82r|”f(z’)"oo-

Also, we have

(dt — (b - a)f (a+ b) + T,(f)‘
(b - a)2r+l 1 an (b _ a)2r+l an
= Tanr fo |Bor (1 dtlf oo < —=—21B2 | I1f @l

PROOF. Apply Theorem 3.10 with p = 00 and g = 1, and use the same calculation
for | 1By-1(1)|dt, [ |By (1) — B, (1/2)dt and [, |By, (1) dr as in the proof of
Theorem 3.1.

COROLLARY 3.12. Assume the pair (p, q) is as in Theorem 3.10. Let f : [a, b] >
R be a given function. If f' € L,[a, b), then

a+b b—ayta
/f(r)dr (b—a)f( )|52(q+1).,qllf Iy

If f" € L,la, b], then

atb\| _ b-apn
ff(r)dr—(b—a)f( )= s
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PROOF. To obtain the first inequality, apply (3.13) with r = 1 and note that

1 1
1
B (®)|%dt = t—1219dt = ————.
[ morar= [Ce-1prae= s

To obtain the second inequality, apply (3.14) with » = 1 and note that

1 1
/ |By(t) — B(1/2)|7dr = f |2 ~ ¢t + 1/4{7 dt
0 0

1
1
(t-1/%dt = —————.
WY #2q T D
REMARK 5. For p = 00, ¢ = 1, the inequalities established in Corollary 3.12
become
a+b b — a)?
/f(t)dt—(b—a)f( )|_ I Moo
and

ff(z)dz—(b—a)f ("“’)l_(b D o

This second inequality coincides with the first inequality of (1.1). The second in-
equality established in Corollary 3.12 coincides with the second inequality in (1.1).

COROLLARY 3.13. Let f :.[a, b] & Rbe a given function. If f” € Lyla, b], then

b b-a)? b 3
/f(t)dt—(b— Y, (“+ ) L er-f ' )]‘ (1 j_) 1 "o

Iff" € Lela,b), then

/f(t)dt—(b— f (““’) (b “) [F'5)—f'(a )]‘ CalMPYT

Iff™ € Lola, b), then

b b— 2 (b
/f(t)dt—(b a)f (“+) G2 1) - f()]' (5760 1™ llo

PROOF. The result follows from Corollary 3.11 by an argument analogous to that
used to obtain Corollary 3.3 from Theorem 3.1.
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COROLLARY 3.14. Let f : [a, b] — R be such that f ™ € L;[a, b) for somen > 1

and assume the notation established by (2.1). Ifn =2r — 1, r > 1, then

f F@®)dt - (b - a)f ( “’) + T,_.(f)‘

By -
< (- (ﬁ) .

Ifn=2r,r>1, then

f F@di = (- af ( ”) + T ()

< (b — o) [ Bs, | + (1 —2'-2)2BZ
B @r)! @n)r

12
) ILf @71,

Also, we have

)dt—(b—a)f< +b)+T(f)|

Bs,
< (b-ap? (%1:—){) If @12

PROOF. The Bernoulli polynomials satisfy the relations

1
/ B,(t)dt=0, n=>1
0

and
! n'm!
B B,,. dt = (-1 n-t Bn ms ’ >1
/; n (1) B (1) =D ot i o n,m>
(see [1, 23.1.11, 23.1.12]). Therefore we have
2 d |2 n|2 B
t)ydt = (—D"! " "
fo KOt = ) B = 2B

and

]

f |Bay (1) — By, (1)) dt

0
1

= f Boy(0)%dt — 2By, (1/2) f By, (1) dt + B2 (1/2)

0
_ane @ne

1-2r\2 p2
= an ——|Bu,| + B;,(1/2) = @) ——|Bs|+ (1 -27")"B,
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Apply Theorem 3.10 with p = g = 2. Using (3.19) with n = 2r — 1 and (3.13),
we get (3.16). Similarly, using (3.20) and (3.14), we get (3.17), while (3.18) follows
from (3.15) and (3.19) with n = 2r.

COROLLARY 3.15. If f' € L,[a, b), then

b\| _ (b— )
ff(t)dt—(b—a)f (‘”" )‘5( 2;5) T

If f” € Lyla, b}, then

a+b (b — a)’?
d — b_ n .
/f(f) t—( a)f( ). < W5 If "1l

PROOF. Apply (3.16) with r = 1 and (3.17) with r = 1, respectively.

COROLLARY 3.16. If f” € L,[a, b), then

a+b (b- a)2 (b— a)5/2
di— (b— "
f F@di—( a)f( ) [ @]| <= r e

If f" € Lsyla, b, then

o a+b (b- a)2 b-— a)7/2 .
/f(r)dz ® )f( ) &1 @]| < 2= e

If f™ € Lala, b, then

N2
ff(t)dt—(b— a)f (““’)—“’ a

L1 ®) - £'@)]

24
(b - a)9/2 IIII
= %760 IIf
PROOF. Apply (3.18) with r = 1, (3.16) with r = 2 and (3.17) with r = 2,

respectively.

4. Error estimates for some quadrature formulae

Let us divide the interval [a, b] into v subintervals of equal length h = (b — a)/v.
Under appropriate assumptions on f : [a, b] — R, we consider the repeated Euler
midpoint formula

b
/ £t = SoF) = s F) + 0 (F), @1
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where
S,.(f) == hgf (a + Qi - 1)%) 4.2)
and
- th (2k-1) (2k-1)
(v, f) = . @0 u( )[f () - f * )], 43)

with the convention that 7o(v, f) = 0.
Since

v

S ®*Va+ih) — fE D@+~ D] = F AP 0) - f * V),

i=1

the remainder p,(f ) can be written in the form

p(f) =) p(f3 i) (4.4)

=]

where, fori =1,..., v,

a+ih h
Pv(f;i)=/ f@yde—hf <a+(2i—1)—2-)

+(1 DA

+ Z 0! By (-;—) [f(Zk—l)(a+ ih) _f(zk—l)(a+ (i — l)h)].

We shall apply the results from the preceding section to obtain some estimates for the
remainder o, (f ).

THEOREM 4.1. Let f : [a, b] — R be such that f "~V is an L-Lipschitzian function
on [a, b) for some n > 1. Then forn = 2r — 1, r > 1, we have

los(f)I < 7 2),4(1 27) | Byl L,
while for n = 2r, r > 1, we have
PR+
lon ()] < 0 (1-2""%)|By| L.

PROOF. Using (3.1) we getfori =1,..., v that

2r

(2r)|4(1 —27¥) |By| L.

o (f ;)] <
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By the triangle inequality, we get from (4.4) that
v v
leu(F)I < Zl lou(f 5 i)l < Z_lj ot =27 (Bl L
vh¥
T en

which proves the first assertion. Further, using (3.2), we get the estimate

4(1-27")|By| L,

2r+l
2r)!

which holds for i = 1, ..., v. Using (4.4) and the triangle inequality, we prove the
second assertion in the same way as we did the first one.

lo (5 DI < (1 —2""")|By| L

THEOREM 4.2. Let f : [a, b] — R be such that f "~V is a continuous function of
bounded variation on [a, b] for some n > 1. Then forn =2r — 1, r > 2, we have

2r—1

h b 2r-2)
o (f)I < Do max | By ()| V,(f )

2t
<
- (27r)2r—l(1 —_ 22—2r)

Vb (f (2r—2))

and the first inequality holds for r = 1 too. Also, forn = 2r, r > 1, we have

2r

2h
Ipv(f)l < (1 - 2_2') |BZr| Vab(f(Zr-l))'

@2n!
PROOF. Applying (3.9), we getfori =1, ..., v that

2r—1

l)l = (2 1)' max |Bz, l(t)| Va“:(l,h 1);.(f(2"2))

< 2h2r— a+1h (f(Zr 2))
- (2n)2r-l(1 22~ Zr) a+(l Hh

lou(f 5

From (4.4), we have by the triangle inequality that

v 2r-
o () = Z o301 = (2 1)! selo. 1|| 2r-1(0)] Z Vaa:('.h l)h(f(Z’-Z))
i=1
h2" b 2r—2
= G B 01V
2h2r—

< Vb (2r-2) ,
- (27r)2r-l(1 — 22-2r) a (‘f )
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which proves the first assertion. To prove the second, we use (3.10) to obtain the
estimate
2r

) 2h
lou(f; DI < !

fori =1,..., v. From (4.4) we get

(1 =272 |Ba, | VI ph &)

d 2h2r v .
10N = D 10uF 5 D1 = (=270 1Bl D Vi)
=1 ) i=1

_ 2h2r
!

(1 =27") |By| V(F &Y,
which proves the second assertion.

COROLLARY 4.3. Let f : [a, b] — R be such that f ™ € L,[a, b}, for some n > 1.
Then forn =2r — 1, r > 2, we have

2r-1

h 2
o, (f) < mg}g’l(]‘BZr—l(t)l ILf =Py

2h2r—l
<
- (27[)2’_1(1 - 22—2r)

and the first inequality holds for r = 1 too. Also, forn = 2r, r > 1, we have

ILF &=

2r

2h .
Lo ()] < (1 =27 B lIf @,

@

PROOF. Note that f “~ has bounded variation on [a, b],
b
e = [ wide= i,
and then apply Theorem 4.2 to obtain the inequalities stated in the corollary.

THEOREM 4.4. Let (p, q) be a pair of conjugate exponents, thatis, 1 < p,q < 00,
l/p+1/g=1lorp =00,qg=1 Letf :[a, b] > R be suchthat f® € L,[a,b]
for somen > 1. Then forn=2r — 1, r > 1, we have

1/q

vhlr—l+l/q 1 . -1
[ov(f)] < —(-27-_'—1)7 (-/o [ By, ()" dt lf Iy,

1
By, (1) — By, ('2’)

while for n = 2r, r > 1, we have

vh2r+l/q 1
) < 2 (fo

q I/q
(2r)
df) |V PR
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PrROOF. Fori =1, ..., v consider the function
g =f"@), tela+(G—1Dh,a+ih].

Obviously we have |lg;ll, < |If ©®||,, where the norm ||g;||, is taken over the interval
[a + (i — )k, a + ih], while the norm ||f ™||, is taken over the interval [a, b]. Using
the above inequality, we get fori = 1, ..., v that

h¥-1+1/g 1 1/q
lov(f D) < m( A IBzr_x(t)I"dt) g ll,
R2r-1+1/q 1 t/q
— q (2r-1)
=< 2 =D ( A |B2,—1(8)] dt) If llp,

using (3.13) in the case n = 2r — 1, and

2r+l/q 1/q9
o, (f ;)] = 20! ( |Ba () — Bz,(1/2)l"dt) FA
h2r+]/q 1/q o
SRR (0 IBzr(t)—Bzr(l/2)|th) If @1,

using (3.14) in the case n = 2r. The rest of the argument is the same as for the
preceding theorems.

COROLLARY 4.5. Let f : [a, b] — R be such that f ™ € Lyla, b) for some n > 1.
Then forn =2r — 1, r > 1, we have

2
v
lon(f)I < 20 27 Ballf @ llcos
while for n = 2r, r > 1, we have
2r4-1
100 S s (L= 271 Byl il

PROOF. Apply Theorem 4.4 with p = oo.

COROLLARY 4.6. Let f : [a, b] = R be such that f ™ € L,[a, b] for some n > 1.
Then forn =2r — 1, r > 1, we have

12
< PRI [Ba, @r-1
lo,(f)l < v @ -2 I/ I[2,

while forn = 2r — 1, r > 1, we have

|Bor| | (1=2")2B}
2r+1/2 2r
lo,(f)] < vh (“ﬂ! e

12
2
) If @7
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PROOF. Apply Theorem 4.4 with p = 2.

Instead of the repeated Euler midpoint formula (4.1), under appropriate assumptions
on f : [a, b] - R, we can consider the repeated modified Euler midpoint formula

b
/f(t)dt=Su(f)~rr(f)+av(f),

where v and h = (b — a)/v are as before, S,(f ) is given by (4.2), and 7, (f ) is defined
by (4.3). In this case, the remainder o, (f ) can be written in the form

o (f) =) o.(f;i), 4.5)
i=1
where, fori =1, ..., v,

a+ih h
"v(f;i)=/ f@)dt—kf (a+(2i—1)-—)
a+(1—1)h 2

~ (@2k-1) (2k-1) .
+ (2k)|B7J‘ ( ) [f (a+ih)—f (a+ (i—Dh)].

Here we give the estimates for the remainder o,(f ), using the same argument as that
used for p,(f ). We omit the details.

THEOREM 4.7. Let f : [a, b] = R be suchthat f @~V is an L-Lipschitzian function
on [a, b, for some r = 1. Then

2r+ 1 2r+1

(2 )
PROOF. As in Theorem 4.1, using (3.3) and (4.5).

2|By| L.

/ By, ()] diL < 22

lo. ()l < a0

THEOREM 4.8. Let f : [a, bl — R be such that f "~V is a continuous function of
bounded variation on [a, b), for some r > 1. Then

2r
r)!
PROOF. As in Theorem 4.2, using (3.11) and (4.5).

lo(F)l = |Ba |V, (f 1),

COROLLARY 4.9. Let f : [a, b] — R be such that f ®" € L,[a, b}, for some r > 1.
Then |o,(f )] < (h¥/2r))IBa I f @y
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PROOF. Note that f ?~" has bounded variation on [a, b],

b
e = [ remian =1,
and then apply Theorem 4.8.

THEOREM 4.10. Lef (p, q) be a pair of conjugate exponents, thatis, 1 < p,q < 00,
1/p+1/g=1lorp =00,q =1 Letf :[a,b] > R be such that f ® € L,]a, b],
for some r > 1. Then

2r+|/q
(2 )!
PROOF. As in Theorem 4.4, using (3.15) and (4.5).

1/
lou(f)l < ( | B2, (£)]7 dr) IfF e,

COROLLARY 4.11. Let f : [a,b] — R be such that f ®? € Lyla, b, for some
r > 1. Then

2r+1 2r+l

2|B2r|"f @ ”oo

vh ! @n vh
0l < 2 [ 1B 01l Pl <

PROOF. Apply Theorem 4.10 with p = 00 and use (3.8).

COROLLARY 4.12. Let f : [a, b] = R be such that f ?" € L,[a, b, for some
r > 1. Then |o,(f )| < vh¥*+'2(| B, |/(4r))'72| f G|,

PROOF. Apply Theorem 4.10 with p = 2.
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